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Abstract

Reasoning models have demonstrated remark-001
able performance on complex tasks by gen-002
erating long reasoning traces prior to produc-003
ing final answers. However, previous research004
on long-context scaling in language models005
has generally focused on managing lengthy006
input prompts instead of producing long out-007
puts. To leverage the strong long context under-008
standing abilities of current models, we intro-009
duce Understanding-to-Reasoning Transition010
(URT) fine-tuning, a sequence-level curricu-011
lum learning framework that gradually shifts012
a model’s focus from interpreting long chain-013
of-thoughts to generating them. By incorpo-014
rating partial reasoning steps in the input con-015
text, URT naturally exposes the model to di-016
verse prompt lengths during training, preserv-017
ing its performance on long-context compre-018
hension while developing advanced reasoning019
capabilities. Experiments on rigorous reason-020
ing benchmarks, including AIME24 and GPQA021
Diamond, reveal that our approach surpasses022
standard fine-tuning by over 10%, while main-023
taining robust performance on the understand-024
ing tasks in RULER.025

1 Introduction026

Enhancing the long-context capabilities of large027

language models (LLMs) (Anthropic, 2023; Tou-028

vron et al., 2023; Reid et al., 2024) has become029

both immensely popular and critically important.030

In recent years, researchers have primarily focused031

on improving the long-context comprehension abil-032

ities of LLMs (Xiong et al., 2023; Zhu et al., 2023;033

Peng et al., 2023; Gao et al., 2024b), achieving034

substantial progress on tasks such as summariza-035

tion and question answering that emphasize the036

effective utilization and understanding of long in-037

puts. However, with the emergence of reasoning038

models (OpenAI, 2024; DeepSeek-AI et al., 2025),039

the focus has noticeably shifted; optimization in040

the long-context setting is now aimed at generat-041

ing long outputs, typically in the form of extensive 042

chain-of-thoughts (CoTs) (Wei et al., 2023). 043

However, it remains unclear (1) whether current 044

open-source reasoning models that are trained with 045

short prompts can preserve their long-context com- 046

prehension capabilities; and (2) whether their abili- 047

ties to handle long prompts can be effectively lever- 048

aged to enhance the learning of long CoTs. To ad- 049

dress this gap, our study begins with a preliminary 050

evaluation (§3.1) examining whether popular base 051

LLMs and their reasoning variants can effectively 052

utilize information from lengthy inputs. First, to as- 053

sess the models’ general long-context capabilities, 054

we adopt the existing benchmark RULER (Hsieh 055

et al., 2024), which measures performance on stan- 056

dardized long-context tasks. In addition to the 057

general domain, we introduce CoT-U (Chain-of- 058

Thought Understanding), a new understanding task 059

that evaluates models’ ability to process and reason 060

over lengthy inputs which are human-verified rea- 061

soning paths. As illustrated in Figure 1, each input 062

combines a problem statement with its correspond- 063

ing CoT rationale, testing how effectively models 064

leverage structured reasoning paths. Our evalua- 065

tion leads to two key observations: (1) Reasoning 066

models (trained predominantly on math problem 067

with limited prompt-length variety) lag behind base 068

models in both CoT-U and general long context 069

tasks, and (2) incorporating partial reasoning steps 070

(tokens) into the input significantly mitigates the 071

difficulty of learning long reasoning chains. 072

Building on these findings, we propose a new 073

framework for fine-tuning LLMs on challenging 074

chain-of-thought data, termed Understanding-to- 075

Reasoning Transition (URT) fine-tuning. In this 076

context, understanding refers to the model’s ability 077

to process long-form CoT inputs and assimilate 078

them into accurate final answers. While reasoning 079

in our approach involves generating the reasoning 080

steps rather than merely interpreting them. Re- 081

cent studies, e.g., Sky-T1 and S1 (DeepSeek-AI 082
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et al., 2025; NovaSky Team, 2025; Ye et al., 2025;083

Muennighoff et al., 2025), have demonstrated that084

fine-tuning on long CoT data offers a straightfor-085

ward and cost-effective approach to enabling mod-086

els to learn extended CoTs. In contrast to these087

works that finetuned models on complete reason-088

ing chains, URT models the learning process as089

a gradual transition from understanding to genera-090

tion. Specifically, URT splits a long reasoning trace091

into two segments—incorporating part of the trace092

into the input while requiring the generation of the093

remaining steps. This means that during training,094

the input prompt is gradually shortened while the095

expected output becomes longer. Our approach of-096

fers two key benefits. First, it enhances reasoning097

by employing a sequence-level curriculum learning098

process that bridges the gap between long chain-of-099

thought understanding and generation by starting100

with an easier understanding task. Second, it im-101

proves comprehension by exposing the model to102

diverse prompt lengths during fine-tuning, thereby103

avoiding overfitting on short-prompt inputs.104

We evaluate our URT fine-tuning method on sev-105

eral challenging reasoning benchmarks, including106

AIME24 (MAA, 2024), GPQA (Rein et al., 2023),107

and MATH500 (Hendrycks et al., 2021a), as well108

as a long-context benchmark, RULER (Hsieh et al.,109

2024). Our experiments cover various model sizes110

(8B, 14B, and 32B), and in every case, URT fine-111

tuning consistently delivers improvements. No-112

tably, our 32B model achieves an improvement113

of over 10% compared to standard SFT meth-114

ods. The overall performance of our model is115

even comparable to that of the teacher models R1-116

Preview and QwQ-Preview, demonstrating its im-117

pressive capacity to acquire and generalize knowl-118

edge. In addition, for long-context understand-119

ing tasks, our model achieves robust performance120

on RULER, outperforming QwQ-32B-preview by121

over 12 points.122

2 Related Work123

Long-Context Understanding Language mod-124

els have recently increased their context lengths125

from 2K to over 128K tokens (Chen et al., 2023;126

Han et al., 2024; Gao et al., 2024b; Lin et al.,127

2025). Despite this growth, evaluation and train-128

ing datasets have mainly concentrated on compre-129

hending long prompts (Li et al., 2024; Jiang et al.,130

2024). Benchmarks like Scrolls (Shaham et al.,131

2022) and LEval (An et al., 2023) assess long-132

context capabilities through tasks such as ques- 133

tion answering (Kočiský et al., 2018; Dasigi et al., 134

2021), summarization (Zhong et al., 2021; Chen 135

et al., 2022), and synthetic challenges like Needle- 136

in-a-Haystack (gkamradt, 2023; Laban et al., 2024). 137

For training, efforts focus on curating high-quality 138

long-context data from real-world QA datasets, typ- 139

ically following a long-prompt, short-response for- 140

mat (Zhao et al., 2024a; An et al., 2024; Koluguri 141

et al., 2024; Liu et al., 2024; Fu et al., 2024; Wu 142

et al., 2024; Gao et al., 2024a). 143

Long Chain-of-Thought Reasoning As LLMs’ 144

context lengths expand, research also focuses on 145

generating extended content, such as story writ- 146

ing (Mikhaylovskiy, 2023; Bai et al., 2024). With 147

the release of o1 (OpenAI, 2024), generating long, 148

coherent chains of thought (CoTs) in model re- 149

sponses has become a critical research area (Zhang 150

et al., 2024a; Latif et al., 2024). Enhancements 151

in long CoT generation include Monte Carlo Tree 152

Search (Yao et al., 2023; Zhou et al., 2024; Zhang 153

et al., 2024c), large-scale reinforcement learn- 154

ing (DeepSeek-AI et al., 2025; Pan et al., 2025), 155

and supervised fine-tuning on CoT datasets (Team, 156

2025; LI et al., 2024). We use supervised fine- 157

tuning for its scalability and strong reasoning per- 158

formance (Huang et al., 2025; Zhang and Chen, 159

2024; Muennighoff et al., 2025). Unlike data- 160

centric approaches focused on data diversity and 161

quality (Ye et al., 2025; Min et al., 2024; NovaSky 162

Team, 2025), our work optimizes the training pro- 163

cess with a new sequence-level finetuning frame- 164

work without complex data engineering. 165

3 Method 166

This section comprises two primary components: 167

(1) a preliminary evaluation of the long-context 168

capabilities of current models, and (2) our URT- 169

based fine-tuning framework. 170

3.1 Long Context Understanding Capabilities 171

of Current LLMs 172

In this section, we describe the details of the long- 173

context understanding evaluation process of current 174

base models and reasoning models. 175

Evaluation Setup Base models have demon- 176

strated remarkable progress in long-context under- 177

standing, as evidenced by their performance on 178

various benchmarks (Zhang et al., 2024b; Song 179

et al., 2025; Bai et al., 2025). However, their ability 180
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to comprehend complex chain-of-thought (CoT)181

reasoning and the effectiveness of reasoning mod-182

els for processing long inputs remain largely un-183

explored. In general long-context ability tests, we184

utilize RULER (Hsieh et al., 2024) to evaluate these185

models. We note that there is currently no under-186

standing task featuring long CoT inputs. In this187

work, we introduce CoT-U, a new test dataset de-188

signed to assess a model’s ability to retrieve and189

aggregate information from long chain-of-thought190

reasoning traces. Given a problem statement ac-191

companied by its multi-step reasoning process as192

input context, the model must aggregate the useful193

information to arrive at the correct final answer (see194

Figure 1).195

The contruction of CoT-U requires not only the196

problems but also their corresponding correct rea-197

soning steps. Our experiments are conducted on198

a dataset comprising 180 math problems and their199

corresponding solutions, sourced from the Art of200

Problem Solving (AoPS) platform1 and spanning201

the AIME competitions from 2019 to 2024. The202

AoPS platform provides Olympiad-level math prob-203

lems accompanied by detailed, human-authored204

CoTs. In addition to these human-written solu-205

tions, we also develop a set of model-generated206

reasoning paths. Unlike the human solutions, the207

synthetic paths are enriched with more elaborate208

explanations and reflective steps, and thus longer209

and more challenging. Given that o1 (OpenAI,210

2024) lacks explicit reasoning tokens, we employ211

the state-of-the-art open-source model QwQ-32B-212

Preview from Qwen Team (Bai et al., 2023) to213

generate these solutions.214

From the initial set of 180 generated solutions,215

we apply rejection sampling to eliminate 56 in-216

stances—those with incorrect answers (identified217

via rule-based matching) and those with correct218

answers but insufficient or flawed reasoning (deter-219

mined through human review). In CoT-U, we do220

not directly include the correct answer in the input.221

Instead, we remove any sentences that explicitly222

reveal the ground truth. The model is prompted223

with the incomplete reasoning process which have224

already demonstrate the key reasoning steps for225

deducing the answer. After comprehending this226

solution, the model only needs to perform simple227

reasoning to arrive at the final answer. All the data228

are then subject to manual review to ensure that the229

reasoning steps are logically sound and free from230

1https://artofproblemsolving.com/

<prompt> 
A bug walks all day and sleeps all night. On the first 
day, it starts at point O, facing east, and walks 5 
units due east. Each subsequent day, it walks half as 
far as the previous day in a direction that is 60°
counterclockwise ... Find m+n. So I have this problem 
about a bug that walks different distances each day 
and rotates 60 degrees counterclockwise every night. 
It starts at point O, facing east, and walks 5 units 
east on the first day. Then each subsequent day, it 
walks half as far as the previous day in a new 
direction that‘s 60 degrees counterclockwise from 
where it was facing the previous night ... Then, OP² = 
x² + y² = 25 + (25*3)/9 = 25 + 75/9 = 25 + 25/3 = (75 
+ 25)/3 = 100/3
Therefore, m = 100 and n = 3, so m + n = 103.Wait, but 

earlier I had a different...(removed)

User: The provided solution has sufficient information 
to derive the answer to the question. Please 
understand the solution and obtain the final answer.

</prompt> 

Figure 1: An illustrative example from our CoT-U test
set, where we remove sentences that directly reveal the
final answer and instead include an instruction prompt-
ing the model to comprehend the given CoTs.

overt mistakes, resulting in a refined test set of 112 231

cases. Human-generated chains-of-thought average 232

872 tokens, while AI-generated chains are signifi- 233

cantly longer at 16,133 tokens (approximately 18 234

times longer). 235

Findings We evaluate the long thought un- 236

derstanding ability of GPT-4o (OpenAI, 2023), 237

Llama3.1-8B (Llama Team, 2024), Qwen2.5- 238

7B/32B (Qwen et al., 2024), and their correspond- 239

ing long reasoning models: o1-preview (OpenAI, 240

2024), Qwen2.5-marco-o1 (Zhao et al., 2024b), 241

Qwen2.5-skywork-o1 (o1 Team, 2024), Llama3.1- 242

open-o12, and QwQ-32B-preview on CoT-U. 243

Results are presented in Figure 2 and Figure 3. 244

Our results reveal the following insights: 245

(1) All open-source reasoning models exhibit 246

a significant performance degradation in long- 247

context understanding tasks compared to their 248

non-reasoning counterparts. 249

(2) Without any hints or reasoning steps provided, 250

open-source reasoning models achieve superior 251

performance in solving mathematical problems. 252

However, when supplied with CoTs generated by 253

other AI systems or humans, their problem-solving 254

capability paradoxically underperforms compared 255

to non-reasoning models. 256

(3) Model performance is closely associated 257

with the length of the provided context. Fig- 258

ure 3 illustrates the continuous improvement 259

in performance of Qwen2.5-32B-Instruct and 260

Llama3.1-8B-Instruct as they are supplied with 261

more reasoning steps. Specifically, Qwen2.5-32B- 262

Instruct demonstrates a significant improvement 263

2https://github.com/Open-Source-O1/Open-O1

3

https://artofproblemsolving.com/
https://github.com/Open-Source-O1/Open-O1


(a) Results on RULER(32K). (b) Results on CoT-U (human-written). (c) Results on CoT-U (AI-generated).

Figure 2: Long context understanding ability of current LLMs. Black bars: base models; orange bars: long reasoning
models. Qwen2.5-CoT-SFT and Llama3.1-CoT-SFT is trained by us on the STILL2 dataset (Min et al., 2024).
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Figure 3: Model performance with varying numbers of
provided CoT tokens.

of over 60% compared to directly prompting the264

model with the problem statement which means265

the accuracy of solving math problems can be266

controlled by the number of reasoning tokens.267

268

3.2 Fine-Tuning on Long Thought data269

The evaluation results highlights the need for ad-270

vanced fine-tuning techniques to enhance the long271

CoT capabilities of reasoning models without com-272

promising their long-context understanding capa-273

bilities. This section details our URT fine-tuning274

method.275

Formulation Consider the training dataset de-276

fined as277

D = {(x(i), y(i))}Ni=1,278

where x(i) is an input instance (e.g., a question or279

prompt) and y(i) is the corresponding long chain-280

of-thought response, which includes intermediate281

reasoning steps and the final answer.282

The LLM, parameterized by θ, defines a condi-283

tional distribution over outputs as p(y | x; θ). For284

a single training instance (x, y), the loss is defined285

by:286

L(θ;x, y) = − log p(y | x; θ).287

The overall objective for fine-tuning is to minimize288

the total loss over the entire dataset: 289

L(θ) = 1

|D|
∑

(x(i),y(i))∈D

L(θ;x(i), y(i)). 290

This formulation represents the traditional Su- 291

pervised Fine-Tuning (SFT) method. However, 292

in practice, when dealing with long reasoning 293

chains, the response y is often highly complex and 294

lengthy (Xu et al., 2025; Wang et al., 2024), posing 295

significant challenges for effective model learning. 296

To overcome the challenges associated with 297

long reasoning chains, we propose Understanding- 298

to-Reasoning Transition Supervised Fine-Tuning 299

(URT-SFT), which involves partitioning the re- 300

sponse y into two distinct parts and embedding a 301

segment of y within the input prompt. Specifically, 302

the response y is divided as follows: 303

y = y1:t ◦ yt+1:T , 304

where: y1:t = {y1, y2, . . . , yt},, yt+1:T = 305

{yt+1, yt+2, . . . , yT }, and ◦ denotes the concate- 306

nation of sequences. Here, t represents the length 307

of the segment from y that is integrated into the 308

input prompt, which is a hyperparameter. The aug- 309

mented input x′ is then defined as: 310

x′ = x ◦ y1:t, 311

where x is the original input prompt augmented 312

with the first t tokens of the response y. 313

Consequently, the loss function for a single train- 314

ing instance under URT-SFT is formulated as: 315

L(θ;x, y) = − log p(yt+1:T | x′; θ). 316

This splitting strategy enables the model to han- 317

dle long reasoning chains more effectively by re- 318

ducing the complexity of the output. Furthermore, 319

in traditional SFT, most inputs x are math prob- 320

lems (Min et al., 2024; NovaSky Team, 2025; LI 321
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Table 1: Examples of different fine-tuning strategies on long reasoning data. During training, the prompt and
response are separated by the special token ‘</prompt>’. The lengths of the prompt and response can be adjusted
by modifying the placement of </prompt>. Instead of fine-tuning on the entire response, our method begins with an
input format that is closer to long-context understanding and gradually transitions to training on the whole thought.

Fine-tuning on whole
thought

<prompt> A bug walks all day and sleeps all night... Find m+n </prompt> (no loss on prompt)
So I have this problem about a bug that walks different distances each day and...(the whole
thought has about 5,120 tokens) the final answer is 103

From long thought
understanding to long
thought generation

<prompt> A bug walks all day and sleeps all night... Find m+n So I have this problem about a
bug that walks different distances...(the input context contains 4,096 tokens) </prompt>
Now, P = 5/0.75− i

(√
3/4

)
. To divide by a complex number, multiply numerator and

denominator by the conjugate of the denominator...(the output contains about 1024 tokens) the
final answer is 103
<prompt> A bug walks all day and sleeps all night... Find m+n So I have this problem about a
bug that walks different distances...(the input context contains 2,048 tokens) </prompt>
First day: walk 5 units east, so position Z1 = 5 + 0i. Then, rotate 60 degrees...(the output contains
about 3072 tokens) the final answer is 103
Fine-tuning on whole thought (the output contains about 5120 tokens)

et al., 2024), which are naturally short. However,322

after concatenation, x′ becomes a long-context in-323

put. Exposing the model to a range of input lengths324

during fine-tuning demonstrably enhances the per-325

formance of long reasoning models on long-context326

tasks (§4.4).327

An Example of Decomposing In this section,328

we demonstrate how we split a long thought, with329

t set to powers of 2, specifically {2,048, 4,096,330

8,192}. The thought y consists of approximately331

5,120 tokens, as illustrated in Table 1. We utilize332

a simple chat template where the user input is en-333

closed within <prompt>...</prompt>. Following334

previous work (Wang et al., 2023; Zheng et al.,335

2024), we do not calculate loss on the prompt.336

In the top block of Table 1, the model is fine-337

tuned on the entire chain-of-thought y, where the338

prompt x contains only a brief problem descrip-339

tion (e.g., “A bug walks all day and sleeps all340

night. . . Find m + n”), and the full reasoning341

(about 5,120 tokens) along with the final answer is342

produced in the response. The subsequent blocks343

illustrate our method of decomposing the long344

thought—transitioning from long thought under-345

standing to long thought generation. Given that the346

input length of 5,120 tokens is below the 8,192 to-347

kens threshold, we experiment with splitting points348

t = 2,048 and 4,096. In our implementation, we349

first split the text by \n\n and then by length. This350

ensures that splitting points are at \n\n positions,351

preventing tokenization errors. In the first row of352

the second block, the prompt includes a portion of353

the chain-of-thought (with the context containing354

t = 4, 096 tokens), and the response provides the355

remaining reasoning steps (approximately 1, 024356

tokens) together with the final answer. In the sec- 357

ond row, we increase the task difficulty by reducing 358

the input context length to around t = 2, 048 to- 359

kens, resulting in a longer response (about 3, 072 360

tokens). Finally, the model is trained on the whole 361

thought without any reasoning steps provided. The 362

training details are in Section §4.1. 363

Difficulty Control As a sequence-level curricu- 364

lum learning framework, URT is designed to mimic 365

an easy-to-hard training progression. At the se- 366

quence level, we emphasize training examples with 367

longer prompts—providing additional context or 368

intermediate reasoning—paired with shorter re- 369

sponses. This design encourages the model to lever- 370

age extended prompts containing rich reasoning 371

information while reducing the burden of generat- 372

ing lengthy responses. At the beginning of every 373

epoch, the training data is shuffled. For identical 374

math problems, training samples that incorporate 375

more reasoning steps are prioritized. It means the 376

model is initially exposed to instances where more 377

intermediate steps help in reaching the final answer. 378

This ordering facilitates a gradual increase in diffi- 379

culty as training progresses. After each epoch, the 380

model is evaluated on the training set. If it correctly 381

derives a problem’s final answer, that problem is 382

removed, allowing the model to concentrate on 383

unsolved challenges. 384

4 Experiments 385

4.1 Training Details 386

In this section, we describe the data preparation, 387

training process, and hyperparameter settings used 388

in our experiments. Our focus is on the training 389
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methodology rather than on curating or annotating390

data; therefore, we directly use publicly available,391

open-source dataset provided by STILL2 (Min392

et al., 2024) where the teacher models are QwQ-393

32B-preview (Qwen Team, 2024) and R1-lite-394

preview (DeepSeek Team, 2024).395

Data Preparation We utilize the dataset pro-396

vided in STILL23 which comprises approximately397

4,9K question and chain-of-thought pairs. The ma-398

jority of the prompts are from the mathematics do-399

main, with a smaller portion from code and science.400

In the original dataset, there are 4,900 prompts in401

total, with 2,429 having lengths exceeding 2,048 to-402

kens, 1,071 exceeding 4,096 tokens, and 81 exceed-403

ing 8,192 tokens. We then create a decomposed404

dataset using the method illustrated in Table 1, con-405

sisting of 4,814 prompts with diverse input lengths406

(2,048∼8,192).407

Training The SFT baselines are trained on 4.9K408

prompts for 10 epochs, while the URT models are409

trained on 9.8K prompts for 5 epochs. Addition-410

ally, we exclude data that the model can already411

handle correctly. To validate the effectiveness of412

our approach, we perform experiments on three413

base models with sizes ranging from 8B to 32B:414

Llama3.1-8B-Instruct, Qwen2.5-14B-Instruct, and415

Qwen2.5-32B-Instruct. We do not modify the mod-416

els’ tokenizers or chat templates, and we adopt a417

full-parameter fine-tuning setting. We use Llama418

Factory (Zheng et al., 2024) for fine-tuning and419

follow their default SFT hyperparameters. We use420

a batch size of 64, training in bfloat16 precision.421

The learning rate is set to 1× 10−5, with no warm-422

up, and it decays to 0 following a cosine schedule.423

We employ the AdamW optimizer (Loshchilov and424

Hutter, 2019) with β1 = 0.9, β2 = 0.95, and a425

weight decay of 1×10−4. Note that during training426

we compute the loss only on the reasoning traces427

from the response, and not on the input (which in-428

cludes the question and any partial solution). All429

experiments are conducted on a single machine430

equipped with 8 NVIDIA A100 GPUs, and we set431

the maximum training sequence length to 16384.432

Our training pipeline is based on DeepSpeed ZeRO-433

3 (Aminabadi et al., 2022) and accelerated by Flash-434

Attention-2 (Dao, 2023). For the 32B model, CPU435

offload is utilized to mitigate GPU out-of-memory.436

In our experiments, the 8B and 14B models are437

3https://github.com/RUCAIBox/Slow_Thinking_
with_LLMs

fine-tuned in under 4 hours, while the 32B model 438

requires approximately 14 hours. 439

4.2 Evaluation Setup 440

In this section, we outline the benchmarks and base- 441

lines used to evaluate the reasoning capabilities of 442

our models. Specifically, we compare URT with 443

the traditional SFT on widely recognized reasoning 444

tasks covering multiple domains as well as long- 445

context benchmarks. For a detailed description 446

of the benchmarks and baselines employed in this 447

work, please refer to Section A.1. 448

4.3 Main Results 449

Long-Reasoning Results Table 2 presents a com- 450

prehensive comparison of various models evaluated 451

on three benchmark datasets: MATH500, AIME24, 452

and GPQA-Diamond. The results demonstrate that 453

URT-SFT consistently outperforms the standard 454

SFT approach across all evaluated models. For 455

instance, applying URT-SFT to the Llama3.1-8B- 456

Instruct model results in accuracy improvements 457

of 17.6% on MATH500, 506.1% on AIME24, and 458

30.6% on GPQA-Diamond, greatly surpassing the 459

SFT baseline. Similarly, URT-SFT outperforms 460

SFT on larger base models like Qwen2.5-14B- 461

Instruct and Qwen2.5-32B-Instruct. 462

Our proposed URT-SFT method leverages only 463

5K prompts to fine-tune models, yet achieves 464

performance that rivals or exceeds that of our 465

teacher models R1-preview and QwQ-32B-preview. 466

Specifically, on the AIME24 dataset, our method 467

achieves an accuracy of 56.7%, outperforming r1- 468

preview’s 52.5% and QwQ-32B-preview’s 50.0%. 469

Furthermore, in the GPQA-Diamond benchmark, 470

our 32B model reaches an accuracy of 61.6, sur- 471

passing r1-preview by 3 points, demonstrating 472

competitive performance despite the use of fewer 473

prompts. When assessed against contemporary 474

state-of-the-art open-source models, our URT-SFT- 475

trained models also exhibit competitive perfor- 476

mance across all benchmarks. On the AIME24 477

dataset, our approach aligns closely with S1-32B 478

+ BF, which is trained on data distilled from the 479

stronger teacher model Gemini 2.0 Flash Think- 480

ing (Google Team, 2024). Our 32B model is able to 481

outperform strong open-source baselines STILL2- 482

32B and Sky-T1-32B, which employ similarly- 483

performing teacher models. The results on the 484

GPQA-Diamond show that our method clearly out- 485

perform all previous models when tested with a 486

broader range of domains. We also demonstrate 487

6
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Table 2: Performance comparison of various models across three popular benchmarks to assess the long trace
reasoning ability of LLMs. Distilled From indicates which model provides the training data. The bold fonts denote
the best performance among our training variants, and we report the gain over the base model. The examples of the
input and output for the three benchmarks are shown in Appendix Table 5.

Models Distilled From MATH500 AIME24 GPQA-Diamond
Acc (%) Gain (%) Acc (%) Gain (%) Acc (%) Gain (%)

GPT-4o N.A. 76.6 - 9.3 - 53.6 -
Claude 3.5 Sonnet N.A. 78.3 - 16.0 - 65.0 -
o1 N.A. 94.8 - 74.4 - 77.3 -
o1-preview N.A. 85.5 - 44.6 - 72.3 -
r1 N.A. 97.3 - 79.8 - 71.5 -
r1-preview N.A. 91.6 - 52.5 - 58.5 -
QwQ-32B-preview N.A. 90.6 - 50.0 - 65.2 -

Trained on open-source dataset

Open-o1-Llama3.1-8B Synthetic data 54.8 - 10.0 - 30.8 -
S1-32B + BF Gemini Flash Think. 93.0 - 56.7 - 59.6 -
STILL2-32B r1-preview & QwQ-preview 89.2 - 43.3 - 55.0 -
Sky-T1-32B QwQ-preview 86.4 - 43.3 - 56.8 -

Llama3.1-8B-Instruct 48.4 - 3.3 - 23.2 -
+ SFT r1-preview & QwQ-preview 52.2 +7.9% 13.3 +303.0% 27.2 +17.2%
+ URT-SFT 57.0 +17.6% 20.0 +506.1% 30.3 +30.6%
Qwen2.5-14B-Instruct 78.6 - 13.3 - 43.4 -
+ SFT r1-preview & QwQ-preview 83.2 +6.4% 33.3 +150.4% 53.5 +23.3%
+ URT-SFT 86.0 +9.4% 40.0 +200.7% 60.6 +39.6%
Qwen2.5-32B-Instruct 80.0 - 13.3 - 43.4 -
+ SFT r1-preview & QwQ-preview 88.2 +11.5% 43.3 +225.5% 55.1 +26.9%
+ URT-SFT 90.4 +12.8% 56.7 +326.3% 61.6 +41.9%

that URT-SFT maintains an advantage over SFT in488

more tasks (Table 3).

Table 3: Performance across a broader range of tasks,
including medicine, commonsense reasoning, code, and
math. LCB stands for LiveCodeBench, and PA stands
for Putnam-AXIOM.

Model MedQA BBH LCB PA

Qwen2.5-32B 72.0 50.8 40.8 17.7
+SFT 73.2 58.6 41.3 38.1
+URT-SFT 75.7 59.3 44.5 43.2

489

Long-Context Results As described in Sec-490

tion 3.1, the model’s ability to understand long491

reasoning traces deteriorates after extended CoT492

training, despite the task being a straightforward493

mathematical one. We hypothesize that this decline494

is due to the model not encountering long input495

prompts during training, which hampers its long-496

context understanding capabilities. To validate this497

hypothesis, we conducted evaluations using the498

RULER long-context evaluation suite. The results499

are presented in Table 4.500

Our experiments reveal that, compared to501

the base model Qwen3.5-32B-Instruct, mod-502

els trained on a predominantly math problem503

dataset—both the official Qwen checkpoint QwQ-504

32B-Preview and models fine-tuned on open-505

source datasets—exhibit decreased performance. 506

This decline becomes more pronounced as the in- 507

put length increases from 32K to 64K tokens. How- 508

ever, models fine-tuned with URT are exposed to 509

numerous long prompt inputs during training. Con- 510

sequently, compared to direct SFT, URT-SFT does 511

not suffer significant performance degradation on 512

long-context tasks and improves performance on 513

long-context tasks by over 10 percentage points 514

compared to QwQ-32B-Preview. 515

In conclusion, By decomposing long-chain rea- 516

soning into manageable segments embedded within 517

prompts, URT-SFT not only simplifies the learning 518

process but also capitalizes on the models’ ability 519

to handle extended contexts, leading to improved 520

accuracy and performance. 521

4.4 Anaysis 522

Performance Gains Across Different Difficulty 523

Levels To investigate the scenarios in which URT- 524

SFT enhances standard SFT, we constructed a di- 525

verse test set by randomly sampling 200 instances 526

from the MATH dataset across difficulty levels 1 to 527

5 and 30 instances from AIME 2024, resulting in 528

a test set with varying levels of difficulty. Specifi- 529

cally, Level 1 includes problems from MATH diffi- 530

culty levels 1, 2, and 3; Level 2 comprises MATH 531

difficulty level 4 problems; Level 3 consists of 532
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Table 4: Long context results of long reasoning mod-
els. We test the models on 3 categories: Needle-In-A-
Haystack (NIAH), Variable Tracing (VT) and Question
Answering (QA) from RULER (Hsieh et al., 2024). We
conduct tests using input lengths of 32K and 64K to-
kens. The demonstrations of the three tasks defined in
RULER are shown in Appendix Table 6 and 7.

Models
RULER

Avg.
NIAH VT QA

Context length = 32K

Qwen2.5-32B-Instruct 98.0 86.4 62.0 82.1

QwQ-32B-Preview 64.0 82.8 60.0 68.9
Qwen2.5 + SFT 92.0 89.0 50.0 77.0
Qwen2.5 + URT-SFT 95.0 90.4 59.0 81.5

Context length = 64K

Qwen2.5-32B-Instruct 71.0 67.8 56.0 64.9

QwQ-32B-Preview 52.0 57.4 37.0 48.8
Qwen2.5 + SFT 55.0 70.9 31.0 52.3
Qwen2.5 + URT-SFT 62.0 74.8 45.0 60.6

Figure 4: URT-SFT shows a greater performance im-
provement over SFT on more difficult math problems.

MATH difficulty level 5 problems; and Level 4533

contains the 30 AIME 2024 problems. The per-534

formance improvements of URT-over SFT across535

these different difficulty levels are illustrated in536

Figure 4. Our method demonstrates superior per-537

formance on more challenging tasks, highlighting538

its effectiveness in handling problems of increased539

complexity.540

Reinforcement Learning To evaluate the orthog-541

onality between URT and Reinforcement Learning542

(RL) fine-tuning, we conduct complementary ex-543

periments using Group Relative Policy Optimiza-544

tion (GRPO) (DeepSeek-AI et al., 2025). Specifi-545

cally, we fine-tune our models for 1 epoch on the546

STILL2 training set with a rollout size of 8 and a547

maximum sequence length of 16,384 tokens per548

trajectory, following the default configurations of549

Verl (Sheng et al., 2024) with 8 NVIDIA A100550

GPUs. Our results (Figure 5) indicate that RL scal- 551

ing and URT are orthogonal, with RL further en- 552

hancing URT’s performance. Notably, URT demon- 553

strates significantly higher training efficiency com- 554

pared to RL scaling. For instance, training a 32B 555

model with GRPO consumes over 12 days on 8 556

A100 GPUs, suggesting that knowledge distilla- 557

tion may be a more practical alternative for smaller 558

models with academic-level resources.

Figure 5: Training time and performance on AIME24
for SFT and URT models further trained with the GRPO.

559

Inference Time Scaling In our SFT-trained mod- 560

els, we observe inference time scaling behavior 561

similar to that of the o1 model. Specifically, as 562

the number of tokens processed during inference 563

increases, the performance continues to improve. 564

In all experiments, the models were run with a 565

maximum new tokens of 16K. 566
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Figure 6: Test-time scaling with URT models on GPQA
and AIME24.

5 Conclusion 567

This paper introduces a new fine-tuning frame- 568

work called Understanding-to-Reasoning Transi- 569

tion (URT) fine-tuning, which aims to improve the 570

ability of large language models to generate long 571

and coherent CoT reasoning. The core idea is to 572

gradually transition the model’s focus from under- 573

standing CoTs to generating them. This is achieved 574

by incorporating partial reasoning steps into the 575

input context during fine-tuning. The experimental 576

results demonstrate that URT fine-tuning outper- 577

forms standard fine-tuning methods, especially on 578

challenging reasoning benchmarks. 579
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Limitations580

One limitation of this work is that we have only581

explored the effectiveness of a training method that582

gradually transfers from understanding to reason-583

ing within the fine-tuning phase. Due to computa-584

tional resource constraints, we have not validated585

the efficacy of our approach within the reinforce-586

ment learning framework. Additionally, in terms of587

long-context understanding, when the input length588

exceeds 64K tokens, the performance of models589

trained using URT declines compared to the base590

model. To further enhance the long reasoning591

model’s ability to handle lengthy prompts, it may592

be necessary to incorporate more high-quality long593

prompt data, rather than relying solely on a train-594

ing set predominantly consisting of mathematical595

problems.596
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A Appendix1018

A.1 Benchmarks and Baseline Models1019

Benchmarks We utilize three widely-recognized1020

reasoning benchmarks to assess the problem-1021

solving skills of our models: (1) AIME24 com-1022

prises 30 mathematical problems from the 20241023

American Invitational Mathematics Examination.1024

(2) MATH500 (Hendrycks et al., 2021b; Lightman1025

et al., 2023) is a curated subset of 500 competition-1026

level problems. (3) GPQA Diamond (Rein et al.,1027

2023) comprises 198 PhD-level STEM questions1028

across Biology, Chemistry, and Physics. We1029

use this benchmark to assess our model’s reason-1030

ing ability across STEM domains. We also in-1031

clude MedQA (Jin et al., 2020), LiveCodeBench-1032

Medium (Jain et al., 2024) (24.08-24.1), BBH (Suz-1033

gun et al., 2022), and Putnam-AXIOM (Gulati1034

et al., 2024) to evaluate our method across broader1035

domains, covering medical exams, coding, and1036

commonsense. Since most datasets for long CoT1037

training are dominated by short inputs, we incor-1038

porate the RULER (Hsieh et al., 2024) evaluation1039

suite to assess whether models’ long-context un-1040

derstanding abilities are affected. This suite fea-1041

tures long-document comprehension tasks with cus-1042

tomizable input lengths.1043

Baselines We compare our models against sev-1044

eral strong baselines to contextualize performance:1045

o1 and o1-preview (OpenAI, 2024), commercial1046

models by OpenAI known for generating long rea-1047

soning traces; r1 and r1-preview (DeepSeek Team,1048

2024), developed by DeepSeek with performance1049

comparable to o1; QwQ-32B-preview (Qwen1050

Team, 2024), an open-weight reasoning model1051

from the Qwen Team; Sky-T1-32B-Preview (No-1052

vaSky Team, 2025), trained on reasoning data1053

distilled from QwQ-32B-preview; s1-32B-BF,1054

trained on data distilled from Google Gemini 2.01055

Flash Thinking (Google Team, 2024) with bud-1056

get forcing to encourage longer reasoning paths;1057

STILL2-32B (Min et al., 2024), utilizing the1058

same training dataset as our model with addi-1059

tional refinements and reinforcement learning; and1060

Open-o1-Llama3.1-8B, an o1-like model based1061

on Llama3.1-8B-Instruct.1062
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Table 5: The example input prompt and model output for the reasoning benchmarks used in this paper.

MATH500

Input prompt Let a be a positive real number such that all the roots of

x3 + ax2 + ax+ 1 = 0

are real. Find the smallest possible value of a

Model reponse Let’s tackle this problem step by step. We have the cubic equation:

x3 + ax2 + ax+ 1 = 0

And we’re told that all its roots are real, with a being a positive real number. We need to
find the smallest possible value of a. First, I know that for a cubic equation of the form
x3 + bx2 + cx+ d = 0
...
Thus, the smallest possible value of a is: boxed{3}

AIME 2024

Input prompt Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z

where z is a complex number with |z| = 4

Model reponse Alright, so I’ve got this problem here. It says: Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z
,

where z is a complex number with |z| = 4. Okay, let’s break this down.
First off, z is a complex number with magnitude 4. So, z can be written in polar form as
z = 4eiθ , where θ is the argument of z. But maybe it’s easier to work with z in terms of
its real and imaginary parts. Let’s say z = a+ bi, where a and b are real numbers, and
a2 + b2 = 16, since |z| = 4
...
Therefore, the maximum value of the real part is: boxed{540}.

GPQA Diamond

Input prompt What is the energy of the Relativistic Heavy Ion Collider (RHIC) so that the speed of the
nucleus X is equal to 0.96c? Knowing that X is defined as Li with A=6.
A. 20 GeV
B. 10 GeV
C. 36 GeV
D. 49 GeV

Model reponse lright, I’ve got this problem about the Relativistic Heavy Ion Collider, or RHIC, and I need
to find out what energy it should have so that the speed of a lithium nucleus, specifically
Li with A=6, is equal to 0.96 times the speed of light. The options are 20 GeV, 10 GeV, 36
GeV, and 49 GeV. First off, I know that in relativity, when objects move at speeds close to
the speed of light, their energy isn’t just mc2; there’s additional kinetic energy involved.
The total energy of a relativistic particle is given by E = γmc2, where γ is the Lorentz
factor. The Lorentz factor, γ, is 1√

1− v2

c2

.

So, if the speed v is 0.96c, then v/c is 0.96. Let me calculate γ.

γ =
1√

1− (0.96)2

...
This value is closest to 20 GeV, so the correct answer is: boxed{A}
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Table 6: The example input prompt and model output for the Needle-in-a-Haystack and Variable Tracing in RULER.

Needle-in-a-Haystack (multi-needle)

Input prompt July 2006I’ve discovered a handy test for figuring out what you’re addicted to. Imagine
you were going to spend the weekend at a friend’s house on a little island off the coast
of Maine. There are no shops on the island and you won’t be able to leave while you’re
there. Also, you’ve never been to this house before, so you can’t assume it will have
more than any house might.What, besides clothes and toiletries, do you make a point
of packing? That’s what you’re addicted to... The UUID for bd9645ff-0667-1ad1-1e80-
b17fa7f1599d is 9dde507b-0676-9ad1-1e80-317fa3b1799c you can’t expect an idea to
be novel to everyone. Any insight that you have will probably have already been had by
at least one of the world’s 7 billion people. But it’s sufficient if an idea is novel to a lot
of readers.Ditto for correctness, importance, and strength. In effect the four components
But with Lisp our development cycle was so fast that we could sometimes duplicate a new
feature within a day or two of a competitor announcing it in a press release. By the time
journalists covering the press release got round to The UUID for b5d648fb-0666-1ad3-
5c80-39ff23b379ad is: bcd640fb-0667-1ad5-1c88-337fa3b0699d nThere is a founder
community just as there’s a VC community. They all know one another, and techniques
spread rapidly between them. If one tries a new programming language or a new hosting
provider and gets good results, 6 months later half of...
Please find the UUID for bd9645ff-0667-1ad1-1e80-b17fa7f1599d from the text above

Model reponse Alright, I need to find the UUID for bd9645ff-0667-1ad1-1e80-b17fa7f1599d from the
provided document. Let me look through the text carefully.I see that there are several
UUIDs mentioned, each associated with a specific UUID format. I need to find the
one that matches bd9645ff-0667-1ad1-1e80-b17fa7f1599d and note its corresponding
UUID.Looking at the first one:The UUID for bd9645ff-0667-1ad1-1e80-b17fa7f1599d is
9dde507b-0676-9ad1-1e80-317fa3b1799c.So, it seems like the UUID for bd9645ff-0667-
1ad1-1e80-b17fa7f1599d is 9dde507b-0676-9ad1-1e80-317fa3b1799c.I should double-
check to make sure I don’t miss any other occurrences.Looking further down, I see
another UUID mentioned:The UUID for b5d648fb-0666-1ad3-5c80-39ff23b379ad is:
bcd640fb-0667-1ad5-1c88-337fa3b0699d.And another one:The UUID for fdc644fb-1667-
1ad1-0d80-337fe3b7799d is: bdf6c05b-0427-dad1-0c00-317fa321699d...
Thus, the final answer is: boxed{9dde507b-0676-9ad1-1e80-317fa3b1799c}

Variable Tracing

Input prompt July 2006I’ve discovered a handy test for figuring out what you’re addicted to. Imagine you
were going to spend the weekend at a friend’s house on a little island off the coast of Maine.
There are no shops on the island and you won’t be able to leave while you’re there. Also,
you’ve never been to this house before, so you can’t assume it will have more than any
house might... var GNEXW = 62265 they’re going to issue a public report tracking how
this specific tranche of money is spent, NFTs are a new territory... var HQPDT = GNEXW
you can’t expect an idea to be novel to everyone. Any insight that you have will probably

have already been had by at least one of the world’s 7 billion people. But it’s sufficient if
an idea is novel to a lot of readers.Ditto for correctness, importance, and strength. In effect
the four components var OUNAI = HQPDT But with Lisp our development cycle was so
fast that we could sometimes duplicate a new feature within a day or two of a competitor
announcing it in a press release. By the time journalists covering the press release got
round to var AYWVH = OUNAI nThere is a founder community just as there’s a VC
community. They all know one another, and techniques spread rapidly between them. var
BWYCM = AYWVH If one tries a new programming language or a new hosting provider
and gets good results, 6 months later half of...
Please find all the 5 variables that are assigned the value 62265 in the text above.

Model reponse Alright, I need to find all the variables that are assigned the value 62265 in this text. I’ll
look for lines that have var followed by a variable name, an equals sign, and then 62265.
First, I see var GNEXW = 62265. So GNEXW is one variable assigned to 62265. Next,
I look further down and find var HQPDT = GNEXW. Wait, HQPDT is being assigned
the value of GNEXW, which is 62265. So HQPDT is another variable with the value
62265. Then, I see var BTTDM = 99634. That’s not 62265, so I skip that. Later, there’s
var OUNAI = HQPDT. Since HQPDT is 62265, OUNAI is also 62265... I need to make
sure I didn’t miss any or count any that shouldn’t be included. Let me double-check.
- GNEXW = 62265 (direct assignment)
- HQPDT = GNEXW (GNEXW is 62265)
- OUNAI = HQPDT (HQPDT is 62265)
- AYWVH = OUNAI (OUNAI is 62265)
- BWYCM = AYWVH (AYWVH is 62265)
Looks correct. These are the five variables assigned to 62265. Thus, the final answer is:
boxed{GNEXW, HQPDT, OUNAI, AYWVH, BWYCM }
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Table 7: An example of the input prompt and corresponding model output for the long-context QA task in RULER.

Long context QA

Input prompt The Normans had a profound effect on Irish culture and history after their invasion at
Bannow Bay in 1169. Initially the Normans maintained a distinct culture and ethnicity.
Yet, with time, they came to be subsumed into Irish culture to the point that it has been
said that they became "more Irish than the Irish themselves." The Normans settled mostly
in an area in the east of Ireland, later known as the Pale, and also built many fine castles
and settlements, including Trim Castle and Dublin Castle. Both cultures intermixed,
borrowing from each other’s language, culture and outlook. Norman descendants today
can be recognised by their surnames. Names such as French, (De) Roche, Devereux,
D’Arcy, Treacy and Lacy are particularly common in the southeast of Ireland, especially in
the southern part of County Wexford where the first Norman settlements were established.
Other Norman names such as Furlong predominate there. Another common Norman-Irish
name was Morell (Murrell) derived from the French Norman name Morel. Other names
beginning with Fitz (from the Norman for son) indicate Norman ancestry. These included
Fitzgerald, FitzGibbons (Gibbons) dynasty, Fitzmaurice. Other families bearing such
surnames as Barry (de Barra) and De Búrca (Burke) are also of Norman extraction. rior to
European settlement, the area now constituting Victoria was inhabited by a large number of
..(lengthy documents containing the background for the question)... Victoria was officially
created a separate colony in 1851, and achieved self-government in 1855. The Victorian
gold rush in the 1850s and 1860s significantly increased both the population and wealth
of the colony, and by the Federation of Australia in 1901, Melbourne had become the
largest city and leading financial centre in Australasia. Melbourne also served as capital of
Australia until the construction of Canberra in 1927, with the Federal Parliament meeting
in Melbourne’s Parliament House and all principal offices of the federal government being
based in Melbourne. Before the St. Elizabeth’s flood (1421), the Meuse flowed just south
of today’s line Merwede-Oude Maas to the North Sea and formed an archipelago-like
estuary with Waal and Lek. This system of numerous bays, estuary-like extended rivers,
many islands and constant changes of the coastline, is hard to imagine today. From 1421
to 1904, the Meuse and Waal merged further upstream at Gorinchem to form Merwede.
For flood protection reasons, the Meuse was separated from the Waal through a lock and
diverted into a new outlet called "Bergse Maas", then Amer and then flows into the former
bay Hollands Diep.
What river originally bounded the Duchy?

Model reponse Alright, I’m trying to figure out which river originally bounded the Duchy. I remember
that the Duchy of Normandy was established in the 10th century, and it was located in
what is now northern France. I think the river in question is the Seine because I recall that
Normandy extended down to the Seine River. But I’m not entirely sure, maybe it’s another
river? Let me think. I know that the Duchy of Normandy was founded by Rollo, a Viking
leader, and it was granted to him by the French king in the Treaty of Saint-Clair-sur-Epte
in 911. The treaty specified that Rollo and his men could settle in the area between the
river Epte and the Atlantic coast. So, the Epte River might have been a boundary, but
I don’t think that’s the main river that bounded the Duchy... Therefore, the river that
originally bounded the Duchy of Normandy was the boxed{Epte River}
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Table 8: Error bars for the main results. To assess
the statistical significance of our results in Table 2, we
conduct multiple runs of the model using top-p decoding
16 times with a temperature of 0.6 and top-p=0.95 using
our 32B model.

Dataset
SFT URT

Mean Std Dev Mean Std Dev

AIME 45.6 4.85 57.1 4.93
GPQA 55.6 1.72 62.0 1.76
MATH500 87.4 1.04 89.8 0.98
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