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ABSTRACT

Heterogeneous multi-robot systems (HMRS) have emerged as a powerful approach
for tackling complex tasks that single robots cannot manage alone. Current large-
language-model-based multi-agent systems (LLM-based MAS) have shown success
in areas like software development and operating systems, but applying these
systems to robot control presents unique challenges. In particular, the capabilities
of each agent in a multi-robot system are inherently tied to the physical composition
of the robots, rather than predefined roles. To address this issue, we introduce a
novel multi-agent framework designed to enable effective collaboration among
heterogeneous robots with varying embodiments and capabilities, along with a new
benchmark named Habitat-MAS. One of our key designs is Robot Resume: Instead
of adopting human-designed role play, we propose a self-prompted approach, where
agents comprehend robot URDF files and call robot kinematics tools to generate
descriptions of their physics capabilities to guide their behavior in task planning
and action execution. The Habitat-MAS benchmark is designed to assess how a
multi-agent framework handles tasks that require embodiment-aware reasoning,
which includes 1) manipulation, 2) perception, 3) navigation, and 4) comprehensive
multi-floor object rearrangement. The experimental results indicate that the robot’s
resume and the hierarchical design of our multi-agent system are essential for the
effective operation of the heterogeneous multi-robot system within this intricate
problem context. The project website is: https://emos-project.github.
io/

Multi-floor indoor scene with heterogenous multi-robot system Embodiment-aware multi-agent system

I have larger arm workspace, can help 
placing the toy to the high bookshelf! 

I am closest to the bedroom, but I cannot 
walk up stairs, since I have a wheel base 

Please find my toy in my bedroom and 
place it back to the bookshelf in the 

living room

I can go upstairs to the bedroom, but I 
checked my arm workspace, I cannot 

reach the bookshelf’s height
Sorry, I does not have end effector. But I 

have good view from top, I can help 
localize the toy

Thanks stretch. I will handle over the toy 
to you when I am first floor.

Mobility Capability Manipulation Capability Perception Capability

Figure 1: Embodiment-aware LLM-based MAS. This figure depicts how an LLM-based MAS
operate a HMRS composed of dones, legged robots and wheeled robots with robotic arms, in a
multi-floor house. When given a household task, the LLM-based MAS needs to undertand their
respective robots’ hardware specifications for task planning and assignment. The authors refer this
capability as ”embodiment-aware reasoning” in this work.
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1 INTRODUCTION

The complex nature of real-world environments and specialized robot hardware makes it difficult for a
single robot to perform complex tasks efficiently. As a result, the Heterogeneous Multi-Robot System
(HMRS) has emerged, enabling multiple robots designed for diverse purposes and with complemen-
tary physics capabilities to cooperate and execute complex missions through task decomposition,
coalition formation, and coordinated task allocation. Designed for real-world deployments, existing
HMRSs are highly dependent on some assumptions and human-crafted protocols based on human
prior knowledge (Rizk et al., 2019). This limits the generalization of HMRS and the ability to handle
complex tasks. In the survey, Rizk et al. (2019) classified the automation of HMRS into four levels:
1) Level 1, task execution. 2) Level 2, task execution plus task allocation or coalition formation, but
not both. 3) Level 3, the automation of all above but not instruction to decomposed sub-tasks. 4)
Level 4, fully automated entire system. To the best of our knowledge, no system has achieved an
automation level of 4.

Meanwhile, we have recently witnessed how large language models (LLM) multi-agent systems
(MAS) operate complex systems like Operating Systems (Mei et al., 2024) or finish complex tasks
like software development (Hong et al., 2023), by leveraging the common sense reasoning capabilities
and code generation capabilities to generally control diverse applications. Similarly in embodied
AI tasks, Mandi et al. (2024) proposed using LLM-based MAS chat to control the duel arm system.
Zhang et al. (2023) introduced a human-robot collaboration system through the LLM multi-agent.
These works focused on certain aspects of MRS automation problem or focused MRS with specific
hardware configuration. Our observation is that one missing key component toward the level-4
full automation is embodiment-aware reasoning. It refers to the agent’s ability to understand its
physical embodiment and thus the hardware-dependent capabilities. Based on this capability, the
LLM multi-agent can further decompose the tasks, assign the tasks, and finally execute the tasks in
the real time, i.e. the level-4 automated HMRS.

In this work, we propose EMOS, a general LLM-based multi-agent framework to operate cooperative
HMRS in indoor household environments. Our insight is that, instead of teamwork through role
assignment as in recent LLM-based MAS (Hong et al., 2023; Li et al., 2024; Wu et al., 2023a), the
LLM-based MAS tailored for heterogeneous robots should actively check their physics information
and tasks they can complete without fixed roles. Thus, we introduce a bottom-up robot capability
generation approach that constructs a ”robot resume” for each robot, capturing its unique skills
and constraints. The resumes, along with a scene description and task description, form the full
context for the LLM-based MAS to perform task planning, task assignment, and action execution in
a cascaded manner. To study how LLM-based MAS could potentially enable the full automation of
collaborative heterogeneous multi-robot systems, we present Habitat-MAS, which is a benchmark
with annotated episodic data and an accompanying simulated environment with textual description of
the environment as the interface for the agents. In the benchmark, we provide a diverse collection
of robots including drones, wheeled robots with arms or elevatable grippers on a rack, and legged
robots with arms, and also diverse environment including multi-floor large houses and multi-room
flats. The benchmark presents four tasks, each designed to evaluate multi-agent systems in terms of
their understanding of robot physical capabilities including perception, navigation, and manipulation.
Episodes are processed such that only robots possessing specific physical abilities can successfully
complete certain subtasks in an episode. Through extensive experiments, we illustrate the importance
of robot resumes in embodiment-aware reasoning and how different components in EMOS affect
HMRS performance in our benchmark.

To summarize, the key contributions of this paper are:

• We present EMOS, a novel LLM-based MAS framework that first conducts embodiment-aware
reasoning with self-generated robot resume, rather than human-assigned role playing, to operate a
collaborative HMRS.

• We present Habitat-MAS, a new benchmark to study how LLM-based MAS can coordinate collabo-
rative HMRS. To the best of our knowledge, this is the first simulated benchmark for this problem
with extensive robot types and scenes. It is also highlithed as the first benchmark to evaluate the
agent’s understanding of its physics embodiment, with test dataset tailored for this purpose.

• Experimental results on Habitat-MAS demonstrate the effectiveness of robot resume in EMOS,
highlighting the significance of embodiment awareness for collaborative HMRS.
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2 RELATED WORK

LLM-Based Multi-Agent System. The integration of LLMs into MAS is a relatively new yet rapidly
growing area of research. This integration leverages the language understanding and generation
capabilities of LLMs to enhance communication, coordination, and decision-making within MAS.
Wu et al. (2023a); Hong et al. (2023); Li et al. (2024) focus on the communication issues in LLM-based
Multi-Agent Systems. Xu et al. (2024) proposes Crab, a cross-environment benchmark framework
for evaluating Multimodal Language Models (MLMs) in different GUIs like mobile phones and
desktop computers. For robotic intelligence, Zhang et al. (2023) investigates how two agents can
use communication to better collaborate and complete tasks in a multi-room scenario. Mandi et al.
proposed RoCo, which is a multi-agent system for multi-arm collaboration. They try to leverage the
3D spatial reasoning capabilities to help multi-arm low-level trajectory planning. In comparison, we
focus a more general mutli-agent scenario with drones, legged robots, wheeled robots with arms, with
a multi-agent system required to understand general capabilities including navigation, manipulation
and perception based on physics design.

Heterogeneous Multi-Agent Learning. Heterogeneous multi-agent systems involve agents with
varying capabilities or functional roles working collaboratively toward shared goals. This field has
gained significant attention due to its practical relevance in real-world applications requiring diverse
agent teams. Recent works have introduced innovative frameworks for learning and coordination in
heterogeneous teams. For example, Seraj et al. (2022) proposes a method for learning communication
protocols tailored to each robot’s role and capabilities, optimizing team performance in dynamic
environments. Similarly, Bettini et al. (2023) develops reinforcement learning algorithms specifically
designed for heterogeneous teams, enabling effective inter-agent coordination despite differences in
robot traits. Task allocation is another critical aspect. Ravichandar et al. (2020) provides a scalable
optimization framework for balancing workload and resource utilization across large heterogeneous
teams. In addition, Seraj et al. (2024b) combines human demonstrations with machine learning to
train diverse robot teams efficiently. Seraj et al. (2024a) introduces a novel policy network architecture
that integrates individual robot policies into a composite framework for effective decision-making.
Our work distinguishes these works in the way that we handle the behavior of these heterogeneous
agents by transfering the prior knowledge in the pre-trained large-language models without extra
training.

Multi-Robot System. Early works by Arai et al. (2002) and Ota (2006) laid the research foundation
for multi-robot systems by providing a comprehensive overview of the progress and key challenges
in MRS in around 2000, including MRS architectural design, distributed mapping, and navigation
coordination, etc. Hamann & Wörn (2008) proposed a model framework with an explicit space
representation for swarm robotic algorithm design, deriving an abstract swarm motion model from
a single robot description and validating it against simulation results, while also discussing the
challenges and related work in this area. Rizk et al. (2019) specifically reviewd the challenges in
cooperative heterogeneous MRS, decomposing the MRS workflow to task decomposition, coalition
formation, task allocation, perception and MRS planning and control. In this work, we also follow the
established concept definitions and the principles of system design in this survey. Roldán et al. (2016)
built a HMRS composed of aerial vehicles (drones) and ground vehicles to collaborate to monitor
environmental variables of greenhouses. Kiener & Von Stryk (2010) designs a system composed of
wheeled robot and humanoid robot to collaborate in a ”robot soccer” scenario. The authors carefully
decompose the complex task into subtasks based on the robots’ capabilities, followed by human-
crafted task allocation and planning algorithms. Yang & Parasuraman (2020) proposed Self-Adaptive
Swarm System (SASS), a hierarchical needs-based framework for cooperative multi-robot systems,
inspired by Maslow’s hierarchy of human needs, combining multi-robot capabilities with a distributed
negotiation-agreement mechanism that prioritizes robots’ needs according to Maslow’s human needs
principle.

Task Planning With Large Language Models. Large language models(LLMs) trained on massive
corpora are generally considered to have acquired common sense knowledge for task planning (Vem-
prala et al., 2023; Yao et al., 2022; Zhao et al., 2023). Thanks to recent advancements, directly
generating plans with LLMs has become an active research area in recent years (Logeswaran et al.,
2022; Wu et al., 2023b; Lin et al., 2023). When using LLMs for task planning, some approaches
directly generate the entire plan in an open-loop manner, that is, without executing it in the envi-
ronment (Huang et al., 2022a; Mu et al., 2023; Singh et al., 2022). An alternative line of research

3
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investigates closed-loop task planning, which offers greater flexibility for error correction, human
interaction, and grounding the plan in the actual environmental state (Ahn et al., 2022; Guo et al.,
2023; Huang et al., 2023; Hu et al., 2023; Huang et al., 2022b; Song et al., 2023; Hu et al., 2024).
This paper explores closed-loop task planning, where real-time environmental changes are integrated,
and a central large language model processes these real-time changes and adapts plans accordingly.

3 EMOS FRAMEWORK

Scene Context Construction Centralized Group Discussion Decentralized Action Parallel Execution 

L1: Region connect-
ivity Graph 

L2: Semantic mesh
with Region Seg.

L3: Agents States/
Object States

L4: Navmesh 

Geometric Representation

The 0-th region is named bedroom0 with objects ... in. 
The bedroom0 is connected to [spa/sauna4, ...].
The agent0 is in room bedroom0  with position [x,y,z]

Textual Representation

URDF Parsing 

Robot        Resume

Scene Context Task 
Description

Muti-agent Discussion with Robot Resume

"agent_0": "Pick the object xxx in the room bedroom0 and go to 
living room ",
"agent_1": "Navigate to kitchen on the first floor, and open the 
fridge", 
....

Plans & Task assignments

Scene Context Assigned Tasks

Function call with agent-specific skill libraries

Parallel Action Execution

Action         Context

Figure 2: EMOS Framework. This figure illustrates how EMOS operates an HMRS on the Habitat-
MAS platform. There are three stages: 1) Scene Context Construction involves generating scene
descriptions in a bottom-up approach, relying on an ideal semantic SLAM system. 2) In Centralized
Group Discussion, agents perform embodiment-aware reasoning for task planning and assignment 3)
In Decentralized Action Parallel Execution, agents execute actions parallely with initial context and
agent history. Precisely speaking, EMOS only includes stages 2 and 3, while stage 1 is integrated
inside the Habitat-MAS platform. We include it in this diagram for completeness and clarity.

The multi-agent system introduced in this paper focuses on developing an embodiment-aware
framework for heterogeneous multirobot collaboration. Traditional multi-robot systems often face
challenges related to coordinated motion planning, especially in complex environments involving
diverse robotic platforms such as UAVs, mobile robots, legged robots, etc. The team formation and
cooperative protocol are designed by robot experts, rather than automated by robots themselves. This
system aims to address these challenges by enabling agents to understand robots with different physi-
cal capabilities and operational constraints. In the rest of this section, we organize the introduction to
EMOS as follows: In 3.1, we will first present the overview of this system. Then in 3.2, we briefly
introduce how the textual scene context is constructed from an ideal scene reconstruction. In 3.3, we
will elaborate on the composition and generation pipeline of robot resumes. Finally in 3.4, we will
show how EMOS performs task planning, assignment and action execution in a hierarchical fashion.

3.1 FRAMEWORK OVERVIEW

For clarification, we first define the mathematical form of the problem solved by the multi-agent
system. Assume there is a multi-robot system involving N different robots and there is an LLM agent
i attached to each of the robots i, i ∈ {1, 2, . . . , N}. All agents operate in a shared environment with
state space S , and each agent i has an observation space Oi and an action space Ai. The multi-agent
system is designed to collaboratively achieve a given task T ∈ T , such as exploring an unknown
environment. The system serves as a set of task-conditioned policies {πi : Oi ×T → Ai}Ni=1, where
T represents the textual space of the task description. However, rather than an end-to-end policy
network as it might hint, our proposed multi-agent system adopts a discussion-like, hierarchical
framework, which has been proven effective in many other multi-agent scenarios. As Figure 2
demonstrates, the multi-agent system involves three cascading stages: 1) scene context construction;
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2) centralized group discussion; and 3) decentralized action parallel execution. Since the focus of
this work is embodiment-aware reasoning in task planning, we assume the multi-robot system is
equipped with a perfect multi-agent SLAM system and provide the perfect geometric representation
as an observation to the multi-agent system at the initial state. The geometric representation will be
further processed into textual representation as the scene context for multi-agent discussion. With
robot resume processed from robot URDF, the multi-agent system performs a group discussion to
decompose the task and assign subtasks to corresponding agents based on their physics limitations.

3.2 SCENE CONTEXT CONSTRUCTION

For the deployability of the LLM multi-agent system onto the real multi-robot system, we propose
a bottom-up pipeline to construct the textual scene context from the geometric representation of
the environment that can be reconstructed from a normal robot perception pipeline. Following the
environment representation reconstruction framework in Hydra (Hughes et al., 2022), the geometric
representation is composed of four layers: 1) L1 Region connectivity Graph is a graph data structure,
with nodes representing distinct regions in the environment and edges representing the navigational
connectivity between these regions. The regions here refer to rooms and functional areas such as
corridors and stairs, following the convetions in datasets Chang et al. (2017). 2) L2 Semantic Mesh is
the direct output of a SLAM system. 3) L3 Agent States and Object States track the useful dynamic
information in the scene for the robot-environment interaction. 4) L4 Navmesh is a triangle mesh for
trajetory planning on its surface, commonly used in the game industry and rough terrain navigation.
Although we built L1, L2, and L3 with ground truth semantic mesh and robot odometry, these layers
are instantly available in Hydra-multi (Chang et al., 2023) when running on a real multi-robot system.
For L4, we build the navmesh with Recast Navigation (Mononen, 2009).

To construct the textual representation of the scene, L1 and L3 are transformed into textual descrip-
tions. In contrast, L2 and L4 are used in detailed point-to-point trajectory planning and low-level
robot control. Given L1 Region connectivity graph G = (V,E), where:

• V is the set of vertices that represent distinct regions in the environment. Each node vi ∈ V
corresponds to a specific region. Each region contains maintains the agents and objects within it.

• E is the set of edges that represents navigational paths between regions. An edge eij ∈ E exists
between two nodes vi and vj if there is a direct navigable path between the region i and region j.

The textual representation of the environment is constructed by iterating over all region nodes in the
graph and checking their containing objects or robots.

3.3 ROBOT RESUME

LLM-Prompted and Kinematic-Based Robot Resume Generation A robot resume is a JSON
file that contains the key hardware-specific capabilities for embodiment-aware reasoning, including
1) mobility capability, 2) perception capability and 3) manipulation capability. Each capability in
a robot resume encomposes two parts: 1) a comprehensive summary of the robot’s capabilities in
natural language and 2) a numerical representation of those capabilities. As suggested by Figure 3,
a hybrid approach combining LLM summarization and forward kinematics is used to generate the
robot resume from the robot URDF.

For the LLM summarization process, we first pre-process the URDF file to the urdf tree skeleton.
This skeleton tree is a text representation of the robot’s skeleton, with links as nodes and joints as
edges. This step is to reduce the length of the robot’s URDF, especially to remove the tags that hardly
help in this step, including < intertial > < visual > < collision > and etc. For complex robot
URDF files with thousands of lines of code, the extreme long context could dramatically undermine
the quality of the robot summary from the LLM.

For the numerical representations, we provide the forward kinematics API to load the robot URDF
file so that an articulated robot can check the geometric information of the sensors and end effectors.
For example, as depicted in Figure 3, the arm workspace is represented as a hulling of all sampled
end effector positions in the 3D world. This numerical information is used when the multi-agent
system wants to check exactly which robot in the team can interact with a certain object with its
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<?xml version="1.0" ?>
<robot name="fetch">
  <link name="base_link"/>
  <link name="r_wheel_link"/>
  <joint name="r_wheel_joint" 
type="continuous"/>
  <link name="l_wheel_link"/>
  <joint name="l_wheel_joint" 
type="continuous"/>
  <link name="torso_lift_link">
  <joint name="torso_lift_joint" 
type="prismatic">
  <link name="head_pan_link"/>
....
  <link name="gripper_link"/>
</robot>

Link(base_link)
├── Joint of type(continuous)──Link(r_wheel_link)

Link(r_wheel_link)
├── Joint of type(continuous)──Link(l_wheel_link)

Link(l_wheel_link)
├── Joint of type(prismatic)──Link(torso_lift_link)

Link(torso_lift_link)
├── Joint of type(revolute)──Link(head_pan_link)
...
├── Joint of type(revolute)──Link(shoulder_pan_link)

Link(shoulder_pan_link)
├── Joint of type(revolute)──Link(shoulder_lift_link)

Link(shoulder_lift_link)

Single
end effector  

Hulling of
end effectors

Joint limit 
and link

Mobility Capability

Manipulation Capability:
{
    "summary": "The Fetch 
robot's manipulation system 
is highly capable, featuring 
multiple joints that allow for 
significant dexterity. It has a 7 
Degrees of Freedom (DoF) 
arm ...",
    "arm_workspace": {
      "center": [
        0.14739853143692017,
        0.899940013885498,
        0.1324108988046646
      ],
      "radius": 1.1041796,
    }
  }

Perception Capability

Robot URDF Tree Skeleton 

Forward Kinematics Tool URDF File Robot Resume

Plain Text

Function Call

Figure 3: Robot Resume Generation. This figure illustrates how an LLM agent is prompted to
generate a robot resume from the robot’s URDF file by combining two approaches. On one hand,
the LLM agent reads the skeleton of the URDF to summarize a textual description of the general
capability. On the other hand, the LLM agent calls forward kinematics tool functions to generate
numerical details.

positions in the 3D space. We also generate the mobility capability and perception capability in a
similar way. For detailed capability definition, please refer to Appendix A.1.

3.4 HIERARCHICAL TASK PLANNING, ASSIGNMENT AND ACTION

To adapt the LLM-based MAS for real-time HMRS operation, the multi-agent action policy needs to
be asynchronous, due to the potential asynchrony in multi-robot action execution. For this purpose,
we design a hierarchical pipeline to perform task planning, assignment, and action execution for
our LLM-based MAS. Specifically, there are two stages: 1) The first stage of Centralized Group
Discussion runs in a synchronized fashion, in which all agents wait for messages from other agents,
and the discussion history is seen by all agents. 2) While in the second stage of Decentralized Action
Execution, each agent generates an action, waits for its execution it in the world, and generates a
new action so on so forth. Each robot is associated with a robot-dedicated agent with full access to
its robot resume to assist in decision-making and action execution. The pseudocode in Algorithm 1
provides a comprehensive overview of the hierarchical task planning, assignment, and then action
execution within the EMOS framework. For detailed explanation for Algorithm 1 and MAS design,
please refer to Appendix A.2

4 HABITAT-MAS BENCHMARK

Habitat-MAS 4 is a benchmark designed to evaluate LLM multi-agent systems (MAS) deployed in
collaborative heterogeneous multi-robot systems (MRS) in multi-floor household scenarios. The
LLM multi-agent system needs to do task planning, task assignment, and action execution with
the comprehensive understanding of the robot physics capabilities and task-relevant environmental
information to succeed in the tasks. The setting reflects real-world robotic challenges, where agents
with varying embodiments, such as wheeled, legged, and aerial robots, must cooperate to accomplish
complex tasks that require different physics capabilities.

4.1 BENCHMARK OVERVIEW

The Habitat-MAS benchmark is based on Habitat ((Puig et al., 2023)), a highly configurable simula-
tion platform for embodied AI challenges that extensively supports the integration of various indoor
environment datasets. For diversity, we choose to build the Habitat-MAS benchmark on multi-floor
real-scan scenes in Matterport3D (Chang et al. (2017)) and single-floor synthesized scenes in HSSD

6
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Algorithm 1: Hierarchical Task Planning, Assignment and Action in a Multi-Agent System
Input: Set of robots R = {r1, r2, . . . , rn}, Robot resumes {resume1, resume2, . . . , resumen}, Task T
Output: Task completion status

1 Stage 1: Centralized Group Discussion
2 subtaski ← CentralPlanner(T , resumei) ; // Central LLM assigns a task to each robot
3 foreach robot ri ∈ R do
4 feedbacki ← Reflection(subtaski, resumei) ; // Robot-dedicated agent reflects the subtask

feasibility and gives feedback
5 if feedbacki is invalid then
6 Reassign subtaski ; // Central planner adjusts based on feedback

7 Stage 2: Decentralized Action Execution
8 foreach robot ri ∈ R do
9 historyi ← []

10 while Not TaskFinished(ri) do
11 actioni ← FunctionCall(ri, subtaski, historyi) ; // Select current action by function

calling
12 responsei ← ExecuteAction(ri, actioni) ; // Execute the action in simulation
13 historyi ← [historyi, actioni, responsei]
14 if TaskFinished(ri) then
15 WaitState(ri) ; // Transition to wait state after task completion

16 if All robots are in WaitState then
17 return Done

Top-dow
n

M
ap

 R
obot Task

 K
ey Fram

e

Task 4Task 1

Navigation Goal

Navigation Path

Legend

Navigation Start

Object 1
in basement

Object 2
on 2nd floorObject 2 

high on cabinet

Object 2 
on 2nd floor

Object 1 
on 1st floor

Object 3
on 3rd floor

Object 4
on 2nd floor

Spot navigate to Object 2

Fetch navigate to Object 1

Spot collects Obect 3

Fetch collects Object 4

Drone navigate to Object 1

Task 3Task 2

Object 1 on high cabinet

Object 2 on low sofa

Object 1 
far inside  bed

Drone detects Object 1

Spot detects Object 2

Stretch picks Object 1

Fetch picks Object 2

Object 2 
high on cabinet

Fetch Robot

Stretch Robot

Drone Robot

Spot Robot

Text Task Assignment 

Target Object

Figure 4: Habitat-MAS Benchmark. The figure demonstrates the four tasks (columns) from two
indoor scene datasets, HSSD (Khanna* et al., 2023) and Matterport 3D (Chang et al., 2017). The
upper row demonstrates the top-down maps of the environment and the successful navigation paths
of the tasks. The middle and bottom rows depict the key frames of the tasks in the third-person view
when robots perceive or manipulate the target objects.

(Khanna* et al. (2023)). In our full dataset, we cover 27 scenes in Matterport3D and 34 scenes in
HSSD. There are four base robot types in the benchmark: 1) Fetch has a wheeled base and a 7-DOF
arm of revolute joints. 2) Stretch has a wheeled base and a telescoping arm of prismatic joints. 3)
Drone is in fact a DJI M100 with an RGBD sensor for its model credit. Since we care more about
high-level discrepancies across different types of robot in the multi-robot systems, we neglect more
specifications of the M100 compared to other drones. 4) Spot has a legged base with 7-DOF arm of
the revolute joints. All end effectors are two-finger grippers.

The benchmark provides well-defined APIs for both task planning and robot control. For task
planning and assignment, agents have access to tools for robot resume access construction and a
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Python code interpreter to execute the code during the first stage. Besides, for the robot control, robot
agents have access to APIs that link to low-level robot skills, including fundamental actions such as
navigate to, move arm to, pick, and place, etc. Temporarily, these low-level robot skills
are implemented with a classic robot trajectory planner and inverse kinematics solver. There are
certain limitations in the skill libraries, such as the absence of explicit gripper control, which are
addressed by contact-based grasping. As long as the robot gripper contacts an object, we snap the
object to the gripper. One reason for this design is that, if we enable physics simulation for object-
gripper contact simulation, it will introduce more irrelevant failures depending on the parameter
tuning of physics simulation integration. Thus, we disable the integrated Pybullet (Coumans &
Bai (2016–2021)) physics simulation in the benchmark. However, for tasks that require more
sophisticated low-level robot control, the benchmark can be easily extended with re-enabling the
physics simulation and robot learning-based policies. For more detailed explaination about simulation
and robot low-level control, please refer to Appendix B.4.

The benchmarking data are stored in task episodes. Each task episode is a snapshot of the start state
and goal state of a scene and an MRS with a specific task. The MRS is anticipated to roll out a policy
episode to complete the task in the environment and achieve the goal state. We note a task episode as
E = (L,P0, T,G), composed of the starting-state scene layout L, initial world frame robot states
P0 = {P0

i }1≤i≤N , task description T , and world goal state G.

4.2 TASK OVERVIEW

There are four tasks carfully designed in the Habitat-MAS benchmark. Tasks 1, 2, and 3 aim to
evaluate if agents are able to understand the three aforementioned robot capabilities respectively.
Specifically, 1) Task 1 is deigned as a cross-floor object navigation task including two robots (wheeled
and legged) navigating in a multi-floor scene, aiming to evaluate agent’s ability to understand robot’s
mobility; 2) Task 2, named cooperative perception for manipulation, represents a common scenario
in multi-robot collaboration, where robot perception assist manipulation. This task is set up to test
the ability of MAS to reason about robot sensor type or view point in other word; 3) Task 3 is a
classic household rearrangement task including two robots with different manipulation capabilities
collaborate to manipulate object placed on specific receptacles, this task can cleverly test MAS’s
ablility to understand robot arm’s workspace; 4) Task 4 is a multi-floor multi-agent and multi-object
rearrangement task that requires the LLM-based multi-agent systems to comprehend all information
and capabilities properly to collaborate. It is important to note that, during the creation of the
benchmark dataset, we carefully filter the task episodes so that each robot in the scene can only
complete a subset of the subgoals. In other words, the multi-agent system must comprehend robots’
physical capabilities to forge a feasible plan. For detailed task description, refer to Appendix B.1.

4.3 EVALUATION CRITERIA

The performance of multi-agent collaboration in Habitat-MAS is evaluated using several key metrics:
1) Success Rate. Based on the task design we introduced in the last section, we define a series
of intermediate subgoals in PDDL language for each task to evaluate the task result. This metric
evaluates the proportion of episodes in which an MRS successfully completes all sub-goals, which
directly reflects the overall planning and coordination capabilities of MAS. 2) Sub-goal Success
Rate. This metric calculates the percentage of sub-goals achieved by the MRS. Due to the limit on
pages, please refer to Appendix B.2 for more details about the sub-goal definition and implementation.
3) Token Usage. The used tokens are a key metric to evaluate the efficiency of LLM-based MAS.
The effectiveness of agent communication and action planning is measured by the number of tokens
used during discussions. This reflects how efficiently agents coordinate and strategize to complete
tasks. 4) Simulation Step. We also evaluate the number of simulation steps consumed by the MAS
to complete each task. Drones typically move the fastest, followed by wheeled robots, with legged
robots being the slowest. This metric evaluates the LLM-based MAS’ ability to assign tasks for high
MRS efficiency. For instance, in an extreme scenario, one robot handles all the subtasks, leaving the
rest of the robots without any assignments. This situation results in low efficiency for the HMRS and
causes an abnormally large number of simulation steps.
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Table 1: Experimental results of EMOS and ablated methods on Habitat-MAS benchmark.

Method Succ. Rate ↑ Sub-goal Succ. Rate ↑ Token Usage ↓ Simulation Step ↓
EMOS (Ours) 37.82% 81.26% 80783 2358
w/o. Numerical 23.56% 71.04% 53201 2983
w/o. Robot resume 15.63% 65.27% 64600 3125
w/o. Discussion 15.23% 72.45% 36377 2332

4.4 EXPERIMENTS WITH EMOS

In this section, we present the experimental result of our EMOS system on our Habitat-MAS
benchmark, along with ablation studies to explain the impact of different building blocks. Our
benchmark offers a large-scale dataset with episodes in more than 70 distinct scenes. However, due
to budget constraints, all ablation studies were conducted on a subset of 519 episodes. We use the
GPT-4o (OpenAI, 2024) API of the May 2024 version in this experiment. For more details on how
episodes are generated and the full set of those episodes, please refer to Appendix B.3.
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Figure 5: Experimental Results of EMOS and Ablated Methods by Tasks. This figure illustrates
the performance of EMOS and ablated methods on the four tasks in the Habitat-MAS benchmark.
The four tasks introduced in 4.2 are placed in four columns. For each task, we plot its task success
rate with a blue line in the upper row, and a histogram of token usage and simulation steps in the
lower row, for different ablation settings. In terms of success rate, the EMOS framework achieves
a clear margin over the other ablation settings, especially the setting without robot resume. The
dashed line shows the difficulty discrepancy across all four tasks. Each data point on the dashed line
represents the success rate averaged over all ablation settings in this task.

The ablated methods in the experiment are as follows:

1) EMOS: This the multi-agent system we introduced in this work. It consists of 1) robot resume
generation module, 2) centralized task planning with group discussion module, and 3) distributed
action execution through function call.

2) w/o. Numerical capability description (w/o. Numerical): In this setting, there will be no
numerical descriptions by calling the forward kinematics function tools in the robot resume. The
robot agent cannot generate code to check the task geometrically, but it still has access to the robot’s
summarization from URDF by itself.

3) w/o. Robot resume, with role description (w/o. Robot resume): This ablation setting aims to pro-
vide a setting similar to role-playing multi-agent systems like Camel Li et al. (2024), MetaGPT Hong
et al. (2023), etc. Robot agents do not have access to the URDF files. Instead, each robot agent pos-
sesses a role description authored by humans, which outlines their characteristics in the multi-robot
system.

4) w/o. Group discussion (w/o. Discussion) This is a relatively dummy baseline. All robot agents
receive the raw task description and scene description, and directly generate actions.

9
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Figure 5 illustrates the primary experimental results of the methods on four tasks in Habitat-MAS
benchmark respectively. The blue lines of success rate clearly demonstrate the declining trend in
performance as more key modules are removed from EMOS. The pink and purple bars indicate the
token usage and simulation steps for each method. While there is no unified pattern for all histograms
in all tasks, we can observe the surge in both token usage and simulation steps for task 4. This is
expected since task 4 involves more robots and target objects compared to task 1-3 and larger scenes
compared to task 2-3. Accordingly, the dashed line of average success rate on tasks indicates the
discrepancy in difficulty across all tasks. In particular, all methods demand significantly more tokens
and simulation steps on the most challenging task 4.

We present the numerical results of the ablation study in Table 1. Firstly, by comparing the EMOS
with EMOS w/o. numerical description, we observe that LLM agents can still perform relatively
well in simple tasks like navigation and perception, as in Figure 5. We infer this is because LLM
agents can still understand robots’ mobility from the tree structure of URDF, recognizing the node
names like wheel, leg, etc. Additionally, LLM agents can infer from their common sense that Drone
is an aerial robot with a relatively broad view without any explicit information about Drone’s camera
height in the input URDF. However, the success rate drops significantly in more complex tasks like
single-floor rearrangement (28.35% → 9.20%) and multi-floor rearrangement (13.46% → 3.85%).
This emphasizes that mere textual descriptions are inadequate for robotic tasks requiring precise
manipulation. In this case, invoking mathematical functions to process and reflect numerically helps.
Secondly, in the setting w/o. robot resume, by further removing the textual summary extracted from
URDF, the success rate in navigation (37.37% → 14.14%) and perception (52.94% → 28.32%) tasks
both decrease dramatically in the experiments on MAS without robot resume. This result proves that
LLM agents can indeed be aware of robot embodiment capabilities through commonsense reasoning,
rather than human-assigned role-playing. By comparing the average task success rate of this ablated
setting with our intact EMOS system (37.82% → 15.63%), as in Table 1, it confirms the superiority
of our methods utilizing both numerical reasoning with tools and textual reasoning with common
sense. Thirdly, compared to EMOS, the setting w/o. group discussion performs the worst on success
rate (37.82% → 15.23%) as demonstrated in Table 1. In this setting, each robot agent executes
tasks directly according to task description, without leader assignments or self-reflection on their
embodiedment limitation using mathematical tools. Although this setting significantly reduces token
usage by a large margin compared to the other three methods, it also dramatically reduces the success
rate. In addition, when inspecting the column of simulation steps in Table 1, EMOS can complete
the tasks in the second least steps on average, while EMOS w/o. robot resume struggles in planning,
consuming the most steps, and EMOS w/o. group discussion ends the episodes with the least steps
due to failure. For special case study, please refer to Appendix C.1. For more detailed discussions on
experiments, see Appendix C.

5 CONCLUSION

In summary, this paper introduces the Embodiment-Aware Heterogeneous Multi-Robot Operating
System (EMOS), an LLM multi-agent system designed to operate multi-robot systems in complex
household environment. The key challenges addressed in this system are embodiment-aware reasoning
and spatial reasoning in household tasks in the 3D world. The proposed framework integrates a
novel ”robot resume” feature that dynamically captures the physical capabilities of heterogeneous
robots and uses a hierarchical, decentralized approach for task planning and execution. The system is
validated through the Habitat-MAS benchmark, which includes a variety of tasks requiring robots to
collaborate across different mobility, perception, and manipulation capabilities. The experimental
results demonstrate the significance of embodiment-awareness and spatial reasoning in heterogeneous
multi-robot systems. The ablation studies specifically highlight the importance of using numerical
information for precise spatial reasoning, and group discussion modules to decompose the complex
tasks in improving task success rates.

Future work could focus on system-level issues, like improving the system’s scalability in multi-agent
communication protocol to even more diverse robot types and a much larger number of robots (e.g.,
swarm system), and expanding the framework’s adaptability to more dynamic, real-world settings in
which the system needs to handle external disturbance or subjects with unknown intention.
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A APPENDIX: ADDITIONAL DETAILS FOR EMOS

A.1 CAPABILITIES FOR EMBODIMENT-AWARE REASONING

Camera Frustum

Optical Axis

1/2 FOV Angle

Optical Center

Target Object

Object-Optical Angle

Figure 6: Perception capability represented by camera frustum. The left figure depicts the camera
frustum of a classic perspective camera model. The right figure intuitvely demonstrates how the LLM
agent reasons how possible a target object can be perceived by a camera at a certain pose.

As mentioned in the previous section, we categorize the hardware-specific capabilities into three
dimensions. Our considerations are as follows:

• Mobility. Robots exhibit different types of mobility capabilities. For example, aerial robots like
drones can move in non-occupided 3D space, legged robots like Spot can move across floors and
low obstacles, and wheeled robots like Fetch and Stretch can only move on the flat ground. Thus,
for a general heterogeneous multi-robot system, the deployed LLM agents should be aware of the
robot’s mobility capabilities when making navigation decisions. The benchmark will present a
comprehensive scene description about regions and their interconnectivity to help language models
deduce potential navigation pathways for navigation decision making.

• Perception. Robots are equipped with sensors (e.g., RGBD cameras) to perceive the environment.
The perception capabilities include sensor types and camera projection models. Specifically, as
shown in Figure 6, we use a simplified frustum model including the optical axis and camera Field-
Of-View (FOV) angle defined in Equation 1, where x represents the distance from the camera’s
central axis and f represents the focal length. The agent needs to be aware of the robot’s perceptual
space and check if objects to perceive can potentially fall within the camera frustum. For example,
due to jaw camera height and angle limitation, the Spot lacks the capability to perceive objects
placed in high positions (e.g., shelves), while a drone is the best choice for this task. Given the
current difficulty for the LLM model to generate novel algorithms, we write prompts to instruct
the agent to assume the camera is symmetrical about the up-axis, check the angle α between the
projected target object and the camera optical-axis, and compare it with half of the field-of-view
(FOV) angle.

θFOV = 2 · tan−1( x

2f
) (1)

• Manipulation. Robots feature diverse manipulation capabilities due to mechanical arms of different
forms, various types of end effectors, and whether or not they have an explicit manipulator. Hense,
it is important for agents to use mathematical tools to reason the robots arm workspace expecially
when handling objects placed in abnormal positions (e.g. far inside the bed, high on the cabinet).
For cooperative manipulation, the agents can pre-judge and assign the proper robots to fetch or
place the target objects in the task planning stage.
which robots can reach the target objects.

These capabilities include both textual summarization and numerical details. While the capability
summaries are used for common sense reasoning, the numbers are prompted to be used in LLM code
generation for spatial-aware reasoning, which will be discussed in the next section.

A.2 MULTI-AGENT SYSTEM DESIGN AND COMMUNICATION

Hierarchical MAS Communication Graph We design the MAS of EMOS following the HMAS-2
framework, which has been proven to be the most efficient LLM-based multi-robot communication
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framework by Chen et al. (Chen et al., 2024). In particular, this MAS has one leader LLM agent for
high-level task planning and subtask assignment, and several robot LLM agents to provide additional
feedback back to the leader LLM agent given the assigned subtasks. The MAS communication graph
can be referenced in figure 7, similar to a star topology.

Leader 
LLM

Spot 
LLM

Fetch 
LLM 

Stretch 
LLM

Drone 
LLM Leader �

Spot

Fetch

Stretch

Drone

Figure 7: Communication Graph Design for EMOS This figure show our design on MAS commu-
nication graph of EMOS, leader LLM agent decompose the task and assign task to each robot LLM
agent while robot LLM agents provide individual feedbacks for leader LLM agent to replan.

As we discussed in section 3.4 and algorithm 1, hierarchical task planning has 2 stages including
centralized group discussion and decentralized action execution. The LLM agent leader will
decompose the initial task into subtasks and assign them to different robot agents without embodiment
reasoning, which can be referred to by the black arrows in figure 7. Then robot LLM agents will
then reason with embodiment awareness through robot resumes themselves, judge whether they
themselves can complete the given subtask according to its own embodied capability, and feed it back
to the leader agent for replanning referring to the red arrows in figure 7. If each robot agent replies
yes, then the task assignment will be executed in the following steps. A more detailed explanation of
the two stages of the algorithm is provided.

Centralized Group Discussion and Task Assignment In the first stage of centralized group discus-
sion, there is a CentralPlanner that generates an initial plan for each robot, and each robot also
has an LLM agent that checks its assigned subtask and provides feedback to the central planner in
Reflection. With the robot resume composed of general description and numerical details, the
robot-dedicated agent could reason its general availability for the assigned task and further check the
geometric availability by using mathematical tools. Specifically, by accessing robot resumes in the
last section, a robot-dedicated agent is encouraged to perform common-sense reasoning with textual
summaries, and generate code with numerical data in both the scene description and the robot resume
to perform calculations for spatial-aware reasoning.

Decentralized Action Execution In the second stage, with the result of the assignment of tasks, each
robot-dedicated agent starts to execute its action in parallel. Given a subtask description and action
execution history, a robot-dedicated agent controls the current agent by LLM FunctionCall
with robot control libraries. These robot control libraries are implemented with ground truth world
information, classic robot trajectory planners and inverse kinematics solvers. An agent automatically
goes to wait state when it finishes all reasoned actions. When the agent fails to accomplish a subtask
but ”believes” to have finished it, it could continue to execute the following planned actions. A side
note is that, to study this circumstance of partial failure, we also evalute the task by sub-goals, which
will be discussed in the experiments. The agent in the wait state will awake when it receives a new
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task assignment from a group discussion. For an episode, the task ends when all robots are in the
wait state.

B APPENDIX: ADDITIONAL DETAILS FOR HABITAT-MAS

B.1 HABITAT-MAS BENCHMARK TASK DESIGN

As mentioned in the previous section, we carefully designed four challenging tasks to evaluate the
embodiment-aware reasoning capabilities of MAS. Detailed description of each task is as follows:

• Task 1: Cross-floor object navigation. As an extension of the Multi-ON (Wani et al., 2020)
problem, this multi-floor task requires the collaboration of robots with different base types to
navigate to multiple objects in the scene. The wheeled robot can only operate on a single floor,
while the legged robot can navigate between floors, emphasizing the need for coordinated planning
with awareness of the mobility capabilities of different robots. This task is specifically designed to
test the MAS’s ability to reason about mobility constraints when coordinating cross-floor tasks.

• Task 2: Cooperative perception for manipulation. Due to limitations in perception caused by
the camera’s position and type, some articulated robots like spot may lack the ability to detect
target objects on high shelves, while some arm-less robots like Drone with better camera view
may succeed. The heterogeneous robots need to cooperate to acquire a good RGB-D perception
of objects for precise manipulation. In this single-floor task, different target objects are placed in
positions that are visible for certain robots. We aim to test whether the MAS can reason about the
robot sensor type and viewpoint and successfully assign appropriate robots to perceive all target
objects.

• Task 3: Collaborative single-floor home rearrangement. As we discussed in the last section,
different robots have different manipulation capabilities. Articulated robots are limited to reaching
objects within their arm’s workspace. For instance, Stretch is equipped with an arm that can extend
farther horizontally, while Fetch has a greater vertical reach, allowing it to grasp higher objects
compared to Stretch. This single-floor task involves rearranging objects placed in varying positions,
including the ground, high shelves, or a bed center far from a navigable area, which requires robots
with different arm workspaces to understand their availability for different rearrangement targets.

• Task 4: Multi-Robot, multi-object, multi-floor collaborative rearrangement. This is a compre-
hensive task that requires complex coordination for collaboration. Within this scenario, several
distinct types of robots, aerial, wheeled, and legged robots, must collaborate to perceive and
rearrange a large set of objects distributed in various positions across multiple floors. This task
combines the coordination of different capabilities of heterogeneous robots. Specially, some objects
are located on high surfaces, such as cabinets upstairs, requiring advanced perception, manipulation
and mobility. Our primary goal is to evaluate the MAS’s ability to optimize task execution by
effectively leveraging the unique capabilities of each robot, while balancing token efficiency and
time step consumption.

B.2 SUB-GOAL DEFINITION WITH PDDL LANGUAGE

Habitat environment Puig et al. (2023) has already integrated a PDDL system (McDermott et al., 1998)
for the definition of composite tasks and the evaluation of the objectives in simulation. The goal of a
complex task can be defined by a composite logical expression with primitive predicates and logical
operators. Based on the PDDL system, we take the following primitive predicates as the sub-goals in
evaluation: 1) Robot At Object: This is the first stage in every task, in which the robot needs to
firstly navigate to the nearest navigable points to target objects and then execute the following actions
like detect or pick. 2) Robot At Receptacle: This is another type of navigation sub-goal for long-
horizon tasks like rearrangement ,for which robots need to navigate to the receptacles before placing
objects on the recepcles to complete the final goals of rearrangement. 3) Object At Receptacle:
This is the final goal of the rearrangement tasks. Sometimes robots may be assigned to pick and
place objects beyond their reach, which means that it is not enough to just count whether robots can
navigate to objects or receptacles. We add this sub-goal to test the ability to reason long-horizon
tasks further explain which robot tend to fail in specific tasks. 4) Robot Detect Object: This is for
specific perception tasks, aiming to judge how well the system performs in detecting objects.
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B.3 EPISODE GENERATION AND VERIFICATION

The episodic datasets in the benchmark are automatically generated by a cascaded sampling and
verification process. We first fliter the eligible scenes from HSSD (Khanna* et al., 2023) and MP3D
Chang et al. (2017) datasets that meet the defined requirements. For HSSD scenes, we ensure that the
navigable points in the scene are connected and that there are a sufficient number of rooms available
for placing receptacles and objects. Additionally, we calculate the navigable mesh(navmesh) and
verify that the robot can navigate to the closest navigable point near the object. As for MP3D scenes,
we ensure that the scene includes a multi-floor setup and that the different floors are connected by
stairs which are steep enough to prevent wheeled robot from passing through but feasible for spot
robot to navigate.

To sample an episode E = (L,P0, T,G), we carefully select receptacles with specific height or width
characteristics to accommodate different types of objects such as L, contributing to the layout diversity
of the episodes. The robots’ initial position and joint poses P0 are carefully initialized to ensure that
the robot can complete the assigned tasks including navigation, perception and manipulation based
on its capabilities. At the same time, the distance between the initial positions of the agents R0

i , R0
j ,

measured by Euclidean distance deuclidean(R
0
i , R

0
j ), are set to avoid collisions because they are too

close to each other. By carefully designing the goal state G of each task and generating corresponding
task descriptions T , we ensure that the task description includes all objects in the layout, thereby
testing MAS comprehensive reasoning and planning capability for the goal state as thoroughly as
possible. In mobility and perception task dataset, the length of the navigation path from the robots’
initial position to target object is ensured not to be excessively long, which would lead to increased
navigation time, nor too short, which could lead to one of the robots completing the navigation task
too quickly and entering a prolonged waiting state, resulting in unnecessary token consumption. An
episode would be trivial if the line connecting the robot’s starting point and target object forms a
straight line and completely coincides with the navigation path, the robot’s navigation process appears
mundane. Therefore, when validating the dataset, we ensure that the ratio of the geodesic distance
dgeodesic(R

0
i , Oj) between the initial position of the robot R0

i and the position of the target object Oj

to the Euclidean distance deuclidean(R
0
i , Oj) between the initial position of the robot and the object

P (R0
i , Oj) defined in Equation 2 is greater than 1, while also ensuring that it is not excessively large

to avoid an overly complex navigation path.

P (R0
i , Oj) =

dgeodesic(R
0
i , Oj)

deuclidean(R0
i , Oj)

(2)

To verify the episode is meaningful, i.e. to disciminate dummy policies and policy based on
embodiment-aware reasoning, we introduce a set of validation criteria to 4 tasks, ensuring that the
policy requiring multi-step planning and high-level perception outperforms random dummy policies.
In particular:

1)Navigation and multi-floor rearrange. The object and receptacle in the navigation episode we
filtered are not on the same floor. In the meantime, fetch robot and spot robot are initialize on the
same floor, which means that if the MAS system assigns tasks correctly, spot robot must be assigned
to perform cross-floor navigation or rearrange tasks, while the fetch robot(wheeled) can only be
assigned to navigate to target objects on the same floor and iteract with them. Besides objects and
receptacles placed on different floor in navigation episode, for objects located on the same floor as
the robots’ initial position, we excluded object that could be reached by spot robot, ensuring that they
can only be operated by fetch robot, which further reduces the success rate in multi-floor rearrange
task for dummy policy.

2) Perception and single-floor rearrange. For perception and single-floor manipulation tasks,
we assume that we initially have the robot type settings with a pair of robots that are equipped
with varying capacities within the same ability. We meticulously designed a comparative selection
experiment, where robots with identical settings were tasked with completing opposite tasks using a
fixed policy (a predefined task execution sequence, similar to an oracle plan). For example, in the
positive task, the Fetch robot rearranges object1 and the Stretch robot rearranges object2, while in the
negative task, the roles are reversed: the Stretch rearranges object1 and the Fetch rearranges object2.
We filtered episodes where the success rates (0 or 1) in the positive and negative experiments were
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XORed, thereby identifying episodes that can only be completed under specific arrangements. This
approach aims to differentiate a dataset that cannot be completed using random (dummy) policies, to
further demonstrate the effectiveness of our approach.

B.4 DETAILED IMPLEMENTATION OF ROBOT LOW-LEVEL CONTROL IN BENCHMARK

In section 4.1, we generally introduce the robot low-level action implementation in our benchmark as
we disable the physics simulation of integrated Pybullet Coumans & Bai (2016–2021). Here we will
describe the implementation of each low-level action in detail with non-physics simulation and full
observed settings.

For navigation action navigate to, as we observed a target object like a apple on the table, the
object’s position in world coordinate framework can be calculated. Then we infer the path (series
of waypoints) from the start position of the robot to the target position on navmesh through greedy
search, and start to force the robot to move towards the next waypoint following the navigation
algorithm used in Habitat Puig et al. (2023).

For arm action including move arm to, pick, place, since we have turned off the physical simu-
lation including collision detection, the robotic arm control only requires that after the mobile robot
observes the target objects, it first moves to a suitable position near the target position. Subsequently,
based on the world coordinates of the object, the joint pose corresponding to the object coordinates is
calculated through inverse kinematics, to achieve grasping using the suction grasp.

It should be noted that low-level control is not our concern, but our framework is easily extensive
to introduce other control method like RL policy. Since action strategies are not directly related to
embodied task planning, we did not discuss the underlying action strategies in great detail in the
article.

C APPENDIX: ADDITIONAL EXPERIMENTS

C.1 SPECIAL CASE STUDY

Here is the scene description: There are 4 objects in the scene ... (object information)

Your subtask: Rearrange object any_targets|0 to receptacle TARGET_any_targets|0

Please generate code to verify the task feasibility based on your capability.

Compute Euclidean distance between object and robot 
center to determine whether reachable or not

❌

Code generated:

Compute height difference between object and 
robot center to determine  reachable or not

Figure 8: Speicial case during agent reflection This image illustrates the process of task inspection
conducted by LLM agents during agent reflection. On the left side is the correctly generated code,
while on the right side is an incorrect interpreration caused by hallucinations.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Incorrect code generation caused by hallucinations During large-scale experiments, we iden-
tified some specific cases that occasionally lead the system to make incorrect judgements about
the environment’s state, particularly when the prompt contains numerical information, especially
coordinates, even when we use structured text as the prompt for LLM. The code shown in Figure 8
demonstrates how LLM agents verify whether the robot can interact with the target object based on
the object’s height, horizontal distance between nearest navigable point from object to itself given
scene description, robot height, and arm workspace (max reach of the robot arm) parsed from URDF.
The correct verification method is to calculate whether the Euclidean distance from the robot’s center
to target object, when the robot is positioned at a navigable point, falls within the robot’s reach. This
is the code logic generated by LLM in most cases. However, there are still some cases where the
large model fails to correctly understand the spatial relationships, even when we explicitly state
through structured text that the calculation of whether the object is within the robot’s reach should be
based on horizontal distance and height difference. One common scenario is that the code on the
right part only compares the height difference between robot and target object with the radius of the
robot arm workspace. In other cases, the LLM agent may hallucinate a third coordinate beyond the
horizontal distance and height difference to compute distance. Both of these cases can cause the
robot to misjudge its range of manipulation, ultimately resulting in inappropriate task assignments.

C.2 TOKEN ENHANCEMENT EFFICIENCY

Table 2: The results of Token enhancement efficiency

Method Relative Success Rate Relative Token Usage Token Efficiency ↓
EMOS (Ours) 1.00 1.00 2135.99
w/o. Numerical 1.61 1.52 2258.11
w/o. Robot resume 2.42 1.25 4133.08
w/o. Discussion 2.48 2.22 2388.51

EMOS consumes the most token since we include procedures such as leader assignment, group
discussion, self reflection, action execution, etc. All of these procedures inevitably require a large
number of LLM tokens. To evaluate the extra tokens consumed as we develop our framework
resulting in a higher success rate, we define the relative success rate, relative token usage, and token
efficiency. As shown in Table 2, to judge token efficiency, EMOS outperforms other ablated methods,
when comparing the improvement in success rate and the increase in token usage, EMOS achieves a
more increased success rate than token usage compared to all other ablated settings. To judge the
token used per success rate, which reflects the tokens used to perform the tasks, EMOS performs the
best in this metric. It shows that, as the token usage increase, our EMOS multi-agent system still
perform the best in token efficiency.

C.3 DISCUSSION ON OBSERVED PHENOMENA

Besides, there are some interesting phenomena: 1) EMOS w/o. group discussion beats EMOS w/o.
robot resume in both navigation task success rate (22.42% → 14.14%) and average sub-goal success
rate (72.45% → 65.27%): It indicates that multi-agent role playing might increase hallucination,
especially when robots make decisions with overly complex description. 2) EMOS w/o. numerical
performs just as badly as EMOS w/o. robot resume in complex tasks (9.20% ↔ 12.99% in single-floor
rearrangment): It suggests that LLM agents cannot actually reason about the manipulation limitation
with URDF, indicating the importance of calling mathematical functions in our EMOS framework. 3)
EMOS w/o. robot resume uses more tokens and steps than EMOS w/o. numerical: It reflects that
even though the EMOS w/o. robot resume can consume fewer tokens with less textual input, the
LLM agents must query involving more steps due to the low success rate in planning.

C.4 EVALUATION ON SUB-GOAL SUCCESS RATE

As a supplement, Table 3 shows the sub-goal success rate of the five settings, providing a detailed
insight into how well each setting performs in planning and execution of sub-tasks. All settings
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Table 3: Sub-goal success rate of EMOS and ablated methods on Habitat-MAS benchmark.

Sub-goals EMOS (Ours) w/o. Numerical w/o. Robot resume w/o. Discussion
Robot At Object↑ 88.27% 77.48% 69.48% 80.59%
Robot At Receptacle↑ 88.90% 80.63% 76.15% 83.56%
Object At Receptacle↑ 57.04% 40.38% 40.95% 47.70%
Robot Detect Object↑ 93.81% 97.35% 79.57% 70.80%

perform relatively well in the Robot At (the first and the second) sub-goals, which just require the
robots to navigate to the target points. By comparing EMOS w/o. robot resume with other settings,
as we discussed before, due to not having the summary of mobility description, it can be inferred
that robots in this setting tend to fail in multi-floor navigation tasks. It is also notable that compared
to EMOS w/o. numerical and EMOS w/o. robot resume, EMOS w/o. group discussion achieves
higher sub-goal success rates in navigation sub-goals, while lower in detection sub-goals. This
reflect that in this setting, MAS tend to fail in the tasks that require robot to collaborate to complete,
which affirm the superiority of the group discussion in our framework, which can indeed reduce the
homogenization in multi-agent task planning.

C.5 EXTRA EXPERIMENT ON FORMAT OF ROBOT RESUME

In order to study which form of robot resume the LLM uses for reasoning with the highest efficiency,
we conducted experiments among different formats of robot resumes (natural language, JSON,
markdown and XML) for embodied task planning, which are generated using GPT-4o.

Specifically, we sample 10 episodes from the perception task and evaluate the average success rate of
each format. The experimental results can be referred to Table 4

Table 4: Average Success Rate Using Different Format of Robot Resume

Format Natural Language JSON Markdown XML
Avg. Succ Rate 0.3 0.7 0.5 0.6

Our experiments reveal that structured formats, such as JSON and XML, outperform unstructured
formats like natural language in achieving higher success rates for robot resumes. Notably, the
success rate increases as the format becomes more structured, which aligns with a key observation in
recent research on large language models (LLMs). However, during the experiments, we observed
that certain formats, such as Markdown and XML, can induce hallucinations in LLMs. In these cases,
the agents do not generate the properly formatted actions, resulting in a 0% success rate. To enable
meaningful comparisons, we refined the prompts with minimal modifications to address this issue
and produce usable results.

Based on the observations, the JSON format, used in our frameworks, performs the best. To answer
the question about how to generate a better-formatted resume, we suggest using structured formats
like JSON format in our frameworks, rather than loosely structured formats like natural language.

C.6 EXTRA EXPERIMENTS ON SCALABILITY OF EMOS

Scalability is a crucial aspect of designing a robust framework like EMOS, as it enables seamless
integration of new features and ensures that the system can adapt to evolving requirements. While
the core functionalities of EMOS have demonstrated effectiveness in Habitat-MAS, we also provide
additional experiments to evaluate how well the framework accommodates new capabilities and
scales across different tasks and conditions. By testing these attributes, we aim to provide some
insight about the scalability of EMOS when extending its scale, which could help the community
working on scalable multi-agent systems to understand the system characteristics better.
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Scalability with Robot Number In order to further verify whether EMOS can be applied to systems
with increasing number of robots, robot types or task complexity to test the scalability, we conduct
experiments by scaling the number of robots performing the same task. In our experiments, we
sample 10 episodes from the manipulation task and evaluate performance across different numbers of
Fetch robots (2, 4, 6, and 10) to assess communication efficiency and success rate.

As shown in table 5, we found that as the number scales up, the multi-agent system will face problems
like hallucinations (in the setting of 10 agents) and the average success rate will decline. This is as
expected since the hallucination problem in LLM is prevalent and it becomes worse with the increase
of context length. On one hand, this could be alleviated with more powerful LLM models as we
have witnessed in the recent progress of LLM models. In the other hand, designs like hierarchical
communication with smaller subgroup discussions and larger group aggregation (similar to delegate
meeting) could help solve the scalability problem in multi-agent discussion.

Table 5: Scaling up with Robot Number

Num of Robots Succ. Rate Token Usage

2 80% 48779
4 60% 73202
6 70% 93252
10 50% 151952

Table 6: Scaling up with Object Number

Num of Objects Succ. Rate Token Usage

1 90% 25778
2 80% 50005
3 80% 87668
5 70% 197485

Scalability with Object Number Considering the scalability problem from another perspective, we
conduct a second experiment focusing on increasing task complexity by scaling up the number of
objects to manipulate, referring to table 6. While maintaining the fixed number of Fetch robots of (2),
we evaluate the system’s performance with varying numbers of objects (1, 2, 3, and 5).

In the second experiment, which involved scaling up task complexity, we found that our system
demonstrates robustness to a certain extent. As the number of objects increases — indicating greater
task complexity — the system maintains a relatively high and stable success rate (above 70%).
However, the increasing hallucination problem still exists under this setting.
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