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Abstract

Scientific abstracts provide a concise summary001
of research findings, making them a valuable002
resource for extracting scientific arguments. In003
this study, we assess various unsupervised ap-004
proaches for extracting arguments as aligned005
premise-conclusion pairs: semantic similarity,006
text perplexity, and mutual information. We007
aggregate structured abstracts from PubMed008
Central Open Access papers published in 2022009
and evaluate the argument aligners in terms of010
the performance of language models that we011
fine-tune to generate the conclusions from the012
extracted premise given as input prompts. We013
find that mutual information outperforms the014
other measures on this task, suggesting that the015
reasoning process in scientific abstracts hinges016
mostly on linguistic constructs beyond simple017
textual similarity.1018

1 Introduction019

Scientific reasoning involves pairing conclusions020

with premises, which encompasses information021

such as pre-existing knowledge, observations, and022

experimental results (Hesse, 1974; Al Khatib et al.,023

2021). This reasoning process is inherently direc-024

tional: While inductive reasoning establishes logi-025

cal links from the causal premises to the resulting026

conclusions (Gao et al., 2022), abductive reasoning027

aligns the most plausible premises for given con-028

clusions (Ovchinnikova et al., 2014; Young et al.,029

2022; Li et al., 2023; Zhao et al., 2023).030

The goal of mining scientific arguments is to dis-031

cover the argumentative structure within academic032

papers (Binder et al., 2022). Despite the great suc-033

cess in recent studies (Fergadis et al., 2021; Wad-034

den et al., 2022a,b), a crucial aspect of evaluating035

the alignment quality involves assessing the logi-036

cal strength and quality of arguments (Kees et al.,037

2021; Wachsmuth et al., 2017), which entails deter-038

mining the sufficiency of an argument’s premises039

1We will later release our code and data.

Figure 1: The evaluation pipeline for argument aligners.
First, the structured abstract is split into premise and
conclusion sentences. Then, the argument aligner uses
nearest neighbor search to find relevant premises for con-
clusions. Finally, a trained language model generates
conclusions from the selected premises. The best aligner
is the one that selects the most sufficient premises for
generated conclusions with the highest ROUGE score,
compared to the original conclusions.

for deriving its conclusions. Normally, sufficient 040

premises furnish comprehensive details for deduc- 041

ing conclusions, whereas insufficient premises lack 042

essential prerequisites, making them compatible 043

with flawed conclusions. Being able to assess ar- 044

gument sufficiency would not only allow the iden- 045

tification of well-argumented premise-conclusion 046

pairs, but also help with evaluating the argument 047

aligners that were used in the first place to pair 048

premises and conclusions (Gurcke et al., 2021). 049

In this work, inspired by previous studies on text 050

alignment (Nikolov and Hahnloser, 2019; Jiang 051

et al., 2020), we investigate the sufficiency of 052

premises aligned by various unsupervised argu- 053

ment aligners, i.e. normalized point-wise mutual 054

information (npmi, Bouma (2009); Padmakumar 055

and He (2021)), normalized perplexity (nppl, Mi- 056

aschi et al. (2021)), and semantic (cosine) similar- 057

ity (csim, Reimers and Gurevych (2019)). Draw- 058

ing inspiration from Johnson and Blair (2006) and 059

Wright et al. (2022), we assess the sufficiency of 060

premises by evaluating the extent (measured with 061
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ROUGE score) to which a language model can062

generate the paired conclusion from them.063

Our main contributions are: 1) We constructed a064

dataset named ARG-ALIGN, which comprises more065

than 17k pairs of premises and conclusions aggre-066

gated from structured scientific abstracts from the067

PubMed Central Open Access corpus; 2) We as-068

sessed the sufficiency of the aligned premises by069

reconstructing the corresponding conclusions using070

language models; 3) We highlighted that premises071

in scientific abstracts may contain redundant infor-072

mation in terms the drawn conclusions.073

2 Unsupervised Argument Aligners074

Given an abstract that contains a premise segment075

of n ≥ 5 sentences P = (pi)
n
i=1 and a conclu-076

sion segment C, unsupervised argument aligners077

compute alignment scores d(p, C) between each078

premise sentence p and the entire conclusion seg-079

ment C. We set ourselves the goal of finding the080

k = 5 premise sentences P∗
k = (pij )

k
j=1 that are081

most relevant to C in terms of their relatedness, as082

judged by a language model.083

We consider the conclusion segment C as a sin-084

gle text rather than as a list of individual sentences085

because a paper typically has one primary research086

finding that is stated over possibly multiple conclu-087

sion sentences. The argument aligners therefore088

should identify premise sentences that are relevant089

to inferring C as a whole.090

In contrast to previous studies that focused on in-091

ductive argument alignment, where C is identified092

based on P (Wadden et al., 2020), we focus on ab-093

ductive argument alignment, where P is identified094

based on C. This choice is motivated by the fact095

that the conclusion sentences in structured abstracts096

can be easily located by searching for the CONCLU-097

SIONS discourse section using regular expressions,098

whereas premise sentences are distributed across099

all discourse sections and therefore more difficult100

to identify.101

To abductively align a premise sentence p with102

the conclusion segment C, we explore four unsuper-103

vised argument aligners with different alignment104

scores:105

csim Semantic relevance using embedding-based106

cosine similarity.107

csim(p, C) = 1− ep · eC
∥ep∥ · ∥eC∥

,108

where 109

ep =
1

|p|
∑
wp∈p

e(wp), eC =
1

|C|
∑
wc∈C

e(wc) 110

denote the SENTENCE-BERT (SBERT, Reimers 111

and Gurevych (2019)) embeddings of p and C, re- 112

spectively, and |·| denotes the number of words. 113

We hypothesize that the larger csim, the better p 114

aligns with C. 115

nppl Normalized perplexity. 116

nppl(p|C) = ppl(p|C)
U(p|C)

, 117

where the perplexity score is calculated as 118

ppl(p|C) = exp

(
− logP (p|C)

|p|+ |C|

)
= exp

(
−
∑|p|

i=1 logP (wp,i|C, wp,1:i−1)

|p|+ |C|

)
,

119

here P (wp,i|C, wp,i:i−1) indicates the probability 120

of the i-th premise word wp,i taken from the 121

concatenation of C and p. The normalizing factor 122

U(p|C) is based on the likelihood of an arbitrary 123

text of length |p| + |C|, in which each word is 124

uniformly sampled from the vocabulary V of the 125

argument aligner: 126

U(p|C) = exp

(
−
∑|p|+|C|

i=1 log |V |−1

|p|+ |C|

)
= |V |, 127

where |V | is the size of V . We hypothesize that the 128

smaller nppl, the better p aligns with C. 129

npmi Normalized point-wise mutual information. 130

npmi(p|C) = pmi(p|C)
h(p, C)

= − logP (p) + logP (p|C)
logP (C) + logP (p|C)

= −
logP (p) +

∑|p|
i=1 logP (wp,i|C, wp,1:i−1)

logP (C) +
∑|p|

i=1 logP (wp,i|C, wp,1:i−1)
,

131

where h(p, C) denotes the joint self-information 132

(Futrell and Hahn, 2022). We hypothesize that the 133

larger npmi, the better p aligns with C. 134

rand An argument aligner that selects five ran- 135

dom premise sentences from P . 136

To calculate nppl and npmi scores with low com- 137

putational cost, we use a simple pre-trained GPT-2 138

model (|V | = 50, 257, Radford et al. (2019)) and 139

compute the log likelihoods by taking the logits of 140

the last decoder layer. 141
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3 Methodology142

In line with the concept presented by Gurcke Gur-143

cke et al. (2021), our objective is to investigate the144

extent to which the premises, when aligned with145

the conclusions using our argument aligners, can146

effectively contribute to the reconstruction of those147

conclusions.148

3.1 Dataset149

Although previous works have resulted in datasets150

for scientific argument mining (Lauscher et al.,151

2018; Mayer et al., 2020; Achakulvisut et al.,152

2019) and natural language inference (Sadat and153

Caragea, 2022; Khot et al., 2018), none deals with154

pairing premises and conclusions in scientific ab-155

stracts. Therefore, we created a dataset called ARG-156

ALIGN (detailed statistics in Table 1) by aggregat-157

ing structured abstracts from papers in PubMed158

Central Open Access (PMCOA, National Library159

of Medicine (2003)) that are segmented into mul-160

tiple discourse sections such as BACKGROUND,161

OBJECTIVES, METHODS, RESULTS, and CON-162

CLUSIONS.163

Count Training Validation Test

# structured abstracts 13,939 1,745 1,752
# premise sentences 69,695 8,725 8,760
# conclusion sentences 28,668 3,627 3,605

Table 1: Overall statistics of our ARG-ALIGN dataset.

To ensure that our GPT-2-based argument align-164

ers are naive with regards to our aggregated dataset,165

we intentionally selected structured abstracts from166

papers that were published in the year 2022, which167

was after the release of GPT-2. Following the in-168

structions in Gao et al. (2023), we take the text169

under the CONCLUSIONS section as the conclu-170

sion segment C and all other sentences of the ab-171

stract as candidate premise sentences P . We only172

use abstracts containing a maximum of three con-173

clusion sentences to ensure they fit within the in-174

put constraints when reconstructing them from the175

premises.176

3.2 Conclusion Generators177

For conclusion generation, we fine-tuned two178

Seq2seq models: 1) T5-large with 770M parame-179

ters (Raffel et al., 2020); and 2) BART-large with180

400M parameters (Lewis et al., 2020), as well as181

three large language models (LLMs): 1) LLaMA182

v1 with 7B parameters (Touvron et al., 2023);183

2) Galactica with 6.7B parameters (Taylor et al., 184

2022); and 3) GPT-3.5-turbo with 170B parame- 185

ters (OpenAI, 2023). All conclusion generators 186

except GPT-3.5-turbo2 were fine-tuned on a single 187

NVIDIA GeForce RTX 3090 GPU card. Specif- 188

ically, we fine-tuned LLaMA and Galactica with 189

a parameter-efficient (Liu et al., 2022) quantized 190

low-rank adapter technique (Dettmers et al., 2023). 191

3.3 Evaluation 192

Following Gurcke et al. (2021) and Syed et al. 193

(2021), we evaluate the individual argument align- 194

ers by measuring the sufficiency of the aligned 195

premise sentences P∗
k for the corresponding con- 196

clusion segment C, where the sufficiency is mea- 197

sured in terms of the average ROUGE F1 score 198

(Lin, 2004) between the generated conclusion and 199

the original conclusion C. 200

4 Results and Discussion 201

We present conclusion generation results for dif- 202

ferent argument aligners in Table 2. In addition 203

to the four argument aligners, we also report the 204

sufficiency of taking all sentences as premises for 205

generating the conclusion (denoted as full). Note 206

that we did not use T5-large on this task due to its 207

input length limitation of 512 tokens. 208

We found that all argument aligners selected 209

premise sentences of encouraging sufficiency, ev- 210

ident from their average ROUGE-2 scores consis- 211

tently exceeding 10. Interestingly, premises aligned 212

using npmi consistently generated the best conclu- 213

sion, suggesting that npmi captures well the di- 214

chotomy of premises and conclusions in scientific 215

arguments. 216

Somewhat surprisingly, we found that full (unre- 217

stricted) premises tended to degrade the generated 218

conclusions, as evidenced by lower ROUGE scores. 219

Perhaps, full premises may contain irrelevant con- 220

tent in relation to the conclusions that overshadows 221

the relevant information for conclusion generation. 222

Finally, the fine-tuned BART-large conclusion 223

generator outperformed the 425 times larger zero- 224

shot GPT-3.5 generator. We suggest that because 225

LLMs such as GPT-3.5 excel at generating text of 226

low perplexity (Mitrović et al., 2023), it is likely 227

that GPT-3.5 has a preference to use less com- 228

mon vocabulary and expressions when generating 229

2Fine-tuning with the OpenAI API https://platform.
openai.com/docs/api-reference was not possible at the
time of the study and currently costs 32.93 US dollars.
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conclusion
generators

csim nppl npmi rand full

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

T5-770M‡ 32.43 12.90 24.43 32.04 12.66 24.32 32.47 13.12 24.47 30.10 11.17 22.76 - - -
BART-400M‡ 33.91 13.47 24.74 33.68 13.52 24.73 34.18 13.91 24.96 31.32 11.73 22.89 34.16 13.40 24.44

LLaMA-v1-7B‡ 33.75 13.99 25.35 33.90 13.99 25.84 33.94 14.13 25.75 31.71 12.39 23.97 33.73 13.66 25.34
Galactica-6.7B‡ 34.62 14.54 26.39 34.37 14.41 26.18 34.87 14.89 26.57 32.93 13.16 25.00 35.50 14.62 26.42

GPT-3.5-turbo† 31.57 10.62 20.90 31.16 10.59 20.63 31.99 11.17 21.39 29.29 8.87 19.38 30.84 10.25 20.24
GPT-3.5-turbo‡ 35.38 14.36 26.56 35.03 14.27 26.32 35.60 14.89 26.85 33.45 12.80 25.17 35.49 14.58 26.68

Table 2: Results on generating the conclusion from premises extracted by different argument aligners, measured as
ROUGE F1 scores. † indicates zero-shot models without fine-tuning and ‡ indicates the fine-tuned models.

the conclusion, resulting in lower ROUGE scores.230

However, we noticed that after fine-tuning, GPT-231

3.5 has acquired the ability to incorporate words232

more typical of scientific language, leading to im-233

proved ROUGE scores.234

5 Related Works235

Computational argument sufficiency was first stud-236

ied by Stab and Gurevych (2017). They viewed237

argument sufficiency as a binary classification task238

and trained a CNN classifier to predict whether an239

argument is sufficient or not. Later, the concept of240

argument sufficiency was extended to include argu-241

ment strength, with strong arguments steering con-242

versations towards more crucial topics compared to243

weak arguments. Hunter (2022) proposed assessing244

the strength of deductive arguments by probabilis-245

tically modeling the necessity and sufficiency of246

premises for claims with a defeasible logic. Their247

four-dimensional probabilistic measures of argu-248

ment strength provided a theoretical foundation of249

computational argument evaluation.250

Computational argument evaluation often in-251

volves utilizing language models for assessing252

premise-conclusion pairs. For example, conclu-253

sion generation focuses on the challenge of in-254

ferring conclusions from a provided collection255

of premises, approaching it as a text generation256

task (Alshomary et al., 2021; Tang et al., 2022;257

Syed et al., 2021). Shieh et al. (2019) investigated258

the effectiveness of Seq2seq models in generating259

conclusions from Random Clinical Trials (RCT),260

indicating the capability of these models to per-261

form scientific reasoning. Other works focused on262

generating sentence- and paragraph-level counter-263

arguments, with carefully designed control mecha-264

nisms (Hua et al. (2019); Schiller et al. (2021); Saha265

and Srihari (2023); Alshomary and Wachsmuth266

(2023)) such that the generated conclusions con-267

tain more detailed information.268

6 Conclusions 269

In this study, we explored semantic similarity, text 270

perplexity, and mutual information as unsupervised 271

argument aligners. We quantified these metrics on 272

the task of pairing premises with conclusions in 273

PMCOA paper abstracts. Our primary objective 274

was to probe the sufficiency of aligned premises by 275

using them to reconstruct the conclusions. 276

Our findings indicate that semantic similarity, 277

often considered a straightforward measure of text 278

relevance, did not emerge as the best criterion for 279

premise-conclusion alignment. This surprising re- 280

sult suggests that the process of scientific reason- 281

ing within abstracts is not solely driven by text- 282

based similarity, but rather encompasses nuanced 283

perspectives involving the cohesiveness of premise 284

sentences amongst each other, as captured by P (p). 285

This study highlights the need for a deeper under- 286

standing of the intricacies involved in the construc- 287

tion of well-aligned argument pairs in scientific pa- 288

pers. Our research sheds light on the multifaceted 289

nature of scientific reasoning and the importance 290

of exploring alternative approaches that better cap- 291

ture the underlying connections between premises 292

and conclusions. As we move forward, it becomes 293

evident that refining the techniques for aligning 294

arguments will contribute to more accurate and 295

insightful representations of scientific discourse, 296

with the potential of improving the information 297

dissemination and knowledge synthesis within the 298

scientific community. 299

7 Limitations 300

The main limitations of our work are: 301

• When normalizing perplexity scores for the 302

nppl aligner, we make the assumption that 303

words are sampled uniformly from the vo- 304

cabulary. However, this approach may not 305

be the most effective way. We propose that 306
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employing a more refined sampling strategy307

that takes into account the lexical preferences308

for premises and conclusions in scientific ab-309

stracts could potentially result in improved310

performance.311

• The calculation of npmi is point-wise, which312

does not consider the relation between individ-313

ual premise sentences such as sentence order.314

• Our method relies on structured scientific ab-315

stracts. When applying our approach to non-316

structured scientific abstracts, conclusions317

would have to be annotated in the first place.318

• Figure 2 in Appexdix A shows that all the319

argument aligners tend to prefer premise sen-320

tences at the start of abstracts. We leave the321

investigation into this preference for future322

work.323

In the future, we will investigate multi-step sci-324

entific reasoning by extending our findings to more325

complex argumentation schemes.326
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A Comparison of Argument Aligners606

Figure 2 illustrates the relative positioning of607

premise sentences aligned by various argument608

aligners. It is evident that csim, nppl, and npmi met-609

rics display an inclination toward selecting premise610

sentences located at the start of structured abstracts.611

The content located in the beginning of structured612

abstracts typically is the motivation for the study613

and holds an importance for setting an expectation614

of the downstream conclusion.615

Figure 2: Relative positions within the abstracts (with 0
indicating the start and 1 the end of abstract) for premise
sentences picked by different argument aligners.

In order to explore to which extent do the initial616

premises in the abstract play a role in generating617

conclusions, we also use the first five premise sen-618

tences to generate the conclusions. Since the first619

five sentences form a consecutive sequence, we620

did not introduce any additional separation tokens621

during the model’s training process.622

conclusion
generators

first five premises

R-1 R-2 R-L

T5-770M‡ 30.76 11.74 23.25
BART-400M‡ 31.79 10.75 22.92

LlaMA-v1-7B‡ 32.45 12.85 24.66
Galactica-6.7B‡ 33.26 13.40 25.23

GPT-3.5-turbo† 30.13 9.33 19.93
GPT-3.5-turbo‡ 34.66 13.54 25.95

Table 3: Results on generating the conclusion from
the first five premise sentences in structured abstracts,
measured as ROUGE F1 scores.

The findings presented in Table 3 demonstrate623

that in general, the first five premise sentences per- 624

form better than the random baseline. This suggests 625

that, to some extent, pertinent information for draw- 626

ing conclusions can be found in the initial portion 627

of abstracts. 628

To assess whether ROUGE scores can accu- 629

rately represent the degree of alignment between 630

premises and conclusions, we randomly selected 631

100 structured abstracts from the test set. We then 632

computed the correlation coefficients between the 633

average ROUGE F1 scores between premises and 634

conclusions (specifically R-1, R-2, and R-L) and 635

the alignment scores (csim, nppl, and npmi) inde- 636

pendently. 637

Figure 3: Average ROUGE F1 score between aligned
premises and original conclusions, calculated for 100
randomly selected structured abstracts in the Test set.
p < 10−10 for csim, nppl, and npmi observed (Pearson
correlation test).

Figure 3 indicates that csim and npmi align posi- 638

tively with the average ROUGE F1 scores, suggest- 639

ing a tendency of these metrics to align lexically 640

similar premises with conclusions. By contrast, 641

nppl aligns negatively with ROUGE scores. Our 642

findings highlight a degree of consistency within 643

scientific reasoning, where a logically sound con- 644

nection between a premise and conclusion is more 645

likely (indicated by high npmi), exhibits greater 646

semantic similarity (indicated by high csim), and 647

is characterized by enhanced coherence (indicated 648

by low nppl). 649
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B Dataset Example 650

Table 4 shows an example from our ARG-ALIGN dataset. The information of discourse sections is removed 651

for clarity. 652

Title: Designing Mindfulness Conversational Agents for People With Early-Stage Dementia and
Their Caregivers: Thematic Analysis of Expert and User Perspectives (Seah et al., 2022)

Premises

The number of people with dementia is expected to grow worldwide. Among the
ways to support both persons with early-stage dementia and their caregivers
(dyads), researchers are studying mindfulness interventions. However, few stud-
ies have explored technology-enhanced mindfulness interventions for dyads and the
needs of persons with dementia and their caregivers. The main aim of this study
was to elicit essential needs from people with dementia, their caregivers, dementia
experts, and mindfulness experts to identify themes that can be used in the de-
sign of mindfulness conversational agents for dyads. Semistructured interviews
were conducted with 5 dementia experts, 5 mindfulness experts, 5 people with
early-stage dementia, and 5 dementia caregivers. Interviews were transcribed
and coded on NVivo (QSR International) before themes were identified through a
bottom-up inductive approach. The results revealed that dyadic mindfulness is
preferred and that implementation formats such as conversational agents have
potential. A total of 5 common themes were also identified from expert and user
feedback, which should be used to design mindfulness conversational agents for
persons with dementia and their caregivers. The 5 themes included enhancing
accessibility, cultivating positivity, providing simplified tangible and thought-based
activities, encouraging a mindful mindset shift, and enhancing relationships.

Conclusion
In essence, this research concluded with 5 themes that mindfulness conversational
agents could be designed based on to meet the needs of persons with dementia and
their caregivers.

Table 4: An example in our proposed ARG-ALIGN dataset. We use bold font, underline, italic font to indicate
premise sentences select by the csim, nppl, and npmi argument aligners respectively.

C Fine-tuning Details 653

Given that argument aligners may select premise sentences that are not contiguously located within the 654

abstracts, we employed a special token <SENTENCEMISSING> to indicate missing premise sentences that 655

were not selected by the argument aligners. This approach encourages the models to learn to generate 656

conclusions from non-contiguous premises. 657

The training settings for different models are as follows: 658

Seq2seq Following the original training prompts used in Raffel et al. (2020), we first concatenated 659

the aligned premises with <SENTENCEMISSING> and then augmented the concatenation with the suffix 660

“summarize: ” when fine-tuning T5-large. For BART-large, the aligned premises were simply concatenated 661

with <SENTENCEMISSING> and used as input. Both T5-large and BART-large models were optimized 662

with AdamW (Loshchilov and Hutter, 2018) with batch size of 2, learning rate initialized at 1e−5, and 663

adapted with 10% warm-up steps by the linear scheduler, and fine-tuned for five epochs. We report the 664

performance from the checkpoints with the best results on the validation set. The maximal output length 665

during the inference is set to 128. 666

LLM We fine-tuned LLaMA-v1-7B and Galactica-6.7B using QLoRA (Dettmers et al., 2023) with 667

batch size of 4 and int8 quantization (Dettmers et al., 2022b). We concatenated the aligned premises with 668

the conclusions to form the following prompt: 669
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Premise: [aligned premises concatenated with <SENTENCEMISSING>] Conclusions: [concatenated conclusions]
670

Notice that for the LLMs, only the logits of the conclusion tokens are used to optimize the adapter’s671

parameters. To accelerate the inference, we first converted the fine-tuned PEFT models to huggingface672

models, then we compiled them with CTranslate23 toolkit (Klein et al., 2020). Both LLaMA-v1-7B and673

Galactica-6.7B were trained for three epochs. We use bitsandbytes4 toolkit (Dettmers et al., 2022a) for674

int8 matrix multiplication.675

For the zero-shot GPT-3.5-turbo model, we used the following prompt:676

Your task: Please generate a conclusion text that can be drawn from the following sentences used as premises: [aligned
premises concatenated with <SENTENCEMISSING>].

Requirements:

1. Infer the conclusion text only from the given premises.

2. Please return only the generated conclusion text. The conclusion text should be minimally verbose and should not
contain any irrelevant decorative text. For example, if the conclusion you inferred is “Pluto is not a planet.", do not respond
with “The conclusion that can be drawn from the given premises is that Pluto is not a planet.". Text like "This conclusion
can be drawn from the given premises" should not be part of the generated conclusion text.

677

For the fine-tuned GPT-3.5-turbo model, we used the same prompt as for the LLaMA-v1-7B and678

Galactica-6.7B model.679

D Results of Oracle Aligner680

To investigate the maximum potential performance in generating conclusions from aligned premises, we681

developed an oracle argument aligner that picks the five premise sentences associated with generated682

conclusions of highest ROUGE scores. We opt for T5-large and BART-large as the conclusion generators683

due to their fast inference. The oracle ROUGE scores and the percentage thereof achieved by the top684

non-oracle argument aligner (npmi) are presented in Table 5.685

models R-1 / npmi% R-2 / npmi% R-L / npmi%

T5-770M‡ 45.77 / 70.94 24.07 / 54.51 36.76 / 66.57
BART-400M‡ 46.80 / 73.03 24.14 / 57.62 36.54 / 68.31

Table 5: Oracle results using fine-tuned BART-large and T5-large as conclusion generators.

The npmi aligner achieves more than 70% of the theoretical maximum ROUGE-1, over 54% for686

ROUGE-2, and over 66% for ROUGE-L. This observation highlights npmi’s capacity to effectively select687

sufficient premises.688

3MIT license, available at https://github.com/OpenNMT/CTranslate2
4MIT license, available at https://github.com/TimDettmers/bitsandbytes.
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