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ABSTRACT

We present a new deep neural network architecture, named EDGaM, for deep
clustering. This architecture can seamlessly learn deep auto-encoders and capture
common group features of complex inputs in the encoded latent space. The
key idea is to introduce a differentiable Gaussian mixture network between an
encoder and a decoder. In particular, EDGaM streamlines the iterative Expectation-
Maximum (EM) algorithm of the Gaussian mixture models into network design
and replaces the alternative update with a forward-backward optimization. Being
differentiable, both network weights and clustering centroids in EDGaM can
be learned simultaneously in an end-to-end manner through standard stochastic
gradient descent. To avoid preserving too many sample-specific details, we use both
the clustering centroid and the original latent embedding for decoding. Meanwhile,
we distill the soft clustering assignment for each sample via entropy minimization
such that a clear cluster structure is exhibited. Our experiments show that our
method outperforms state-of-the-art unsupervised clustering techniques in terms of
both efficiency and clustering performance.

1 INTRODUCTION

Clustering is one of the most important techniques for analyzing data in an unsupervised manner. Well-
established approaches for unsupervised clustering, including k-means (Lloyd, 1982) and Gaussian
Mixture Models (GMM) (Reynolds, 2009), are the building blocks for numerous applications due to
their efficiency and simplicity. However, their distance metrics are limited to the input space, making
them ineffective for high-dimensional data such as images (Ji et al., 2019; Li et al., 2019), sequence
data like time series (Zhang et al., 2018).

Recent advances in deep learning have paved the way for obtaining a good feature embedding of data,
usually of low dimensionality (Bengio et al., 2007; Vincent et al., 2010). This line of research has
also been extended in unsupervised learning, where deep clustering has become a popular area of
study. Deep clustering refers to the process of clustering with deep neural networks, typically via
introducing a cluster loss over features learned from the raw data by pre-trained CNNs (Yang et al.,
2016; Caron et al., 2018) or auto-encoders (Song et al., 2013; Xie et al., 2016; Peng et al., 2016; Tian
et al., 2017; Guo et al., 2019; Shiran & Weinshall, 2019). These algorithms have reported significant
performance gains on various benchmark tasks over conventional non-deep clustering algorithms.

Various challenges arise when applying deep clustering. First, simply minimizing a clustering-based
loss on the feature representation would lead to cluster collapse, where the representation may
collapse to the trivial solution of a single cluster. Many methods avoid cluster collapse by adding
extra tasks to clustering, such as self-reconstruction during pre-training or entire training (Guo et al.,
2017a; Tian et al., 2017; Ghasedi Dizaji et al., 2017; Ji et al., 2017; Guo et al., 2017b). However,
self-reconstruction tends to overestimate the importance of low-level features (e.g. color, textures, or
background), which usually contain much more sample-specific details that are unrelated to semantics.
Meanwhile, the objective of the clustering loss, which aims to maximize the similarity of latent
representations for samples within each cluster, conflicts with that of the reconstruction task, which
tries to preserve as much as sample-specific information in latent representations for reconstructing
its input. Therefore, the clustering process is not stable, and alternative optimization is adopted for
the tricky multi-objective problem. Meanwhile, the extra clustering task is not memory efficient for
large-scale applications, since a large batch or even full batch is required for conducting clustering to
ensure reliability (Yang et al., 2016; Ghasedi Dizaji et al., 2017).
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In this paper, we design a new end-to-end framework, named EDGaM, for deep clustering, which
can capture the group structure of complex inputs in the encoded latent space. In particular, EDGaM
introduces a differentiable Gaussian mixture network between the encoder and the decoder, which
streamlines the iterative Expectation-Maximum (EM) algorithm of the Gaussian mixture models
into network design. Being a part of auto-encoder, the clustering objective implied by EDGaM
is consistent with the reconstruction loss, namely, capturing as much as common information for
better reconstruction. Since the whole objective is dominated by the reconstruction task, the latent
embedding inevitably reserves sample-specific details, which hinders EDGaM from learning a clear
clustering structure. To avoid preserving too many sample-specific details, we introduce a skip
connection to combine the original latent embedding and the clustering centroid for decoding. It can
relieve EDGaM from the final reconstruction and focus more on the clustering task. Meanwhile, we
propose to minimize the entropy over the soft cluster assignment for each sample to deduce a clear
cluster structure. In summary, the main contributions of this paper are as follow:

• We introduce EDGaM for clustering on large-scale and high dimensional datasets. Instead
of adopting the alternative update as most clustering methods, all parameters in EDGaM can
be updated simultaneously and end-to-end through stochastic gradient descent.

• EDGaM reconciles the conflicts between clustering and self-reconstruction. Therefore,
EDGaM enjoys a stable clustering process, namely, capturing as much as common in-
formation for better reconstruction. Meanwhile, EDGaM can be easily extended to the
cluster-imbalanced scenario with no extra computation cost.

• We conduct extensive experiments on four benchmark datasets. Our EDGaM outperforms
state-of-the-art deep clustering techniques in terms of both efficiency and clustering perfor-
mance, due to the end-to-end training procedure.

2 RELATED WORK

Deep Unfolding Deep unfolding refers to the strategy that reformulating an iterative algorithm
into a neural network (Hershey et al., 2014), which can be then optimized via gradient descent
instead of iteration. Apart from non-negative matrix factorization and belief propagation that
introduced in the original paper, researchers have found its extension to topic model (Chien &
Lee, 2017) and ADMM (Yang et al., 2018). However, these deep unfolding extensions are not
compatible well with popular deep learning platforms, since they can only be optimized with
explicitly full batch gradients. Recent literature, such as N-EM (Greff et al., 2017) and IO-
DINE (Greff et al., 2019), proposed to unfold the EM algorithm of mixture distributions and
the resultant network can be optimized end-to-end by SGD. Both N-EM and IODINE are de-
signed for segmentation, i.e., pixel-level clustering over the raw features. They are not suit-
able for the (sample-level) deep clustering problem we consider in this paper, since semantically
similar samples are not necessarily similar in the raw feature space the sample resides in.

Deep clustering The dominant and most successful approach to the clustering in recent years has
been to incorporate the tasks of representation learning and clustering into the same framework.
They can be further divided into three types. In the first category, a cluster loss is introduced over
latent representations learned from the raw data by pre-trained CNNs or auto-encoders (Bengio et al.,
2007; Vincent et al., 2010; Masci et al., 2011; Kingma & Welling, 2013; Zhao et al., 2015), such as
DEC (Xie et al., 2016) and Deepcluster (Caron et al., 2018). However, simply minimizing a clustering-
based loss on the feature representation would lead to cluster collapse. The second type of clustering
method proposes to joint clustering training with extra tasks, e.g., self-reconstruction. Prominent
works in the past years have been JULE (Yang et al., 2016), IDEC (Guo et al., 2017a), VaDE (Jiang
et al., 2017), DCN (Yang et al., 2017) and DEPICT (Ghasedi Dizaji et al., 2017). The same issue
also applies to the mixture-of-expert based deep clustering (Zhang et al., 2017; Chazan et al., 2019).
The reconstruction loss of auto-encoder tends to overestimate the importance of low-level features,
which usually contains much more sample-specific details that are unrelated to semantics. Apart from
self-reconstruction, the third type learns semantic clustering joint with self-supervised tasks while
using the information as criteria, such as IMSAT (Hu et al., 2017), ADC (Haeusser et al., 2018) and
IIC (Ji et al., 2019). Semantics pairs are constructed beforehand for each sample through a collection
of predefined semantics-invariant transformations. However, the performance of these deep cluster
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models highly depends on the choice of invariant transformations, which requires domain knowledge
and usually varies from dataset to dataset (Jing & Tian, 2019; Tian et al., 2020).

Our work falls into the second category. We unify the goal of clustering and self-reconstruction with
two contributions. First, we streamline the iterative EM algorithm of GMM and introduce it between
the encoder and the decoder. Second, the common group feature is combined with the original latent
embedding for decoding.

3 EDGAM: ENCODER WITH DIFFERENTIABLE GAUSSIAN MIXTURE NETWORK

In this section, we first streamline the iterative EM algorithm of GMM into network design, which
enables end-to-end stochastic gradient optimization. Then we Encode the obtained Differentiable
Gaussian Mixture network (EDGaM) within the auto-encoder framework so as to cluster over the
latent representations instead of raw features.

Problem statement: Let Z = {zn}Nn=1 denote raw features or latent embedding for a collection
of samples, drawn from heterogeneous populations. Assume the number of clustering size is known
to be K(� N). The clustering task aims to partition the N samples into K nonoverlap groups,
where the samples in the same group are more similar to each other than to those in other groups.
Particularly, we target for the large-scale scenario with high-dimensional raw features.

3.1 GAUSSIAN MIXTURE MODELS AND ITS EM SOLUTION

GMM is a classical clustering model, which models the distribution of each sample zn as a linear
superposition of Gaussians. Let θ = {µk,Σk, πk}Kk=1 denote the clustering parameters. Formally,
the objective of GMM is formulated as follows

L(θ|Z) = −
N∑
n=1

ln
[ K∑
k=1

πkN (zn|µk,Σk)
]
, where

∑
k

πk = 1. (1)

Direct minimization of equation 1 is quite difficult numerically, because of the sum of terms inside.
The EM algorithm provides a simpler solution. Assuming the latent variable δnk ∈ {0, 1}, let
δnk = 1 denote zn is sampled from the k-th cluster, otherwise zn comes from other clusters. Namely,
p(δnk = 1) = πk and p(zn|δnk = 1, θ) = N (zn|µk,Σk). Note

∑K
k=1 δnk = 1 since each sample

can only be sampled from one cluster. Given an initial set of parameters, i.e., θ1 = {µ1
k,Σ

1
k, π

1
k}Kk=1,

The EM algorithm for GMM proceeds by alternating between two steps (t = 1, 2, . . . , T ):

• Expectation step (E-step): calculate the posterior expectation of the latent variable {δnk}K,Nk=1,n=1:

Ep(δnk|zn,θ)[δnk] =
p(zn, δnk = 1|θ)∑
i p(zn, δni = 1|θ)

=
πtkN (zn|µtk,Σtk)∑K
i=1 π

t
iN (zn|µti,Σti)

∆
= λtnk.

• Maximum step (M-step): Update the model parameters θ = {µk,Σk, πk}Kk=1:

Nk =
∑
n

λnk, π
t+1
k =

Nk
N
, µt+1

k =
1

Nk

N∑
n=1

λtnkzn, Σt+1
k =

1

Nk

N∑
n=1

λtnk(zn − µtk)(zn − µtk)T,

After EM converges, sample zn is assigned to its nearest cluster with the largest λnk. Namely,
Sk =

{
zn : λnk ≥ λni, n = 1, 2, . . . , N, k = 1, 2, . . . ,K

}
.

However, the standard EM requires a full batch update at M-step, which is not suitable for large-scale
(large N ) applications. Further, the alternative update paradigm in EM would restrict its efficiency
when joint learning GMM with other learning tasks, such as feature learning in deep clustering.
Some previous work (Titterington, 1984; Chazan et al., 2018) proposed to enable the EM algorithm
differentiable such that it can be further optimized using stochastic gradient descent. They fall into
the same scope with the principle of deep unfolding (Hershey et al., 2014). Inspired by this, we
consider unfolding the EM algorithm to avoid iteration in the following.
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(a)	Naive	unfolding	of	EM	 (b)	Differential	Gaussian	mixture	network	
Figure 1: Forward unfolding of various EM algorithms for Gaussian mixture models.

3.2 STREAMLINING THE ITERATIVE EM ALGORITHM INTO NETWORK DESIGN

The deep unfolding principle suggests reformulating an iterative algorithm into a neural network. In
particular, the forward pass equals to the inference process, aiming to estimate a latent variable based
on the current parameters; the backward propagation conducts the optimization, adjusting the model
parameters based on the loss in pursuit of better representation.

3.2.1 NAIVELY STREAMLINING EM AS A FORWARD-BACKWARD OPTIMIZATION

Accordingly, a T -layer neural network can be naively constructed (See Fig. 1(a)), where θt =
{µtk,Σtk, πtk}Kk=1 and λtn = {λtnk}Kk=1 denote the network weights and the output of the t-th layer,
respectively. In particular, each forward pass is exactly the same as the E-step:

λtn = F(zn, θ
t,λt−1

n )
i≡ F(zn, θ

t) t = 1, 2, . . . , T. (2)

We involve λ0
n as a placeholder for a better explanation. i denotes that each forward pass (equation 2)

is independent of its input λt−1
n (i.e., the output of the previous layer), given the input zn and model

parameters θt. It means that simply streamlining the EM algorithm into the network design would
lead to a network that is not successively connected (See Fig. 1(a)). Therefore, it is not a valid neural
network since the gradient cannot backpropagate along the layers.

Remark 1 (Difference between the EM algorithm and deep neural network). Let us consider each E-
step as one forward pass while each M-step as one backward propagation. The EM algorithm can be
viewed as multiple alternative updates between the forward pass and the backward propagation until
converge. Meanwhile, the deep neural network is constituted of multiple successive forward passes,
followed by multiple successive backward propagation. The difference lies in that each forward pass
of EM is independent of the output of the previous iteration, given the data and model parameters.

3.2.2 MAXIMUM STEP AS A CORRECTION IN LOSS

Inspired by Liang & Klein (2009), we introduce the moment update to bridge the connection between
the multiple forward passes, using the the M-step omitted by the naive unfolding process. Let
µ = {µk}Kk=1 denote the clustering centroids. For simplicity, we fix Σk to the identity matrix I and
πk to 1

K ∀k = 1, 2, . . . ,K. The new forward pass can be formulated as

µ1 = µ, λtnk = F(zn,µ
t,λt−1

n ) =
exp

(
− 1

2‖zn − µ
t
k‖22
)∑K

i=1 exp
(
− 1

2‖zn − µ
t
i‖22
) , µt+1 =M(Z,µ,λtn), (3)

where k = 1, 2, . . . ,K, t = 1, 2, . . . , T . And T denotes the number of unfolded network layers. In
particular, the moment update formulation µt+1 =M(Z,µ,λtn) consists of the following two steps:

µ̃t+1
k =

1∑
i λ

t
ik

∑
n

λtnkzn, ∀k = 1, 2, . . . ,K, µt+1 = (1− αt+1)µ + αt+1µ̃
t+1. (4)

αt+1 ∈ [0, 1] is a learnable hyperparameter to balance the two component.

Remark 2 (The simple setting for Σ and π is sufficient to capture the clustering structure in the
latent space). (1) The covariance matrix Σ is useful for improving clustering when clusters are
overlapped. When encountering a well-separated latent embedding (See Fig. 5(a)), the centroids
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alone are sufficient to capture the clustering structure. (2), The cluster weight π, denoting the size
of each cluster, was designed to give higher preference to the large cluster when a sample is close
to multiple cluster centroids simultaneously. Similarly, it is only useful for disambiguation when
clusters are overlapped but is redundant for our well-separated latent embedding.

The moment update equation 4 links the estimation of latent variable λtn to its previous state via µt,
which ensures effective successive forward passes. However, it does not impose the corresponding
update information on the clustering centroid µ. For the sake of analysis, we reorganize the moment
update as the equivalent gradient descent formulation:

µt+1 = µ− αt+1(µ− µ̃t+1) = µ− αt+1g(µ), g(µ) = µ− µ̃t+1, (5)

where g(µ) is the gradient w.r.t. µ. Equation 5 reveals that the updating information can be imposed
on the clustering centroids µ via the equivalent gradient. Considering the gradient is usually derived
from loss function, we integrate the gradient g(µ) over µ and derive the corresponding loss function.

Lcorrection(µ) =
1

2

T−1∑
t=1

αt+1‖µ− µ̃t+1‖22 =

T−1∑
t=1

‖(βt+1µ + (1− βt+1)µ̃t+1)− µ̃t+1‖22. (6)

where βt+1 is a new learnable hyperparameter which satisfies βt+1 =
√

αt+1

2 .

3.2.3 DIFFERENTIAL GAUSSIAN MIXTURE NETWORK

According to our analysis, we can derive a differentiable Gaussian mixture multi-layer network for
clustering (See Fig. 1(b)). The multiple successive forward passes are completed by our new forward
propagation formulation (i.e.,equation 3). Afterward, we calculate the loss at the last layer, which is
derived from the clustering objective equation 1:

Lcluster(µ) = −
N∑
n=1

K∑
k=1

λnk ln[
1

K
N (zn|µk, I)]

i
≈ 1

2

N∑
n=1

N

KNk

K∑
k=1

λnk‖zn − µk‖22, (7)

where Nk =
∑N
n=1 λ

T
nk. i holds because (1) we omit the constant N lnK + Nd

2 ln(2π); (2) we
reweigh the within-group variance with N

KNk
to lend an ear to small clusters when clusters are

imbalanced. Let wk = N
KNk

= N̄
Nk

, where N̄ is the average number of samples for each cluster
and Nk is the number of samples belonging to cluster k. Regarding a cluster balance dataset,
i.e., wk ≈ 1, the reweigh strategy becomes invalid and equation 7 reduces to regular cluster loss.
Otherwise, equation 7 will adjust the penalty of within-group variance to lend an ear to small clusters
when clusters are imbalanced.

In terms of the mini-batch update, the data statistics N,K,Nk for the whole dataset is not available.
We replace it with the data statistics N ′,K ′, N ′k collected on each mini-batch data. To avoid sampling
biased, we suggest adding a smoothing variable, i.e., N ′k =

∑
n λ

T
nk + ∆, N ′ =

∑
kN
′
k + K ′∆,

where ∆ is set to 3 in the experiment.

Overall, the loss for the differential Gaussian mixture network (See Fig. 1(b)) consists of two
components: the clustering loss (equation 7) and the correction loss (equation 6). Since the correction
loss deduced from the backward propagation is already added in the loss, the backward propagation
can be completed automatically following the stochastic gradient descent. The cluster performance is
therefore iteratively improved by updating the network parameter, i.e., the centroids µ.
Remark 3 (EM V.S. EM-unfolded network). The number of EM iterations affects differently from
the number of EM-unfolded layers due to different optimization paradigms. Since EM is optimized
per iteration, more iterations would contribute to better performance. Whereas multiple layers
in EDGaM are optimized simultaneously via gradient descent, more layers would summarize the
embedding excessively and lead to gradient vanish. However, this should not be a big issue since we
empirically verified that 3-layers can consistently achieve good performance on all datasets.

3.3 ENCODED THE DIFFERENTIAL GAUSSIAN MIXTURE NETWORK WITHIN AUTO-ENCODER

However, the differential Gaussian mixture network still falls in the scope of linear clustering, which
limits its potential for a large proportion of real applications with complex input features. In this
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Figure 2: Network structure of the EDGaM model.

section, we consider encoding Fig. 1(b) into the auto-encoder framework, where the differential
Gaussian mixture network is deployed over the latent representations instead of raw features.

3.3.1 AUTO-ENCODER FOR NONLINEAR FEATURE EXTRACTION

The last layer output of the differential Gaussian mixture network is the soft assignment λTn , which is
insufficient for the reconstruction task. Thus, we consider adding one more layer to reconstruct its
input. Meanwhile, since the AE objective is dominated by the reconstruction task, the latent feature
representation inevitably reserves sample-specific details, which hinders EDGaM from learning a
good clustering structure. To avoid such issues, we use both the latent embedding reconstruction and
the original latent embedding for decoding.

z̃n =

K∑
k=1

λTnkµ
T
k , ẑn = f(zn, z̃n). (8)

The skip connection in equation 8 can relieve EDGaM from the final reconstruction and focus
on capturing the common group features. In our experiment, we implement f(zn, z̃n) by simple
concatenation along with one extra fully connection layer.

3.3.2 THE WHOLE STRUCTURE OF OUR EDGAM

Note the z̃n in equation 8 degenerates into the cluster centroid µ, when the group assignment λ is
close to a one-hot vector. Thus, we propose to minimize the entropy of the soft assignment λ for each
sample to distill a clear cluster structure. The overall loss of EDGaM (See Fig. 2) is summarized as:

L(µ|X) =

N∑
n=1

‖xn − x̃n‖22 + η1Lcluster(µ) + η2Lcorrection(µ) + η3

N∑
n=1

K∑
k=1

λnk log λnk. (9)

where η1, η2, η3 are the trade-off parameters. There are four types of loss calculated. The first one is
the reconstruction loss, which ensures the nonlinear feature learning and avoids cluster collapse. The
second term is the clustering loss (See equation 7), which aims to squeeze out the specialty of each
sample while maximally recover their latent embedding using the captured common group features.
The third one the correction loss (See equation 6), which imposes the same gradient information as
the maximum steps. The fourth one is the entropy loss, which helps to distill a clear cluster structure.

Remark 4. We streamline the EM algorithm of GMM and encode it into the AE framework. Our
EDGaM is naturally suitable for large-scale and high-dimensional applications, since all parameters
in EDGaM can be updated in parallel and end-to-end through SGD. Meanwhile, the common group
feature is combined with the original latent embedding for decoding. Through this skip connection,
we unify the goal of clustering and self-reconstruction so as to derive a better cluster performance.

4 TIME COMPLEXITY ANALYSIS

This section analyzes the time complexity of our EDGaM and two popular AE-based deep clustering
methods, JULE (Yang et al., 2016) and DEPICT (Ghasedi Dizaji et al., 2017).
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Figure 3: Ablation study for EDGaM.
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Figure 4: Effects of various losses on MNIST

Let M , B and K denote the number of iterations, the batch size, and the number of clusters,
respectively. Following the same AE architecture with the identical latent feature size d, we only
analyze the extra time cost incurred by the clustering module. (1) The extra complexity introduced by
EDGaM is O(MBKdT1), where T1 denotes the number of EM-unfolded layers. (2) Note, DEPICT
needs to run k-means to recompute the target assignment every v epochs on the full batch samples.
The extra cost introduced by DEPICT isO(Mv NKdT2), where T2 is the number of k-means iterations.
(3) JULE adopts the hierarchical agglomerative clustering during the representation learning. The
extra time complexity incurred by the agglomerative clustering is O(N3d) because it needs to
exhaustively scan the N ×N distance matrix for the lowest distance in each of N -K iterations.

To sum up, our EDGaM shows its superior computational efficiency for the large-scale (N ) and
high-dimensional dataset. JULE is not practical for large-scale applications due to its O(N3d) time
complexity. Meanwhile, compared to our EDGaM using mini-batch (B) samples, DEPICT is not
memory efficient, since it needs to run the k-means algorithm with full batch (N � B) samples.

5 EXPERIMENT

Dataset: We evaluated our EDGaM on four image datasets, i.e., MNIST (LeCun et al., 1998),
USPS (Hastie et al., 2009), YTF (Aggarwal & Zhai, 2012), Fashion (Xiao et al., 2017) and one text
dataset, i.e., Reuters10K (Xie et al., 2016). The statistics of datasets are introduced in Table 1.

Table 1: The statistics of datasets

Dataset #sample #cluster #dim

MNIST 70, 000 10 1× 28× 28
USPS 9, 298 10 1× 16× 16
YTF 10, 000 40 3× 55× 55

Fashion 70, 000 10 1× 28× 28
Reuters10K 10, 000 4 1× 2, 000

Baselines: We compare our EDGaM against auto-
encoder based clustering methods. For all the baselines,
results were retrieved from the literature or computed
by us when not found and possible to recompute. Al-
gorithms with the missing scores on some datasets are
because the original paper did not test on this dataset
and it was not easily possible to get a satisfying score.

Metric: For all methods, we set the number of clusters to the ground truth categories and evaluate
performance with unsupervised clustering accuracy: Accuracy (ACC), Normalized mutual informa-
tion (NMI). The best mapping can be efficiently computed by the Hungarian algorithm (Kuhn, 1955).
For both two metrics, values range between 0 and 1, where higher value indicates better performance.

Experiment Settings: We implement EDGaM with PyTorch (Paszke et al., 2017). In terms of
MNIST,USPS and Reuters10K, EDGaM is built upon the AE architecture described in (Xie et al.,
2016). The encoder is a fully connected multi-layer perceptron with dimensions d-500-500-2000-c.
d is the dimension of input and c is the dimension of centroids. The decoder network is a mirror of
the encoder. All layers use ReLU activation (Nair & Hinton, 2010). In terms of YTF and Fashion,
we adopt a convolution structure (See Appendix for more details). For all datasets, the dimension of
centroids is fixed to 10. The optimizer is Adam (Kingma & Ba, 2014). The learning rate is 0.001 and
the training epoch is 1, 000. The mini-batch size is set to 128, excepted for YTF whose is set to 256.
We streamline EM into a three-layer network for all datasets, i.e., T = 3.
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(a) EDGaM Embed (b) IDEC Embed (c) EDGaM Centroids (d) IDEC Centroids

Figure 5: (a-b) t-SNE for MNIST embedding. (c-d) The reconstruction of MNIST centroids.

5.1 EFFICACY OF DIFFERENT COMPONENTS ON EDGAM USING THE MNIST DATASET

In Fig. 3, we compare different variants of EDGaM with most related baselines, i.e., AE and IDEC,
to analyze the efficacy of different components in EDGaM. T denotes the number of EM-unfolded
layers (Fig. 1(b)). “No-Skip” denotes only the reconstruction outputted by EM is used for decoding
(equation 8). We showcase the MNIST dataset.

Fig. 3 shows that: (1) All EDGaM variants outperform AE, which means that streamlining EM into
AE would not undermine the latent embedding. (2) The best T should between 3-5, since a shallow
network (T = 1) equals to impose the cluster loss directly on the embedding space, similar to IDEC;
while a deep network (T ≥ 7) would summarize the embedding so many times that the cluster loss
cannot backpropagate to the embedding space. (3) Decoding only with the reconstruction outputted
by EM can also achieve good cluster results (> 0.9). It demonstrates that streamlining EM for GMM
as a neural network can capture the group structure in the dataset.

In Fig. 4, we visualize coefficients β1, β2 (both initialized to be 0.1 in Eq. 6), and the average of the
maximum group assignment 1

N

∑
n maxk λnk. It shows that: (1) both β1, β2 decrease to a small value

(< 0.05) after the first 50 iterations, which helps EDGaM to gradually adjust the model parameters
µ according to the mini-batch samples. (2) 1

N

∑
n maxk λnk quickly increases to above 0.85 and

remains stable, when self-reconstruction and the clustering loss dominant the learning process. Then,
it continually increases to one, when the cross-entropy loss dominates the learning process and aims
to create a well-separate latent embedding. (3) After 800 iterations, both the correction loss and
cross-entropy loss decreases to near zero, since β1, β2 → 0 and 1

N

∑
n maxk λnk → 1.

5.2 TIME EFFICIENCY

Table 2: Time Cost (s) of 103 iteration on MNIST

Baseline JULE JULE(fast) DEPICT EDGaM

Time(s) 1.44× 105 3.00× 104 1.09× 104 9.28× 103

To evaluate the efficiency of our EDGaM
in dealing with large-scale (7 × 104) and
high dimensional (784) data, we collect the
time cost of EDGaM with its competing
algorithms JULE and DEPICT in Table 2. Both JULE and its fast version JULE(fast) are evaluated.

Table 2 shows that: (1) the time cost of various approaches is consistent with our analysis in Sect. 4.
(2) Our EDGaM achieves superior efficiency while both JULE and its fast version need to spend
significantly higher times. (3) In terms of imbalanced datasets, DEPICT suggests adopting the
highly energy-consuming agglomerative clustering instead of k-means to ensure good performance.
Therefore, DEPICT will suffer the same issues as JULE for large-data imbalanced datasets.

5.3 CLUSTERING VISUALIZATION OF EDGAM ON THE MNIST DATASET

We visualize the latent embedding (Fig. 5(a-b)) and the corresponding ten centroids (Fig. 5(c-
d)) of the MNIST dataset using EDGaM and IDEC, respectively. We do not compare with DE-
PCIT (Ghasedi Dizaji et al., 2017), since it adopts the same objective as IDEC but varies a lot on
different datasets. Meanwhile, the JULE is not a partition-based clustering method, which does
not have centroids. Fig. 5(a) shows that there exists a clear gap between different clusters. This
is the reason that EDGaM can achieve good clustering results. Meanwhile, it is interesting that
the reconstruction of the centroids is exactly the MNIST digits (Fig. 5(c)), which demonstrates our
EDGaM indeed captures common group information and performs semantic clustering in the latent
space, while IDEC does not. Further, as reported in the original paper (App. Fig. 4c), its embedding
of different classes are overlapping.
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5.4 COMPARISONS ON THE BENCHMARK DATASETS

In Table 3, we compare EDGaM with the popular shallow clustering methods, the first type deep
clustering method, and the latest auto-encoder based second type deep clustering methods.

Table 3: Comparisons of our method with popular clustering algorithms.

Method MNIST USPS YTF Fashion Average Rank
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means (Lloyd, 1982) 0.532 0.500 0.668 0.627 0.601 0.776 0.474 0.512 10.33 10
DeepCluster (Caron et al., 2018) 0.797 0.661 0.562 0.540 – – 0.542 0.510 7.67 9

GMM (Reynolds, 2009) 0.433 0.366 0.551 0.530 – – 0.556 0.557 8.67 8.67
AE+k-means (Song et al., 2013) 0.760 0.669 0.715 0.651 – – – – 7.5 7.5

DEC (Xie et al., 2016) 0.863 0.834 0.762 0.767 0.371 0.446 0.518 0.546 5.5 5.75
DCN (Yang et al., 2017) 0.830 0.810 0.688 0.683 – – 0.501 0.558 7.33 5.67
VaDE (Jiang et al., 2017) 0.945 0.876 0.566 0.512 – – 0.578 0.630 5 5.67
IDEC (Guo et al., 2017a) 0.881 0.867 0.761 0.785 – – 0.529 0.557 5.33 4.67

DEPICT (Ghasedi Dizaji et al., 2017) 0.965 0.917 0.964 0.927 0.621 0.802 0.392 0.392 4 4
JULE (Yang et al., 2016) 0.964 0.913 0.950 0.913 0.684 0.848 0.563 0.608 2.5 2.25

EDGaM 0.967 0.922 0.953 0.894 0.679 0.825 0.644 0.653 1.5 1.75

Table 3 shows that: (1) EDGaM achieves the state of the art clustering results on the MNIST and
Fashion datasets. (2) EDGaM is inferior to JULE but still outperforms rest baselines on the YTF
dataset. This is because YTF is an extremely imbalanced dataset. Therefore, the partition-based
EDGaM may encounter the cluster collapse, while the hierarchical-based JULE can escape this by
adopting the bottom-up clustering strategy. However, JULE needs to traverse the whole dataset to
merge two clusters, which suffers from high computation cost (See Sect. 4 and Table 2).

The third type deep clustering method, e.g., IMSAT (Hu et al., 2017) and IIC (Ji et al., 2019), can
achieve state-of-the-art clustering results on various (image) datasets. However, their performance
highly depends on the choice of invariant transformations, which requires domain knowledge and
usually varies from dataset to dataset. To justify our claim, we compared some recent self-supervised
based deep clustering methods with AE-based deep clustering in Table 4. For the best comparison,
we present the best-reported results from their original papers or from Guo et al. (2017a).

Table 4: Comparisons to third type of deep clustering methods.

ACC Self-Supervised Graph Auto-Encoder
IMSAT IIC Kindar AE+k-means IDEC VaDE EDGaM

MNIST 0.984 0.992 0.985 0.818 0.881 0.945 0.967
Reuters10K 0.710 – 0.705 0.705 0.756 0.794 0.807

Table 4 shows that: (1) self-supervised based deep clustering approaches highly depend on the choice
of invariant transformations. If no effective invariant transformations are available, like the text data,
their clustering performance would degenerate as AE+k-means. (2) Kindar (Gupta et al., 2019) is
highly dependent on the original latent embedding output by AE. If a good latent embedding is not
available, its clustering performance also degenerates as AE+k-means. (3) Joint learning of deep
embedding and clustering can mutually promote each other, especially when the AE embedding is
not good enough. (4) Graph-based Kindar need to respectively build multiple graphs with the whole
dataset, which is not suitable for the large-scale application that we target.

6 CONCLUSION

In this paper, we present a new neural network architecture, named EDGaM, for deep clustering.
EDGaM streamlines the iterative EM algorithm of GMM into auto-encoder networks, and can capture
the cluster structure of complex inputs in the encoded latent space. Since GMM induces the cluster
structure via minimizing the variance of all samples within each cluster, only when the semantic
labels exhibit the most variance direction, can the learned cluster structure be consistent with the
semantics labels. Otherwise, the cluster results would not be interpreted. Many methods can be
adapted to enlarge the ratio of the variance that is consistent with semantic labels, such as constrained
clustering and self-supervision tasks. These methods are complementary to our work, which can be
incorporated into our EDGAM to deduce a semantic consistent cluster structure.
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A THE DEFINITION OF TWO METRICS: ACC AND NMI

• Accuracy (ACC): For sample i, let Ri denote its ground truth label and Ci be its label
obtained by clustering.

ACC =

∑N
n=1 δ(Rn, Cn)

N
× 100%, whereδ(x, y) =

{
1 x = y

0 otherwise
,

N denotes the total number of samples.

• Normalized mutual information (NMI): Let R denote the ground truth label and C be
the label obtained by clustering. The NMI is defined as follows:

NMI =
2MI(R,C)

H(R) +H(C)
,

where H(X) is the entropy of X , and MI(X,Y ) is the mutual information of X and Y .

B DISCUSSION ON THE ADVANTAGE OF CLUSTER REWEIGH STRATEGY

First of all, we give the detailed derivation of equation (7) in the following for better understanding.

Lcluster(µ) = −
N∑
n=1

K∑
k=1

λnk ln[
1

K
N (zn|µk, I)]

=

N∑
n=1

K∑
k=1

λnk lnK −
N∑
n=1

K∑
k=1

λnk ln
1√

(2π)d|I|
e−

1
2 (zn−µk)′I−1(zn−µk)

= (lnK +
d

2
ln(2π))

N∑
n=1

K∑
k=1

λnk +
1

2

N∑
n=1

K∑
k=1

λnk‖zn − µk‖22

≈ N lnK +
Nd

2
ln(2π) +

1

2

N∑
n=1

N

KNk

K∑
k=1

λnk‖zn − µk‖22.

where N =
∑N
n=1

∑K
k=1 λnk. N lnK + Nd

2 ln(2π) is constant.

Note that the vanilla k-means is designed for the scenario when the samples from different clusters
are balanced, while vanilla GMM would enhance the strength of the majority cluster with the group
ratio π. However, when samples from different clusters are imbalanced and the minority cluster
matters, both k-means and GMM would underestimate the importance of minority clusters and output
inferior clustering performance. Therefore, we propose to pay more attention to the minority clusters,
by increasing the penalty of wrongly clustering the sample from a minority cluster and decreasing the
penalty of wrongly clustering the sample from a majority cluster.

To be specific, we suggest to reweigh the within-group variance in Eq.(8) with

wk =
N

KNk
=

N̄

Nk
, k = 1, . . . ,K,

where N is the number of samples, K is the number of clusters, N̄ is the average number of samples
for each cluster, and Nk is the number of samples belonging to cluster k. Then we have:

• wk ≈ 1, k = 1, 2, . . . ,K. When samples from different clusters are balanced, the reweigh
becomes invalid and Eq.(8) reduces to regular cluster loss.

• wk > 1. For a minority cluster, we increase the penalty of its within-group variance, being
inversely proportional to its group size.

• wk < 1. For a majority cluster, we decrease the penalty of its within-group variance, also
being inversely proportional to its group size. Therefore, the loss with regards to the majority
cluster would not dominate the whole training process.
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In terms of the mini-batch update, the data statistics N,K,Nk for the whole dataset is not available.
We replace it with the data statistics N ′,K ′, N ′k collected on each mini-batch data.

wk =
N ′/K ′ + ∆

N ′k + ∆
, k = 1, 2, . . . ,K.

To avoid instability, we introduce the ∆ which is empirically set to 3 in the experiment.

C EXPERIMENT SETTING

Table 5: Network structure for all dataset

Network MNIST / USPS YTF / Fashion

Encoder

(0): Dropout(p=0.25, inplace=False)
(1): Linear(dim, 500, bias=True)

(2): ReLU()
(3): Linear(500, 500, bias=True)

(4): ReLU()
(5): Linear(500, 2000, bias=True)

(6): ReLU()
(7): Linear(2000, 10, bias=True)

(0): Conv2d(channel, 16, kernel_size=3, stride=1, padding=1)
(1): BatchNorm2d(16)

(2): ReLU()
(3): Conv2d(16, 32, kernel_size=3, stride=2, padding=1)

(4): BatchNorm2d(32,)
(5): ReLU()

(6): Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
(7): BatchNorm2d(32)

(8): ReLU()
(9): Conv2d(32, 16, kernel_size=3, stride=2, padding=1)

(10): BatchNorm2d(16)
(11): ReLU()

(12): Linear(Inner-dim, 256, bias=True)
(13): ReLU()

(14): Linear(256, 10, bias=True)

Streamlining EM

Iter 0: E-step (Eq.(3))
Iter 1:T-1: For i in range(T-1):

Moment update (Eq.(5))
Correction loss (Eq.(7))

E-step (Eq.(3))
Iter T: Reconstruction (Eq.(9))

Decoder

(0)Linear(10, 2000, bias=True)
(1): ReLU()

(2): Linear(2000, 500, bias=True)
(3): ReLU()

(4): Linear(500, 500, bias=True)
(5): ReLU()

(6): Linear(500, dim, bias=True)
(7): Sigmoid()

(0): Linear(10, 256, bias=True)
(1): ReLU()

(2): Linear(256, Inner-dim, bias=True)
(3): ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1)

(4): BatchNorm2d(32)
(5): ReLU()

(6): ConvTranspose2d(32, 32, kernel_size=3, stride=1, padding=1)
(7): BatchNorm2d(32)

(8): ReLU()
(9): ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1)

(10): BatchNorm2d(16)
(11): ReLU()

(12): ConvTranspose2d(16, channel, kernel_size=3, stride=1)

D DISCUSSION ON THE ADVANTAGES OF STREAMLINING EM FOR GMM

We streamline the EM algorithm of the Gaussian mixture model and derive a differential Gaussian
mixture network for clustering. In the following, we compare it to the standard/stochastic EM
algorithm of the Gaussian mixture model to show its superiority.

• Mini-batch update. Different from the standard EM algorithm which requires the full batch
to update, we adopt the moment update formulation in Eq.(4) which allows the mini-batch
noisy update. Meanwhile, the mini-batch update is helpful to escape the local minimum,
yielding a better solution (Liang & Klein, 2009).
• Streamlining alternative updates into forward propagation. Many online/stochastic

EM algorithms have been proposed to apply the GMM model for large-scale applications.
However, all of them still adopt an alternative update paradigm between the E-step and
M-step. It still restricts its efficiency when joint learning GMM with other learning tasks. On
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the contrary, we streamline the EM algorithm of GMM into a network design and replace the
M-step with a correction on the loss. Therefore, our differential Gaussian mixture network
can be end-to-end updated.
• Portability with popular deep learning platform. Since our differential Gaussian mixture

network can be end-to-end updated with standard stochastic gradient descent, it can be easily
implemented with popular deep learning platforms. To be specific, we initialize network
work weights, i.e., the centroids, as usual. Then, the forward propagation executes the
E-step (Eq.(3)) and the modified M-step (Eq.(4)) alternatively in T times. After the loss
being calculated following Eq.(7), we can optimize the network weight with any integrated
optimizer. In particular, we implement our work with PyTorch and adopt Adam to optimize
the network weight.
• Backbone architecture for capturing multiple modalities. Similar to other backbone

architectures, our differential Gaussian mixture network can also be incorporated into
existing network structures. In particular, it helps to induce a latent space with a significant
group structure. Meanwhile, due to the skip connection-based reconstruction, i.e., Eq.(9),
the whole structure can capture the common group information in the latent space with little
information loss. From the overall structure, it is similar to the non-local network (Wang
et al., 2018), but enjoys more interpretability (Li et al., 2019).

E PARAMETER INITIALIZATION

There are two types of parameters in our EDGaM network, i.e., neural network weights and trade-
off parameters. In the following, we discuss the initialization of these two types of parameters,
respectively.

E.1 NEURAL NETWORK WEIGHTS

All neural network weight, including the cluster centroids, are initialized using a uniform distribution
following (Glorot & Bengio, 2010).

E.2 TRADE-OFF PARAMETERS

There are five trade-off hyperparameters in EDGaM: β1, β2, used in Eq.(7), and η1, η2, η3, used in
Eq.(10). The hyperparameter setting for four dataset are summarized in Table 6.

Table 6: Hyperparameter setting for four datasets

Hyperparameter β1 β2 η1 η2 η3

MNIST 0.9 0.9 10−2 10−2 10−4

USPS 0.9 0.9 10−1 5× 10−2 10−4

YTF 0.9 0.9 5× 10−2 5× 10−2 10−5

Fashion 0.9 0.9 5× 10−2 10−3 10−4

The learnable parameters β1, β2 is initialized to 0.9 for all four datasets, which can be gradually
adjusted during the learning process.

Some hits for initializing the trade-off hyperparameters η1, η2, η3:

1. When a small validation dataset is available, the validation dataset can be used for initializing
the hyperparameter. In particular, we find that the cluster accuracy calculated with the soft
assignment in EDGaM is close to the k-means cluster accuracy on the obtained latent
embedding when converge. It means we can online compare the clustering performance
instead of evaluating it offline each time, which will improve the efficiency for setting the
hyperparameters.

2. A suggest hyperparameter setting is η1 = 10−2, η2 = 10−2, η3 = 10−4. For a complex
dataset η1 should be larger, e.g., YTF and Fashion. For a small dataset η1, η2 should be
larger, e.g., USPS and YTF.
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3. Since EDGaM relies on the AE structure to extract the nonlinear features, the hyperparam-
eter setting should not hinder the reconstruction loss from achieving its optimum values.
Especially, the skip structure ensures the reconstruction loss can achieve its optimum.

4. The trade-off hyperparameters of the entropy loss (η3) should be appropriate, to ensure
the average of the maximum group assignment 1

N

∑
n maxk λnk is around 0.5 in the first

few iterations. The entropy loss would lead the average of the maximum group assignment
1
N

∑
n maxk λnk to approximate 1 gradually during the learning process.

F TIME EFFICIENCY

To evaluate the efficiency of our EDGaM in dealing with large-scale (7× 104) and high dimensional
(784) data, we compare EDGaM its most competing algorithms JULE and DEPICT. All four versions
of JULE are evaluated. We run JULE and DEPICT using their released codes, respectively. In
particular, we run our EDGaM and other baselines for 103 iterations on the cluster (GeForce RTX
2080 Ti), and collect the time cost of each method, respectively. The mini-batch size is set to 128 for
all methods.

The time cost of all methods is consistent with our analysis in Sect. 4. Note since the computation
cost of EDGaM is comparable with DEPICT since the extra complexity introduced by EDGaM and
DEPICT is not significant compared to that of the basic AE framework during the whole training
process. However, due to the lack of an efficient mechanism for dealing with imbalanced datasets,
DEPICT suggests adopting the highly energy-consuming agglomerative clustering instead of k-means
to ensure good performance. Therefore, DEPICT will suffer the same issues as JULE for large-data
imbalanced datasets.

G FAILURE CASES ANALYSIS FOR UNCERTAIN IMAGE CLUSTERING

In Fig. 6, we select the images with the ground truth label 3, 4, 5, and sort them in descending
order according to its group assignment of the ground-truth cluster. It is clear that our EDGaM can
confidently (high λ) group the images to its correct cluster as long as images show sufficient identities.
Otherwise, EDGaM would wrongly group the images to the corresponding cluster which they really
look like, for which even humans would make a similar guess.
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Figure 6: Uncertainty image clustering with soft assignment
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