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Abstract: By combining differentiable rendering with explicit point-based scene
representations, 3D Gaussian Splatting (3DGS) has demonstrated breakthrough
3D reconstruction capabilities. However, to date 3DGS has had limited impact on
robotics, where high-speed egomotion is pervasive: Egomotion introduces mo-
tion blur and leads to artifacts in existing frame-based 3DGS reconstruction meth-
ods. To address this challenge, we introduce Event3DGS, an event-based 3DGS
framework. By exploiting the exceptional temporal resolution of event cameras,
Event3GDS can reconstruct high-fidelity 3D structure and appearance under high-
speed egomotion. Extensive experiments on multiple synthetic and real-world
datasets demonstrate the superiority of Event3DGS compared with existing event-
based dense 3D scene reconstruction frameworks; Event3DGS substantially im-
proves reconstruction quality (+3dB) while reducing computational costs by 95%.
Our framework also allows one to incorporate a few motion-blurred frame-based
measurements into the reconstruction process to further improve appearance fi-
delity without loss of structural accuracy. The project page is here.

Keywords: Event-based 3D Reconstruction, Gaussian Splatting, High-speed
Robot Egomotion

1 Introduction
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Figure 1: Left: Conventional (frame-based) 3D Gaussian Splatting fails to reconstruct geometric
details due to motion blur caused by high-speed robot egomotion. Right: By exploiting the high
temporal resolution of event cameras, Event3DGS can effectively reconstruct structure and appear-
ance in the presence of fast egomotion.
Accurately reconstructing the structure and appearance of 3D scenes from a sequence of 2D images
is a fundamental problem in robotics. By combining differentiable rendering models with continu-
ous 3D scene representations, recent “inverse differentiable rendering” (IDR) methods (e.g., Neural
Radiance Fields (NeRF) [1] and 3D Gaussian Splatting (3DGS) [2]) have made significant strides
in addressing this challenge. Given a sequence of high-quality 2D images, these methods can accu-
rately reconstruct dense 3D geometry and provide near photo-realistic renderings from new views.

However, the accuracy of these methods is fundamentally limited by the quality of their input im-
ages: For example, motion blur can severely hamper IDR-based methods ability to reconstruct 3D
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geometry. Unfortunately, egomotion-induced motion blur is pervasive in the images captured by
real-world robotics systems (e.g., fast-moving drones). Although motion-blur-aware IDR methods
have sought to mitigate these effects [3, 4, 5, 6, 7, 8], severe motion blur still fundamentally limits
the quality of 3D frame-based reconstructions.

Recent works have sought to overcome these limitations by combining neural radiance fields with
event cameras [9, 10, 11, 12, 13, 14]. Event cameras are a novel sensing technology that offers
several advantages over frame-based cameras, particularly in the presence of high-speed robot ego-
motion. By asynchronously recording pixel-level changes in log-intensity, event cameras provide
microsecond-level temporal resolution, are robust to motion blur, and have a much higher dynamic
range than conventional frame-based cameras [15]. As a result, methods combining neural radiance
fields with event data can reconstruct scenes from measurements with substantial egomotion. How-
ever, existing methods are impractically slow (hours per reconstruction) and, as we will demonstrate,
offer substantial room for improvement with respect to reconstruction accuracy.

In this work we introduce Event3DGS, an event-based 3D reconstruction framework built upon 3D
Gaussian Splatting. By integrating the event formation process and differential supervision into the
3DGS framework, Event3DGS recovers multi-view consistent scene representation by minimizing
the approximate difference between the integral of observed events and the radiance variations across
different rendering views. We also introduce a novel sampling and progressive training strategies to
accommodate the sparse characteristics inherent in event data. In addition, Event3DGS can exploit
a small number of blurred frame-based images for additional appearance refinement.

Extensive experiments on both simulation and real-world datasets demonstrate that compared to
existing event-based IDR methods, Event3DGS can generate comparable or better reconstructions
(see Fig. 1) of appearance and geometry while substantially reducing computational costs. Our
contributions can be summarized as follows:

1. We introduce a 3D Gaussian Splatting framework for reconstructing appearance and geometry
solely from event data.

2. We propose a sparsity-aware sampling and progressive training approaches tailored to event data
that improves reconstruction accuracy.

3. We incorporate motion blur into our reconstruction formation process and enable our framework
to optionally use motion-blurred frame-based RGB images to improve reconstruction quality.

2 Background and Related Work
2.1 Novel View Synthesis and 3D Gaussian Splattings

3D scene reconstruction and novel-view synthesis is a fundamental task in graphics and computer
vision [16, 17, 18, 19], boosting applications in autonomous driving [20], robotics [21, 22] and
virtual reality [23]. NeRF [1] and its variants [24, 25, 26, 27, 28, 29] model a scene implicitly with
a MLP-based neural network and utilize differentiable volume rendering, achieving near photo-
realistic renderings with high fidelity and fine details. However, since a large number of points
need to be sampled to accumulate the color of each pixel, these methods suffer from low rendering
efficiency and long training time. Extended works on radiance field aims to accelerate the pipeline
by interpolating values from explicit density representations such as points [30], voxel grids [31,
32, 33], or hash grids [34]. Although these methods achieve higher efficiency than the vanilla MLP
version, they still need multiple queries for each pixel, lacking real-time rendering capacity.

In light of these challenges, recent research has explored alternative 3D representations for better ef-
ficiency and visual fidelity. 3D Gaussian Splatting (3DGS) [2] employs a set of optimized Gaussian
splats to achieve state-of-the-art reconstruction quality and rendering speed. Initialized from sparse
SfM [35, 36, 37] point clouds, 3DGS is trained via differentiable rendering to adaptively control
the density and refine the shape and appearance parameters. A tiled-based rasterizer is proposed to
allow for real-time rendering. Multiple works have applied the technique in applications such as
SLAM [38, 39], dynamic reconstruction [40, 41], and scene editing [42, 43]. However, all these
methods require clear RGB images as input.
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2.2 Event-based 3D Reconstruction and Radiance Field Rendering
Event-based and event-aided 3D reconstruction [44, 45, 46, 47, 48, 49, 50, 51, 52] and radiance field
rendering [53, 9, 54, 55, 56, 57, 13] represent a paradigm shift in computer vision and graphics,
enhancing the perception of dynamic scenes with high temporal resolution and accuracy. Weik-
ersdorfer et al. [58] demonstrated event-based stereo reconstruction, illustrating the potential for
reconstructing 3D scenes using data from stereo event cameras. However, stereo matching can be
challenging due to the sparse nature of event camera data, which often leads to unstable performance
in depth estimation [59]. Muglikar et al. [45] enhanced depth sensing by integrating an event camera
with a laser projector. While this approach achieves better depth accuracy, the inclusion of a laser
projector complicates its effectiveness in outdoor environments with challenging illumination con-
ditions. Previous works introducing event-based radiance fields include Ev-NeRF [53], EventNeRF
[9], and E-NeRF [60]. These approaches leverage the inherent multi-view consistency of NeRFs [1],
providing a strong self-supervision signal for extracting coherent scene structures from raw event
data. However, they inherit NeRF’s high computational complexity and challenges in real-time
rendering. NeRF’s implicit representation complicates editing and integration with traditional 3D
graphics processing pipelines.

Our proposed Event3DGS offers explicit, interpretable scene geometry depiction and editable high-
fidelity 3D radiance field reconstruction. It allows seamless integration with established graphics
pipelines and enables streamlined optimization. Event3DGS is robust under high-speed egomotion,
low light, and high dynamic range scenarios where RGB cameras fail to deliver. By combining
the event camera’s hardware advantages with 3DGS’s efficient rendering, our pipeline enables real-
time 3D rendering of diverse scenes with low latency, low data bandwidth, and ultra-low power
consumption, which supports 3D mapping at a higher operating speed.

3 Methodology
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Figure 2: Event3DGS Architecture. We first utilize a neutralization-aware accumulator (for mit-
igating the cancellation of positive and negative events) and sparsity-aware sampling strategy (for
reconstruction in non-event regions) to process the input event stream into frames. Then, the sam-
pled event frames are utilized as differential supervision between the corresponding rendered views,
optimizing the 3D Gaussians to reconstruct sharp structures and apperance from fast egomotion. We
train Event3DGS progressively to better represent geometric details. As an optional component, we
integrate a few motion-blurred RGB images from an attached frame-based camera into the pipeline.
By embedding motion blur formation into the rasterizer and employing a parameter-separable re-
finement strategy, we calibrate the colorization while preserving structural details.

The proposed Event3DGS aims to efficiently reconstruct a 3D scene representation from a given se-
quence of events (either grayscale or color) under high-speed robot egomotion and low-light condi-
tions. Fig. 2 illustrates the overall architecture. Unlike image-based reconstruction, our Event3DGS
approach does not directly supervise the absolute radiance of rendered images during optimiza-
tion. Instead, we integrate the event formation process into the 3DGS pipeline and utilize the ob-
served events as ground truth to implement differential self-supervision within the gradient-based
optimization framework. We propose progressive training to further boost reconstruction for fine-
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grained structural details. Optionally, to solve the scale ambiguity problem of radiance inherent
in event data, we describe parameter separable refinement approach, aligning geometrically sharp
Event3DGS with true scene radiance and texture details using a small number of blurred views.

3.1 Preliminary

3D Gaussian Splatting (3DGS) [2] explicitly represents a scene with a set of anisotropic 3D Gaus-
sians (ellipsoids). Each Gaussian is defined by a 3D covariance matrix Σ with its center point µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

To preserve the valid positive semi-definite property during optimization, the covariance matrix is
decomposed into Σ = RSSTRT , where S ∈ R3

+ represents scaling factors and R ∈ SO(3) is
the rotation matrix. Each Gaussian is also described with an opacity factor σ ∈ R, and spherical
harmonics C ∈ Rk for modeling view-dependent effects.

During optimization, 3D Gaussian Splatting adaptively controls Gaussian density via densification
in areas with large view-space positional gradients and pruning points with low opacity. For render-
ing, the 3D Gaussians G(x) are first projected onto the 2D imaging plane G′(x), then a tile-based
rasterizer is applied to enable fast sorting and α-blending. The color of pixel u is calculated via
blending N ordered overlapping points:

C(u) =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj) (2)

where ci = f(Ci) is the color modeled via spherical harmonics, and αi = σiG
′
i(u) is the multipli-

cation of opacity and the transformed 2D Gaussian.

3.2 Neutralization-aware Slicing & Sparsity-aware Sampling

The input to our Event3DGS pipeline comprises a continuous stream of events e = (t,u, p),
each indicating a detected increase or decrease in logarithmic brightness (denoted by the polarity
p ∈ (−1, 1)) at a specific time instant t and pixel location u = (x, y). In order to efficiently utilize
event data, a common practice is to use event windows to accumulate corresponding events, which
requires us to slice the event stream. In event-based 3D radiance field reconstruction pipelines, the
slicing strategy of the event stream affects the scene’s reconstruction quality. This impact is particu-
larly notable within our pipeline, as neutralization is inevitable during the accumulation of polarity.
Existing works [9, 13] have shown that using constant short windows leads to poor propagation
of high-level illumination, and using constant long windows often leads to poor local detail. To
mitigate the information loss, we design a neutralization-aware event slicing strategy. Our slicing
strategy considers the number of events and the neutralization moment to sample the length of the
event integration window adaptively by (1) performing slicing when the number of events reaches
the threshold, (2) performing slicing where neutralization occurs on many pixels (set threshold man-
ually). This not only ensures the diversity of window lengths but also minimizes the loss of detailed
information caused by neutralization.

Uniform radiance regions typically do not trigger events, resulting in spatial sparsity of event data as
supervision signals. To mitigate this issue, we introduce low-level Gaussian noiseN (µnoevt, σ

2
noevt)

during the sampling process to augment pixels with no events throughout the entire event window,
which enhances the gradient-based optimization on uniform radiance regions and makes our pipeline
more robust to noise events. This is expressed formally in Eq. 3:

Eu(ts, te) =

{∫ te
ts

∆eu(τ)dτ if # of event triggers ̸= 0
∆ · N (0, σ2

noevt) if # of event triggers = 0
(3)

where Eu denotes the accumulation of all event polarities triggered at pixel coordinate u within the
current event window, ∆ is the fixed event threshold, σnoevt = 0.2 in our experiments, ts and te are
the timestamps of the window start and the window end, respectively.
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3.3 Event Rendering Loss Integrating Structural Dissimilarity
Event data with high temporal resolution provides supervision signals with sharp structural infor-
mation, allowing 3D Gaussian Splatting (3DGS) to perform fine-grained reconstruction of scene
structure under high-speed egomotion. The multi-view consistency of event sequences guarantees
the learnable Gaussians to continuously converge to the ground truth geometric structure and loga-
rithmic color field of the scene during optimization. Our event rendering loss Levent(ts, te) com-
pares the recorded events with the differential signal generated by corresponding view renderings
according to the event formation model. Following [2], it primarily comprises two components: the
L1 loss, which measures the absolute log-radiance change difference at each pixel, and the struc-
tural dissimilarity loss LDSSIM [61], which accounts for the structural information calculated by
neighboring pixels. We define them as follows:

L1(ts, te) =

∥∥∥∥F⊙ (log C̃(te)− log C̃(ts))

g
− F⊙E(ts, te)

∥∥∥∥
1

(4)

LDSSIM (ts, te) = DSSIM(
F⊙ (log C̃(te)− log C̃(ts))

g
,F⊙E(ts, te)) (5)

where C̃(t) denotes the 2D rendering under the view at time t, g is a gamma correction value
initialized to 2.2 in our experiments, E represents the accumulation of all event polarities triggered
within the field of view (FOV), F is the RGGB Bayer filter [9], which only is applied for color events.
The total loss can be written as shown in eq. (6), and we set λDSSIM to 0.2 in our experiments.

Levent = (1− λDSSIM )L1 + λDSSIMLDSSIM (6)

3.4 Progressive Training
The point cloud initialization significantly affects the reconstruction quality of Gaussian Splat-
ting [2, 62]. With precise initial positions, finer structural details can be captured via densifica-
tion and division of Gaussian splats during training. While Structure-from-Motion (SfM) methods
provide accurate point initializations for conventional RGB-based 3D Gaussian Splatting, obtaining
precise sparse point initializations directly from event streams is challenging due to the absence of a
sufficiently accurate event-based SfM pipeline. Alternatively, we have discovered that Event3DGS,
when trained from a random initialization, can itself serve as a relatively accurate initialization. Con-
sequently, we propose a progressive training approach to progressively capture geometric details in
under-reconstructed areas. Specifically, given a pretrained Event3DGS that originated from random
initialization, we apply an opacity threshold αpro to select Gaussian splats with high opacity and
use their center positions as the initialization for the subsequent training rounds. A further detailed
illustration is provided in Appendix F.

3.5 Blur-aware Rasterization and Parameter Separable Appearance Refinement
Although severely motion-blurred RGB images are challenging for radiance field training due to
structural degradation, their true radiance scale and texture information complement event data. We
aim to refine the appearance of Event3DGS via training on a small amount of motion blurred inputs,
to improve visual fidelity while maintaining sharp scene structure.

In the realm of physics, camera motion blur stems from the amalgamation of radiance induced by the
camera’s movement. According to the physical image formation, camera motion blur is produced
by the integration of radiance during camera movement, which can be mathematically represented
with the following equation:

Iblur =

∫ τe

τs

I(Pτ ) dτ ≈
1

N

N∑
i=1

I(Pτi) (7)

where Iblur represents the blurry image, I(Pτ ) is the latent sharp image captured at camera pose
Pτ ∈ SE(3). To simplify the integral calculation, we approximate it as a finite sum of N radiance
values I(Pτi), where τi are the midpoint timestamps of a finite number of event integration windows
(EIW) within the exposure interval (from τs to τe). To incorporate motion effects due to camera
movement during frame capturing into the differentiable rasterization process, we incorporate the
above physical formation process of motion blur into the rendering equation:
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C̃blur(x, y,P τs+τe
2

,G) = 1

NEIW

NEIW∑
i=1

C̃(x, y,Pτi ,G) (8)

where C̃blur denotes the rendered color at pixel (x,y) given by blur-aware rasterization, G are the 3D
Gaussian model parameters, NEIW represents the number of event integration windows within the
exposure interval. The loss function Lblur can be written as:

Lblur = (1− λDSSIM )

∥∥∥∥C̃blur − Iblur

∥∥∥∥
1

+ λDSSIMDSSIM(C̃blur, Iblur) (9)

To improve the fidelity of scene appearance via a few blurry RGB images while preserving sharp
structural details from event sequences, we separate the learnable parameters into two groups. The
structure-related parameters include the position µ, scaling factor S, and rotation factor R; the
appearance-related parameters include opacity α and spherical harmonics (SH) coefficients. When
trained on event streams, all parameters of Event3DGS are optimized to learn the structure and the
approximate logarithmic color field of the target scene. After the parameters have converged on the
event stream, we fix the structure-related parameters and only calculate gradients on the appearance-
related parameters, using blurry RGB images as supervision to refine the scene’s appearance. We
scale the learning rate of opacity α by ηα = 0.05 to inhibit drastic changes in density.

4 Experiments
Synthetic and Real-world Datasets We evaluate our method using both synthetic and real data.
For synthetic scenes, we adopt the dataset proposed in [9], which generates 7 sequences with 360◦

camera rotations around each 3D object, simulating event streams from 1000 views. For real-world
scenes, we first capture videos from a fast-moving RGB camera, then extract frames and estimate
camera parameters by COLMAP[35]. We utilize v2e [63] with bayes filter [9] to emulate colorful
event streams. The emulated sequences cover both indoor and outdoor scenes under various illumi-
nation conditions. We also use the experimental event sequences from [9], which are captured with
a DAVIS-346C color event camera on a spinning table illuminated by a 5W light source.

Metrics and Settings We report three popular metrics to evaluate our methods: Peak Signal-to-
Noise Ratio (PSNR) [64], Structural Similarity Index Measure (SSIM) [61], and AlexNet-based
Learned Perceptual Patch Similarity (LPIPS) [65]. Following [9], we apply a linear transformation
in the logarithmic space for all our and baseline results. Our implementation is based on the official
3DGS[2] framework. We train our model on a single NVIDIA RTX 6000Ada GPU for 30k iterations
and filter the Gaussians with opacity threshold α ≥ 0.9 for progressive training. We randomly
initialize the point cloud according to the scale of each training scene and set the other hyper-
parameters and optimizer as default.

Baselines We benchmark our work against a NeRF-based method, EventNeRF [9], and a naive
baseline E2VID [66] + NeRF [1], which cascades the event-to-video pipeline E2VID to a vanilla 3D
Gaussian Splatting. For synthetic and low-light scenes, we directly render RGB and depth images
from the official checkpoints of EventNeRF and only reproduce their training for efficiency evalu-
ation. For real-world scenes, we train EventNeRF for 500k iterations using their default settings.
Additional comparisons with deblurring baselines are included in Appendix B.

Scene E2VID[66] + 3DGS[2] EventNeRF[9] Event3DGS (event-only)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Drums 16.52 0.74 0.24 27.43 0.91 0.07 29.37 0.94 0.04
Lego 16.11 0.75 0.23 25.84 0.89 0.13 29.57 0.93 0.05
Chair 20.64 0.87 0.13 30.62 0.94 0.05 31.59 0.95 0.03
Ficus 23.33 0.88 0.12 31.94 0.94 0.05 32.47 0.95 0.03
Mic 20.47 0.89 0.14 31.78 0.96 0.03 33.83 0.98 0.02

Hotdog 22.45 0.90 0.12 30.26 0.94 0.04 32.35 0.96 0.03
Materials 18.62 0.85 0.15 24.10 0.94 0.07 31.03 0.96 0.03

Average 19.73 0.84 0.16 28.85 0.93 0.06 31.46 0.95 0.03

Table 1: Quantitative comparison on synthetic event sequences (event-only). Event3DGS demon-
strates best rendering quality across all 7 scenes.
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Figure 3: Visualization on low-light
experimental scenes (event-only).

Scene EventNeRF[9] Event3DGS (event-only)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bike 21.1 0.39 0.58 23.06 0.71 0.26
Computer 20.89 0.71 0.31 24.11 0.87 0.08

Drum 21.61 0.66 0.46 24.8 0.83 0.15
Plant 16.59 0.3 0.56 22.53 0.8 0.13
Shoes 25.35 0.78 0.39 28.08 0.89 0.16

Average 21.11 0.57 0.46 24.52 0.82 0.16

Table 2: Quantitative comparison on emulated event sequences
of real-world scenes (event-only).
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Figure 4: Visualization on synthetic and real-world scenes (events emulated from RGB frames).
Event3DGS excels in reconstructing sharp structures and appearance details.

4.1 Quantitative Evaluation

Synthetic Scenes As demonstrated in Tab. 1, Event3DGS consistently outperforms both baselines
across all synthetic scenes in all metrics. On average, our method achieves a +2.61dB higher PSNR,
a 2.15% higher SSIM, and a 50% lower LPIPS.
Real-world Scenes Given that the E2VID [66] + 3DGS [2] baseline performs poorly on forward-
looking real-world scenes, we compare our method only with EventNeRF [9]. As shown in Tab. 2,
Event3DGS significantly outperforms EventNeRF [9] across all real scenes and metrics, achieving
+3.41 dB higher PSNR, 43.9% higher SSIM, and 65.2% lower LPIPS on average.

4.2 Qualitative Evaluation

We visualize depth maps and renderings on 3 synthetic scenes and 3 real-world scenes. Fig. 4 shows
that our method preserves sharper, more consistent structures and cleaner backgrounds compared to
EventNeRF [9]. Event3DGS is able to capture detailed information of object edges and geometric
discontinuities, such as ficus leaves (2nd row), drum racks (3rd row) and shoelaces (6th row). Our
renderings also exhibit higher contrast and sharper details, particularly in highlights and reflections.
In the soccer shoe scene, our method captures the reflected lights and corresponding depth, while
EventNeRF [9] fails to reconstruct these details. In the bike sample, EventNeRF fails to represent
high-frequency details of the grass, whereas our method accurately reconstructs the grass geometry
and preserves details in the background. Event3DGS also demonstrates robustness in low-light

7



conditions. As shown in Fig. 3, our method learns sharper object details (e.g. edges of leaves) with
fewer noisy artifacts. We include additional visualization results and deployment on quadrotor in
Appendix D and Appendix A respectively.

4.3 Ablation Studies and Efficiency Comparison
Progressive Training Fig. 5 shows an example of progressive training for improving reconstruc-
tion details. With the 3D structure of previous checkpoints, more Gaussians are generated in under-
reconstructed areas during the second round of training via adaptive densification. Consequently,
Event3DGS is able to progressively capture the subtle details (e.g. bicycle spokes and grasses) that
are not accurately modeled during previous rounds.

Rendering (PSNR 23.54 𝑑𝐵)
w/o Progressive Training

Rendering (PSNR 24.01 𝑑𝐵)
w/ Progressive Training

Depth
w/o Progressive Training

Depth
w/ Progressive Training

Figure 5: Ablations on progressive training (event-only). The PSNR we report is for the single
image. With the pretrained Gaussians as initialization, Event3DGS is able to progressively recover
the fine-grained structural details that are under-reconstructed in the 1st round training.

Blur-aware Appearance Refinement We adaptively fine-tune appearance-related parameters
with 50 − 300 iterations for each synthetic scene and plot the average PSNR in Fig. 6. As shown,
using up to 10 blurry RGB images already yields a noticeable enhancement in rendering quality. We
provide more comprehensive ablation studies in Appendix E.

Model Efficiency. As shown in Tab. 3, Event3DGS reduces the training time of EventNeRF from
9 hours to less than 20 minutes and achieve over 2000× higher FPS, enabling real-time rendering.

0 5 10 15 20
Number of blurry images

31.5

32.0

32.5

33.0

PS
NR

Figure 6: Ablations on the number of
blurry images.

Method Synthetic (346× 260) Real-world (640× 360)

Training FPS Storage Training FPS Storage

EventNeRF 9 hour 0.5 15M 9 hour 0.2 15M
Ours-30k 6 min 1018 11M 7 min 667 127M

Ours-30k×2 12 min 1036 11M 18 min 627 142M

Table 3: Average model efficiency on synthetic and real-
world scenes (event-only).

5 Conclusion
Event cameras are a promising tool for sensing and navigating with high-speed robotics. Today,
inverse differentiable rendering methods, like EventNeRF [9], are the most effective approach to
turn event streams into dense 3D reconstructions. Unfortunately, the computational cost of these
methods—hours per scene—make them impractical for most applications. Benefiting from the ef-
ficiency of 3D Gaussian Splatting, we present Event3DGS, an event-based 3D dense reconstruction
method that achieves state-of-the-art reconstruction quality and significantly accelerate training and
rendering. By integrating differential event supervision, sampling, progressive training strategies
tailored to event data characteristics, Event3DGS achieves high-fidelity 3D reconstruction under
high-speed egomotion and low-light scenarios. Optionally, we introduce parameter-separable fine-
tuning to further improve appearance fidelity with a few motion-blurred RGB images, with negligi-
ble computational overhead.

This work makes a substantial step towards real-time dense 3D reconstruction with events. By
extending the 3D Gaussian Splatting framework to perform reconstruction with event data, our work
enables event-based dense 3D reconstructions at a rate 20× faster than existing methods. Still,
there remains substantial room for improvement and our method is far from real-time. Further
reducing run-times to enable real-time dense 3D reconstruction from events represents an important
and exciting direction for future research.
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Appendix A Real-world Quadrotor Experiment

To validate the effectiveness of Event3DGS in real-world robotic applications, we incorporate it into
a custom-designed quadrotor platform. As illustrated in Fig. 7(B), we employs an iPhone 13 Pro
Max as the data collection device. The drone captures video at 240 FPS with a resolution of 1920 ×
1080, which is subsequently converted into an event stream via v2e[63]. We utilize COLMAP[35] to
estimate the corresponding camera matrices. Our experimental setting is challenging and aggressive,
involving extreme maneuvering conditions: the drone reaches a maximum horizontal acceleration of
over 6 m/s2, a maximum roll angular velocity of 87 deg/s, and a maximum pitch angular velocity
of 48 deg/s. Details of these maneuvers are available in our supplementary video.

Experimental results demonstrates that Event3DGS significantly improves both the qualitative and
quantitative aspects of event-based 3D dense reconstruction. In Tab. 4, Event3DGS clearly surpasses
the baseline across all evaluation metrics. In Fig. 7, Event3DGS accurately reconstructs the sharp
geometric structure of the table and trees, whereas EventNeRF[9] cannot preserve those details.

Ours

RGB

Depth

Ground Truth EventNeRF

RGB

Depth

A

C D
B

Figure 7: A: Ground truth RGB image. B: Demonstration of the custom-designed quadrotor. C:
Rendered RGB and depth of Event3DGS. D: Rendered RGB and depth of EventNeRF[9].

Scene EventNeRF Event3DGS
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Quadrotor Flight 16.72 0.26 0.77 19.66 0.61 0.31

Table 4: Quantitative comparison on real-world quadrotor experiment. Due to more complex ge-
ometrical structures and larger scale, PSNR of the reported scenes is lower than PSNR of other
real-world scenes. However, our method still outperforms EventNeRF[9] by a clear margin.

Appendix B Comparision with Deblurring Baselines

In this section, we compare Event3DGS with blur-aware 3DGS baselines: 1) 3DGS + Blur, i.e.
vanilla 3D Gaussian Splatting[2] trained with motion-blurred RGB images; 2) DeblurGS[4], a novel
method that reconstructs sharp 3D scenes from blurry images via estimating camera motions. We
combine the consecutive frames within an event window of length 40 to be a blurry image, and gen-
erate 100 blurry training views for each scene. For fair comparison, we set all the hyper-parameters
as default for baseline methods.

Since DeblurGS[4] fails to reconstruct the 3D structure of synthetic scenes, we only report the
visualization results in Fig. 8. Under high-speed rotations, 3DGS[2] is unable to accurately capture
sharp details, and DeblurGS fails to estimate camera motions under severe motion blurs. In contrast,
Event3DGS leverages high temporal resolution event data to accurately reconstruct the structure
and appearance of the target scene. For real-world scenes, we report the numerical and visualization
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3DGS + Blur[2] DeblurGS[4] Ours (event-only) GT

Figure 8: Qualitative comparison with deblurring baselines on synthetic dataset. Data was generated
using blender and event simulator [9]. We only report the scenes where rendering of DeblurGS[4]
can align with the test views. Event3DGS demonstrates more accurate structural details and better
multi-view consistency than baseline methods.

results in Tab. 5 and Fig. 9 respectively. Although DeblurGS roughly deblurs the input images
and achieves higher reconstruction quality than the vanilla 3DGS, it fails to preserve multi-view
consistency due to the existence of motion blur, causing under-representation in structural details
(e.g. bicycle spokes, keyboard, edges of leaves, shoelaces in Fig. 9). As shown in Tab. 5, Event3DGS
clearly outperforms baseline methods by an average of +0.44dB higher PSNR, 19% higher SSIM
and 33% lower LPIPS.

Scene 3DGS[9] + Blur DeblurGS[4] Event3DGS (event-only)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bike 21.0 0.42 0.62 23.90 0.54 0.42 23.06 0.71 0.26
Computer 20.75 0.64 0.42 24.58 0.80 0.13 24.11 0.87 0.08

Drum 23.79 0.68 0.41 25.48 0.76 0.18 24.8 0.83 0.15
Plant 17.05 0.34 0.57 19.28 0.52 0.28 22.53 0.8 0.13
Shoes 24.49 0.78 0.43 27.15 0.83 0.21 28.08 0.89 0.16

Average 21.42 0.57 0.49 24.08 0.69 0.24 24.52 0.82 0.16

Table 5: Quantitative comparison with deblurring baselines on real-world dataset. Due to the in-
herent radiance scale ambiguity of event data and the absence of direct color-wise supervision,
Event3DGS does not achieve superior PSNR across all scenes. However, it demonstrates the high-
est structural and perceptual accuracy.

Notably, DeblurGS[8] requires an average of 3.5 hours for training on a synthetic scene due to the
high computational cost of motion-blur formation and long training rounds. Event3DGS converges
in just 18 minutes with the same hardware (a single NVIDIA RTX 6000Ada GPU), demonstrating
significantly higher efficiency.
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3DGS + Blur[2] DeblurGS[4] Ours (event-only) GT

Figure 9: Qualitative comparison with deblurring baselines on real-world dataset. Data was emu-
lated using experimental frame-based data and v2e. Event3DGS reconstructs sharpest details with
least motion-blur effects across all scenes.

Appendix C Additional Implementation Details

Real-world Data Capture For each real-world scene, we first capture a video from a fast-moving
RGB camera, then extract frames and use COLMAP[35] to estimate the corresponding camera ex-
trinsics and intrinsics. We utilize v2e[63] with bayes filter [9] to simulate the colorful event stream.

Point-cloud Initialization Following [2], we start training from 100K uniformly random Gaus-
sians inside a volumetric cube that bounds the scene. For synthetic and low-light sequences proposed
in EventNeRF[9], we initialize the scale of points as l = 0.2; for our real-world sequences, we set
l = 10 and move the points to the positive half-axis of z.

Appendix D Additional Low-light Visualization

For the low-light scenes proposed in [9], objects are placed on a spinning table rotating at a consistent
speed of 45 RPM, then event sequences are captured with a DAVIS-346C color event camera under
the illumination from a 5W light source. As ground-truth images are not provided in this dataset, we
report additional visualization results in Fig. 10. With low-light real sequences, Event3DGS exhibits
superior performance in accurately reconstructing sharp geometric details (e.g. edges of the objects)
and removing noises on non-event background pixels.
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EventNeRF[9] Ours (Event-only)
Figure 10: Visualization results on low-light scenes. Data was experimentally captured using
DAVIS-346C[9]. We randomly select two rendered views for each scene. For EventNeRF[9], we
directly render images from their official checkpoints.
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Appendix E Additional Ablation Studies

Here, we present additional ablation studies on each key component of the proposed method to
evaluate their individual impacts. All reported results are averaged across all 7 synthetic scenes.

Ablation on Loss Functions As demonstrated in Tab. 6 and Fig. 11, using only the L1 loss results
in a lack of detailed textures, while relying solely on the DSSIM loss leads to inaccurate color
variations and artifacts. Utilizing both L1 and DSSIM losses together achieves the best performance
in reconstructing both appearance and structural details.

Loss Function PSNR ↑ SSIM ↑ LPIPS ↓
L1 + DSSIM (ours) 31.46 0.95 0.03

L1 only 29.22 0.94 0.08

DSSIM only 29.28 0.94 0.04

Table 6: Ablation on loss functions.

L1-only DSSIM-only L1 + DSSIM (ours) GT

Figure 11: Visualization results based on choices of loss functions

Ablation on Slicing Strategy For all experiments, we do not apply progressive training and only
conduct 1st round training for 30k iterations. EventNeRF[9] applies randomized length slicing and
negative sampling. As shown in Tab. 7, our slicing strategy leads to overall performance gain,
whereas simply applying EventNeRF’s strategy onto Gaussian Splatting does not result in satisfac-
tory improvement.

Slicing Strategy PSNR ↑ SSIM ↑ LPIPS ↓
Ours (w/o progressive training) 30.92 0.95 0.04

EventNeRF[9] 30.49 0.94 0.04
Fixed window length = 30 30.40 0.94 0.05

Table 7: Ablations on slicing strategies.

Ablations on σnoevt This parameter represents the scale of gaussian noise we add to the non-
event pixels. As shown in Tab. 8, while it is not highly sensitive, σnoevt = 0.2 works best in our
experiments.

σnoevt PSNR ↑ SSIM ↑ LPIPS ↓
0 29.69 0.94 0.06

0.1 31.05 0.95 0.04

0.2 (ours) 31.46 0.95 0.03
0.5 31.34 0.95 0.03
1.0 29.84 0.95 0.05

Table 8: Ablations on σnoevt.
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Ablations on Progressive Training As shown in Tab. 9, progressive training leads to further im-
provement in PSNR, whereas merely increasing the number of training iterations does not yield
better results. While increasing the number of rounds lead to marginal performance gain, we report
the results of 2-round progressive training as our final results, to balance between performance and
time efficiency.

Training Iterations PSNR ↑ SSIM ↑ LPIPS ↓
30k 30.92 0.95 0.04

60k 30.99 0.95 0.04

30k * 2 rounds(ours) 31.46 0.95 0.03
30k * 3 rounds(ours) 31.50 0.95 0.03

Table 9: Ablations on progressive training.

Appendix F Detailed Explanation of Progressive Training

We illustrate the process of 2-round progressive training using the following pseudo code:

1. Initialize Event3DGS with randomized points:

G10 ← G(0) = (X(0),□(0))

where X(0) = {µ(0)
i |µ

(0)
i

iid∼ R3}N0
i=1 represents the center positions of the Gaussians, □(0) =

{(S(0)
i , R

(0)
i , C(0)i , σ

(0)
i )}N0

i=1 includes other parameters (scaling factor Si, rotation factor Ri,
spherical harmonics Ci, and opacity σi), all of which are randomly initialized.

2. For the 1st round, train the Event3DGS to minimize the event rendering loss:

G∗
1 = (X∗

1 ,□
∗
1) = argmin

G
Levent(G1)

3. Select the gaussians with high opacity and apply their positions to be the initialization for
the 2nd round:

G20 ← G(1) = (X(1),□(1))

where X(1) = {x1j | x1j ∈ X∗
1 ∧ σ1j > αpro} is the set of points with high opacity from the

first-round checkpoint, and □(1) is randomly initialized.

4. Progressively train the Event3DGS for the 2nd round:

G∗
2 = (X∗

2 ,□
∗
2) = argmin

G
Levent(G2)

Repeating step 3 and step 4 results in multiple rounds of progressive training.
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