
Under review as submission to TMLR

Learning Equivalence Classes of
Bayesian Network Structures with GFlowNet

Anonymous authors
Paper under double-blind review

Abstract

Understanding the causal graph underlying a system is essential for enabling causal infer-
ence, particularly in fields such as medicine and genetics. Identifying a causal Directed
Acyclic Graph (DAG) from observational data alone is challenging because multiple DAGs
can encode the same set of conditional independencies, collectively represented by a Com-
pleted Partially Directed Acyclic Graph (CPDAG). Effectively approximating the CPDAG
is crucial because it facilitates narrowing down the set of possible causal graphs underlying
the data. We introduce CPDAG-GFN, a novel approach that uses a Generative Flow Net-
work (GFlowNet) to learn a posterior distribution over CPDAGs. From this distribution,
we can sample to create a set of plausible candidates that approximate the ground truth.
This method focuses on sampling high-reward CPDAGs, with rewards determined by a score
function that quantifies how well each graph fits the data. Additionally, it incorporates a
sparsity-preferring filtering mechanism to enhance the produced set of CPDAGs. Experi-
mental results on both simulated and real-world datasets demonstrate that CPDAG-GFN
performs competitively with state-of-the-art methods for learning CPDAG candidates from
observational data.

1 Introduction

Causal graphs produced from observational data are highly sought after, because knowing the causal dag
underlying a system enables counterfactual reasoning, allows predictions about the system, and may enhance
the generalizability of machine learning models (Schölkopf et al., 2021).

A causal structure is typically represented by a Directed Acyclic Graph (DAG). However, a significant
challenge arises because it is often impossible to determine which DAG represents the true causal structure
from observational data alone. This occurs because multiple DAGs can encode the same set of conditional
independencies, making them equally valid representations of the causal structure. Consequently, DAGs
that encode the same set of conditional independencies can be grouped into a single class known as a
Markov Equivalence Class (MEC) (Castelletti et al., 2018). Thus, from observational data alone, we can
learn a causal graph only up to its MEC (Chickering, 2002a; Koller & Friedman, 2009)1.

A MEC is represented by a Completed Partially Directed Acyclic Graph (CPDAG, Castelletti et al.,
2018, see Figure 1). Popular methods, such as the PC algorithm (Spirtes et al., 2001), typically identify
only a single CPDAG from observational data, potentially overlooking other promising candidates. Like
all algorithms, these methods rely on certain assumptions for optimal performance, some of which are
challenging to meet in practice. For instance, the PC algorithm often requires unrealistic conditions, such
as infinite data or perfect oracles for independence tests - conditions that are difficult to meet in practice.
Consequently, these methods may fail to accurately identify the true CPDAG. If the true causal structure
falls into a different equivalence class than the one predicted by the model, sticking to one class may

1While it is commonly the case that DAGs can be learned only up to their Markov Equivalence Class (MEC) from observa-
tional data alone, there are special cases under certain conditions where exact identification is possible. For detailed examples,
see Shimizu et al. (2006); Hoyer et al. (2008); Peters & Bühlmann (2014).

1

Under review as submission to TMLR

overlook potential better-fitting models. Given this limitation, an algorithm that returns multiple CPDAGs
from observational data is preferable.

One approach is to adopt a Bayesian method to obtain a posterior distribution over all possible CPDAGs,
allowing for the sampling of multiple CPDAGs that could explain the data. In this spirit, we propose to
combine a Bayesian approach and a filtering mechanism. While our approach shares a connection to the
GFlowNet framework, it is fundamentally different from methods like DAG-GFN 2.

Deleu et al. (2022) introduce a novel approach called DAG-GFN, which uses GFlowNet with a uniform
prior to approximate the posterior distribution over DAGs from observational data, where probabilities are
approximately proportional to the reward. The reward is determined by a score function that measures
how well a DAG fits the observations. The better the fit, the higher the probability of sampling that DAG.
CPDAGs can be obtained by converting the sampled DAGs to CPDAGs.

One drawback that stems from using this approach is primarily due to its reliance on a score function and
a uniform prior. Since the posterior distribution trained by DAG-GFN is approximately proportional to the
density induced by the score function, the learned distribution is heavily influenced by this function. If the
score function assigns high scores to many DAGs, including those not representing the ground truth and
potentially even those with higher scores than the ground truth (a scenario likely to occur in settings with
insufficient observational data (Friedman & Koller, 2013)), the posterior distribution may become skewed,
diverging significantly from the true distribution underlying the data. In other words, it is likely that our
prior over graphs matters. In DAG-GFN, the choice of a uniform prior treats all DAGs as equally likely,
not incorporating any knowledge that could guide the model toward a more accurate distribution. This
can lead to poor approximations of the dataset’s underlying distribution, resulting in samples that may not
adequately reflect the true graph.

In this paper, we introduce a new algorithm called CPDAG-GFN, which uses GFlowNet to produce sets of
CPDAG candidates from observational data. Unlike DAG-GFN, which searches within the DAG space, our
approach operates directly in the CPDAG space, enabling direct CPDAG sampling. Moreover, instead of
relying on the posterior to produce a final set of candidates, as in DAG-GFN, we rely on the posterior as an
amortized sampler from which we can select an ideal set of candidates. In particular, our approach yields
relatively high top-K scoring CPDAGs from this amortized sampling. This is possible because GFlowNets
can be seen as amortized samplers capable of exploring multiple high-reward states (e.g., scores) during
training.

As mentioned above, relying solely on scores to prioritize graphs may lead to discrepancies with the ground
truth, as high-scoring graphs might significantly deviate from it. To address this, we refine the sampled
candidate graphs by incorporating additional knowledge into our CPDAG-GFN algorithm. One can think of
this as imposing a prior belief into our CPDAG-GFN algorithm, though not in the Bayesian sense. Specif-
ically, we enhance our CPDAG-GFN algorithm by applying a heuristic filter, removing the least common
edges among the sampled graphs. This additional step is based on the conjecture that the top-K graphs
sampled from GFlowNet often share common edge features likely present in the true graph, helping to align
the top-K scoring graphs more closely with the actual CPDAG underlying the data.

The contributions of this paper are as follows: We introduce a novel algorithm named CPDAG-GFN 3,
designed to learn multiple CPDAG candidates from observational data. We evaluate our method using
both synthetic and real-world datasets and demonstrate that it performs competitively with state-of-the-art
methods.

2 Preliminaries

In this section, we review the concepts relevant to our proposed method, CPDAG-GFN.

2We discuss DAG-GFN in this intro because it also uses the GFlowNet framework, and this should not be regarded as direct
motivation for our work.

3Code can be found at https://anonymous.4open.science/r/for_TMLR2-7D44/

2

https://anonymous.4open.science/r/for_TMLR2-7D44/

Under review as submission to TMLR

2.1 Bayesian networks, Markov Equivalence Class, CPDAGs

A Bayesian network (Pearl, 2009; Koller & Friedman, 2009) is a probabilistic graphical model represented
by a DAG over a set of random variables X1, . . . , Xn. Each variable Xi is associated with a collection of
conditional distributions given its parent nodes, denoted as Pa(Xi) 4. The dependency structure of a Bayesian
network leverages the Markov Property, which asserts that each variable Xi is conditionally independent of
its non-descendants in the graph, given its parents Pa(Xi). This property allows us to factorize the joint
distribution of the network into the product of conditional probabilities for each node given its parents (Jin
et al., 2023):

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi | Pa(Xi)) (1)

Markov Equivalence Classes (MECs): DAGs that encode the same conditional independencies are
Markov equivalent and are said to belong to the same MEC. These DAGs induce the same joint distribution
(Jin et al., 2023). DAGs that are Markov equivalent share the same skeleton 5 and v-structures (see below
for definition).

CPDAGs: A MEC is represented by a CPDAG, also known as an essential graph (Castelletti et al., 2018).
A CPDAG is a type of partially directed graph that may consist entirely of directed edges, entirely of
undirected edges, or a combination of both. It primarily consists of the following three types of edges:

• Directed edge: If an edge x→ y appears in every DAG in the MEC, then the CPDAG contains a directed
edge x→ y.

• Undirected edge: If the edges x → y and y → x each appear in at least one DAG in the MEC, then the
CPDAG contains an undirected edge between x and y.

• V-structure: If an ordered triple of nodes (x, y, z) forms a configuration where x → y ← z and x and z
are not connected by any edge, then this configuration is classified as a v-structure (Pearl, 2009).

The following theorem provides necessary and sufficient conditions for a graph to be the CPDAG of some
MEC, which is essential for defining the search space for our CPDAG-GFN algorithm in Section 3.2.1.
Theorem 1 (Andersson et al. (1997)). A graph G is a CPDAG if and only if it satisfies all of the following
four conditions:

(a) G contains no directed cycle.
(b) Every chain component of G is chordal.
(c) The graph a→ b− c does not occur as an induced subgraph of G.
(d) Every directed edge a→ b in G is strongly protected in G.6

Note that not every partially directed graph qualifies as a CPDAG of some MEC, as indicated in the theorem
above.

2.2 GFlowNet

Generative flow networks (Bengio et al., 2021; 2023), or GFlowNets, were introduced as a framework to learn
to sample from an unnormalized density function, typically referred to as the reward R(s) in GFlowNet
literature, by decomposing the generative process in a trajectory of constructive steps. GFlowNets work by
modelling the flow that goes through the network representing the space of possible constructions, accounting
for all possible construction orders of an object. We introduce the framework for a discrete setting, but
continuous settings are also possible (Lahlou et al., 2023).

In a GFlowNet the state space is defined by a pointed DAG, which we denote H = (S,A), with a unique
initial state s0 ∈ S and some terminal states X ⊆ S on which R : X → R≥0 the reward function is defined.
We define the exact state space we use in Section 3.2.1, but note that the GFlowNet DAG is distinct from

4Pa(Xi) represents the collection of values of all parent nodes; for a node without parents, this set is empty.
5The skeleton of a DAG refers to the undirected graph obtained by ignoring the direction of all edges in the DAG.
6Refer to Andersson et al. (1997) for the definition of ‘strongly protected’ and a review of the terms in (b) above.

3

Under review as submission to TMLR

Figure 1: Illustration of a MEC and its correspond-
ing CPDAG for 3 variables. The MEC consists
of multiple DAGs (i.e. G0, G1, G2) that share
identical conditional independencies, represented by
X1 ⊥ X3 | X2. The CPDAG is a single graph that
compactly represents these DAGs, encapsulating the
same conditional independencies.

variables # MECs MECs/DAGs

1 1 1.00000
2 2 0.66667
3 11 0.44000
4 185 0.34070
5 8782 0.29922
6 1067825 0.28238
7 312510571 0.27443
8 212133405200 0.27068
9 32626056291213 0.26888
10 111890205449597514 0.26799

Figure 2: The number of CPDAGs as a function
of the number of variables. The column labeled
’MEC/DAG’ represents the ratio between the num-
ber of CPDAGs and the number of DAGs for each
variable count (Gillispie & Perlman, 2002).

the (CP)DAGs presented above; in fact, states within H are themselves (CP)DAGs. Elements of the action
space (s→ s′) ∈ A denote valid constructive steps, such as adding a directed edge in a CPDAG (see Figure
3), or may represent the action of ending generation. GFlowNets define a forward policy used for sampling
objects, PF (s′|s), a backward policy PB(s|s′) (a policy on the reverse Markov decision process, i.e., a model
giving a distribution over the parents of any state), and an estimate of the partition function Z representing
the sum of all rewards–and the total flow when interpreting H as a network. The policy PF determines a
terminating distribution P ⊤

F over X , which is the marginal distribution over the final states of trajectories
sampled following PF (i.e., those at which the termination action is taken).

GFlowNets are trained by driving a model to respect constraints which preserve the flow within H. One
such set of constraints are the trajectory balance constraints (Malkin et al., 2022), whereby for any trajectory
τ = (s0 → s1 → ...→ sn = x):

Z

n∏
i=1

PF (si+1|si) = F (sn)
n−1∏
i=1

PB(si|si+1) (2)

where F (sn) = R(x) is the flow of the terminal (sink) state x. With the above constraints satisfied, sampling
transitions starting from s0 and using PF guarantees that the marginal terminating distribution P ⊤

F (x) ∝
R(x).

In the present work we parameterize log Zθ and PF (·|·; θ), use a uniform PB , and apply the trajectory balance
objective (Malkin et al., 2022), which for a trajectory τ = (s0 → s1 → ...→ sn = x) is:

LTB(τ) =
(

log Zθ

∏n−1
i=0 PF (si+1|si; θ)

R(x)
∏n−1

i=0 PB(si|si+1)

)2

. (3)

When training with GFlowNet objectives, one samples trajectories from some behaviour policy (which may
either coincide with PF – on-policy training, as done in this paper – or use off-policy exploration) and
performs gradient descent steps on the loss, in our case the one in (3).

3 Method

The goal of CPDAG-GFN is to return multiple CPDAGs that approximate the true CPDAG underlying
the data. The objective of using GFlowNet is to construct a posterior distribution over CPDAGs that will
allow us to sample K high-reward CPDAGs. GFlowNet is suitable for this because of its capabilities as an
amortized sampler, which allows for sampling during the training process and facilitates the exploration of
high-reward CPDAGs throughout. Since the top K sampled high-scoring CPDAGs may often not align well
with the true CPDAG underlying the data Koller & Friedman (2009), we incorporate a heuristic filter into
our algorithm.

4

Under review as submission to TMLR

3.1 Heuristic Edge-Sparsity Filter

We introduce a heuristic filter that removes the L least common edges among the top K sampled graphs
at the end of training, while ensuring that each removal does not violate CPDAG properties in 1, thereby
maintaining the graph’s validity as a CPDAG. L is a hyperparameter. This approach is motivated by
our observation that edges consistently appearing across top K high-scoring models tend to reflect shared
patterns in the true underlying graph. This observation led us to hypothesize that high-scoring graphs may
share common edge features with the true CPDAG. The filter targets edges that do not consistently appear
across models, which may mitigate the presence of spurious edges in the sampled graphs.

3.2 GFlowNet setup

The setup for GFlowNet includes defining a state space, a reward function, a graph neural network (GNN),
and a loss function. For the loss function, we employ the trajectory balance function, which is covered in
Section 2.2. We will now discuss each of these components in turn.

3.2.1 State space

We define the state space to consist solely of CPDAGs, and the GFlowNet’s action space as transitions from
one CPDAG graph to the next.

Recall from Section 2.1 that a CPDAG may consist entirely of undirected edges, solely of directed edges, or a
combination of both directed and undirected edges. We thus use the following three actions: add a directed
edge, add an undirected edge, apply the makeV operator which transforms a graph structure from x− y − z
to x → y ← z. In Appendix G, we show that these three actions are enough to construct any CPDAG in
the search space.

In CPDAG-GFN, graphs are built starting from an edge-less graph s0, with transitions to a new state
achieved by applying one of the three actions mentioned above. For any given state, we limit allowable
actions to those that lead to a new graph satisfying all the CPDAG properties outlined in Theorem 1 section
1. This ensures that the graph resulting from any permitted action will also be a CPDAG.

Additionally, we introduce a stop action, which serves as the termination point for a trajectory through the
state space. If a stop action is sampled in si, we consider the state terminal and compute its reward R(si)
(see Figure 3).

3.2.2 Reward function

Let D represent a dataset of N i.i.d. observations. Since we aim to sample CPDAGs that fit the data well,
we define the reward as the score function R(G) = score(G, D). We follow the definition of the score function
by Koller & Friedman (2009):

score(G, D) = P (D | G)P (G), (4)

where P (G) is a structure prior which we set to be uniform. This configuration enables GFlowNet to explore
the space of CPDAGs without any initial bias, and is a common choice (Eggeling et al., 2019; Koller &
Friedman, 2009; Deleu et al., 2022).

The marginal likelihood P (D | G) can be calculated using any score-equivalent function such as the BGe
score (Kuipers et al., 2014; Geiger & Heckerman, 1994), the BDe score (Heckerman et al., 1995; Chickering,
2013).7 To obtain a score for a CPDAG, we first find a DAG belonging in the MEC that this CPDAG
represents using an algorithm by Dor & Tarsi (1992), then assign that score to the CPDAG.

7Other score-equivalent functions – that is, those that assign the same score for any two Markov-equivalent graphs such as
the Akaike information criterion (AIC) (Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz, 1978), the minimum
description length (MDL) (Rissanen, 1986), etc.

5

Under review as submission to TMLR

x1

x2 x3

G0

...

x1

x2 x3

G1

...

add x1−
x2

x1

x2 x3

G2

...

add x2 − x3

x1

x2 x3

G3

...

add x2 − x3

add x1−
x2

R(G3)

stop

x1

x2 x3

G4

...

add x1−
x3

x1

x2 x3

G5

...

makeV(x213)

x1

x2 x3

add x2 − x3
invalid action

Figure 3: This figure illustrates the CPDAG construction process during GFlowNet training. It shows
transitions from an initial edge-less graph state G0 to subsequent states, distinguishing between valid actions
that lead to new CPDAGs and invalid actions prohibited because they result in non-CPDAG states. Sampling
a stop action at state G3 concludes the trajectory, with the reward R(G3) then computed.

3.2.3 Parameterization with graph neural networks

In GFlowNet, we need to learn a policy that gives the probability of each state. Considering the exponential
number of CPDAG states, it is impossible to store all these probabilities in a lookup table. Meanwhile, the
training trajectories may not cover every state in the CPDAG space, which means we have to predict the
probability for unseen states at test time. Following previous works Bengio et al. (2021); Deleu et al. (2022),
we parameterize the policy with a neural network over the graph structure of the current state.

Considering the directed nature of CPDAGs, we employ a relational graph neural network
(RGCN) Schlichtkrull et al. (2018) to encode the node representations, where directed and undirected edges
are treated as different relations. For any node u, RGCN iteratively computes its representation hu with
the following message passing step

h(t+1)
u = σ

∑
r∈R

∑
v∈Nr(u)

1
|Nr(u)|W

(t)
r h(t)

v + W
(t)
0 h(t)

u

 (5)

where R = {directed, directed−1, undirected} is the set of relations, Nr(u) is the set of nodes connected by
relation r from node u, W

(t)
r and W

(t)
0 are learnable matrices and σ is the activation function. The input

embeddings h
(0)
u are initialized with one-hot embeddings to distinguish different nodes in the graph.

The three actions in Sec.3.2.1 correspond to link prediction and graph classification tasks on graph structure.
Therefore, we decode the actions of adding edges with SimplE score function Kazemi & Poole (2018), a
common choice for relational link prediction. Specifically, SimplE computes the following for a head node u,
a relation r and a tail node v

score(u, r, v) = (hu ⊙ rr)⊤Khv (6)

where rr is a learnable embedding for relation r, ⊙ is element-wise multiplication and K is an anti-diagonal
identity matrix. Thanks to the asymmetry of the anti-diagonal kernel, SimplE can have different predictions
for (u, r, v) and (v, r, u), thereby is suitable for the action of adding directed edges in our model. To
accommodate the action of adding a v-structure, we consider it as a link prediction problem between a
set of two nodes u1, u2 and a collider node v, i.e. predicting ({u1, u2}, r, v). The stop action is modeled by a
multi-layer perceptron (MLP) over the graph representation, which is obtained by a min pooling operation
applied over all node representations in the graph.

6

Under review as submission to TMLR

4 Experiments

In this section, we empirically assess CPDAG-GFN’s performance against state-of-the-art methods by com-
paring the learned CPDAGs to the ground truth on a real dataset. Additionally, we evaluate our method on
synthetic datasets across different settings (e.g., data size, noise level, network topology). It is important to
note that our goal is not to analyze the specific conditions under which our method outperforms baselines,
but rather to evaluate CPDAG-GFN’s performance in different scenarios. Experimental results show that
CPDAG-GFN performs competitively against state-of-the-art methods in these settings. Additional analysis
can be found in appendix E.

4.1 Experimental evaluation

Evaluation metric We adopt the evaluation metrics used in prior work (Deleu et al., 2022; Lorch et al.,
2021). We assess the performance of each algorithm using the Expected Structural Hamming Distance
(E-SHD) — which measures the discrepancy between the inferred and the true CPDAGs (see appendix
?? for further detail), with lower E-SHD indicating better performance—and the Area Under the Receiver
Operating Characteristic curve (AUROC), where a higher value signifies better performance. Additionally,
we compute the average Structural Hamming Distance (SHD) between all pairs of CPDAGs in the sample,
providing a measure of average dissimilarity across the CPDAGs. While this distance is not a formal
evaluation metric, it provides insight into the diversity of the sampled graphs, with a higher average indicating
greater dissimilarity.

Baselines To provide a comprehensive evaluation of our proposed method, we have selected baselines that
use different approaches for approximating distributions over structural models. We include bootstrapping
with PC (Spirtes et al., 2001) and Greedy Equivalence Search (GES) (Chickering, 2002b). Additionally, we
employ DAG-GFN (Deleu et al., 2022), which leverages GFlowNet; DiBS (Lorch et al., 2021), which uses
a variational inference approach; and MC3 (Madigan et al., 1995; Giudici & Castelo, 2003), representing
MCMC-based methods.

4.2 Evaluation on synthetic data

In our experiments, we use the BGe score function as our reward function. Following Lorch et al. (2021),
we generate ground truth networks using linear-Gaussian Bayesian networks, with their structures sampled
according to the Erdős-Rényi (ER) model (ERDdS & R&wi, 1959) and the scale-free (SF) model (Barabási
& Albert, 1999). These models were selected for their contrasting structural properties to ensure a diverse
evaluation of CPDAG-GFN’s adaptability and efficacy across different network topologies. In addition, we
designed our experiments to include several scenarios: different observational data sizes ranging from small
(100) to large (a million) to demonstrate scalability, varying levels of noise in the data from small (0.01)
to moderate (0.1), and different network complexities with expected degrees of 1d, 2d, and 3d, where d is
the number of nodes, in which we set to d=10 in our experiments. For each experimental run, we sample
K graphs, with K set to 100. Performance metrics (e.g. E-SHD and AUROC) are derived from 10 distinct
datasets, each one generated from a unique Bayesian network. Performance results are presented in Figures
1–5, which indicate that our algorithm performs competitively.

4.3 Real world data: Protein network from cell data

A well-known benchmark in structure learning is the causal protein-signaling network derived from data on
11 nodes representing proteins with 17 edges Sachs et al. (2005). In our experiments, we used the real-
world protein network dataset provided in the supplementary materials of Sachs et al. (2005), consisting of
N = 854 continuous observations. The results, presented in Table 1, compare the evaluation metrics E-SHD
and AUROC of CPDAG-GFN against the baselines. For AUROC, a higher value is better, and for E-SHD,
a lower value is better.

CPDAG-GFN demonstrates competitive performance against state-of-the-art methods, achieving an E-SHD
of 16.61± 0.65. Notably, while DiBS achieves the lowest E-SHD, it predicts only 11.47 edges on average. In

7

Under review as submission to TMLR

Figure 4: Comparison of E-SHD and AUROC metrics for a dataset generated from 1 million observations
using a ground truth graph sampled from an Erdős-Rényi model (ER-deg1) with a noise level of 0.1. Lower
E-SHD and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity
among the graphs.

Figure 5: Comparison of E-SHD and AUROC metrics for a dataset generated from 100 observations using a
ground truth graph sampled from an Erdős-Rényi model (ER-deg2) with a noise level of 0.1. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity (e.g.
more diversity) among the graphs.

Figure 6: Comparison of E-SHD and AUROC metrics for a dataset generated from 100 observations using a
ground truth graph sampled from an Erdős-Rényi model (ER-deg2) with a noise level of 0.01. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity among
the graphs.

contrast, CPDAG-GFN’s edge count of 15.42 ± 0.81 is closest to the ground truth network, which consists
of 17 edges. Although AUROC values for DiBS, Bootstrap GES, and CPDAG-GFN are relatively close,
CPDAG-GFN performs competitively by achieving a relatively low E-SHD, high AUROC, and an edge
count closer to the ground truth compared to other baselines.

8

Under review as submission to TMLR

Figure 7: Comparison of E-SHD and AUROC metrics for a dataset generated from 100 observations using
a ground truth graph sampled from a scale-free model (SF-deg3) with a noise level of 0.1. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater diversity among
the graphs.

Method E[SHD] AUROC E[# Edges]
MC3 39.32 ± 1.79 0.645 ± 0.041 39.46 ± 0.97
Bootstrap GES 19.74± 0.097 0.751 ± 0.011 11.11 ± 0.090
Bootstrap PC 17.61± 0.23 0.728 ± 0.019 8.45 ± 0.335
DiBS 13.28± 0.17 0.756± 0.017 11.47 ± 0.34
DAG-GFN 18.92± 0.019 0.658 ± 0.019 23.02 ± 0.14
CPDAG-GFN 16.61 ± 0.65 0.757 ± 0.029 15.42 ± 0.61

Table 1: Inference of protein signaling pathways from cytometry data (Sachs et al., 2005) Metrics are the
mean ± SD of 10 experimental run

5 Related work

Markov Chain Monte Carlo (MCMC) Earlier papers that explored structure learning in the space of
CPDAGs by means of MCMC include: Madigan et al. (1996) and Castelo & Perlman (2004). A more recent
approach is by Castelletti et al. (2018). The paper focuses on learning sparse CPDAGs. To enhance the
structure learning of these CPDAGs and ensure the graphs remain sparse, the authors introduce a sparsity
constraint. This constraint limits the CPDAG space to a subspace where the number of edges does not exceed
1.5 times the number of nodes in the graph. While this approach can be effective, it can be a drawback in
scenarios where the data-generating process is more complex and less sparse. In such cases, the constraint
may bias the learning towards sparse graph that fail to capture more complex relationships within the data.
Another draw back of using MCMC methods is their tendency to become trapped in a single mode of high
probability (Syed, 2022), restricting their ability to explore diverse graph structures across different regions
of high-probability modes. By using the GFlowNet approach instead of MCMC, the method we propose
mitigates being confined to a single mode.

Point estimate methods Two widely known point estimate methods for computing a CPDAG from
observational data are constraint-based methods and score-based methods. Constraint-based methods, such
as the PC (Peter and Clark) algorithm and the Fast Causal Inference (FCI) algorithm (Spirtes et al., 2001),
rely on conditional independence tests to identify the CPDAG that represents causal structures consistent
with a given dataset (Eberhardt, 2017). In contrast, score-based methods, such as the Greedy Equivalence
Search (GES; Chickering (2002b)), rely on a score function. These methods traverse the space of CPDAGs,
assigning scores to graphs to measure their fit to the data. At each step, an edge is either added, removed, or
reversed. As the name suggests, the search is greedy, choosing the state with the highest score to progress.

Amortized sampling methods Recent approaches to Bayesian structure learning that approximate the
posterior distribution over DAGs include DAG-GFN (Deleu et al., 2022) and DiBS (Lorch et al., 2021), both
operate within the space of DAGs. The DiBS method employs a variational approach, representing DAGs

9

Under review as submission to TMLR

in a continuous latent space to facilitate the learning of the posterior distribution over network structures.
Conversely, the DAG-GFN method uses GFlowNet to achieve a posterior distribution over DAGs where
probabilities are approximately proportional to assigned rewards. CPDAGs can be obtained by converting
the sampled DAGs to CPDAGs.

6 Conclusion

We have introduced a novel method for learning CPDAG candidates underlying observational data using
GFlowNet. To better align the candidates with the ground truth, we applied a heuristic filter by removing
the least common edges from the sample. Unlike traditional methods that produce a single CPDAG, our
approach generates multiple CPDAG candidate structures by sampling directly from CPDAG distributions.
In future work, we aim to explore the integration of domain-specific knowledge into the CPDAG-GFN
algorithm. This could involve incorporating Bayesian priors to guide the sampling process toward more
plausible causal structures, or developing heuristic-based constraints that reflect expert knowledge. By
further incorporating specific causal hypotheses within the model, we hope to improve the accuracy and
relevance of the generated CPDAGs, particularly in applications where expert knowledge is available.

References
Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on automatic control,

19(6):716–723, 1974.

Steen A Andersson, David Madigan, and Michael D Perlman. A characterization of markov equivalence
classes for acyclic digraphs. The Annals of Statistics, 25(2):505–541, 1997.

Yashas Annadani, Nick Pawlowski, Joel Jennings, Stefan Bauer, Cheng Zhang, and Wenbo Gong. Bayes-
dag: Gradient-based posterior inference for causal discovery. Advances in Neural Information Processing
Systems, 36:1738–1763, 2023.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):
509–512, 1999.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network
based generative models for non-iterative diverse candidate generation. Advances in Neural Information
Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet
foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Federico Castelletti, Guido Consonni, Marco L Della Vedova, and Stefano Peluso. Learning markov equiva-
lence classes of directed acyclic graphs: an objective bayes approach. 2018.

Robert Castelo and Michael D Perlman. Learning essential graph markov models from data. In Advances
in Bayesian networks, pp. 255–269. Springer, 2004.

David Maxwell Chickering. Learning equivalence classes of bayesian-network structures. The Journal of
Machine Learning Research, 2:445–498, 2002a.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine learning
research, 3(Nov):507–554, 2002b.

David Maxwell Chickering. A transformational characterization of equivalent bayesian network structures.
arXiv preprint arXiv:1302.4938, 2013.

Chris Cundy, Aditya Grover, and Stefano Ermon. Bcd nets: Scalable variational approaches for bayesian
causal discovery. Advances in Neural Information Processing Systems, 34:7095–7110, 2021.

10

Under review as submission to TMLR

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, and
Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty in Artificial
Intelligence, pp. 518–528. PMLR, 2022.

Dorit Dor and Michael Tarsi. A simple algorithm to construct a consistent extension of a partially oriented
graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA, pp. 45, 1992.

Frederick Eberhardt. Introduction to the foundations of causal discovery. International Journal of Data
Science and Analytics, 3:81–91, 2017.

Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, and Mikko Koivisto. On structure priors for learning
bayesian networks. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1687–1695. PMLR, 2019.

P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Nir Friedman and Daphne Koller. Being bayesian about network structure. arXiv preprint arXiv:1301.3856,
2013.

Dan Geiger and David Heckerman. Learning gaussian networks. In Uncertainty Proceedings 1994, pp.
235–243. Elsevier, 1994.

Steven B Gillispie and Michael D Perlman. The size distribution for markov equivalence classes of acyclic
digraph models. Artificial Intelligence, 141(1-2):137–155, 2002.

Paolo Giudici and Robert Castelo. Improving markov chain monte carlo model search for data mining.
Machine learning, 50:127–158, 2003.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The combination of
knowledge and statistical data. Machine learning, 20:197–243, 1995.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. Advances in neural information processing systems, 21, 2008.

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab, and
Bernhard Schölkopf. Can large language models infer causation from correlation? arXiv preprint
arXiv:2306.05836, 2023.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs. Advances
in neural information processing systems, 31, 2018.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of gaussian directed acyclic
graphical models. 2014.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-Garcıa,
Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous generative flow networks.
In International Conference on Machine Learning, pp. 18269–18300. PMLR, 2023.

Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and Andreas Krause. Dibs: Differentiable bayesian struc-
ture learning. Advances in Neural Information Processing Systems, 34:24111–24123, 2021.

David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models for discrete data. International
Statistical Review/Revue Internationale de Statistique, pp. 215–232, 1995.

David Madigan, Steen A Andersson, Michael D Perlman, and Chris T Volinsky. Bayesian model averaging
and model selection for markov equivalence classes of acyclic digraphs. Communications in Statistics–
Theory and Methods, 25(11):2493–2519, 1996.

11

Under review as submission to TMLR

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Im-
proved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:5955–5967,
2022.

Judea Pearl. Causality. Cambridge university press, 2009.

Jonas Peters and Peter Bühlmann. Identifiability of gaussian structural equation models with equal error
variances. Biometrika, 101(1):219–228, 2014.

Jonas Peters and Peter Bühlmann. Structural intervention distance for evaluating causal graphs. Neural
computation, 27(3):771–799, 2015.

Jorma Rissanen. Stochastic complexity and modeling. The annals of statistics, pp. 1080–1100, 1986.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal protein-
signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In The Semantic Web: 15th International
Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15, pp. 593–607. Springer,
2018.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the IEEE, 109(5):
612–634, 2021.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, pp. 461–464, 1978.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear non-
gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10), 2006.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT press, 2001.

Saifuddin Syed. Non-reversible parallel tempering on optimized paths. PhD thesis, University of British
Columbia, 2022.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

12

Under review as submission to TMLR

A Sufficiency of actions to traverse CPDAG search spaces

In this section, we demonstrate that the three traversal actions—adding a directed edge, adding an undirected
edge, and applying ’make V’ operators—are sufficient to reach any CPDAG within the search space. To do
so, we introduce the following two propositions:
Proposition 2 (Andersson et al. (1997)). Let G and H be two CPDAGs graphs with the same vertex set
V . Then there exists a finite sequence G ≡ G1, . . . , Gk ≡ H of CPDAGs with vertex set V such that each
consecutive pair of Gi, Gi+1 differs by one of the three traversal traversal actions: add directed edge, add
undirected edge, or makeV.

Building upon the aforementioned proposition, we present the following proposition:
Proposition 3. For any essential G, there exists a sequence of graphs G0, . . . , Gn such that:

• G0 is the graph with no edges, and Gn = G.
• Each Gi is a CPDAG.
• For each i, Gi+1 can be obtained from Gi by one of the operators: add directed edge, add undirected edge,

or makeV.

Proof. This is immediate from the construction in the proof of Andersson’s Proposition 4.5, which provides
an algorithm for constructing such a sequence for any G. Note that the statement of Andersson’s Proposition
4.5 alone does not imply this result, as it only guarantees a sequence Gi such that for each i, either Gi is
obtained from Gi+1 by one of the operators, or Gi+1 is obtained from Gi by one of the operators.

Proposition 3 above asserts that we can traverse the entire search space of CPDAGs starting from the empty
graph G0 and using only the three traversal actions (add a directed edge, add an undirected edge, or makeV
operation), i.e., every state is reachable from the initial state. Each traversal action either increases the
number of edges or does not change the number of edges while increasing the number of directed edges,
which implies the search space is acyclic.

B Evaluation Metrics

We adopt the evaluation metrics used in prior work (Deleu et al., 2022; Lorch et al., 2021): the Expected
Structural Hamming Distance (E-SHD) to the ground truth graph G∗, and the Area Under the Receiver
Operating Characteristic Curve (AUROC). Following prior work (Deleu et al., 2022; Lorch et al., 2021) the
AUROC is computed by thresholding the posterior edge p(gij | D) at varying thresholds.

Similarly, the E-SHD to the ground truth graph (G∗) is defined as:

E-SHD ≈ 1
n

n∑
k=1

SHD(Gk,G∗)

where n represents the number of unique CPDAGs sampled from the posterior, and Gk denotes a CPDAG.
The SHD(Gk,G∗) counts the number of edge changes that separate the learned CPDAGs Gk from the ground
truth G∗ (Peters & Bühlmann, 2015; Lorch et al., 2021).

13

Under review as submission to TMLR

C Additional experiments

The ground-truth graphs are sampled according to an Erdos-Rényi model with average degrees equal to 1,
2, and 3, respectively, denoted ER-deg1, ER-deg2, and ER-deg3. Each experiments is ran between 7 to 9
seeds. The DAG-GFN was run using the publicly available code from Deleu et al. (2022).

For the following experiments, the ground-truth graphs are sampled according to an scale-free model with
average degrees equal to 1 and 2 respectively, denoted SF-deg1 and SF-deg2.

14

Under review as submission to TMLR

D DAG vs CPDAG comparison

To ensure a fair comparison, both DAG-GFN and CPDAG-GFN were implemented with the same setup,
including the same optimizer, neural network architecture, and dataset. We used the trajectory balance
(TB) loss and BGe score function to train both models. Comparison of E-SHD and AUROC metrics for a
dataset generated from large (e.g. 1 million) and small (e.g. 100) observations using a ground truth DAG
sampled from an Erdős-Rényi model (ER-deg1) and scale-free model.

Since there are two important differences between Deleu et al. (2022)’s DAG-GFN and our work, namely
the top-K sampling evaluation and the heuristic filtering, we compare four settings

1. Top-K DAGs obtained using Gflownet as an amortized sampler in the DAG space (call it topK-
DAG) versus top-K CPDAGs obtained using GFlownet as an amortized sampler in the CPDAG
space (topK-cpdag).

2. rand-DAG obtained by randomly sampling K DAGs from the posterior distribution learned by DAG-
GFN (Deleu et al., 2022), versus rand-CPDAG obtained by directly random sampling K cpdags from
the CPDAG posterior at the end of training.

3. The same as in 1, but with the heuristic filter applied.

4. The same as in 2, but with the heuristic filter applied.

Baselines with a plus sign in front indicate heuristic filter has been applied.

Figure 8: d=10 variables. Lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC.

Figure 9: d=10 variables. Lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC.

15

Under review as submission to TMLR

E Performance Metrics Across Varying L Values

In this section, we analyze how CPDAG-GFN’s performance (e.g. E-SHD, AUROC, and distance) varies
with different values of L.

Experimental setup for hyperameter L anaysis: In the plots below, a unique Bayesian network
was generated using different random seeds to create the data. This data was then used as input to our
CPDAG-GFN algorithm to learn 100 CPDAG candidates. We computed E-SHD, AUROC, and distance
metrics using these 100 CPDAGs for varying values of L. The results are presented in the plots below.
All plots were generated using data from 1 million observations, ER-deg1, noise=0.1, and 10 variable setting.

Observation: The plots start at L = 0 (e.g., no least common edge is removed). As the hyperpa-
rameter L increases, E-SHD initially decreases but begins to rise beyond a certain point (around L = 40).
Similarly, AUROC starts off high but begins to drop as L exceeds a specific threshold. On the other hand,
the distance plot demonstrates an overall decreasing trend, with a noticeable bump in the purple scatter plot
between L = 30 and L = 40. This suggests that removing certain edges may have increased the diversity of
the graphs in the sample. Despite this bump, the general trend is downward, as expected, since removing
the least common edges typically leads to greater similarity among the graphs, resulting in a decrease in
the distance metric.

A suitable range for L would be one that gives low E-SHD and high AUROC, and sufficient diversity in the
generated graphs. Having said that, L values ranging between 30 and 40 would be a reasonable choice.

Figure 10: Lower E-SHD and higher AUROC indicate better performance.

16

Under review as submission to TMLR

F Additional experiments on heuristic filter on other baselines

While the heuristic filter was originally designed as an integral part of CPDAG-GFN, we conducted an
analysis to assess whether applying the same refinement step to other baseline methods would generally lead
to performance improvements in different settings. In this section, we evaluated baseline performance before
and after applying the filter and reported the observed effects. Our results in different settings show that the
the heuristic filter improves E-SHD across all baselines by lowering it. The largest improvements in E-SHD
are observed in CPDAG-GFN and Top-K DAGs 8. The results below highlight that while the heuristic filter
provides general improvements across baselines, its effects are pronounced when combined with GFlowNet’s
amortized sampling approach.

The figures below compare baseline performance before (green box) and after applying the heuristic filter
(blue box, indicated by a plus sign).

Figure 11: Baselines with lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC. Baselines with a plus sign (e.g. blue box) indicate the application
of heurisitc filer, and green box is without.

Figure 12: Baselines with lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC. Baselines with a plus sign (e.g. blue box) indicate the application
of heurisitc filer, and green box is without.

8Top-K DAGs are obtained using Gflownet as an amortized sampler to sample top K high scoring graphs in the DAG space
and then converted to CPDAGs. It’s not to be mistaken for DAG-GFN by Deleu et al. (2022).Moreover topK-DAG+ is the
topK-DAG with the heuristic filter applied

17

Under review as submission to TMLR

Figure 13: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC.Baselines with a plus sign indicate the application of the least common edge
removal technique, and wo-prior represents CPDAG-GFN without the heuristic filter.

Figure 14: Baselines with lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC. Baselines with a plus sign (e.g. blue box) indicate the application
of heurisitc filer, and green box is without.

18

Under review as submission to TMLR

G Defining the Mask Over Actions with CPDAG constraints

In this section, we discuss how we enforce theorem 1 of the CPDAG at each state.

To enforce the directed cycle constraint, we leverage the adjacency matrix, transitive closure, and
outer product as inspired by Deleu et al. (2022) appendix C. This process generates a mask matrix,
Maskmatrix, with entries of 0 or 1. We adopt the convention that entry (row, col) in the Maskmatrix equal to
0 indicates that the directed edge row → col will not create a directed cycle, while an entry of 1 means it
will.

We identify the indices of all zero entries (a,b) in Maskmatrix. Each of these indices is fed into the flow chart9,
which carries out the remaining constraints in theorem 1. The flowchart outputs 0 (indicating the action is
allowed) or 1 (indicating the action is forbidden), and the Maskactions array is updated accordingly.

The purpose of Maskactions is to filter out all invalid actions so that only valid actions are sampled. Once a
valid action is sampled and applied to generate a new CPDAG, the adjacency matrix, transitive closure, and
mask matrix are updated to reflect the new state. Consequently, Maskactions is also updated accordingly.

Figure 15: a) Flowchart illustrating how actions are validated and filtered at each state using the constraints
outlined in Theorem 1. The input index(a,b) are the zero entries in the Maskmatrix. Here, a→ b denotes a
directed edge between node a and b in graph G, while a−−b denotes an undirected edge between them. b)
The Maskactions array entries are updated based on the flowchart’s output, with 0 indicating a valid action
and 1 indicating an invalid action.

9Please refer to Andersson et al. (1997) for further foundational and implementation details.

19

Under review as submission to TMLR

H Additional baseline: NOTEARS

In this section, we compare our work to NOTEARS (Zheng et al., 2018). NOTEARS is a differentiable DAG
learning method that formulates the structure learning problem as a continuous constrained optimization
task. Instead of searching over the combinatorial space of DAGs, it introduces a smooth and exact char-
acterization of acyclicity using a matrix function constraint. This allows gradient-based optimization to be
applied directly to learn the DAG structure. As a point estimate method, NOTEARS returns a single DAG
rather than a distribution over possible structures. Consequently, the E-SHD metric reduces to standard
SHD in this case, and the distance metric (e.g., the average SHD between sampled graphs) is not applicable.

Figure 16: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC.

Figure 17: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC.

Figure 18: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC.

20

Under review as submission to TMLR

I ROC curve

Figure 19: ROC curve comparison for different random seeds under the setting of 100 observational data
points, 0.1 noise, and SF-deg3.

Figure 20: ROC curve comparison for different random seeds under the setting of 100 observational data
points, 0.1 noise, and ER-deg2.

21

Under review as submission to TMLR

Figure 21: ROC curve comparison for different random seeds under the setting of a Million observational
data points, 0.1 noise, and ER-deg1.

J Further Analysis

Recall that CPDAG-GFN consists of two steps: (1) using GFlowNet as an amortized sampler to sample
top-K high-scoring CPDAGs, and (2) applying a heuristic filter to refine the candidate set by removing the
least common edges. Both steps are integral to the method. In this section, we explore what may be causing
CPDAG-GFN to perform competitively compared to other baselines. First, we examine the effect of the
heuristic filter by comparing the top-K sampled CPDAGs before and after the filter is applied. Our results in
Figure 22 show that applying the heuristic filter to the top-K samples from GFlowNet significantly reduces
E-SHD, improving the alignment of the sampled graphs with the ground truth. This improvement allows
CPDAG-GFN to achieve competitive performance against other baselines.

Figure 22: A comparison of baselines where filter is applied and before it is applied. Higher AUROC and
lower E-SHD are preferred.

Next, a natural question arises: Is CPDAG-GFN’s competitive performance due to the heuristic filter alone
(i.e., would applying the same filter to other baselines yield similar results?), or does the filtering mechanism
work particularly well when applied to the top-K samples from GFlowNet? To investigate this, we applied
the heuristic filter to all baselines.

Our results in Figure 23 show that while the heuristic filter improves performance for the baselines, the
improvement is not as substantial as in CPDAG-GFN. Specifically, while the heuristic filter leads to some
reduction in E-SHD for baselines like MC3, DAG-GFN, and DiBS, CPDAG-GFN, in particular, becomes
more competitive with state-of-the-art methods B-PC and B-GES after applying the filter.

22

Under review as submission to TMLR

Figure 23: A comparison of baselines where before heuristic filter is applied. Baselines with a plus sign (e.g.
blue box) indicate the application of heurisitc filter, and green box is without. Please note that wo-prior
means CPDAG-GFN without heuristic filter applied. Higher AUROC and lower E-SHD are preferred.

Possible reasons why the heuristic filter is less effective for other baselines:

Sampling Strategy: DAG-GFN, DiBS, and MC3 draw samples from a learned posterior distribution and
so are not guaranteed to always sample high-scoring graphs. As a result, their samples may still include a mix
of high-, moderate-, and occasionally low-scoring graphs. In contrast, CPDAG-GFN explicitly prioritizes
high-scoring graphs by using GFlowNet as an amortized sampler to sample the top K high-scoring CPDAGs.
These top-K graphs tend to share common edges, many of which align with the ground truth. This structural
consistency allows the heuristic filter to effectively refine the candidate set by removing the least common
edges, thereby improving alignment with the true structure. However, when sampling does not explicitly
prioritize high-scoring graphs but instead draws from a learned posterior distribution, the heuristic filter
appears less effective in Figure 23 in reducing E-SHD compared to CPDAG-GFN.

Graphs are already similar and close to ground truth: bootstrapping-PC/GES have low distance
as shown in the distance plot. This suggests the sampled graphs are already similar to each other, and
these graphs are in good alignment with the ground truth (as indicated by low E-SHD and high AUROC).
Since these graphs already share a strong structural resemblance to the ground truth, the heuristic filter has
limited room for refinement, resulting in less substantial improvement compared to CPDAG-GFN.

These experimental results demonstrate that the heuristic filter alone is insufficient to achieve strong per-
formance; CPDAG-GFN’s competitive performance arises from the synergy between using GFlowNet as an
amortized sampler to sample top-K graphs and applying the heuristic filter.

23

Under review as submission to TMLR

K Distinction Between the CPDAG-GFN and DAG-GFN Approaches

In this section, we highlight the key differences between CPDAG-GFN and DAG-GFN. While both methods
use the GFlowNet framework and have similar names, this is where the similarities end. Our approach
diverges in several key aspects as outline below:

1. Different Learned Posterior Distribution:
DAG-GFN uses GFlowNet to learn a posterior distribution over DAGs. In contrast, CPDAG-GFN learns a
posterior distribution over equivalence classes of DAGs (i.e., CPDAGs).

2. Different Use of the GFlowNet Posterior:
DAG-GFN relies on the learned posterior to produce a set of candidate graphs where the samples are
drawn at random from this distribution. As a result, the sampled graphs may span a wide range of scores,
including high-, moderate-, and low-scoring candidates. In contrast, CPDAG-GFN leverages the posterior
as an amortized sampler, allowing the method to prioritize high-scoring graphs.

3. Different Search Space and Action Space

• DAG-GFN: Operates in the space of DAGs, where the primary constraint is to avoid generating
cycles when adding directed edges (i.e., the action space consists only of adding directed edges).

• CPDAG-GFN: The action space consist of adding directed edges, adding undirected edges, and
creating v-structures ("makeV"). Each valid action must satisfy all four properties outlined in The-
orem 1 of our paper. As a result, CPDAG-GFlownet must account for additional structural rules
beyond simple cycle prevention.

4. Different Neural Network Architecture

• The graph neural network architecture of DAG-GFN, which handles only directed edges, employs a
linear transformer. While efficient, the linear transformer may limit its capacity to capture complex,
non-linear dependencies in observational data.

• In contrast, we used Relational Graph Convolutional Network (RGCN) (see section 3.2.3). Our
choice of RGCN allows us to effectively model all three edge types (undirected, directed, and v-
structures) in CPDAGs, capturing more complex relationships and structural properties in the data.
This makes our implementation fundamentally different from that of DAG-GFN.

• Additionally, our decoder differs from that of DAG-GFN. We use SimplE, which we found provides
better performance compared to the decoder used in DAG-GFN.

5. Heuristic Filter Our method introduces a heuristic filter that improves the quality of the sampled
CPDAGs. This component is absent in DAG-GFN, where only a uniform prior is used. We found that
relying solely on a uniform prior was not sufficient for producing competitive results in our experimental
settings, motivating the development of the filter.

24

Under review as submission to TMLR

L Results for CPDAG-GFN on Larger Networks (20 and 50 Variables)

Results for d = 20 variables

Figure 24: Comparison of E-SHD and AUROC metrics on a dataset with 100 observations, generated using
ground truth graphs sampled from an Erdős-Rényi (ER-deg2) model with a noise level of 0.1. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity among
the graphs.

Results for d = 50 variables

Figure 25: Comparison of E-SHD and AUROC metrics on a dataset with 100 observations, generated using
ground truth graphs sampled from an Erdős-Rényi (ER-deg2) model with a noise level of 0.1. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity among
the graphs.

M Qualitative analysis of BayesDAG and BCDNets

In this section, we provide a qualitative comparison between two recent methods in Bayesian causal discovery:
BCDNets and BayesDAG.

In 2021, Cundy et al. (2021) proposed Bayesian Causal Discovery Nets (BCDNets), a variational inference
framework for estimating a distribution over DAGs that characterize a linear-Gaussian structural equation
model (SEM). A key strength of BCDNets lies in its use of an expressive variational family of factorized
posterior distributions over the SEM parameters and continuous relaxations for optimization, enabling scal-
ability to high-dimensional settings Cundy et al. (2021). One of the drawbacks with their method is their
strong assumption that the true data-generating process follows a linear-Gaussian SEM. While this assump-
tion is common in causal discovery, the true data-generating process may not always follow a linear-Gaussian
SEM in practice, constituting a strong modeling assumption that may limit the applicability of BCDNets

25

Under review as submission to TMLR

in settings where the underlying process deviates from a linear-Gaussian SEM. In contrast, CPDAG-GFN
avoids assuming a specific functional form for the data-generating process and learns a distribution over
equivalence classes of graphs (CPDAGs), which enables direct sampling of CPDAGs.

The second drawback of BCDNets is that it relies solely on variational inference, which may lead to com-
promised inference accuracy (Annadani et al., 2023). In response to this limitation and the one mentioned
above, Annadani et al. (2023) introduced BayesDAG, a scalable Bayesian causal discovery framework that
combines stochastic gradient Markov Chain Monte Carlo (SG-MCMC) and variational inference (VI) to
enable sampling directly from the posterior distribution over DAGs. One key strength of BayesDAG is its
applicability not only to linear causal relationships but also to nonlinear ones. This gives BayesDAG greater
flexibility than BCDNets when modeling datasets where linearity assumptions may not hold.

Experimental results from Experimental results from Annadani et al. (2023) show that BCDNets performs
competitively with BayesDAG on Erdős–Rényi graphs, and outperforms BayesDAG on scale-free graphs
under linear-Gaussian data settings for a small variable space of d=5. This raises the question of how the
performances of these two methods compare when scaling to larger variable spaces.

Although BayesDAG aims to improve inference quality by combining SG-MCMC and VI, this design choice
raises questions about the computational complexity and potential trade-offs compared to purely variational
methods like BCDNets in linear data settings. Specifically, while BCDNets may introduce inference errors
due to its reliance on variational inference alone, BayesDAG’s use of SG-MCMC may present challenges
commonly associated with MCMC methods, such as slow mixing and uncertainty in determining convergence.
In practice, assessing convergence can be difficult, and early samples may bias the inferred causal structures.
Nonetheless, BayesDAG demonstrates a clear advantage over BCDNets on nonlinear synthetic datasets,
highlighting its greater flexibility in modeling more complex causal relationships.

26

	Introduction
	Preliminaries
	Bayesian networks, Markov Equivalence Class, CPDAGs
	GFlowNet

	Method
	Heuristic Edge-Sparsity Filter
	GFlowNet setup
	State space
	Reward function
	Parameterization with graph neural networks

	Experiments
	Experimental evaluation
	Evaluation on synthetic data
	Real world data: Protein network from cell data

	Related work
	Conclusion
	Sufficiency of actions to traverse CPDAG search spaces
	Evaluation Metrics
	Additional experiments
	DAG vs CPDAG comparison
	Performance Metrics Across Varying L Values
	Additional experiments on heuristic filter on other baselines
	Defining the Mask Over Actions with CPDAG constraints
	Additional baseline: NOTEARS
	ROC curve
	Further Analysis
	Distinction Between the CPDAG-GFN and DAG-GFN Approaches
	Results for CPDAG-GFN on Larger Networks (20 and 50 Variables)
	Qualitative analysis of BayesDAG and BCDNets

