
AdaStop: sequential testing for efficient and reliable
comparisons of Deep RL Agents

Timothée Mathieu
timothee.mathieu@inria.fr

Riccardo Della Vecchia
riccardo.della-vecchia@inria.fr

Alena Shilova
alena.shilova@inria.fr

Hector Kohler
hector.kohler@inria.fr

Matheus Medeiros Centa
matheus.medeiros-centa@inria.fr

Odalric-Ambrym Maillard
odalric.maillard@inria.fr

Philippe Preux
philippe.preux@inria.fr

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, F-59000 Lille, France.

Abstract

The reproducibility of many experimental results in Deep Reinforcement Learn-
ing (RL) is under question. To solve this reproducibility crisis, we propose a
theoretically sound methodology to compare multiple Deep RL algorithms. The
performance of one execution of a Deep RL algorithm is random so that indepen-
dent executions are needed to assess it precisely. When comparing several RL
algorithms, a major question is how many executions must be made and how can
we assure that the results of such a comparison is theoretically sound. Researchers
in Deep RL often use less than 5 independent executions to compare algorithms:
we claim that this is not enough in general. Moreover, when comparing several
algorithms at once, the error of each comparison accumulates and must be taken
into account with a multiple tests procedure to preserve low error guarantees. To
address this problem in a statistically sound way, we introduce AdaStop, a new sta-
tistical test based on multiple group sequential tests. When comparing algorithms,
AdaStop adapts the number of executions to stop as early as possible while ensur-
ing that we have enough information to distinguish algorithms that perform better
than the others in a statistical significant way. We prove both theoretically and
empirically that AdaStop has a low probability of making an error (Family-Wise
Error). Finally, we illustrate the effectiveness of AdaStop in multiple use-cases,
including toy examples and difficult cases such as Mujoco environments.

1 Introduction

We consider the problem of comparing a set of Reinforcement Learning (RL) agents, based on
experimental runs only, in a theoretically sound way while using as few runs as possible.

A methodology crisis. In this paper, the end-goal is result reproducibility which consists in being able
to get the “same” result when re-running an experiment even if the seed of randomness changes [1, 7,
13]. In RL, in particular, papers that contain an experimental study usually compare the performance
of 2 or more agents facing a certain task. The common practice is to run each agent N times, typically
using different pseudo-random number seeds. From these runs, the performance of the agent is

16th European Workshop on Reinforcement Learning (EWRL 2023).

measured (e.g. using an estimate of the value of the agent policy). This N is usually set a priori,
hoping that it is enough to decide how agents rank, or at least the best one. When the training does not
take too long, it is possible to take N large and be confident about the conclusion. As it is customary
today, one may also test the agents on computationally heavy tasks, where an experimental run of one
agent may take several days to complete. In such cases, practitioners may execute only N = 3 runs,
and still proceed with conclusions. We scanned all RL papers published in the proceedings of ICML
2022: there are 82 and only one paper uses a statistical test to compare agents [19]. Most papers
use less than N = 5 runs (see Appendix H.1). For a statistician, it is clear that the N being used is
unlikely to be enough, except maybe the paper using N = 80. In any case, for all these 82 papers, we
simply do not know if the conclusion is statistically significant. Indeed, from a probabilistic point of
view, the performance of an agent is a random variable, and one run generates one sample from this
random variable. The randomness may come from the agent itself (e.g. random initialization of some
variables, or random decisions), from stochastic transitions or rewards of the environment, or both.
For these reasons, comparing the performance of two agents in a reliable way usually requires more
than a single run of each agent, to account for the statistical variability of the random variables and
hence draw the correct conclusion. This creates a tension between collecting enough runs to ensure
the correct conclusion and keeping the running time (also computational power, energy consumption)
required by all experimental runs as low as possible. Moreover, the distribution of the performance
of an agent rarely belongs to a classical parametric family and should rather be thought of as being
non-parametric (see Appendix H.2), which creates an additional difficulty.

Motivation. Motivated by these critical methodological issues, we want to introduce a sound statistical
test as a tool for practitioners to assess whether agent A1 is statistically better than learning agents
A2, ...AL. Furthermore, due to the stringent cost of performing one run of an agent, we want to
achieve a statistically significant conclusion with as few runs as possible to rank the agents. In
short, we want a sequential non-parametric multiple-hypothesis test with sound guarantees (for
drawing the right conclusion), able to stop experiments as soon as enough evidence is acquired to
rule out the wrong hypotheses. While designing such a test may be beneficial far beyond the field of
reinforcement learning (e.g. computational optimization), in this paper we focus on RL due to its
identified methodology issues and easily available benchmarks.

Literature overview of evaluation methods. The literature relevant to solving the evaluation methodol-
ogy challenge is three-fold:

Non-adaptive approaches. In the literature, two approaches for RL agent comparison have been
studied. In [6, 7], the authors show how to use hypothesis testing to test the equality between agents.
Compared to our work, their approach is non-adaptive and only compares two agents. Another line
of works can be found in [1] in which the authors compare many agents using confidence intervals.
Their approach is non-adaptive and lacks theoretical guarantees, as they do not use multiple tests.

Sequential tests. A closely related method for adaptive hypothesis testing consists in sequential tests.
Two particular classes of sequential tests that are commonly used are the Sequential Probability Ratio
test [30] and the Generalized Likelihood Ratio test [18]. In the sequential testing, one deals with
the performance of each single run, one after the other. This is not adapted to our situation because
in RL practice, one often trains several agents in parallel, hence obtaining a batch of performances
simultaneously. This motivates the use of group sequential tests [17]. In particular, the test we use is
close to the one presented in [22] in which they use rank test with group-sequential testing. Contrary
to our work, [22] does not provide theoretical guarantees.

Bandits (Best arm identification or ranking). Our objective is close to the one of bandit algo-
rithms [20]. Similar to bandits, we minimize the stopping time (as in fixed-confidence setting) of the
test and have a fixed maximum budget (as in a fixed-budget setting). In our test, we allow a type I
error with probability α ∈ (0, 1), which is similar to the fixed confidence setting while still having a
fixed budget. Compared to the fixed budget setting, we allow a larger error rate, which results in a
test that is more sample efficient than bandit algorithms.

Contribution. The main contribution of this paper is to define AdaStop, a statistical test able to decide
whether the number of runs already made is enough to rank a set of agents with some confidence level
α. AdaStop is a new sequential test; we provide the theoretical analysis that proves that AdaStop is
actually performing this test. Aside from the theoretical contribution, we report on an experimental
study that demonstrates its use. AdaStop also comes as an off-the-shelf open source program that is
easy to use.

2

By providing a statistical test to compare the performance of different agents, AdaStop improves on
experimental reproducibility (we define this term below) by making researchers run their experiments
just enough times, but not more. In this regard, AdaStop may also help to optimize the energy
consumption by avoiding unnecessary runs, while ensuring statistically valid conclusions.

Overview of the paper: In Section 2, we state the problem and make a survey of existing evaluation
workflows in RL. In Section 3, we provide a background on the statistical tools used to design AdaStop,
especially group-sequential, permutation and multiple hypotheses tests. Our main algorithm, AdaStop,
is introduced in Section 4, Algorithm 1, and its theoretical guarantees are stated in Section 4.1
Theorem 1. Finally, in Section 5, we give a detailed experimental study of potential benefits of
AdaStop to draw statistically significant comparisons of agents.

To reproduce the experiments of this paper, the python code is freely available on github. In addition,
we provide a library and command-line tool that can be used independently1.

2 Problem setting

First, we fix some vocabulary that we will use throughout the article.

• Vocabulary in RL

Agent: a program implementing an RL algorithm with its set of parameters and hyperpa-
rameters values, except the seed of the pseudo-random number generator.

Seed & run: a run is one training of an agent and the subsequent evaluations of this trained
agent. Because one run is initialized with a seed of the random number generator, it is
common to refer to the number of runs as the number of seeds.

Evaluation: cumulative reward obtained after running the policy of a trained agent for one
episode.

Performance: denoted eN (j) or eN,k(j): quantification of the performance of a trained
agent on one run. Typically, we run the agent’s policy on the environment for 100
epochs and recover the evaluation of each epoch. The performance returned is usually
the mean of these 100 evaluations.

• Vocabulary on tests

Interim: interim k is the kth iteration in a group sequential testing, when we take a decision
whether to reject the hypotheses and stop early or continue with the group sequential
test.

Boundary: denoted B
(j)
N or B(j)

N,k, the boundary is the set of all the thresholds used in the
group sequential test.

2.1 Goal and requirements for AdaStop

Given two agents A1 and A2, the goal of this article is to propose a sound way to evaluate how large
N must be to be confident that either E[e1(A1)] = E[e2(A2)] or E[e1(A1)] ̸= E[e2(A2)], i.e. if two
agents perform similarly or if one is better than the other. This leads to manage a trade-off between
the computational time and the correct assessment of the performances of A1 and A2. The main
properties of AdaStop are as follows:

Non-Parametric The distribution of agents’ performances is typically non-Gaussian, usually multi-
modal, skewed, etc.

Fixed Budget AdaStop should use a fixed maximum number of runs so that the computational time
stays reasonable.

Sample efficient AdaStop should stop as soon as possible in practice, that is, as soon as a statistically
significant conclusion can be drawn.

1Anonymous repository can be found here: AdaStop Library repo https://anonymous.4open.science/
r/adastop-1CF3, paper reproducibility repo https://anonymous.4open.science/r/Adaptive_
stopping_MC_RL-5450/.

3

https://anonymous.4open.science/r/adastop-1CF3
https://anonymous.4open.science/r/adastop-1CF3
https://anonymous.4open.science/r/Adaptive_stopping_MC_RL-5450/
https://anonymous.4open.science/r/Adaptive_stopping_MC_RL-5450/

Handling batches of data AdaStop should be able to manage batches of data to be run in parallel.
Training one instance of an agent may take a long time, but training multiple instances of an
agent is easy to parallelize, and thus should be done to speed-up computations.
Hence, AdaStop should be a distribution-free test.

A candidate statistical test that may verify all these properties can be found in group sequential
permutation test (see the textbook [17] on general group sequential tests).

2.2 Survey of current evaluation workflows in RL

In the RL community, different approaches currently exist to compare agents and most of them are
not based on any theoretically sound workflow. In what follows, we summarize some of the problems
we see with the current approaches used to compare two or more RL agents in research articles.

Theoretically sound study of Atari environments? Atari environments are famous benchmarks in
Deep RL [2]. Due to time constraints, when using these environments, it is customary to use very
few seeds for one given game (typically 3 seeds) and compare the agents on many different games.
The comparisons are then aggregated in: agent A1 is better than agent A2 on more than 20 games
over the 26 games considered. In terms of rigorous statistics, this kind of aggregation is complicated
to analyze properly because the reward distributions are not the same in all games. A2 may be better
than A1 only on some easy games: does this mean that A1 is a better than A2? Up to our knowledge,
there is not any proper statistical guarantee for this kind of comparison. Aggregating the comparisons
on several games in Atari are still an open problem, and it is beyond the scope of this article. In this
article, we suppose that we compare the agents only on one given task and leave the comparisons on
a set of different tasks for future work.

Theoretically sound comparison of multiple agents? Statistical theory tells that to compare more
than 2 agents (this is called multiple testing in statistics), we need more samples from each agent
than if we compare only two agents. The basic idea is that there are a lot more occasions to make an
error than when we compare only two agents, hence we need more data to have a lower probability
of error at each comparison. This informal argument is made precise when using multiple testing, but
the theory of multiple testing has never been used to compare RL agents. In this paper, we remedy
this with AdaStop giving a theoretically sound workflow to compare many RL agents.

How many random seeds for Mujoco environments?
The number of runs used in practice in RL is quite arbitrary and often quite small (see Appendix
H.1). An arbitrary choice of seeds do not allow us to make a statistically significant comparison of
the agents.

3 Background material on hypothesis testing

In this section we describe the basic building blocks used to construct AdaStop: group sequential
testing, permutation tests, and step-down method for multiple tests. We explain these items separately,
and then we combine them to create AdaStop in Section 4. We also provide a small recap on
hypotheses testing in the Appendix (Section B) for readers that are not used to hypothesis testing,
and we provide an index of notations (Section A) defining the notations used in this article.

Group sequential testing. To choose the number of runs N adaptively, we propose to use group
sequential testing (GST, see [17, 14, 25, 23]). GST often makes strong assumptions on the data,
in particular it is often assumed that the data is i.i.d. and drawn from a Gaussian distribution (see
[17]). With AdaStop, we propose a non-parametric approach to GST similar to [22]. In GST, the data
are obtained sequentially, but the tests are done only at interim time points, with a new block of n
data being obtained from one monitoring point to the next. At each interim, the boundary deciding
which test to reject is derived from the permutation distribution of the statistics observed across all
previously obtained data.

Permutation tests. Permutation tests (originally from [24, 11] and more recently [5, 27, 21]) are
non-parametric tests that are exact for testing the equality of distributions. This means that the type I
error of the test (e.g. the probability to make a mistake and reject the equality of two agents when
their performances are statistically the same) is controlled by the parameter of the test α.

4

Let us recall the basic formulation of a two-sample permutation test. Let X1, . . . , XN be i.i.d. sampled
from a law P and Y1, . . . , YN i.i.d sampled from a law Q, we want to test P = Q against P ̸= Q.
Let Zi = Xi if i ≤ N and Zi = Yi if i > N , Z1, . . . , Z2N is the concatenation of X1, . . . , XN and
Y1, . . . , YN . Then, the test proceeds as follows: we reject P = Q if T (id) =

∣∣∣ 1N ∑N
i=1(Zi − ZN+i)

∣∣∣
is larger than a proportion (1 − α) of the values T (σ) =

∣∣∣ 1N ∑N
i=1(Zσ(i) − Zσ(N+i))

∣∣∣ where σ

enumerates all possible permutations of {1, . . . , N}. The idea is that if P ̸= Q, then T (id) should be
large, and due to compensations, most T (σ) should be smaller than T (id). Conversely, if P = Q,
the difference of mean T (σ) will be closer to zero.

Multiple hypothesis testing. Multiple comparisons arise when a statistical analysis involves
multiple simultaneous statistical tests [21, Chapter 9]. One possible error measurement in such a
test is the family-wise error. The idea is that the confidence level for rejection probability of a true
hypothesis (type I error) generally applies only to each test considered individually, but often it is
desirable to have a confidence level for the whole family of simultaneous tests. Instead of the type I
error considered in two-sample testing, we consider the classical family-wise error rate [29] which is
defined as the probability of making at least one type I error.

Definition 1 (Family-Wise Error [29]). Given a set of hypothesis Hj for j ∈ {1, . . . , J}, its
alternative H ′

j , and I ⊂ {1, . . . , J} the set of the true hypotheses among them, then2

FWE = PHj ,j∈I (∃j ∈ I : reject Hj) .

We say that an algorithm has a weak FWE control at a joint level α ∈ (0, 1) if the FWE is smaller
than α when all the hypotheses are true, that is I = {1, . . . , J} but not necessarily otherwise. We say
it has strong FWE control if FWE is smaller than α for any non-empty set of true hypotheses I ̸= ∅
(while Ic refer to false hypotheses).

There are several procedures that can be used to control the FWE. The most famous one is Bonferroni’s
procedure [4] recalled in the Appendix (Section B). As it can be very conservative in general, we
prefer a step-down method [27] that performs better in practice because it implicitly estimates the
dependence structure of the test statistic. The step-down method that we use is described in details in
the case of two agents in the Appendix in Section F.2. The basic idea is to use the quantiles of the
permutation law of the maximum over all the comparisons of the test statistics of the tests for two
agents. This step corresponds to line 10 to 15 in AdaStop algorithm (Algorithm 1).

4 Adaptive stopping for non-parametric group-sequential multiple hypothesis
testing

We now go further and propose a new statistical test, AdaStop (see Algorithm 1), to compare the
performance of multiple agents in an adaptive rather than fixed way. We consider L ≥ 2 agents
A1, . . . , AL. The kth step of the algorithm is called the kth interim, where k ∈ {1, . . . ,K}. We
let C0 = {c1, . . . , cJ} ⊆ {1, . . . , L}2 be all the comparisons we want to make between agents.
Therefore, cj = (cj,1, cj,2) ∈ C0 denotes a comparison between a couple of agent’s indices
cj,1, cj,2 ∈ {1, . . . , L}. To simplify the notation, we indicate a comparison between two agents
directly with the index j ∈ {1, . . . , J} instead of writing cj , and we reserve the use of index j just
for this purpose. We adopt the same shorthand notation also to re-define equivalently the set of all
comparisons C0 = {1, . . . , J} using just the indices of the comparisons. I denotes the set of indices
of the true hypotheses among {1, . . . , J}.
We denote e1,i(j), . . . , e2N,i(j) the concatenation at interim i of the 2N performance evaluations
obtained for comparison j of two agents. We also consider permutations of these evaluations to
define our test statistics T

(j)
N,k below. Let S2N be the set of all the permutations of {1, . . . , 2N}.

For a comparison j, and a concatenation of the evaluations of the two agents in the comparison, we
consider a permutation σi ∈ S2N at interim i that reshuffles the order of the evaluations sending n ∈
{1, . . . , 2N} to σi(n) ∈ {1, . . . , 2N}. Note that, if n ∈ {1, . . . , N} and σi(n) ∈ {N + 1, . . . , 2N},
we are permuting an evaluation of the first agent with an evaluation of the second agent in the

2Regarding the precise meaning of the notation PHj ,j∈I, we refer to Appendix B.

5

comparison and vice versa. It can also happen that we instead permute evaluations of the same agents.
The difference between the two cases is important for the definition of the following permutation
statistic:

T
(j)
N,k(σ1:k) =

∣∣∣∣∣
k∑

i=1

(
N∑

n=1

eσi(n),i(j)−
2N∑

n=N+1

eσi(n),i(j)

)∣∣∣∣∣ . (1)

In other words, T (j)
N,k(σ1:k) is the absolute value of the sum of differences of all evaluations until

interim k after consecutive permutations of the concatenation of the two agents’ evaluations by
σ1, . . . , σk ∈ S2N . Let C ⊆ C0 be a subset of the set of considered hypothesis and denote

T
(C)

N,k(σ1:k) = max
j∈C

T
(j)
N,k(σ1:k) .

AdaStop: adaptive stopping algorithm using step-down method and group sequential permu-
tation tests. Algorithm 1 specifies the AdaStop test. It depends on the values of the boundary
thresholds. Some implementation details are discussed below.

Choice of permutations. Instead of using all the permutations as it was done previously when
comparing two agents, one may use a random subset of all permutations Sk ⊂ {σ1:k, ∀i ≤ k, σi ∈
S2N} to speed-up computations. The theoretical guarantees persist as long as the choice of the
permutations is made independent on the data. Using a small number of permutations will decrease
the total power of the test, but with a sufficiently large number of random permutations (typically for
the values of N and K considered, 104 permutations are sufficient) the loss in power is acceptable.

TN,k is invariant by permutation of the first half and the second half of a group. In essence, choosing
a permutation is equivalent to choosing the signs in

∑N
n=1 eσi(n),i(j)−

∑2N
n=N+1 eσi(n),i(j). And

because we take the absolute value, we obtain that there are 1
2

(
2N
N

)
possible permutations in the first

interim that give unique values to TN,1. Then, by choosing permutation for the other interim, there

are 1
2

(
2N
N

)k
possible permutations giving unique values to TN,k.

Then, we use a parameter m ∈ N and the number of permutations used at interim k will be
|Sk| = mk = min

(
m, 1

2

(
2N
N

)k)
, i.e. whenever possible, we use all the permutations and if this is

too much, we use random permutations.

Definition of the boundaries. With these permutations, we define B
(C)
N,k such that

B
(C)
N,k = inf

b > 0 :
1

mk

∑
σ∈Ŝk

1{T (C)

N,k(σ1:k) ≥ b} ≤ qk

 . (2)

where
∑k

j=1 qj ≤
kα
K and where Ŝk is the subset of Sk such that the statistic associated to the

permutation would not have rejected before. Formally, Ŝk is the following set of permutations

Ŝk =

{
σ1:k : ∀m < k, T

(C)

N,m(σ1:m) ≤ B
(C)
N,m

}
. Note that q1 is not equal to α/K. Due to dis-

creetness (we use an empirical quantile over a finite number of values), q1 is chosen equal to
⌊ α
2K

(
2N
N

)
⌋/(12

(
2N
N

)
), and similarly q2 is chosen to be as large as possible while having q1 + q2

smaller than 2α/K, and so on for qi for 3 ≤ i ≤ k.

4.1 Theoretical guarantees

One of the basic properties of two-sample permutation tests is that when the null hypothesis is true,
then all permutations are as likely to give a certain value and hence the law given the data is the
uniform distribution over all permutations. Then, as a consequence of our choice of BN,k as a
quantile of the law given the data, the algorithm has a probability to wrongly reject the hypothesis
bounded by α. This informal statement is made precise in the following theorem.
Theorem 1 (Controlled family-wise error). Suppose that α ∈ (0, 1), and consider the multiple testing
problem Hj : Pj = Pk against H ′

j : Pj ̸= Pk for all the couples (j, k) ∈ {c1, . . . , cJ}. Then, the

6

Algorithm 1: AdaStop (main algorithm)
Parameters: Agents A1, A2, . . . , AL, environment E , comparison pairs (ci)i≤L where ci is a

couple of two agents that we want to compare. Integers K,N ∈ N∗, test parameter
α.

1 Define LNK different seeds (sl,n,k)l≤L,n≤N,k≤K .
2 Set C = {1, . . . , J} the set of indices for the comparisons we want to do.
3 for k = 1, . . . ,K do
4 for l = 1...L do
5 Train agent Al on environment E with the seeds sl,1,k, . . . , sl,N,k.
6 Collect the N evaluations of agent Al.
7 end
8 while True do
9 Compute the boundaries B(C)

N,k from Equation (2).

10 if T (C)
N,k(id) > B

(C)
N,k then

11 Reject Hjmax where jmax = argmax
(
T

(j)

N,k(id), j ∈ C
)

.

12 Update C = C \ {jmax}
13 else
14 Break the while loop.
15 end
16 end
17 if C = ∅ then Break the loop and returns the answers. ;
18 if k = K then Then accept all hypotheses remaining in C. ;
19 end

test resulting from Algorithm 1 has a strong control on the Family-wise error for the multiple test, i.e.
if we suppose that all the hypotheses Hi, i ∈ I are true and the others are false, then

P (∃j ∈ I : reject Hj) ≤ α.

The proof of Theorem 1 is postponed to the Appendix (Section C). Remark that the theoretical results
are not entirely satisfying: instead of comparing the means we compare the probabilities, and we
don’t have information on the power of the test. It can be shown (Section E) that for N large the test
of comparing the means µj = µk versus µj ̸= µk has the right guarantees (FWE smaller than α) and
the power goes to 1 but we have no finite-time guarantees on this.

4.2 Heuristic for early accept for even faster decisions

AdaStop only rejects hypotheses early, it is in addition also possible to accept some hypotheses early.
When comparing four agents, we could have Agent A1 performs similarly to A2 and A3 performs
similarly to A4. In such a case, AdaStop would use up all the maximum number of comparisons and
would stop only when k = K because it will never be able to reject the comparisons A1 vs. A2, and
A3 vs. A4. To solve this problem, we early accept the equality of agents that are statistically very
similar. We proceed by analogy with the early reject methodology and construct a boundary under
which the minimum of the test statistics T (j)

N,k must be to accept. The details of the implementation
and its effect on the Walker environment are given in the Appendix (see Section G).

5 Experimental study

In this section, we first illustrate the statistical properties of AdaStop on toy examples for which
the performances of agents are simulated. Then, we compare empirically AdaStop to non-adaptive
approach. Finally, we exemplify the use of AdaStop on a real case to compare several deep-RL
agents, each from a different library. We believe this is a key section demonstrating the strength of
our approach from a practitioner perspective.

7

5.1 Toy examples

To start with, let us demonstrate the execution of our algorithm on toy examples. In what follows,
we use N (µ, σ2) for the normal distribution with the mean µ and the standard deviation σ, t(µ, ν)
for the t-Student distribution with the mean µ and the degree of freedom ν, MN

1
2

(µ1, σ
2
1 ;µ2, σ

2
2)

for the mixture of Gaussians N (µ1, σ
2
1) and N (µ2, σ

2
2) andMt

1
2

(µ1, ν1;µ2, ν2) for the mixture of
t-Student distributions t(µ1, ν1) and t(µ2, ν2). In the two examples, we suppose that we compare two
agents A1 and A2 for which we know the distributions of their performances. Those two examples
are summarized in Fig. 1 (top), where ∆ denotes the distance between two modes of the mixtures
(∆ = |µ1 − µ2|). For both cases, we execute AdaStop with K = 5, N = 5 and α = 0.05. We also
limit the maximum number of permutations to B = 10 000. These two cases are executed without
early accept. In Fig. 1 (bottom), we plot the rate of rejection of the null hypothesis, stating that
compared distributions are the same. By varying ∆ from 0 to 1, we observe the evolution of the
power of tests. The bottom line (Case 1) shows that the power of the test stays around 0.05 level for
all ∆. Indeed, even though the distributions in the comparison are different, their means remain the
same. If the null hypothesis states that the means are the same, then AdaStop will return the correct
answer with type I error not larger than 0.11 for α = 0.05. This is an illustration of the fact that in
addition to performing a test on the distributions, AdaStop approximates the test on the means as
shown theoretically in the asymptotic result in Appendix Section E and as discussed at the end of
Section 4.1. In contrast, the top line (Case 2) demonstrates the increasing trend, reaching the level
close to 1 after ∆ = 0.6, which corresponds to the case when two modes are separated by 3 standard
deviations from both sides. To obtain error bars, we have executed each comparison M = 5 000
number of times, and we plot confidence intervals corresponding to 3σ/

√
M (more than 99% of

confidence) where σ is a standard deviation of the test decision. In addition to Cases 1 and 2, we also
provide a third experiment with a comparison of 10 agents in Appendix Section H.3.

Case 1 A1 N (0, 0.01)
A2 MN

1
2

(−∆
2 , 0.01;

∆
2 , 0.01)

Case 2 A1 N (0, 0.01)
A2 MN

1
2

(0, 0.01;∆, 0.01)

0.5 0.0 0.5

= 0.0

= 0.2

= 0.4

= 0.6

Case 1

0.0 0.5 1.0

Case 2

0 1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

Ca
se

 2
Ca

se
 1

re
je

ct
io

n
fre

qu
en

cy 0.038
(±0.008)

0.288
(±0.019)

0.711
(±0.019)

0.888
(±0.013)

0.948
(±0.009)

0.972
(±0.007)

0.982
(±0.006)

0.987
(±0.005)

0.988
(±0.005)

0.990
(±0.004)

0.038
(±0.008)

0.037
(±0.008)

0.045
(±0.009)

0.054
(±0.010)

0.068
(±0.011)

0.077
(±0.011)

0.084
(±0.012)

0.092
(±0.012)

0.095
(±0.012)

0.095
(±0.012)

0.00

0.05

0.20
0.40
0.600.80

Figure 1: Toy examples 1 and 2 with an illustration of Gaussian mixtures (top) and rejection frequency
of null hypothesis according to ∆ (bottom).

5.2 Comparison with non-adaptive approach

The article [7] shares the same objective as ours. However, it uses non-adaptive tests unlike AdaStop.
We follow their experimental protocol and compare AdaStop and non-adaptive approaches empirically
in terms of statistical power as a function of the sample size (number of seeds). In particular, we use
the data they provide for a SAC agent and for a TD3 agent evaluated on HalfCheetah (See Fig. 8
in Appendix). Similarly to [7, Table 15], we compute the empirical statistical power of AdaStop
as a function of the number of seeds of the RL algorithms (Table 1). To compute the empirical
statistical power for a given number of seeds, we make the hypothesis that the distributions of SAC
and TD3 agents evaluations are different, and we count how many times AdaStop decides that one

8

https://github.com/flowersteam/rl_stats/tree/master/data

Table 1: Empirical statistical power and effective number of seeds used by AdaStop as a function of
the total number of seeds (N ×K) when comparing SAC and TD3 on HalfCheetah. The number of
permutations is 10 000 and α is 0.05. AdaStop is run 1000 times for every (N,K) pair. The shades
of blue are proportional to a value in [0, 1] (we use the same color scheme as in [6])

N\K 2 3 4 5 6
1 0.0 (2.0) 0.0 (3.0) 0.277 (4.0) 0.465 (5.0) 0.56 (6.0)
2 0.005 (4.0) 0.33 (6.0) 0.531 (6.96) 0.602 (8.345) 0.704 (9.198)
3 0.213 (5.984) 0.506 (8.085) 0.627 (10.212) 0.689 (11.02) 0.785 (11.52)
4 0.371 (7.616) 0.611 (9.648) 0.744 (11.7) 0.82 (12.08) 0.845 (13.89)
5 0.465 (9.044) 0.691 (11.031) 0.78 (13.28) 0.853 (14.27) 0.884 (14.532)
6 0.534 (10.4) 0.73 (12.306) 0.837 (14.124) 0.89 (14.94) 0.911 (15.978)
7 0.599 (11.358) 0.779 (13.404) 0.879 (14.916) 0.92 (15.495) 0.939 (16.404)
8 0.635 (12.322) 0.818 (13.95) 0.885 (15.824) 0.942 (16.03) 0.961 (17.268)

agent is better than the other (number of true positives). As the test is adaptive, we also report the
effective number of seeds necessary to make a decision with 0.95 confidence level. For each number
of seeds, we have launched AdaStop 1000 times. For example, when comparing SAC and TD3 agents
performances on HalfCheetah using AdaStop with N = 4 and K = 5, the maximum number of
seeds that could be used is N ×K = 20 without early stopping. However, we observe in Table 1 that
when N = 4 and K = 5, AdaStop can make a decision with a power of 0.82 using only 12 seeds.
In [7, Table 15], the minimum number of seeds required to obtain a statistical power of 0.8 when
comparing SAC and TD3 agents is 15 when using a t-test, a Welch test, or a bootstrapping test.

5.3 AdaStop for Deep Reinforcement Learning

In this section, we use AdaStop to compare four commonly-used Deep RL algorithms on the MuJoCo3

[28] benchmark for high-dimensional continuous control, as implemented in Gymnasium4. More
specifically, we train agents on the Ant-v3, HalfCheetah-v3, Hopper-v3, Humanoid-v3, and Walker-v3
environments using PPO from rlberry [9], SAC from Stable-Baselines3 [26], DDPG from CleanRL
[16], and TRPO from MushroomRL [8]. PPO, SAC, DDPG, and TRPO are all deep reinforcement
learning algorithms used for high-dimensional continuous control tasks. We chose these algorithms
because they are commonly used and represent a diverse set of approaches from different RL libraries.
We use different RL libraries in order to demonstrate the flexibility of AdaStop, as well as to provide
examples on how to integrate these popular libraries with AdaStop. For each algorithm, we fix the
hyperparameters to those used by the library authors in their benchmarks for one of the MuJoCo
environments. In Appendix H.5, we provide the values that were used and further discuss the
experimental setup.

We compare the four agents in each environment using AdaStop with N = 5 and K = 6. Fig. 2
shows the AdaStop decision tables in each environment, as well as the number of evaluations per
agent and environment. As expected, SAC ranks first in every environment. In contrast, DDPG is
ranked last in four out of five environments. Such performance may be a product of the restriction to
deterministic policies, which hurts exploration in high-dimensional continuous control environments
such as the MuJoCo benchmarks. Furthermore, we observe that the expected ordering between PPO
and TRPO is generally respected, with TRPO outperforming PPO in only one environment. Finally,
we note that PPO performs particularly well in some environments with its performance comparable
to SAC, while also being the worst-performing algorithm for HalfCheetah-v3. Overall, the AdaStop
rankings in these experiments are not unexpected.

Moreover, our experiments demonstrate that AdaStop can make decisions with fewer evaluations,
thus reducing the computational cost of comparing Deep RL agents. For instance, as expected,
SAC outperformed other agents on the environment HalfCheetah-v3, and AdaStop required only
five evaluations to make all decisions involving SAC. Additionally, we observed that the decisions
requiring the entire budget of NK = 30 evaluations were the ones in which AdaStop determined that
the agents were equivalent in terms of their performance. With the early-accept heuristic proposed

3We use MuJoCo version 2.1, as required by https://github.com/openai/mujoco-py
4https://github.com/Farama-Foundation/Gymnasium

9

DDPG TRPO PPO SAC

DDPG

TRPO

PPO

SAC

 → ≤ ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≥ ↓

Ant-v3

DDPG TRPO PPO SAC

 → ≥ ↓ → ≥ ↓ → ≤ ↓

→ ≤ ↓ → ≥ ↓ → ≤ ↓

→ ≤ ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≥ ↓

HalfCheetah-v3

DDPG TRPO PPO SAC

 → = ↓ → ≤ ↓ → ≤ ↓

→ = ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → = ↓

→ ≥ ↓ → ≥ ↓ → = ↓

Hopper-v3

DDPG TRPO PPO SAC

DDPG

TRPO

PPO

SAC

 → ≤ ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≥ ↓

Humanoid-v3

DDPG TRPO PPO SAC

 → = ↓ → ≤ ↓ → ≤ ↓

→ = ↓ → ≤ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≤ ↓

→ ≥ ↓ → ≥ ↓ → ≥ ↓

Walker2d-v3

Ant

Cheet
ah

Hopper

Humanoid

Walk
er2

d

15 25 30 15 30

15 25 30 15 30

15 25 30 15 10

15 5 30 15 10

Used Budget

Figure 2: AdaStop decision tables for each MuJoCo environment, and the budget used to make these
decisions (bottom right). See Appendix H.5 for further details.

in 4.2 and detailed in the Appendix (Section G), this process can be sped-up and for instance in the
Walker2d-v3 environment, early accept allows us to take all the decisions after only 10 seeds.

6 Conclusion and future works

In this paper, we introduce AdaStop which is a sequential group test aiming at ranking the performance
of agents. Our goal is to provide statistical grounding to define the number of times a set of agents
should be run to be able to confidently rank them, up to some level α. This is the first such test,
and we think this is a major contribution to computational studies in reinforcement learning and
other domains. Using AdaStop is simple, and we provide open source software to use it. From a
statistical point of view, we have been able to demonstrate the soundness of AdaStop as a statistical
test. Experiments demonstrate how AdaStop may be used in practice, even in a retrospective manner
using logged data.

Acknowledgments

O-A. Maillard and Ph. Preux acknowledge the support of the Métropole Européenne de Lille (MEL),
ANR, Inria, Université de Lille, through the AI chair Apprenf number R-PILOTE-19-004-APPRENF.
Riccardo Della Vecchia is thankful for the funding received by the CHIST-ERA Project Causal
eXplainations in Reinforcement Learning – CausalXRL. 5 Alena Shilova acknowledges the funding
coming by the Challenge HPC-BigData INRIA Project LAB. 6 Timothée Mathieu is thankful for the
funding received by the SR4SG Inria exploratory action7. All the authors acknowledge Inria, Scool
for the working environment.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304–29320, 2021.

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

5https://www.chistera.eu/projects/causalxrl
6https://project.inria.fr/hpcbigdata/
7https://project.inria.fr/sr4sg/home/

10

https://www.chistera.eu/projects/causalxrl
https://project.inria.fr/hpcbigdata/
https://project.inria.fr/sr4sg/home/

[3] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289–300, 1995.

[4] Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R
Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62, 1936.

[5] EunYi Chung and Joseph P. Romano. Exact and asymptotically robust permutation tests. The
Annals of Statistics, 41(2):484 – 507, 2013.

[6] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical
power analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295,
2018.

[7] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A hitchhiker’s guide to statistical
comparisons of reinforcement learning algorithms. arXiv preprint arXiv:1904.06979, 2019.

[8] Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Mushroomrl:
Simplifying reinforcement learning research. Journal of Machine Learning Research, 22(131):1–
5, 2021.

[9] Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xuedong
Shang, and Michal Valko. rlberry - A Reinforcement Learning Library for Research and
Education, 10 2021.

[10] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case
study on ppo and trpo. arXiv preprint arXiv:2005.12729, 2020.

[11] Ronald Aylmer Fisher. Design of experiments. British Medical Journal, 1(3923):554, 1936.

[12] Yannis Flet-Berliac, Reda Ouhamma, Odalric-Ambrym Maillard, and Philippe Preux. Learning
value functions in deep policy gradients using residual variance. In ICLR 2021-International
Conference on Learning Representations, 2021.

[13] Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. What does research reproducibility
mean? Science translational medicine, 8(341):341ps12–341ps12, 2016.

[14] KK Gordon Lan and David L DeMets. Discrete sequential boundaries for clinical trials.
Biometrika, 70(3):659–663, 1983.

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[16] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[17] Christopher Jennison and Bruce W Turnbull. Group sequential methods with applications to
clinical trials. CRC Press, 1999.

[18] Emilie Kaufmann and Wouter M Koolen. Mixture martingales revisited with applications
to sequential tests and confidence intervals. The Journal of Machine Learning Research,
22(1):11140–11183, 2021.

[19] Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum rein-
forcement learning via constrained optimal transport. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 11341–11358. PMLR, 17–23 Jul 2022.

[20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

11

[21] Erich Leo Lehmann, Joseph P Romano, and George Casella. Testing statistical hypotheses,
volume 3. Springer, 2005.

[22] Cyrus R Mehta, Nitin Patel, Pralay Senchaudhuri, and Anastasios Tsiatis. Exact permutational
tests for group sequential clinical trials. Biometrics, pages 1042–1053, 1994.

[23] Sandro Pampallona and Anastasios A Tsiatis. Group sequential designs for one-sided and
two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis.
Journal of Statistical Planning and Inference, 42(1-2):19–35, 1994.

[24] Edwin JG Pitman. Significance tests which may be applied to samples from any populations.
Supplement to the Journal of the Royal Statistical Society, 4(1):119–130, 1937.

[25] Stuart J Pocock. Group sequential methods in the design and analysis of clinical trials.
Biometrika, 64(2):191–199, 1977.

[26] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[27] Joseph P. Romano and Michael Wolf. Exact and approximate stepdown methods for multiple
hypothesis testing. SSRN Journal Electronic Journal, 2003.

[28] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[29] John Wilder Tukey. The problem of multiple comparisons. Multiple comparisons, 1953.

[30] A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics,
16(2):117 – 186, 1945.

12

A Index of notations

• E[X]: expectation of the random variable X .

• Sn: set of all the permutations of {1, . . . , n}.
• Hj : denotes hypothesis j in a multiple test, H ′

j denotes the alternative of hypothesis Hj .

• σ: generic notation for a permutation. Element of Sn for some n ∈ N∗.

• ei(j) or ei,k(j): performance measure that corresponds to run number i when doing the test
for comparison j. See the beginning of Section 2.

• σ1:k: shorthand for the permutation that applies each σi to the elements (en,i)n≤2N , for
interims from i = 1 to i = k.

• TN (σ) and T
(j)
N,k(σ): test statistics. See Equation (9) and Equation (1).

• cj : denotes a comparison. This is a couple in {1, . . . , L}2.

• j: shorthand for denoting comparison cj .

• C0: set of all the comparisons done in AdaStop.

• C: current set of undecided comparisons in AdaStop, a subset of C0.

• Ck: state of C at interim k in AdaStop.

• I: set of true hypotheses.

• FWE: family-wise error, see Definition 1.

• N (µ, σ2): law of a Gaussian with mean µ and variance σ2.

• t(µ, ν): law of a translated Student distribution with center of symmetry µ and ν degrees of
freedom.

• MN
1
2

(µ1, σ
2
1 ;µ2, σ

2
2): mixture of two normal distributions.

• Mt
1
2

(µ1, ν1;µ2, ν2): mixture of two Student distributions.

• PHj ,j∈I: probability distribution when Hj , j ∈ I are true and Hj , j /∈ I are false.

B Recap on hypothesis testing

To be fully understood, this paper requires the knowledge of some notions of statistics. In the hope of
widening the audience of this paper, we provide a short recap of essential notions of statistics related
to hypothesis testing.

B.1 Type I and type II error

In its most simple form, a statistical test is aimed at deciding, whether a given collection of data
X1, . . . , XN adheres to some hypothesis H0 (called the null hypothesis), or if it is a better fit for
an alternative hypothesis H1. Typically, H0 : µ = µ0 and H1 : µ ̸= µ0 where µ is the mean of
the distribution of X1, . . . , XN . Because µ is unknown, it has to be estimated using the data, and
often that is done using the empirical mean µ̂ = 1

N

∑N
i=1 Xi. µ̂ is random and some deviation from

µ is to be expected, the theory of hypothesis tests is concerned in finding a threshold c such that if
|µ̂− µ0| > c then we say that H0 is false because the deviation is more than what was expected by
the theory.

A slightly more complex problem is to consider two samples X1, . . . , XN and Y1, . . . , YN and do a
two-sample test deciding whether the mean of the distribution of the Xi’s is equal to the mean of the
distribution of the Yi’s.

In both cases, the result of a test is either accept H0 or reject H0. This answer is not a ground truth:
there is some probability that we make an error. However, this probability of error is often controlled
and can be decomposed in type I error and type II errors (often denoted α and β respectively, see
Table 2). Please note that the problem is not symmetric: failing to reject the null hypothesis does not
mean that the null hypothesis is true. It can be that there is not enough data to reject H0.

13

H0 is true H0 is false
We accept H0 No error type II error β
We reject H0 type I error α No error

Table 2: Type I and type II error.

B.2 Multiple tests and FWE

When doing simultaneously several statistical tests, one must be careful that the error of each test
accumulate and if one is not cautious, the overall error may become non-negligible. As a consequence,
multiple strategies have been developed to deal with multiple testing problem.

To deal with the multiple testing problem, the first step is to define what is an error. There are several
definitions of error in multiple testing, among which is the False discovery rate, which measures the
expected proportion of false rejections. Another possible measure of error is the Family-wise error
(this is the error we use in this article) and which is defined as the probability to make at least one
false rejection:

FWE = PHj ,j∈I (∃j ∈ I : reject Hj) ,

where PHj ,j∈I is used to denote the probability when I is the set of indices of the hypotheses that are
actually true (and Ic the set of hypotheses that are actually false). To construct a procedure with FWE
smaller than α, the simplest method is perhaps Bonferroni correction [4] in which one would use one
statistical test for each of the J couple of hypotheses to be tested. And then, one would tune each
hypothesis test to have a type I error α/J where J is the number of tests that have to be done. The
union bound then implies that the FWE is bounded by α:

FWE = PHj ,j∈I

(⋃
j∈I

{reject Hj}
)
≤
∑
i∈I

PHj ,j∈I (reject Hj) ≤ |I|
α

J
≤ α.

which is the probability of rejecting the hypothesis given that it is actually true. Bonferroni correction
has the advantage of being very simple to implement, but it is often very conservative and the final
FWE would be most often a lot smaller than α. An alternative method that performs well in practice
is the step-down method that we use in this article and which is presented in Section F.2.

C Proof of Theorem 1

The proof of Theorem 1 is based on an extension of the proof of the control of FWE in the non-
sequential case and the proof of the step-down method (see [27]). The interested reader may refer to
Lemma 1 in the Appendix where we reproduce the proof of the bound on FWE for simple permutation
tests as it is a good introduction to permutation tests. The proof proceeds as follows: first, we prove
weak control on the FWE by decomposing the error as the sum of the errors on each interim and
using the properties of permutation tests to show that the error done at each interim is controlled by
α/K. Then, using the step-down method construction, we show that the strong control of the FWE
is a consequence of the weak control because of monotony properties on the boundary values of a
permutation test.

C.1 Simplified proof for L = 2 agents, and K = 1

The proof of the theorem for this result is a bit technical. We begin by showing the result in a very
simplified case with L = 2 agents, and K = 1.
Lemma 1. Let X1, . . . , XN be i.i.d from a distribution P and Y1, . . . , YN be i.i.d. from a distribution
Q. Denote Z2N

1 = X1, . . . , XN , Y1, . . . , YN be the concatenation of XN
1 and Y N

1 . Let α ∈ (0, 1)
and define BN such that

BN = inf

{
b > 0 :

1

(2N)!

∑
σ∈S2N

1

{
1

N

N∑
i=1

(Zσ(i) − Zσ(N+i)) > b

}
≤ α

}
.

Then, if P = Q, we have

P

(
1

N

N∑
i=1

(Xi − Yi) > BN

)
≤ α

14

Proof. Denote T (σ) = 1
N

∑N
i=1(Zσ(i) − Zσ(n+i)). Since P = Q, for any σ, σ′ ∈ S2N we have

T (σ)
d
=T (σ′). Then, because BN does not depend on the permutation σ (but it depends on the values

of Z2N
1 , we have, for any σ ∈ S2N

P (T (id) > BN) = P (T (σ) > BN)

Now, take the sum over all the permutations,

P (T (id) > BN) =
1

(2N)!

∑
σ∈S2N

E [1{T (σ) > BN}]

= E

[
1

(2N)!

∑
σ∈S2N

1{T (σ) > BN}

]
≤ α

which proves the result.

Next, we prove weak control in the general case.

C.2 Proof of Theorem 1

In this section, we use the shorthand P instead of PHj ,j∈I and omit Hj , j ∈ I because I will always
be the set of true hypotheses and the meaning should be clear from the context.

Weak control on FWE: First, we prove weak control on the FWE. This means that we suppose
that I = {1, . . . , J}: all the hypotheses are true, and we control the probability to make at least one
rejection. We have,

FWE = P (∃j ∈ I : Hj is rejected) .
We decompose the FWE on the diverse interims.

FWE =

K∑
k=1

P
(
T

(I)

N,k(id) > B
(I)
N,k,NRk(id)

)
, (3)

where NRk(σ1:k) = {∀m < k, T
(I)

N,m(σ1:k) ≤ B
(I)
N,m} is the event on which we did not reject before.

We use σ1:k and not only id as this will be useful later on (See Equation (4)).

Then, similarly as in the proof of Lemma 1, we want to use the invariance by permutation to make
the link with the definition of B(I)

N,k. For this purpose, we introduce the following lemma, that we
prove in Appendix D.
Lemma 2. We have that for k ≤ K, for any σ1:k concatenation of k permutations,

(T
(I)

N,l(id), B
(I)
N,l)l≤k

d
= (T

(I)

N,l(σ1:l), B
(I)
N,l)l≤k .

Using Lemma 2, we have for any σ1:k

P
(
T

(I)

N,k(id) > B
(I)
N,k,NRk(id)

)
= P

(
T

(I)

N,k(σ1:k) > B
(I)
N,k,NRk(σ1:k)

)
(4)

Hence, injecting this in Equation (3),

FWE ≤
K∑

k=1

1

mk

∑
σ1:k∈Sk

P
(
T

(I)

N,k(σ1:k) > B
(I)
N,k,NRk(σ1:k)

)

=

K∑
k=1

E

[
1

mk

∑
σ1:k∈Sk

1

{
T

(I)

N,k(σ1:k) > B
(I)
N,k,NRk(σ1:k)

}]
Then, use that σ1:k ∈ Ŝk if and only if σ1:k ∈ Sk and NRk(σ1:k) is true. Hence,

FWE ≤
K∑

k=1

E

 1

mk

∑
σ1:k∈Ŝk

1

{
T

(I)

N,k(σ1:k) > B
(I)
N,k

} ≤ K∑
k=1

qk ≤ α

where we used the definition of B(I)
N,k to make the link with α

15

Strong control of FWE: To prove strong control, it is sufficient to show the following Lemma
(see Appendix D for a proof), which is an adaptation of the proof of step-down multiple-test strong
control of FWE from [27].
Lemma 3. Suppose that I ⊂ {1, . . . , J} is the set of true hypotheses. We have

FWE = P (∃j ∈ I : Hj is rejected) ≤ P
(
∃k ≤ K : T

(I)

N,k(id) > B
(I)
N,k

)
.

Lemma 3 shows that to control the FWE, it is sufficient to control the probability to reject on I

given by P
(
∃k ≤ K : T

(I)

N,k(σ1:k) > B
(I)
N,k

)
and this quantity, in turns, is exactly the FWE of the

restricted problem of testing (Hj)j∈I against (H ′
j)j∈I. In other words, Lemma 3 says that to prove

strong FWE control for our algorithm, it is sufficient to prove weak FWE control, and we already did
that in the first part of the proof.

D Proof of Lemmas

D.1 Proof of Lemma 2

In this section, for an easier understanding, we change the notation for the performance measure
e
(j)
n,k(σ) and denote by en,k(Ai) the nth performance value of agent Ai at interim k. In effect, this

means that for the comparison j of agent Ai versus agent Al, we have the equality en,k(Ai) = e
(j)
n,k(id)

for n ≤ N and en,k(Al) = e
(j)
N+n,k(id).

We denote the comparisons by (ci)i∈I, they describe a graph with the nodes being the agents denoted
1, . . . , L and (j1, j2) has an edge if (j1, j2) ∈ (ci)i∈I is one of the comparisons that corresponds to a
true hypothesis. This graph is not necessarily connected, we denote C(i) the connected component
to which node a (e.g. agent a) belongs, i.e. for any a1, a2 ∈ C(a) there exists a path going from a1
to a2. Remark that C(a) cannot be equal to the singleton {a}, because it would mean that all the
comparisons with a are in fact false hypotheses, and then a would not belong to a couple in I.

Then, it follows from the construction of permutation test that jointly on k ≤ K and a1, a2 ∈ C(i),
we have T

(a1,a2)
N,k (id)

d
= T

(a1,a2)
N,1 (σ1:k) for any σ1, . . . , σk ∈ S2N .

Let us illustrate that on an example. Suppose that N = 2 and J = 3. Consider the permutation

σ1 =

(
1 2 3 4
3 1 2 4

)
Because all the evaluations are i.i.d., we have the joint equality in distribution(|e1,1(A1) + e2,1(A1)− e1,1(A2)− e2,1(A2)|
|e1,1(A3) + e2,1(A3)− e1,1(A2)− e2,1(A2)|
|e1,1(A1) + e2,1(A1)− e1,1(A3)− e2,1(A3)|

)
d
=

(|e1,1(A1) + e2,1(A2)− e1,1(A1)− e2,1(A2)|
|e1,1(A3) + e2,1(A2)− e1,1(A3)− e2,1(A2)|
|e1,1(A1) + e2,1(A3)− e1,1(A1)− e2,1(A3)|

)
and hence,

(T
(j)
N,1(id))1≤j≤3

d
= (T

(j)
N,1(σ1))1≤j≤3.

For k = 2, we have for σ2 = σ1,
|e1,1(A1) + e2,1(A1)− e1,1(A2)− e2,1(A2)|
|e1,1(A3) + e2,1(A3)− e1,1(A2)− e2,1(A2)|
|e1,1(A1) + e2,1(A1)− e1,1(A3)− e2,1(A3)|

|e1,1(A1) + e2,1(A1)− e1,1(A2)− e2,1(A2) + e1,2(A1) + e2,2(A1)− e1,2(A2)− e2,2(A2)|
|e1,1(A3) + e2,1(A3)− e1,1(A2)− e2,1(A2) + e1,2(A3) + e2,2(A3)− e1,2(A2)− e2,2(A2)|
|e1,1(A1) + e2,1(A1)− e1,1(A3)− e2,1(A3) + e1,2(A1) + e2,2(A1)− e1,2(A3)− e2,2(A3)|

d
=

|e1,1(A1) + e2,1(A2)− e1,1(A1)− e2,1(A2)|
|e1,1(A3) + e2,1(A2)− e1,1(A3)− e2,1(A2)|
|e1,1(A1) + e2,1(A3)− e1,1(A1)− e2,1(A3)|

|e1,1(A1) + e2,1(A2)− e1,1(A1)− e2,1(A2) + e1,2(A1) + e2,2(A2)− e1,2(A1)− e2,2(A2)|
|e1,1(A3) + e2,1(A2)− e1,1(A3)− e2,1(A2) + e1,2(A3) + e2,2(A2)− e1,2(A3)− e2,2(A2)|
|e1,1(A1) + e2,1(A3)− e1,1(A1)− e2,1(A3) + e1,2(A1) + e2,2(A3)− e1,2(A1)− e2,2(A3)|

16

and then, we get jointly

(T
(j)
N,k(id))1≤j≤3,k≤2

d
= (T

(j)
N,k(σ1 · σ2))1≤j≤3,k≤2.

This reasoning can be generalized to general N , J and K:

(T
(a1,a2)
N,k (id))k≤K,a1∈C(i),a2∈C(i)

d
= (T

(a1,a2)
N,k (σ1:k))k≤K,a1∈C(i),a2∈C(i).

Then, use that by construction, the different connected component C(i) are independent of one
another and hence,

(T
(ci)
N,k (id))k≤K,ci∈I

d
= (T

(ci)
N,k (σ1:k))k≤K,ci∈I.

The result follows from taking the maximum on all the comparisons, and because the boundaries do
not depend on the permutation.

D.2 Proof of Lemma 3

Denote by Ck the (random) value of C at the beginning of interim k. We have,
FWE = P (∃j ∈ I : Hj is rejected)

= P
(
∃k ≤ K : T

(Ck)

N,k (id) > B
(Ck)
N,k , argmax

j∈Ck

T
(j)

N,k(id) ∈ I

)
. (5)

Then, let k0 correspond to the very first rejection (if any) in the algorithm. Having that the argmax is
attained in I,

T
(Ck0

)

N,k0
(id) = max{T (j)

N,k0
(id), j ∈ Ck0} = max{T (j)

N,k0
(id), j ∈ I} = T

(I)

N,k0
(id)

Moreover, having Ck0 ⊃ I, we have B
(Ck0

)

N,k0
≥ B

(I)
N,k0

. Injecting these two relations in Equation (5),
we obtain

FWE ≤ P
(
∃k ≤ K : T

(I)

N,k(id) > B
(I)
N,k, argmax

j∈Ck

T
(j)

N,k(id) ∈ I

)
≤ P

(
∃k ≤ K : T

(I)

N,k(id) > B
(I)
N,k

)
.

This proves the desired result.

E Asymptotic results for two agents

E.1 Convergence of boundaries and comparing the means

Because there are only two agents and no early stopping, we simplify the notations and denote

tN,i(σi) =

N∑
n=1

eσi(n),i(2)−
2N∑

n=N+1

eσi(n),i(1)

and

TN,k(σ1:k) =

∣∣∣∣∣
k∑

i=1

(
N∑

n=1

eσi(n),i(2)−
2N∑

n=N+1

eσi(n),i(1)

)∣∣∣∣∣
=

∣∣∣∣∣
k∑

i=1

tN,i(σi)

∣∣∣∣∣
and

BN,k = inf

b > 0 :
1

((2N)!)k

∑
σ1,...,σk∈Sk

2N

1{TN,k(σ1:k) ≥ b} ≤ qk

When there is only one interim (K = 1), we have the following convergence of the randomization
law of TN,1(σ).

17

Proposition 1 (Theorem 17.3.1 in [21]). Suppose e1,1(1), . . . , eN,1(1) are i.i.d from P and
e1,1(2), . . . , eN,1(2) are i.i.d from Q and both P and Q has finite variance. Then, we have

sup
t

∣∣∣∣∣ 1

(2N)!

∑
σ∈S2N

1

{
1√
N

TN,1(σ) ≤ t

}
− Φ (t/τ(P,Q))

∣∣∣∣∣ P−−−−→
N→∞

0

where Φ is the standard normal c.d.f. and τ(P,Q)2 = σ2
P + σ2

Q +
(µP−µQ)2

2 .

Using the non-sequential result from proposition 1, we can show the following theorem that controls
the asymptotic law of the sequential test.

Theorem 2. We have that for any 1 ≤ k ≤ K, 1√
N
BN,k −−−−→

N→∞
bk where the real numbers bk

are defined as follows. Let W1, . . . ,WK be i.i.d random variable with law N (0, 1), then b1 is the
solution of the following equation:

P
(
|W1| ≥

b1
τ(P,Q)

)
=

α

K
,

and for any 1 < k ≤ K, bk is the solution of

P

∣∣∣∣∣∣1k
k∑

j=1

Wj

∣∣∣∣∣∣ > bl
τ(P,Q)

, ∀j < k,

∣∣∣∣∣1j
j∑

i=1

Wi

∣∣∣∣∣ ≤ bj
τ(P,Q)

 =
α

K
.

Remark that the test we do corresponds to testing

1{∃k ≤ K :
1√
N

TN,k(id) >
1√
N

BN,k}

and from Theorem 2 and central-limit theorem 1√
N
TN,k(id) converges to

∑k
j=1 Wj

√
σ2
P + σ2

Q and

BN,k/
√
N converges to bk, hence the test is asymptotically equivalent to

1

∃k ≤ K :

k∑
j=1

Wj

√
σ2
P + σ2

Q > bk

 .

Then, in the case in which µP = µQ, we have τ(P,Q) =
√
σ2
P + σ2

Q and

FWE = P

∃k ≤ K :

k∑
j=1

Wj

√
σ2
P + σ2

Q > bk

=

K∑
k=1

P

∣∣∣∣∣∣1k
k∑

j=1

Wj

∣∣∣∣∣∣ > bl
τ(P,Q)

, ∀j < k,

∣∣∣∣∣1j
j∑

i=1

Wi

∣∣∣∣∣ ≤ bj
τ(P,Q)

=

K∑
k=1

α

K
= α.

Hence, for the test H0 : µP = µQ versus H1 : µP ̸= µQ, our test is asymptotically of level α.

E.2 Proof of Theorem 2

We denote for x ∈ R,

RN,k(x) =
1

(2N)!

∑
σk∈S2N

1{tN,k(σk) ≤ x}.

RN,k is the c.d.f of the randomization law of tN,k(σk), and by Proposition 1, it converges uniformly
to a Gaussian c.d.f when N goes to infinity.

18

Convergence of BN,1

1√
N

BN,1 =
1√
N

min

{
b > 0 :

1

(2N)!

∑
σ1∈S2N

1{|TN,1(σ1)| > b} ≤ α

K

}
This implies

1

(2N)!

∑
σ1∈S2N

1{|TN,1(σ1)| ≤ BN,1} = R̂N,1

(
1√
N

BN,1

)
− R̂N,1

(
− 1√

N
BN,1

)
≥ 1− α

K

and for any b < BN,1, we have

1

(2N)!

∑
σ1∈S2N

1{|TN,1(σ1)| ≤ b} = R̂N,1

(
b√
N

)
− R̂N,1

(
− b√

N

)
< 1− α

K

Then,

Φ

(
BN,1

τ(P,Q)
√
N

)
− Φ

(
− BN,1

τ(P,Q)
√
N

)
≥R̂N,1

(
BN,1√

N

)
− R̂N,1

(
−BN,1√

N

)
−
∣∣∣∣Φ(BN,1

τ(P,Q)
√
N

)
− R̂N,1

(
BN,1√

N

)∣∣∣∣
−
∣∣∣∣Φ(− BN,1

τ(P,Q)
√
N

)
− R̂N,1

(
−BN,1√

N

)∣∣∣∣
≥1− α

K
− 2 sup

t

∣∣∣∣Φ(t

τ(P,Q)

)
− R̂N,1 (t)

∣∣∣∣
Hence, by taking N to infinity, we have from Proposition 1,

lim inf
N→∞

Φ

(
BN,1

τ(P,Q)
√
N

)
− Φ

(
− BN,1

τ(P,Q)
√
N

)
≥ 1− α

K
.

and for any ε > 0, because of the definition of BN,1 as a supremum, we have

lim sup
N→∞

Φ

(
BN,1 + ε

τ(P,Q)
√
N

)
− Φ

(
− BN,1 + ε

τ(P,Q)
√
N

)
< 1− α

K
.

By continuity of Φ, this implies that 1√
N
BN,1 converges almost surely and its limit is such that

Φ

(
limN→∞ BN,1/

√
N

τ(P,Q)

)
− Φ

(
− limN→∞ BN,1/

√
N

τ(P,Q)

)
= 1− α

K
.

Or said differently, let W ∼ N (0, 1), then we have the almost sure convergence limN→∞
1√
N
BN,1 =

b1 where b1 is the real number defined by

P
(
|W | ≥ b1

τ(P,Q)

)
=

α

K
.

Convergence of BN,k for k > 1. We proceed by induction. Suppose that 1√
N
BN,k−1 converges to

some bk−1 > 0 and that for any d1, . . . , dk−1, the randomization probability

sup
d1,...,dk−1

∣∣∣∣∣∣ 1

((2N)!)k−1

∑
σ1,...,σk−1∈S2N

1

{
∀j ≤ k − 1,

j∑
i=1

tN,i (σi) ≤ dj
√
N

}

− P

(
∀j ≤ k − 1,

j∑
i=1

Wi ≤
dj

τ(P,Q)

)∣∣∣∣∣ N→∞−−−−→
a.s.

0, (6)

19

where W1, . . . ,Wk−1 are i.i.d N (0, 1) random variables. In other words, the randomization law
converges uniformly to the joint law described above with the sum of Gaussian random variables.

Then, by uniform convergence and by convergence of the BN,j , we have
1

((2N)!)k−1

∑
σ1,...,σk−1∈S2N

1 {TN,j (σ1:j) > BN,k−1, ∀j < k − 1, TN,j (σ1:j) ≤ BN,j}

converges to

P

(∣∣∣∣∣
l∑

i=1

Wi

∣∣∣∣∣ > bl
τ(P,Q)

, ∀j < l,

∣∣∣∣∣
j∑

i=1

Wi

∣∣∣∣∣ ≤ bj
τ(P,Q)

)
. (7)

which is equal to α
K by construction of BN,j for j < k,

We have

BN,k = min

b > 0 :
1

((2N)!k)

∑
σ1,...,σk∈S2N

1

{
|∑k

j=0 tN,j(σj)|≥b,

∀j<k, |∑j
i=0 tN,i(σi)|≤BN,j

}
+

k−1∑
i=1

qi ≤
kα

K

 .

By the induction hypothesis, we have qi −−−−→
n→∞

α/K for any i < k.

Let W1, . . . ,Wk be i.i.d N (0, 1) random variables. We show the following lemma that prove part of
the step k of the induction hypothesis, and proved in Section E.3.
Lemma 4. Suppose Equation (7) is true. Then,

sup
d1,...,dk

∣∣∣∣∣∣ 1

((2N)!)k

∑
σ1,...,σk∈S2N

1

{
∀j ≤ k,

j∑
i=1

tN,i (σi) ≤ dj
√
N

}

− P

(
∀j ≤ k,

j∑
i=1

Wi ≤
dj

τ(P,Q)

)∣∣∣∣∣ N→∞−−−−→
a.s.

0,

Then, what remains is to prove the convergence of BN,k. Denote

Ψk(dk) = P

(∣∣∣∣∣
k∑

i=1

Wi

∣∣∣∣∣ > dk
τ(P,Q)

,∀j ≤ k − 1,

∣∣∣∣∣
j∑

i=1

Wi

∣∣∣∣∣ ≤ bj
τ(P,Q)

)
,

we have, from Lemma 4, that∣∣∣∣∣∣Ψk

(
BN,k√

N

)
− 1

((2N)!)k

∑
σ1,...,σk∈S2N

1 {TN,k (σ1:k) > BN,k, ∀j < k, TN,j (σ1:j) ≤ BN,j}

∣∣∣∣∣∣
converges to 0 as N goes to infinity. Hence,

lim sup
N→∞

Ψk

(
BN,k√

N

)
≤ α/K.

Then, similarly to the case k = 1, we also have for any ε > 0,

lim inf
N→∞

Ψk

(
BN,k − ε√

N

)
≥ α/K

and by continuity of Ψk (which is a consequence of the continuity of the joint c.d.f. of Gaussian
random variables) we conclude that BN,k/

√
N converges almost surely to bk.

E.3 Proof of Lemma 4

In this proof, we denote by Eσ1:k
(x) the expectation of the randomization law defined for some

function f : Sk
2N → R by

Eσ1:k
[f(σ1:k)] =

1

((2N)!)k

∑
σ1,...,σk∈S2N

f(σ1:k).

20

Remark that this is still random and should be differentiated from the usual expectation E.

First, let us first handle the convergence of step k. We have,

1

(2N)!

∑
σk∈S2N

1

k∑

j=1

tN,j (σj) ≤ dk
√
N

=

1

(2N)!

∑
σk∈S2N

1

 1√
N

tN,k (σk) ≤ dk −
1√
N

k−1∑
j=1

tN,j (σj)

= R̂n,k

dk −
1√
N

k−1∑
j=1

tN,j (σj)

We have, because the convergence in Proposition 1 is uniform,∣∣∣∣∣∣R̂n,k

dk −
1√
N

k−1∑
j=1

tN,j (σj)

− Φ

 1

τ(P,Q)

dk −
1√
N

k−1∑
j=1

tN,j (σj)

∣∣∣∣∣∣
≤ sup

t

∣∣∣∣R̂n(t)− Φ

(
t

τ(P,Q)

)∣∣∣∣ −−−−→n→∞
0

Then, using this convergence we have that

Eσ1:k

[
1

{
∀j < k,

j∑
i=1

tN,i (σi) ≤ dj
√
N

}]
converges uniformly on d1, . . . , dk when N goes to infinity to

Eσ1:k

[
1

{
∀j < k − 1,

j∑
i=1

tN,i (σi) ≤ dj
√
N

}
P

(
Wk ≤

1

τ(P,Q)

(
dk −

1√
N

k−1∑
i=1

tN,i (σi)

))]

= E
[
Eσ1:k−1

[
1

{
∀j<k−2,

∑j
i=1 tN,i(σi)≤dj

√
N,

1√
N

∑k−1
i=1 tN,j(σi)≤min(dk−τ(P,Q)Wk,dk−1)

}]]
Then, using the induction hypothesis, this converges to Equation (6),

E
[
1

{
∀j<k−2,

∑j
i=1 Wi≤

dj
τ(P,Q)

,

1√
N

∑k−1
i=1 Wi≤ 1

τ(P,Q)
min(dk−Wk,dk−1)

}]
= E

[
1

{
∀j < k,

j∑
i=1

Wi ≤
dj

τ(P,Q)

}]

= P

(
∀j ≤ k,

j∑
i=1

Wi ≤
dj

τ(P,Q)

)
.

F Understanding AdaStop through simplified algorithms – 2 agents, non
sequential

F.1 Comparing two agents

In this section, we present the simpler case of two agents, we call them A1 and A2. We denote
by S2N the set of permutations of {1, . . . , 2N} and for σ1, σ2, . . . , σk ∈ S2N , we denote σ1:k =
σ1 · σ2 · . . . · σk the concatenation of the permutation σ1 done in interim 1 with σ2 done on interim
2,. . . , and σk on interim k. At interim i, we denote the concatenation of the 2N evaluations obtained
from the two agents with e1,k, . . . , e2N,k. Then, we indicate with eσi(n),i the permutation of the n-th
evaluation using permutation σi for interim i.

In the case where only two agents are compared, we use the following algorithm (see Section 4 for
the multi-agent and fully developed version of the algorithm). We denote

TN,k(σ1:k) =

∣∣∣∣∣
k∑

i=1

(
N∑

n=1

eσi(n),i −
2N∑

n=N+1

eσi(n),i

)∣∣∣∣∣ ,
21

2 4 6 8 10

−20

0

20

k

te
st

st
at

.

observations
Boundary

Figure 3: Illustration of the boundary for two agents.

and the boundary

BN,k ∈ inf

{
b > 0 :

1

((2N)!)k

∑
σ1:k∈Sk

1{TN,k(σ1:m) ≥ b} ≤ α

K

}
, (8)

where Sk is the set of permutations σ1:k ∈ (S2N)k such that it would not have rejected before

∀m < k, TN,m(σ1:k) ≤ BN,m .

The algorithm is summarized in Algorithm

Algorithm 2: Adaptive stopping to compare two agents.
Parameters: Agents A1, A2, environment E , number of blocks K ∈ N∗, size of a block N ,

level of the test α ∈ (0, 1).
1 Define 2NK different seeds s1,1, . . . , s1,N , s2,1, . . . , s2,N .
2 for k = 1, . . . ,K do
3 for i = 1, 2 do
4 Train agent Ai on environment E with the seeds si,kN , . . . , si,(k+1)N .
5 Collect evaluations e1,k(Ai), . . . , eN,k(Ai) using this trained agent.
6 end
7 Compute the boundary BN,k from Equation (8).
8 if TN,k(id) ≥ BN,k then
9 Reject the equality of the agents’ evaluation, break the loop.

10 end
11 else
12 If k = K then accept, otherwise continue.
13 end
14 end
15 If the test was never rejected, return accept. Else return reject.

An illustration of the group sequential test is given in Fig. 3. The boundary in blue is computed
sequentially to have a final level 1− α for the test, the red points are the observed values of the test
statistic (denoted wi). The algorithm stops at the third iteration k = 10 because the observed value of
wi is outside the boundary, which was computed using Equation (8).

22

F.2 Step-down procedure

Proposed by [27], the step-down procedure is defined as follows: let S2N be the set of all the permu-
tations of {1, . . . , 2N}, for a permutation σ ∈ S2N we define the concatenation (en(j))1≤n≤2N of
the random variables being compared in hypothesis j, and the permuted test statistics of hypothesis j
is

T
(j)
N (σ) =

∣∣∣∣∣
N∑

n=1

eσ(n)(j)−
2N∑

n=N+1

eσ(n)(j)

∣∣∣∣∣ .
This test statistics is extended to any subset of hypothesis C ⊂ {1, . . . , J}, as follows

T
(C)

N (σ) = max
j∈C

T
(j)
N (σ). (9)

To specify the test, one compares T
(C)

N (id) to some threshold value B(C)
N , that is: accept all hypotheses

in C if T
(C)

N (id) ≤ B
(C)
N . The threshold of the test B(C)

N is defined as the quantile of order 1− α of

the permutation law of T
(C)

N (σ):

B
(C)
N = inf

{
b > 0 :

(
1

(2N)!

∑
σ∈S2N

1{T (C)

N (σ) ≥ b}

)
≤ α

}
. (10)

In other words, B(C)
N is the real number such that an α proportion of the values of T

(C)

N (σ) exceeds it,
when σ enumerates all the permutations of {1, . . . , 2N}.

Algorithm 3: Multiple testing by step-down permutation test.
Parameters: α ∈ (0, 1)
Input: en(j) for 1 ≤ n ≤ 2N and j ∈ C0 = {1, . . . , J}.

1 Initialize C← C0.
2 while C ̸= ∅ do
3 Compute T

(C)
N (σ) for every j and every σ using Equation (9).

4 Compute B
(C)
n using Equation (10).

5 if T (C)
N (id) ≤ B

(C)
N then

6 Accept all the hypotheses Hj , j ∈ C and break the loop.
7 else
8 Reject Hjmax

where jmax = argmax
j∈C

T
(j)
N (id).

9 Define C = C \ {jmax}
10 end
11 end

The permutation test is summarized in Algorithm 3. It is initialized with all the hypotheses to test
in C = C0. Then, it enters a loop where it decides to reject or not the most extreme hypothesis in
C, the set of not yet discarded, nor accepted hypotheses. If the test statistic T

(j)
N (id), for the most

extreme hypothesis in C (i.e. T
C
N (id)), does not exceed the given threshold B

(C)
n , then it accepts all

the hypotheses in C and breaks the loop. Otherwise, it just rejects the most extreme hypothesis and it
discards that from the set C. Then, it enters the loop again until the set of remaining hypotheses is
empty.

The maximum of the statistics in Equation (9) for σ = id allows to test an intersection of hypotheses,
while, the threshold B

(C)
n , because of the equality of distribution hypotheses, allows to have strong

control on the FWE (i.e. FWE ≤ α). In fact, this procedure is not specific to permutation tests, and
it can be used for other tests provided some properties on the thresholds B(C)

n .
Remark (Non-independent hypothesis). The acute reader may have noticed that as the hypotheses
are not assumed to be independent, we can not resort to Benjamini-Hochberg or similar procedure [3]
here. We adapt this procedure to the case of group sequential testing later in Section 4

23

G On early accept in AdaStop

In this section, we present in details the early-accept heuristic proposed to speed up computation of
AdaStop. Let C ⊂ {1, . . . , J} be a subset of the set of comparisons that we want to do, denote

T
(C)

N,k(σ
k
1) = max

(
T

(j)
N,k(σ

k
1), j ∈ C

)
and T

(C)
N,k(σ

k
1) = min

(
T

(j)
N,k(σ

k
1), j ∈ C

)

B
(C)

N,k = inf

b > 0 :
1

mk

∑
σ∈Ŝk

1{T (C)

N,k(σ
k
1) ≥ b} ≤ qk

 (11)

and

B
(C)
N,k = sup

b > 0 :
1

mk

∑
σ∈Ŝk

1{T (C)
N,k(σ

k
1) ≤ b} ≤ q

k

 . (12)

where
∑k

j=1 qj ≤
kα
K and

∑k
j=1 qj ≤

kβ
K and where Ŝk is the subset of Sk such that it would not

have accepted or rejected before: for each σk
1 ∈ Ŝk, we have the following property

∀m < k, T
(C)

N,m(σk
1) ≤ B

(C)

N,m and T
(C)
N,m(σk

1) ≥ B
(C)
N,m.

In AdaStop, modify the decision step (line 10 to 15 in Algorithm 1) to The resulting algorithm have a

Algorithm 4: Early accept

1 if T (C)
N,k(id) > B

(C)
N,k then

2 Reject Hjmax
where jmax = argmax

(
T

(j)
N,k(id), j ∈ C

)
.

3 Update C = C \ {jmax}
4 else if T (C)

n,k(id) < B
(C)
N,k then

5 Accept Hjmin
where jmin = argmin

(
T

(j)
N,k(id), j ∈ C

)
.

6 Update C = C \ {jmin}

small probability to accept a decision early, and as a consequence it may be unnecessary to compute
some of the agent in the subsequent steps.

As illustration of the performance of early accept, if one was to execute AdaStop with early parameter
β = 0.01 for the Walked2D-v3 experiment from Section 5.3, the experiment would stop at interim
2 and 10 seeds would have been used for each agent. By comparison, in Section 5.3 we showed
that without early accept, Adastop uses 30 seeds for DDPG and TRPO. Early stopping give in this
instance a consequent speed-up without affecting the final decisions.

H Implementation details and additional plots

H.1 Plot of the census on the number of seeds in ICML 2022 RL articles

In Fig 4, we present the results of the census we did on the number of seeds used in the RL articles
from ICML 2022. We plot only the articles having experiment on environments using Mujoco as this
represent the majority of the articles.

H.2 The distribution of evaluation performances in Deep RL problems

In Fig. 5, we represent the densities of the evaluations (cumulative rewards) of some RL agents on the
Hopper environment (see Section 5.3 for the details on the experiment). The p-values for the Shapiro
normality test on these data are: 0.0032 for PPO8, 0.0003 for SAC, 0.0393 for DDPG and 0.015 for

8Here, PPO, SAC, DDPG, and TRPO should be read as “an agent that implements xxx”.

24

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

Figure 4: Census of the number of seeds used in RL articles published in ICML 2022 proceedings to
study environments using Mujoco.

TRPO. As all p-values are less than α = 0.05, we reject the null hypothesis of normality for at least
one of them. This confirms what our eyes already told us: the performance of Deep-RL agents is not
normally distributed (at least on this example).

1000 0 1000 2000 3000 4000 5000 6000
0.0000

0.0002

0.0004

0.0006

0.0008

De
ns

ity

PPO
SAC
DDPG
TRPO

Figure 5: Empirical density of the performances of various agents on Hopper Mujoco environment
using 15 seeds for each agent.

H.3 Complementary experiment for Section 5.1

In this third example, we suppose we have 10 agents whose performance distributions are listed in
Fig. 6, where the first column indicates the labels of the agents as they are shown in Fig. 7.

Similarly to Cases 1 and 2 (see Section 5.1), we execute AdaStop with K = 5, N = 5, α = 0.05 and
the maximum number of permutations B = 10 000. In contrast to Cases 1 and 2, in Case 3 we use
early accept (with β = 0.01) to avoid situations when all agents are run with all NK seeds, which
may occur when each agent has a similar distribution to at least one another agent in comparison.

We show the performance of AdaStop for multiple agents’ comparison in Fig. 7, which corresponds
to the output of one execution of AdaStop (with labels summarized in Fig. 6). The table (left)
summarizes the decisions of the algorithm for every pair of comparisons, and violin plots (right)
reflect empirically measured distributions in the comparison. From this figure, we can see that almost
all agents are grouped in clusters of distributions with equal means, except for *MG3 that is assigned
to two different groups at the same time. Interestingly, these clusters except for *MG3 are correctly
formed. Moreover, similarly to two previous cases, we have executed AdaStop M = 5 000 times to
measure FWE of the test. The empirical measurements are 0.0178 of rejection rate of at least one
correct hypothesis when comparing distributions and 0.0472 of rejection rate when comparing means,
both are below 0.05. Thus, AdaStop can be efficiently used to compare performances of several
agents simultaneously.

25

N N (0, 0.01)

*N N (0, 0.01)

MG1 MN1/2(−1, 0.01; 1, 0.01)

*MG1 MN1/2(−1, 0.01; 1, 0.01)

MG2 MN1/2(−0.2, 0.01; 0.2, 0.01)

tS1 t(0, 3)

MG3 MN1/2(−1, 0.01; 8, 0.01)

*MG3 MN1/2(−1, 0.01; 8, 0.01)

MtS Mt
1/2(0, 3; 0, 8)

tS2 t(8, 3)

2 0 2 4 6 8 10

Figure 6: Toy example 3, with an illustration of the involved distributions.

n_iter 25 25 25 25 25 25 25 25 25 25

tS1 *MG1 N *N MG2 MG1 *MG3 MtS MG3 tS2

tS1

*MG1

N

*N

MG2

MG1

*MG3

MtS

MG3

tS2

 = = =

 = = =

 = = =

 = = =

 = = =

 = = =

 =

 =

 =

tS1 *MG1 N *N MG2 MG1 *MG3 MtS MG3 tS2

5

0

5

10

15

Figure 7: Case 3. AdaStop decision table (left) and measured empirical distributions (right).

H.4 Additional plot for Section 5.2

2500 0 2500 5000 7500 10000 12500 15000
evaluations means

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns

ity

SAC
TD3

Figure 8: Evaluations distributions for a SAC and a TD3 agents on HalfCheetah obtained with 192
independent seeds, each made of 2 million steps.

26

H.5 MuJoCo Experiments

DDPG TRPO PPO SAC
γ 0.99 0.99 0.99 0.99
Learning Rate 1× 10−3 1× 10−3 3× 10−4 3× 10−4

Batch Size 128 64 64 256
Buffer Size 106 1024 2048 106

Value Loss MSE MSE AVEC [12] MSE
Use gSDE No No No Yes
Entropy Coef. - 0 0 auto
GAE λ - 0.95 0.95 -
Advantage Norm. - Yes Yes -
Target Smoothing 0.005 - - 0.005
Learning Starts 104 - - 104

Policy Frequency 32 - - -
Exploration Noise 0.1 - - -
Noise Clip 0.5 - - -
Max KL - 10−2 - -
Line Search Steps - 10 - -
CG Steps - 100 - -
CG Damping - 10−2 - -
CG Tolerance - 10−10 - -
LR Schedule - - Linear to 0 -
Clip ϵ - - 0.2 -
PPO Epochs - - 10 -
Value Coef. - - 0.5 -
Train Freq. - - - 1 step
Gradient Steps - - - 1

Table 3: Hyperparameters used for the MuJoCo experiments.

In this section, we go into details about the experimental setup of the MuJoCo experiments, as well
as present additional plots.

Basic properties of chosen algorithms. On-policy algorithms, such as PPO and TRPO, update
their policies based on the current data they collect during training, while off-policy algorithms, such
as SAC and DDPG, can learn from any data, regardless of how it was collected. This difference
may make off-policy algorithms more sample-efficient but less stable than on-policy algorithms.
Furthermore, SAC typically outperforms DDPG in continuous control robotics tasks due to its ability
to handle stochastic policies, while DDPG restricts itself to deterministic policies [15]. Finally, PPO
is generally accepted to perform better than TRPO in terms of cumulative reward [10].

Hyperparameters. Table 3 details the hyperparameters used with each Deep RL on the MuJoCo
benchmark. For all agents, we use a budget of one million time steps for HalfCheetah-v3, Hopper-v3,
and Walker2d-v3, and a budget of two million time steps for Ant-v3 and Humanoid-v3. Finally, we
use a maximum horizon of one thousand steps for all environments.

Evaluation. Agents are evaluated by stopping the training procedure on predetermined time steps
and averaging the results of 50 evaluation episodes.

Learning Curves. Fig. 10 presents sample efficiency curves for all algorithms in each environment.
The shaded areas represent 95% bootstrapped confidence intervals, computed using rliable [1].
Note that each curve may be an aggregation of a different number of runs, which can be found in the
bottom right of Fig. 9.

Additional Comparison Plots. Fig. 9 expands upon the comparisons given in the main text (in
Fig. 2) by also plotting the evaluation distributions of each agent using boxplots.

27

DDPG

TRPO

PPO

SAC

 → ≤ ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≥ ↓

Ant-v3
 → ≥ ↓ → ≥ ↓ → ≤ ↓

→ ≤ ↓ → ≥ ↓ → ≤ ↓
→ ≤ ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≥ ↓

HalfCheetah-v3
 → = ↓ → ≤ ↓ → ≤ ↓

→ = ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → = ↓
→ ≥ ↓ → ≥ ↓ → = ↓

Hopper-v3

DDPG TRPO PPO SAC

0

2000

4000

6000

DDPG TRPO PPO SAC

2500

5000

7500

10000

DDPG TRPO PPO SAC

0

1000

2000

3000

4000

DDPG

TRPO

PPO

SAC

 → ≤ ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≥ ↓

Humanoid-v3
 → = ↓ → ≤ ↓ → ≤ ↓

→ = ↓ → ≤ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≤ ↓
→ ≥ ↓ → ≥ ↓ → ≥ ↓

Walker2d-v3

DDPG TRPO PPO SAC

0

2000

4000

6000

DDPG TRPO PPO SAC

0

2000

4000

An
t

Ha
lfC

he
et

ah

Ho
pp

er

Hu
m

an
oi

d

W
al

ke
r2

d

15 25 30 15 30

15 25 30 15 30

15 25 30 15 10

15 5 30 15 10

Used Budget

Figure 9: AdaStop decision tables (top) and evaluation distributions (bottom) for each MuJoCo
environment, and the budget used to make these decisions (bottom right). The medians are represented
as the green triangles and the means as the horizontal orange lines.

0.5 1.0 1.5 2.0
Time Steps

1e6

0

2

4

6

M
ea

n
of

 E
va

lu
at

io
n

R
et

ur
ns

1e3 Ant-v3

0.2 0.4 0.6 0.8 1.0
Time Steps

1e6

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 E
va

lu
at

io
n

R
et

ur
ns

1e4 HalfCheetah-v3

0.2 0.4 0.6 0.8 1.0
Time Steps

1e6

0

1

2

3

M
ea

n
of

 E
va

lu
at

io
n

R
et

ur
ns

1e3 Hopper-v3

0.5 1.0 1.5 2.0
Time Steps

1e6

0

1

2

3

4

5

6

M
ea

n
of

 E
va

lu
at

io
n

R
et

ur
ns

1e3 Humanoid-v3

0.2 0.4 0.6 0.8 1.0
Time Steps

1e6

0

1

2

3

4

5

M
ea

n
of

 E
va

lu
at

io
n

R
et

ur
ns

1e3 Walker2d-v3

SAC DDPG PPO TRPO

Figure 10: Mean of Evaluation Returns with 95% stratified bootstrap CIs. Note that curves in the
same figure may use a different number of random seeds, depending on when AdaStop made the
decisions.

28

	Introduction
	Problem setting
	Goal and requirements for AdaStop
	Survey of current evaluation workflows in RL

	Background material on hypothesis testing
	Adaptive stopping for non-parametric group-sequential multiple hypothesis testing
	Theoretical guarantees
	Heuristic for early accept for even faster decisions

	Experimental study
	Toy examples
	Comparison with non-adaptive approach
	AdaStop for Deep Reinforcement Learning

	Conclusion and future works
	Index of notations
	Recap on hypothesis testing
	Type I and type II error
	Multiple tests and FWE

	Proof of Theorem 1
	Simplified proof for L=2 agents, and K=1
	Proof of Theorem 1

	Proof of Lemmas
	Proof of Lemma 2
	Proof of Lemma 3

	Asymptotic results for two agents
	Convergence of boundaries and comparing the means
	Proof of Theorem 2
	Proof of Lemma 4

	Understanding AdaStop through simplified algorithms – 2 agents, non sequential
	Comparing two agents
	Step-down procedure

	On early accept in AdaStop
	Implementation details and additional plots
	Plot of the census on the number of seeds in ICML 2022 RL articles
	The distribution of evaluation performances in Deep RL problems
	Complementary experiment for Section 5.1
	Additional plot for Section 5.2
	MuJoCo Experiments

