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Abstract

Recent advances in 3D Gaussian Splatting (3DGS) have improved the visual fi-
delity of dynamic avatar reconstruction. However, existing methods often overlook
the inherent chromatic similarity of human skin tones, leading to poor capture of
intricate facial geometry under subtle appearance changes. This is caused by the
affine approximation of Gaussian projection, which fails to be perspective-aware to
depth-induced shear effects. To this end, we propose True-to-Geometry Avatar Dy-
namic Reconstruction (TGA), a perspective-aware 4D Gaussian avatar framework
that sensitively captures fine-grained facial variations for accurate 3D geometry
reconstruction. Specifically, to enable color-sensitive and geometry-consistent
Gaussian representations under dynamic conditions, we introduce the Perspective-
Aware Gaussian Transformation that jointly models temporal deformations and
spatial projection by integrating Jacobian-guided adaptive deformation into the ho-
mogeneous formulation. Furthermore, we develop Incremental BVH Tree Pivoting
to enable fast frame-by-frame mesh extraction for 4D Gaussian representations. A
dynamic Gaussian Bounding Volume Hierarchy (BVH) tree is used to model the
topological relationships among points, where active ones are filtered out by BVH
pivoting and subsequently re-triangulated for surface reconstruction. Extensive
experiments demonstrate that TGA achieves superior geometric accuracy. Project
page: https://superkeaibb.github.io/TGA/.

1 Introduction

The demand for personalized, high-fidelity reconstruction of human faces and heads under complex
facial movements is fundamental to a wide range of applications, including digital twins, film pro-
duction, graphics simulation, and entertainment. In particular, acquiring dynamic and geometrically
accurate 3D head reconstructions from multi-view recordings is a common requirement for generating
digital and virtual replicas of real individuals.

Despite recent advances in high-fidelity 3D Gaussian Splatting (3DGS) [1]-based avatar reconstruc-
tion, existing methods [2, 3, 4] often overlook the inherent chromatic similarity of human skin tones.
Specifically, under varying viewpoints and frame transitions, subtle and gradual facial expression
changes remain challenging for vanilla 3DGS. The root cause lies in the limited perspective-awareness
(we will discuss in Sec. 3.2) of affine approximation used in Gaussian projection, which compromises
accurate color blending. As a result, the simplistic projection model struggles to maintain chromatic
consistency and further geometric fidelity for dynamic face modeling.

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://superkeaibb.github.io/TGA/


a) Frame-to-frame b) Different Identity & ± 60° Views c) Application

M
es

h 
an

d 
N

or
m

al
T

ex
tu

re
d 

M
es

h

Figure 1: Example results of our TGA. Our method generates (a) high-fidelity, frame-by-frame
textured meshes from multi-view videos, (b) captures avatar-specific details across wide viewing
angles, and (c) delivers realistic cross-reenactment performance.

In response, we propose True-to-Geometry Avatar Dynamic Reconstruction (TGA), a perspective-
aware 4D Gaussian avatar framework that sensitively captures fine-grained facial appearance varia-
tions to enable geometrically accurate 3D mesh reconstruction from 4D Gaussian representations.

We first introduce a Perspective-Aware Gaussian Transformation that jointly models temporal defor-
mations and spatial projection effects, enhancing perspective-awareness to subtle changes in avatar
facial appearance. Traditional 3DMM [5, 6]-based Gaussian methods [2, 3, 4, 7] warp primitives
based on the area of their parent triangle across time steps. Such uniform scaling leads to either
extending or shrinking Gaussian coverage, resulting in over- or under-blending of colors in facial
regions. To address this, we apply Jacobian-guided deformation to adaptively warp each Gaussian
according to the directional variation of its parent triangle, ensuring precise color coverage across
dynamic frames. Furthermore, to be perspective-aware to the projection process for better capture of
the intricate geometry under subtle changes in avatar skin tone and facial expressions, we adopt a
homogeneous formulation in place of the insufficient affine approximation in vanilla 3DGS, enabling
perspective-consistent projections. The Jacobian-guided deformation is jointly incorporated into
the homogeneous formulation. As a result, color blending becomes more chromaticity-sensitive,
reinforcing geometry-color alignment and providing a reliable foundation for downstream mesh
extraction.

Based on the obtained Gaussian avatar field, we introduce an opacity field [8] for surface extraction.
The geometrically accurate avatar surface is extracted by directly identifying a level set of an opacity-
guided signed distance field on tetrahedra, which are triangulated from Gaussians and their bounding
points. To enable fast dynamic mesh extraction, we design a straightforward yet effective Incremental
BVH Tree Pivoting approach to adaptively update the tetrahedral grids. Specifically, we dynamically
organize the bounding volume hierarchy (BVH) of Gaussians in a binary tree, which models the
topological relationships among primitives. As the BVH tree updates by branch rotation according
to Gaussian dynamics, the BVH is pivoted to simulate the topological movements of Gaussians.
Active 3D points—referred to as hopping Gaussians—that contribute to facial expression changes,
are filtered out by BVH Pivoting. These filtered regions are then incrementally triangulated, thereby
accelerating the surface extraction process.

Overall, our contributions are the following:

• We propose a perspective-aware 4D Gaussian avatar framework that captures intricate
geometry under subtle facial variations, by integrating Jacobian-guided adaptive deformation
with homogeneous projection to enable Perspective-Aware Gaussian Transformation.
• We design an Incremental BVH Tree Pivoting approach, which filters out and re-triangulates

hopping Gaussians. This enables fast and adaptive surface extraction by focusing computa-
tion on active regions undergoing facial expression changes.

• We empirically demonstrate the advanced performance of the proposed method, demon-
strating significant improvements in reconstruction accuracy, dynamic capability, training
efficiency, and inference time.
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Figure 2: Method Overview: Given multi-view RGB sequences, we first track facial dynamics
with FLAME (a). During the Perspective-aware Transformation (b), we apply Jacobian-guided
deformation and homogeneous projection for accurate geometric modeling. After optimization (c),
we build and dynamically update a Gaussian BVH (d), where BVH pivoting adaptively filters hopping
points, enabling geo-accurate surface extraction via Marching Tetrahedra (rightmost column).

2 Related Work
3D Morphable Face Models. Parametric template models based on PCA have become fundamental
in computer graphics and vision for representing human body geometry, including the face [6, 9, 10]
and head [5, 11], with extensions to the neck [12] and the full body [13]. To overcome the rigid
linearity of PCA, more recent approaches [14, 15, 16, 17, 18, 19, 20, 21] replace traditional PCA-
basis underlying classical mesh-based 3DMMs. Furthermore, neural-based methods [22, 23, 24]
enhance expression realism with continuous, implicit morphable representations of geometry.

Dynamic Avatar Representations. Avatars have inherent dynamics, especially when performing
actions such as smiling or speaking, which are accompanied by significant topological changes. This
makes the representation of dynamic scenes more complex and challenging. Neural Radiance Fields
(NeRFs) [25, 26, 27]-based methods [25, 28, 29, 30, 31, 32, 33] can capture temporal changes and
model such dynamics but not computationally feasible. 3DGS [1]-based dynamic methods [34, 35,
36, 37, 38, 39, 40] have emerged as a more efficient alternative, but remain insensitive to chromatic
variations due to their affine approximation. Building upon the 3DGS paradigm, we enhance it with a
Perspective-Aware Gaussian Transformation module for improved dynamic modeling.

Human Head Reconstruction. Previous works [41, 42, 43, 44, 45] have explored NeRF-based
volume rendering to model avatar heads with detailed appearance. Recent approaches [46, 47,
48, 3, 49, 40, 50] incorporate implicit deformation fields to capture frame-wise Gaussian motion.
Meanwhile, another line of work [51, 52, 2, 53, 4] explicitly rig Gaussians to 3DMM-based meshes
for controllable facial animation. Topo4D [54] further reconstructs dynamic meshes and high-fidelity
textures via topology-bound Gaussians, NPGA [55] leverages neural parametric head models [56] for
learned forward deformations, ScaffoldAvatar [57] employs patch-based expressions with hierarchical
Gaussian splatting for high-fidelity avatars. While most 3DGS-based methods target photorealistic
rendering and animation, Topo4D [54], SurFhead [4], and our work focus on geometry-accurate
facial mesh reconstruction. Specifically, our method builds upon the explicit 3DMM–3DGS binding
and deformation framework for better controllability.

3 Method
With the goal of achieving geometrically accurate 4D avatar reconstruction in our mind, we first
focus on capturing subtle variations in facial appearance while ensuring deformation consistency
across frames (Sec. 3.2). By leveraging trained Gaussians with high sensitivity to facial features,
our approach further enables fast and precise avatar mesh extraction (Sec. 3.3). We start with the
overview of GaussianAvatars [2] and also define the main symbols(Sec. 3.1).

3.1 Preliminary

Representation. GaussianAvatars [2] associates each triangle of the FLAME mesh [5], tracked
by VHAP [58], with a 3D Gaussian and moves coherently with its corresponding parent-triangle
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across time steps. Specifically, each Gaussian is parameterized by a center position µ, a positive-
definite, diagonal matrix scaling matrix S, and a rotation matrix R on the neutral FLAME mesh [5]:
G(x) = e−

1
2 (x−µ)⊤Σ−1(x−µ) where Σ = RS2R⊤. Besides, the Gaussian primitive has appearance

properties, a prior opacity α and color c. To deform the canonical 3D Gaussian to the posed space,
the vanilla 3DMM-Gaussians method transforms its position and covariance attributes according to
its parent:

R′ = rR µ′ = krµ+ t S′ = kS, (1)
where the isotropic scalar k is derived from the triangle’s relative extent, t and r are the barycenter
and relative rotation matrix of the parent-triangle, respectively.

Rendering. Given the 3D representation θ = {µ,Σ, α, c}, the trainable parameters are optimized
through the following differentiable rendering function

C̃(p) =

N∑
n=1

cnαnD̃(µ,Σ,γ)

n−1∏
m=1

(1− αmD̃(µ,Σ,γ)), (2)

where C̃(p) is the rendering color at pixel p of rendered image C̃, and D̃(µ,Σ,γ) is a divergence of
view ray γ from θ computed from the projected 2D Gaussians by EWA volume splatting [59].

3.2 Perspective-Aware Gaussian Transformation

Our goal is to capture intricate geometric details under subtle variations in avatar skin tone and facial
expression. Previous 3DGS-based methods [2, 3, 4, 7] rely solely on affine approximations when
projecting Gaussians onto 2D image planes. However, as illustrated by the blue circle in Fig. 3,
this naive projection leads to unreliable alpha blending, resulting in chromatic inconsistencies and
spatial distortions. To address this issue, it is essential to revisit the projection mechanism from the
perspective of Perspective Awareness.

As illustrated by the affine-approximated projected blue Gaussian in Fig. 3, even though its center is
correctly splatted using a perspective projection (as shown in 1), the outermost isocontour remains
significantly misaligned. This misalignment arises because the affine projection naively projects
the Gaussian orthogonally onto the image plane, neglecting the depth information in the Gaussian
covariance. Such a simplification fails to be perspective-aware enough to subtle chromatic variations.
To achieve true perspective awareness, it is imperative to ‘look into’ the Gaussian itself and fully
exploit its depth dimension—only then can we faithfully simulate perspective projection.

Specifically, we first introduce a Jacobian-based deformation mechanism to adaptively warp Gaussians
across frames. This deformation is integrated into a homogeneous formulation that preserves depth
information, enabling a perspective-aware projection. As a result, the model can sensitively capture
intricate geometric details driven by subtle chromatic variations in facial expressions.

Jacobian Gradient for Adaptive Deformation. While the rigging method in Eq. 1 is computationally
efficient, it struggles to preserve the chromatic consistency across frames. Specifically, its rigid and
linear isotropic scaling uniformly extends or shrinks Gaussians according to their parent-triangle’s
property (Fig. 3 (a)), leading to under-blending discontinuity across frames. To address this, inspired
by [60], we introduce an advanced warping method for Gaussians:

JE = Ê J = ÊE−1, (3)

where E is composed of edge direction vectors of the binding triangle, and Ê is deformed by Eq. 1.
Then, Gaussians are warped as follows:

Σ = JRSS⊤R⊤J⊤ µ′ = Jµ+ t. (4)

By doing so, Gaussians gain adaptive and anisotropic deformability (Fig. 3 (b)) and maintain
chromatic consistency across frames, making them ready to capture subtle variations.

Homogeneous Formulation for Gaussian Projection. To be perspective-aware for Gaussian
depth dimension and further capture subtle changes in avatar skin tone and facial expressions, we
extend prior methods [61, 62] originally designed for 2D Gaussians by introducing a homogeneous
formulation that replaces the affine approximation for 3D Gaussians. This accurately models the
outermost isocontour under perspective projection and further enables high blending sensitivity to
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Figure 3: Perspective-Aware Gaussian Transformation. Compared with 2) Affine Approximation
(fails to capture shear effects and causes inaccurate color blending), our homogeneous formulation
compensates for it, while maintaining a sensitive response to subtle color variations like 1) Perspective
Projection. For temporal deformation, uniform warping may shrink coverage, but our adaptive
warping maintains an accurate spatial footprint.

fine-grained facial appearance changes (green circle in Fig. 3.(2)). The homogeneous transformation
for 3D Gaussian to be normalized in a local tangent plane is:

H =

[
suru svrv swrw µ
0 0 0 1

]
=

[
RS µ
0 1

]
. (5)

To jointly account for non-uniform deformations driven by facial expressions across frames, we
further refine the Gaussian’s in the local metric through a Jacobian-based transformation. This
enables adaptive Gaussian deformation while preserving global perspective accuracy. Specifically, we
parameterize a viewing ray γ passing through a pixel at (x, y) as the intersection of two perpendicular
planes: the x-plane hx = (−1, 0, 0, x)⊤ and the y-plane hy = (0,−1, 0, y)⊤. The ray is then
transformed into the deformed Gaussian’s local space by:

hu/v =
(
(MHJ)−1

)−⊤
hx/y = (MHJ)⊤hx/y, (6)

where M is the transformation matrix from world to screen space. It should be noticed that as
combining transformation MHJ, the viewpoint, 3D anisotropic structure of Gaussian and facial
expressions, are encoded into perspective projection. After projection, we normalize the homogeneous
coordinates to recover 3D positions of the viewing ray in the deformed tangent plane:

h′
u = (

h1
u

h4
u

,
h2
u

h4
u

,
h3
u

h4
u

, 1) h′
v = (

h1
v

h4
v

,
h2
v

h4
v

,
h3
v

h4
v

, 1) (7)

where h′i
u denotes for the i-th component. This step performs a perspective-divide by normalizing

the homogeneous coordinates (dividing by h4), which reconstructs the true 3D intersection point
between the viewing ray and the deformed tangent plane of the Gaussian in perspective space. Unlike
the affine approximation that assumes an orthogonal footprint, this perspective-divide “looks into”
the Gaussian covariance. Finally, we evaluate the divergence of a camera ray from Gaussian in a
straightforward way. Specifically, with

m = (h′1
u ,h

′2
u ,h

′3
u )× (h′1

v ,h
′2
v ,h

′3
v ) l = (h′1

u ,h
′2
u ,h

′3
u )− (h′1

v ,h
′2
v ,h

′3
v ), (8)

we define the divergence D derived from the perpendicular distance ϕ∗ between the Gaussian center
and its closest point on the viewing ray in local tangent plane, ∥v∥ stand for magnitude of a vector v:

D(µ,Σ,γ) = e−
1
2 (ϕ

∗)2 ϕ∗ =
∥m∥
∥l∥

. (9)

Volume rendering. Then, we obtain screen points by H′ = MHJ, the center o of projected splat
and the outermost bounds e is computed as:

oi = ⟨f ,H′
i ·H′

4⟩ ei =
√
o2
i − ⟨f ,H′

i ·H′
i⟩ f =

(1, 1, 1,−1)
⟨(1, 1, 1,−1), (H′

4 ·H′
4)⟩

(10)

where H′
i is the i-th row of H′, ⟨x, y⟩ stands for dot product. The volumetric alpha blending is

conducted to compute the rendered color in a perspective-aware way:

C(p) =

K∑
k=1

ckαkD(µk,Σk,γ)

k−1∏
j=1

(1− αjD(µj ,Σj ,γ))). (11)
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Optimization. We introduce a deformed normal regularization to maintain the learned structure of
often-occluded regions such as teeth and eyeballs:

Lnr = ∥nd
w − nw∥2 (12)

where nw denotes the Gaussian normal in the w-th frame, computed as the inverse camera ray
direction −γ in the deformed tangent plane and then transformed back to world space: nw = Rotw ·
(−γ), Rotw is the rotation component of matrix MHJ. The deformed normal is nd

w = J−⊤
w n0,

where Jw is from Eq. 3 in the w-th frame and n0 is the canonical normal.

Finally, we optimize our model with the following loss:

L = Lc + λdLd + λnLn + λsLscaling + λpLposition + λnrLnr (13)

where Lc is a combination of photometric loss Lrgb and a D-SSIM term following 3DGS [1]. To
ensure accurate geometry reconstruction, we incorporate geometric loss terms from [8], including
depth-distortion Ld and normal consistency Ln. Toward a better alignment between Gaussians and
parent triangles, we use regularization terms Lscaling and Lposition from [2]. We set the hyperparame-
ters following these works and λnr as 0.01.

3.3 Incremental BVH Tree Pivoting for Fast Avatar Reconstruction

To enable rapid and geometry-accurate extraction of avatar meshes from the opacity fields introduced
in Sec. 3.2, we adopt an incremental triangulation strategy for dynamic points induced by facial
expressions, referred to as ’hopping points’. The core of our approach lies in organizing Gaussians
into a dynamic BVH tree, which accurately simulates vertex topological movements through Gaussian
BVH pivoting, thereby facilitating efficient and adaptive mesh reconstruction.

3.3.1 Incremental Triangulation

For the initial frame, we employ 3D Delaunay triangulation to generate tetrahedral grids for each
Gaussian and its bounding points. We then perform opacity evaluation, defined as the minimum
opacity across all visible and relevant training views (depending on different areas in the FLAME
model, e.g., the side view for hair) that observe the point. Finally, binary search is conducted over the
opacity-SDF field of all tetrahedral grids to locate the zero level set.

For subsequent frames, we employ incremental triangulation guided by hopping points filtering via
dynamic Gaussian BVH tree pivoting, as illustrated in Fig. 4, significantly reducing computation time
compared to full re-triangulation. Since Gaussian movements fluctuate between frames, applying
a fixed threshold to screen Gaussian centers and covariances can result in: 1) incomplete culling,
causing a significant degradation in mesh extraction quality; or 2) excessive computation, which
reduces the frame rate. Leveraging on our dynamic Gaussian BVH, which accurately simulates the
topological movements of vertices, hopping points are swiftly filtered through branch rotation.

3.3.2 Hopping Gaussians Filtering via Dynamic BVH Pivoting

We begin by constructing a static binary radix BVH tree [63] from a given set of 3D Gaussians,
where each leaf node represents the tight bounding box of a Gaussian cluster, and each internal node
denotes the bounding box encompassing its two child nodes. To dynamically simulate the topological
movements of Gaussians over time, we perform pivoting of the Gaussian BVH tree at each frame.

Update

ba

c

Filter

Retriangulate

Refit

 Hopping  SetTetrahedron Branch Rotate

BVH Pivot

d

Figure 4: BVH Pivoting for Hopping Points Filtering.

BVH Pivoting. To better illustrate this
topological simulation, we demonstrate
our BVH structure shown in Fig. 4,
where yellow "a", red "b", blue "c", and
green "d" bounding boxes correspond to
facial features, alongside its tree repre-
sentation of the avatar. As facial expres-
sions occur (e.g., eye opening), these
bounding volumes are locally refitted
according to the movement of enclosed
Gaussians. As the extent of box "d"
significantly expands to tightly enclose
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Figure 5: Comparison of reconstruction quality from NeRSemble [33] dataset against our baselines.

both "a" and "b", the BVH tree achieves branch rotation (swapping between "b" and "c") to reor-
ganize the hierarchy and do topological simulation. It is important to emphasize that rather than
balancing the tree, these rotations are employed to simulate Gaussian movement across volumes,
minimizing the overall bounding extent cost—sometimes by introducing imbalance into the tree
structure. Specifically, we implement these binary-tree rotations inspired by [64].

Branch Rotations. On each frame, the BVH tree is updated by a post-order traversal, see Sec. B.1
for details. For rotations, see part (d) of Fig. 2, which illustrates candidate node swaps considered in
pivoting. Lift Rebalancer (red rotation) occurs between a parent node’s child and grandchild, adjusting
subtree hierarchy levels to optimize local structure. Reorder Rebalancer (blue rotation) works among
siblings to bypass local optima and achieve better global optimization. Each rotation operation is
assigned a cost to filter hopping Gaussians. The green rotation produces mirrored-equivalent trees
from Reorder Rotation and is omitted to avoid redundant computations.

Handling Hopping Points. When the rotation cost of the middle level nodes exceeds a threshold, the
Gaussians within exhibit strong mobility and are filtered as hopping points, and will be incrementally
3D triangulated.

4 Experiments

4.1 Experiments Settings

Implementation Details. To initialize TGA, we adopt VHAP [58] to preprocess the multi-view
RGB video dataset for head tracking. We compare our approach against state-of-the-art avatar
reconstruction methods via both qualitative and quantitative experiments. Specifically, we evaluate
TGA on Chamfer distance, normal error, and recall [65] using the Multiface dataset [66], which
provides 3D ground truth. We further evaluate the performance in terms of mesh extraction time, mesh
rendering quality, and Gaussian-based novel view synthesis and self-reenactment quality. Thanks to
our perspective-correct ray tracing for precise evaluation of Gaussian contributions, TGA converges
within 300k iterations. All experiments are performed on NVIDIA RTX 4090 GPUs, using the same
hyperparameters as GaussianAvatars [2].
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Method L1-CD↓ MAE↓ Recall@2.5mm↑
HRN [67] 2.64 22.3 0.698
3DDFA [68] 4.35 22.9 0.649
NHA [42] 6.02 28.9 0.462
NPHM [24] 3.35 20.5 0.764
SF [4] 2.50 24.8 0.751
Topo4D [54] 2.33 19.3 0.772
Ours 2.16 17.7 0.802

Figure 6: Comparison of reconstructed meshes and normals on the Multiface [66]. Although frontal-
view differences appear minor, 3D error metrics show that TGA remains the closest to the GT.

Memory Overheads. The memory overheads of training and mesh extraction is no more than 24
gigabytes since we load images on-the-fly. When scaling to longer frame sequences and with stable
number of Gaussians, the training memory usage remains mostly constant, and the storage for BVH
tree pivoting is related to the number of Gaussians since it is conducted frame by frame.

Datasets. We evaluate our method on the NeRSemble [33], Multiface [66] and NHA Dataset [42].
The NeRSemble captures detailed facial dynamics, and the data is calibrated with sub-millimeter
accurate camera poses and high-quality foreground segmentation. The Multiface dataset captures
subjects covering dense multiview camera captures, rich facial expressions, and ground truth mesh to
evaluate the 3D reconstruction efficiency. The NHA real dataset contains sequences that are suitable
for the evaluation of full dynamic head approaches. We use it to evaluate the novel-view synthesis
and self-reenactment rendering performance of our method.

4.2 Baselines

HRN [67] is a hierarchical representation network that achieves detailed face reconstruction. It
generates a displacement map from each view and fuse them to obtain the final mesh. 3DDFA-
V3 [68] uses geometric guidance for facial part segmentation for face reconstruction. We reconstruct
a mesh for each view and then fuse them to obtain a multi-view-consistent final mesh. NHA [42]
is learned from a monocular RGB portrait video that features a range of different expressions and
views. NPHM [24] generates a signed distance field of a human head given an identity code and
an expression code, and can then be translated into a mesh via marching cubes [69]. SurFhead [4]
employs 2DGS [70] and GaussianAvatars[2] to reconstruct photorealistic avatars and high-fidelity
surface normals and meshes from videos. Topo4D [54] introduces novel texture regularization.

4.3 Avatar Reconstruction Results

Mesh Geometry. We compare TGA against our baselines on the NeRSemble dataset [33] by
reconstructing each avatar from 16-view RGB sequences and present qualitative results in Fig. 5.
Comparative experimental results demonstrate that TGA can faithfully capture facial shape and
expression details, greatly aiding avatar identity recognition and accurate emotion interpretation.
Although HRN [67] reconstructs detailed wrinkle patterns, it still misses personalized eye and nose
features. 3DDFA-V3 [68] exhibits jaw-shape inaccuracies. NHA [42] employs high-capacity neural
networks for photorealistic rendering, but its geometry remains underconstrained. NPHM [24] excels
at expression representation yet fails to preserve identity. Topo4D [54] and SurFHead [4] achieve
strong identity reconstruction; however, Topo4D lacks fine facial detail, and SurFHead is constrained
by depth maps rendered from 3DGS.

Additionally, we conduct a qualitative and quantitative evaluation of the reconstructed meshes on
the Multiface Dataset [66] in Fig. 6. We focus on three metrics: L1-Chamfer distance, normal MAE
(Mean Angular Error), and Recall [65] which measures the percentage of ground-truth points within
a 2.5 mm threshold of any reconstructed point. TGA consistently produces meshes that closely match
the ground truth from both frontal and side viewpoints.

Mesh Rendering. Moreover, we evaluate the mesh-based rendering results on the four subjects
(shown in Fig. 5) from the frontal view in Tab. 1. Since TGA currently does not incorporate intrinsic
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Figure 8: PSNR curves of novel view synthesis results on subjects from the NeRSemble [33].

decomposition or reflectance modeling, we employ flat shading based solely on vertex colors for
rendering. We additionally evaluate the temporal quality and consistency of our results on temporal
using VMAF [71], a metric designed to capture both perceptual quality and temporal coherence. The
qualitative mesh rendering results are represented in the appendix C.2.

SurFhead GHAGT Ours

Figure 7: Self-reenactment on the NHA [42] and
NeRSemble [33] dataset.

Gaussians Rendering. Although our method
primarily targets geometry-accurate 3D recon-
struction, TGA also exhibits strong performance
in self-reenactment and novel-view synthesis.
We present the comparison with SurFhead [4]
and GHA [51] in Fig. 7 and Tab. 1, respec-
tively. The self-reenactment results indicate
that, by leveraging the Perspective-Aware Gaus-
sian Transformation, the proposed method can
achieve more faithful rendering of dynamic re-
gions (eyes and mouth) with fewer iterations
than other 3DGS-based avatar methods. Addi-
tionally, we present sequential novel view syn-
thesis rendering frames and their corresponding PSNR curves. The Fig. 8 demonstrates the stability
and temporal consistency of TGA.

Inference Time. Furthermore, we benchmark mesh-extraction times against baseline methods in
Tab. 1. For Gaussian-based methods, meshes are extracted via Truncated Signed Distance Function
fusion on 3DGS-rendered depth maps following 2DGS [70]. To ensure fairness, we selected sequences
of 100 frames from the Multiface Dataset [66], using 16 key views for tracking and resizing images
to the resolution employed by NeRSemble [33]. HRN [67], 3DDFA [68], and NPHM [24] takes
approximately 2–5 minutes per frame to inference.

Table 1: Average mesh extraction time, mesh-based rendering and NVS rendering performance.

Method Mesh-based Rendering Gaussian-based Rendering Inference↓
PSNR↑ SSIM↑ LPIPS↓ VMAF [71]↑ PSNR↑ SSIM↑ LPIPS↓ VMAF [71]↑

GA [2] 18.63 0.542 0.496 36.7 30.29 0.934 0.066 51.2 ∼20s
Topo4D [54] 23.69 0.637 0.285 53.9 30.88 0.931 0.064 61.4 While Train
SF [4] 21.09 0.558 0.479 39.1 29.94 0.933 0.062 43.6 ∼20s
Ours 23.77 0.645 0.311 47.2 31.32 0.936 0.058 65.8 ∼8s

4.4 Ablation Study

Table 2: Ablations on each modules in the PGT.

Method L1-CD ↓ MAE ↓ Recall@2.5mm ↑ PSNR↑ SSIM↑ LPIPS↓
Vanilla 3.67 24.9 0.547 29.85 0.931 0.073
w/o Homogeneous 3.32 22.1 0.619 30.08 0.931 0.070
w/o Jacobian 2.58 20.1 0.748 30.85 0.934 0.066
w/o Lnr 2.43 19.2 0.756 31.17 0.935 0.061
Ours 2.16 17.7 0.802 31.32 0.936 0.058

Perspective-aware Gaussian Transfor-
mation (PGT). We demonstrate the ge-
ometric (CD, MAE and Recall for ex-
tracted meshes) and chromatic (PSNR,
SSIM, LPIPS for Gaussian-based render-
ing) impact of the perspective-aware Gaus-
sian transformation in Tab. 2 and Fig. 9. First, the homogeneous formulation yields a noticeable
improvement in mesh quality. Second, the Jacobian gradient is essential for guiding deformation
of canonical Gaussians in dynamic regions, such as the eyes (red box in Fig. 9). Without the trans-
formed normal loss, Jacobian guided deformation fails to propagate effectively into the geometry, as
evidenced by the results in Tab. 2.
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Ours Fullw/o JacobianInput RGB Ours Fullw/o Homogeneous w/o Jacobian w/o Homogeneous

Figure 9: The close-ups, taken from + 60◦ view, highlight the effect of our PGT module.

1) frame n 2) frame n+1

a) Fixed Δ = 0.0039 b) Fixed Δ = 0.0034 c) Ours Hopping

Figure 10: Effect of hopping Gaussians filtering.

Hopping Points Filtering. Furthermore, we
evaluate hopping-point filtering via our BVH
pivoting mechanism in Fig. 10, rather than rely-
ing on a fixed ∆ threshold on Gaussian centers
across frames. When filtering with a fixed ∆
Gaussian center between frames, the blue points
illustrate (a) incomplete culling and (b) excess
screening. In contrast, our BVH pivoting accu-
rately filters out the hopping Gaussians (c). It
should be noted that when the avatar slightly
opens the eyes or mouth, the forehead topology
remains largely unchanged, obviating the need
for re-triangulation in that region.

Table 3: Effect of Incremental Strategy for Fast
Avatar Reconstruction.

Iteration Vertex Num 1st Frame x-th Frame

50k 258k 12s 1.9s
100k 372k 26s 3.4s
200k 489k 49s 5.7s
300k 563k 61s 8.4s

Accelerated Mesh Extraction. We also evalu-
ate mesh extraction speed across different train-
ing iterations by reporting the number of mesh
vertices at key checkpoints and the time required
for mesh extraction per frame. As training
progresses, although the scene contains more
points, the Gaussian BVH tree has learned a
better topology of the avatar face. As shown in
Tab. 4, while the total triangulation time (3rd
column) increases with O(n log n) complexity,
our method effectively reduces the computational burden (4th column).

4.5 Discussion

Limitations. Our method struggles in regions like hair and eyes, where translucency, non-rigid
motion, and strong specular reflections violate modeling assumptions, leading to opacity inconsistency
and hollow-eye artifacts. It also fails under severe expression deformations, causing mesh tearing or
topology distortion, since the BVH-hopping Gaussians assume smooth motion. Performing a fresh
triangulation can effectively remove accumulated errors.

Societal impact. Our method advances high-fidelity facial reconstruction, but it also poses potential
risks of misuse, such as identity theft, unauthorized avatar replication, or deepfake generation. These
concerns call for thoughtful reflection on ethical implications and the adoption of practical safeguards
to minimize possible harm. But with proper and responsible use, we believe our method can bring
significant benefits to applications in virtual/augmented reality.

5 Conclusion

In this work, we proposed TGA, a perspective-aware 4D Gaussian avatar framework that captures
fine-grained facial geometry under dynamic conditions. By integrating Jacobian-guided deformation
into a homogeneous projection, our method preserves color consistency and geometric accuracy.
Coupled with an efficient BVH Tree Pivoting strategy for incremental mesh extraction, TGA achieves
state-of-the-art performance in dynamic avatar reconstruction. Future work will explore its extension
to relighting, full-body modeling and real-time applications.
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A Theoretical Analysis

A.1 Homogeneous Projection and Perspective-Aware Transformation.

Let C(p) ∈ R3 be the rendered color at pixel p = (x, y) obtained by compositing of K Gaussians,

C(p) =

K∑
k=1

ckAk(p)
∏
j<k

(
1−Aj(p)

)
, Ak = αkDk, Dk = exp

[
− 1

2ϕ
∗2
k

]
,

where ϕ∗
k denotes the normalized projected deviation of Gaussian k in image space. Denote the full

perspective Jacobian Jpersp ∈ R2×3 by

Jpersp =
( f

Z 0 − fX

Z2

0 f
Z − fY

Z2

)
and the affine approximation by Jaff = diag(f/Z, f/Z, 0) that drops the shear terms. Let∇pC and
∇̃pC be the image-space gradients computed with Jpersp and Jaff, respectively. Then, for any camera
pose where at least one off-diagonal entry of Jpersp is non-zero (i.e. any non-frontal view):

∥∥∇pC
∥∥2
2

=
∥∥∇̃pC

∥∥2
2
+

K∑
k=1

∥∥Sk J∆
∥∥2
F︸ ︷︷ ︸

> 0

(4)

where J∆ = Jpersp−Jaff contains only the shear components, and Sk is a symmetric positive matrix that
depends on αk, Dk, and the transmittance of the front Gaussians. Consequently ∥∇pC∥2 > ∥∇̃pC∥2;
i.e. the homogeneous-projection renderer is strictly more view-sensitive than its affine counterpart.

Proof. For brevity, write Tk−1 =
∏

j<k(1−Aj) and note that 0 < Tk−1 ≤ 1. By direct differentiation
we have

∇pC =
∑
k

ck Tk−1

[
∇pAk −Ak

∑
j<k

∇pAj

1−Aj

]
, ∇pAk = −αkDkϕ

∗
k∇pϕ

∗
k.

All dependence on the projection model is confined to ∇pϕ
∗
k. With either Jacobian choice it can be

expressed as a linear map acting on the shear term J∆:

∇pϕ
∗
k = Sk Jpersp, ∇̃pϕ

∗
k = Sk Jaff, =⇒ ∇pϕ

∗
k = ∇̃pϕ

∗
k + Sk J∆.

Substituting in ∇pC and expanding ∥∇pC∥22 yields

∥∥∇pC
∥∥2
2
=

∥∥∇̃pC
∥∥2
2
+
∑
k

∥∥∥ckTk−1αkDkϕ
∗
kSkJ∆

∥∥∥2
2
+ ⟨∇̃pC,

∑
k

ckTk−1αkDkϕ
∗
kSkJ∆⟩.

The cross-term in the inner product vanishes because J∆ contains only off-diagonal elements while
∇̃pC depends exclusively on Jaff (diagonal). Hence the second equality in (4) follows, and the
Frobenius-norm term is strictly positive whenever J∆ ̸= 0.

Implication. Because facial albedo varies weakly, rendering fidelity primarily depends on how
strongly the visibility term responds to slight shifts in viewpoint or shape. As shown in Sec. A.1, the
homogeneous-projection formulation amplifies this response, leading to higher sensitivity to view
changes and thus improved reproduction of fine-scale, view-dependent facial appearance.
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B Algorithm

B.1 Pivot and Filter Hopping Points.

Here, we represent the proposed algorithm for Pivot and Filter Hopping Points in Sec. 3.3.2.

Algorithm 1: Pivot and Filter Hopping Points
Input: T (BVH Tree), G (Gaussians), τ (Hop Threshold)
Output: Updated T , hopping points H

1 function PIVOT(n,G,H, τ )
2 RefitAABB(G(n));
3 if n is leaf then
4 SplitCandidate(n);
5 else if n has two leaf children then
6 Merge(n);
7 else if n.depth ≥ 3 then
8 foreach ρ ∈ Lift & Reorder Rebalancers do
9 ComputeSAH(n, ρ);

10 if BestRotation(n) ̸= NONE then
11 ApplyBestRotation(n), RefitAABB(G(n)), ComputeCost(n, ρ);
12 if Cost(n) > τ then
13 H ← H∪ G(n);

14 function LRD(n,G,H, τ )
15 if n ̸= NULL then
16 LRD(n.left, G, H, τ ), LRD(n.right, G, H, τ );
17 PIVOT(n,G,H, τ );

18 foreach frame do
19 H ← ∅, LRD(T ,G,H, τ ), IncrementalDelaunay(H);

C Additional Results

We provide more novel view synthesis, self-reenactment, mesh rendering sequences here.

C.1 Gaussian Rendering Results.

We represent the novel view synthesis and self-reenactment results on the NeRSemble dataset [33],
where one frame is sampled every 5-8 frames for visualization.
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Figure 11: Novel view synthesis rendering results on subjects of the NeRSemble dataset [33].
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Figure 12: Self-reenactment rendering results on subjects of the NeRSemble dataset [33].

C.2 Mesh Rendering Results.

Since TGA currently does not incorporate intrinsic decomposition or reflectance modeling, we
employ flat shading based on vertex colors for rendering.
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Figure 13: Mesh rendering results by Meshlab on subjects of the NeRSemble dataset [33].
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Figure 14: Mesh sequence rendering results by Blender on subjects of the NeRSemble dataset [33].

D More Discussion

D.1 Impact of the focal length.

Shorter focal lengths (i.e., wider fields of view) introduce stronger perspective distortion, making the
affine approximation less accurate. Our homogeneous formulation can address this by incorporating
full-depth information, enabling more accurate color blending and better geometry reconstruction
under wide-FoV conditions.
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D.2 Generalization in sparse-view scenarios.

TGA is primarily designed for multi-view dynamic reconstruction, but it can ensure reasonable results
under sparse-view. Specifically, the FLAME model offers strong geometric priors that effectively
guide reconstruction in low-coverage settings. The proposed Perspective-aware Transformation
leverages subtle photometric changes to optimize Gaussian attributes from limited viewpoints.
Additionally, the Jacobian-guided deformation improves inter-frame consistency by enhancing the
temporal coverage of Gaussian primitives.

D.3 Performance on longer videos and longer-term consistency.

Our method can produce relatively stable outputs on longer sequences. When scaling to longer
frame sequences and keeping the number of Gaussians stable, the overall training time and rendering
metrics are expected to be close to Tab. 1 (since we have to train for 300k iterations), and the runtime
of BVH tree pivoting is closely related to the number of Gaussians rather than sequence length.

Specifically, the proposed BVH pivoting mechanism is designed to support long-range consistency. It
incrementally tracks topological variations in Gaussian pointcloud and reuses triangulations when no
significant local deformation is detected. Additionally, periodic re-triangulation provides a way to
reset the accumulated geometric errors and recover accuracy.

E More Comparisons

We further compare TGA with existing approaches 3DGUT [72, 73] and 3DGS-marcher [74] about
improvement over EWA splatting, modified with FLAME-based mesh-Gaussian deformation. The
quantitative results show that our method achieves superior performance in the scope of dynamic
avatar reconstruction.

Table 4: Comparisons with existing approaches on improvement over EWA splatting.
Method PSNR↑ SSIM↑ LPIPS↓
3DGUT [72, 73] 29.96 0.938 0.084
3DGS-marcher [74] 30.54 0.941 0.079
Ours 31.37 0.952 0.058

F Future Work

Our current work primarily focuses on dynamic reconstruction under controlled indoor lighting and
does not explicitly support lighting variations. Lighting changes can indeed affect 3DGS-based
methods due to their reliance on photometric consistency. In future work, we plan to incorporate
intrinsic decomposition and physically-based rendering into the reconstruction pipeline to better
disentangle geometry, reflectance, and illumination. Such integration would enable the model
to handle complex and dynamic lighting conditions, thereby extending TGA to more casual and
in-the-wild scenarios with improved photometric robustness and relightability.
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