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Abstract

We address the problem of language-guided 3D affordance prediction, a core
capability for embodied agents interacting with unstructured environments. Exist-
ing methods often rely on fixed affordance categories or require external expert
prompts, limiting their ability to generalize across different objects and interpret
multi-step instructions. In this work, we introduce ViSPLA, a novel iterative self-
prompting framework that leverages the intrinsic geometry of predicted masks for
continual refinement. We redefine affordance detection as a language-conditioned
segmentation task: given a 3D point cloud and language instruction, our model pre-
dicts a sequence of refined affordance masks, each guided by differential geometric
feedback including Laplacians, normal derivatives, and curvature fields. This feed-
back is encoded into visual prompts that drive a multi-stage refinement decoder,
enabling the model to self-correct and adapt to complex spatial structures. To
further enhance precision and coherence, we introduce Implicit Neural Affordance
Fields, which define continuous probabilistic regions over the 3D surface without
additional supervision. Additionally, our Spectral Convolutional Self-Prompting
module operates in the frequency domain of the point cloud, enabling multi-scale
refinement that captures both coarse and fine affordance structures. Extensive
experiments demonstrate that ViSPLA achieves state-of-the-art results on both
seen and unseen objects on two benchmark datasets. Our framework establishes
a new paradigm for open-world 3D affordance reasoning by unifying language
comprehension with low-level geometric perception through iterative refinement.
Project Website

1 Introduction

Affordance, initially conceptualized by Gibson [1], defines the potential action possibilities that
objects present to an agent. The evolution of robotic systems toward increasingly unstructured envi-
ronments necessitates a fundamental paradigm shift in how we conceptualize affordance detection.
Formally, we can represent the affordance detection problem as a mapping function fθ : (P) 7→ A,
where P ∈ RN×3 denotes a point cloud with N points, and A is the binary affordance mask indicating
interactable regions. As shown in Figure 1(a), traditional approaches constrain this mapping to a
limited set of predefined K affordance categories A = {ak}; k = {1, 2, ..,K}, which fundamentally
restricts the generalization capability and operational flexibility in dynamic, real-world environments
[2]. Although conventional methodologies have predominantly focused on visual modalities, attempt-
ing to infer functionality from geometric structures or 2D visual features, such approaches inherently
lack the semantic reasoning capabilities essential for complex interaction scenarios. The semantic gap
between low-level perceptual features and high-level functional understanding represents a critical
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Figure 1: (a) Traditional vision-based methods [3, 4] rely on trainable network fθ to predict a fixed
set of affordances fθ : P 7→ A; A = {a1, a2, ..aK}; (b) Language input along with point-cloud add
more flexibility to comprehend complex language instructions and mitigate the problem of open-set
affordance prediction [5, 6]: fθ : (P,L) 7→ M; (c) We propose refining the initial affordance
prediction M0 for T steps using our proposed IDGSP, and Iterative Affordance Refinement module,
consisting of multi-stage refinement decoder fMG, INAFS (Φω) and SCSP. Our solution could be
formulated as fθ : (P,G(Mt−1),L) 7→ Mt; t ∈ {1, 2, ..T}. Details can be found in section 3.

limitation that inhibits the deployment of autonomous agents in real-world contexts. Language-guided
affordance prediction offers a mathematically elegant solution to this complex problem.

Language-guided affordance detection from 3D point clouds represents a pivotal direction in em-
bodied AI, serving as the critical bridge between perception and manipulation in the physical world.
By conditioning the affordance function on natural language instructions, we can formulate a more
generalizable mapping: Fθ : (P,L) 7→ M, where θ represents the learnable parameters, L represents
a linguistic instruction, and M ∈ {0, 1}N is the binary affordance mask (visualized in Figure 1(b)).
This formulation opens avenues for handling more diverse and complex scenarios—potentially allow-
ing models to interpret novel affordance types via linguistic cues, handle multi-step tasks through
decomposed predictions, and relate instructions to affordances at different levels of granularity.
Recent progress in Large Language Models (LLMs) has shown impressive capabilities in sequential
reasoning and knowledge grounding [7], but these models are often decoupled from 3D perception.
Meanwhile, 3D affordance detection methods typically remain limited to static, single-affordance
settings, with little capacity to handle instructions requiring compositional or context-aware reasoning
across multiple object parts. This disconnect motivates a more integrated, multimodal approach that
unifies linguistic understanding with spatial perception.

To this end, we propose an iterative self-prompting-based 3D affordance detection paradigm that
bridges the gap between language understanding and affordance segmentation through geometric
feedback-driven refinement, as shown in Figure 1(c). Unlike prior approaches that perform single-
pass inference, our method implements a closed-loop system where each predicted affordance mask
is used to generate geometric self-prompts that refine subsequent predictions. Mathematically, we
formulate this as: Mt = fθ

(
P,G(Mt−1),L

)
; t ∈ {1, 2, .., T}, where M0 = fθ(P,L) is the initial

affordance mask predicted from a language-conditioned decoder, and G denotes the geometric prompt
generator that extracts differential features (e.g., curvature, normal derivatives) from Mt−1. The final
refined mask MT integrates both semantic guidance and geometric consistency, enabling robust and
generalizable affordance segmentation across varying levels of granularity and complexity.

This approach addresses several critical challenges in the field: (1) Existing single-pass inference
methods lack the ability to iteratively refine predictions, often leading to suboptimal segmentation,
especially on complex geometries; (2) most affordance models fail to leverage intrinsic geometric
structure for mask refinement, relying instead on language cues alone, which limits localization
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accuracy, especially in complex or ambiguous settings; (3) the disconnect between high-level language
semantics and low-level geometric features, hindering precise and context-aware affordance prediction
across multiple scales; and (4) the difficulty of achieving fine-grained, geometrically consistent
affordance boundaries without dense supervision, particularly in sparse or noisy point clouds. In
summary, our contributions are:

• We introduce Visual Iterative Self-Prompting for 3D Affordance Learning (ViSPLA),
which leverages geometric features from predicted masks as visual prompts for progressive
refinement. Unlike existing single-pass methods, our approach establishes a self-improving
cycle that enhances precision across multiple object geometries.

• We propose a novel Differential Geometric Self-Prompting mechanism that extracts math-
ematical properties (Laplacians, curvatures, normal derivatives) from predicted masks to
guide subsequent iterations. This approach enables more accurate affordance localization by
incorporating intrinsic geometric cues rather than relying solely on language.

• We develop a Multi-Stage Refinement Decoder that creates dynamic mappings between
language tokens and point features. By injecting LLM reasoning into dense point fea-
tures, our approach bridges high-level semantic understanding with low-level geometric
representation.

• We introduce an Implicit Neural Affordance Field technique that learns a smooth,
continuous function over the 3D object to refine affordance boundaries and en-
force geometric consistency, even without extra supervision. In tandem, our
Spectral Convolutional Self-Prompting module analyzes and enhances affordance predic-
tions at multiple structural scales, enabling the model to capture both broad shapes and fine
details for robust and accurate segmentation, especially in sparse or noisy scenarios.

• We demonstrate that fine-tuning pre-trained MLLMs through our self-prompting framework
yields superior performance on both seen and unseen scenarios.

2 Related Work

2.1 Affordance Detection

Affordance detection aims to identify functionally interactive regions on objects, crucial for enabling
robotic agents to manipulate and reason about the physical world. Early works in 2D explored object-
level affordances using CNNs [3], later extending to language-conditioned queries [8], but remained
limited to coarse spatial reasoning. Subsequent efforts [9, 10] introduced fine-grained part-level
detection but were restricted to fixed affordance taxonomies. The emergence of 3D datasets like 3D
AffordanceNet [4] and PartNet [11] enabled point cloud-based affordance learning. IAGNet [12]
utilized 2D human-object interactions to guide 3D segmentation, while OpenAD [13] advanced
open-vocabulary affordance detection using joint text-geometry embeddings. However, these models
still rely on static label spaces and do not support complex instruction understanding. Recent methods
like LASO [14] incorporate language into 3D affordance prediction, but often assume one-to-one
mappings between text and affordance, lacking support for multi-step or compositional reasoning.
Chu et al. [15] use LLMs for cross-modal object retrieval but cannot produce spatially grounded
interaction masks.

In contrast, our work formulates affordance detection as an instruction-conditioned segmentation task
that enables open-vocabulary, multi-step reasoning directly over 3D point clouds, overcoming the
rigidity of fixed labels and the limitations of prior semantic alignment methods.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) extend the language understanding capabilities
of LLMs to the visual and spatial domains [16, 17] by aligning textual tokens with visual and
geometric inputs. Initial breakthroughs in 2D MLLMs [18–20] enabled joint reasoning over images
and text, yet these models lacked the granularity necessary for fine-grained visual tasks such as
segmentation. To mitigate this, models like LLaVA [21] introduced spatial localization, improving
regional understanding.

Inspired by this progress, researchers have begun extending MLLMs to the 3D domain. Object-
centric MLLMs such as PointLLM [22] and ShapeLLM [23] utilize point-based encoders and
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multi-view distillation to encode geometric structure and semantics. These models demonstrate
strong performance in 3D captioning and object-level referring expression grounding, but often
operate on isolated objects and fail to model complex inter-object spatial dependencies. Scene-
level LMMs such as Chat-3D [24], LL3DA [25], and 3D-LLM [26] extend grounding to richer
indoor scenes using object identifiers, positional embeddings, and pre-selection modules to facilitate
dialogue-driven scene understanding.

However, despite these advances, existing 3D MLLMs predominantly focus on global grounding and
object identification, lacking the capacity for localized, affordance-specific segmentation or functional
reasoning over object parts. 3D-AffordanceLLM [6] takes a step forward by introducing an <AFF>
token and a custom decoder to generate affordance masks from natural language queries. Unlike
[6], which performs single-pass instruction-to-mask mapping with no feedback loop, our method
introduces an Iterative Self-Prompting mechanism that progressively refines predictions by leveraging
prior affordance masks as feedback prompts. Moreover, 3D-AffordanceLLM lacks any geometric
introspection; in contrast, our Differential Geometric Self-Prompting explicitly uses curvature,
Laplacian, and boundary topology cues for precise localization, going beyond language-only guidance.
While 3D-AffordanceLLM relies on a fixed decoder architecture, our Multi-scale Visual-Language
Integration Module dynamically aligns instructions with geometric features at varying resolutions,
enhancing affordance prediction across objects of diverse scale and complexity. Finally, unlike their
static segmentation output, our Affordance Dictionary Adaptive Fusion fuses temporal and functional
context across steps, enabling robust multi-stage affordance reasoning. Together, these advances
allow our model to achieve superior open-world generalization and performance in sequential,
instruction-grounded 3D affordance tasks.

3 Proposed Method

We propose ViSPLA, a novel iterative self-prompting framework for language-guided 3D affordance
detection that incorporates differential geometric feedback for progressive mask refinement. Unlike
previous methods that rely on single-pass inference, our approach employs a recurrent self-prompting
mechanism that leverages the intrinsic geometric properties of predicted affordance masks to guide
subsequent refinements.

3.1 Probelm Formulation

Following the paradigm reformation introduced by 3D-AffordanceLLM [6], we formulate affordance
detection as an Instruction Reasoning Affordance Segmentation (IRAS) task. Given a natural
language instruction L and a point cloud P ∈ RN×3 containing N points, our goal is to predict a
binary affordance mask M ∈ {0, 1}N indicating regions suitable for the specified interaction. While
existing approaches [6] model this as a direct mapping fθ : (P,L) 7→ M, we introduce an iterative
refinement process, as already described in section 1:

Mt = fθ
(
P,G(Mt−1),L

)
; t ∈ {1, 2, ..., T} (1)

where M0 = fθ(P,L) is the initial affordance prediction and G is our proposed geometric prompt
generator that extracts meaningful differential features from previous mask predictions. ViSPLA
consists of three main components: (1) a language-guided affordance detection backbone based on
3D-AffordanceLLM, (2) a differential geometry-based self-prompting module, and (3) an iterative
affordance refinement module, consisting of a multi-stage refinement decoder, implicit neural field
supervision, and spectral convolutional self-prompting. The overall workflow is shown in Figure 2.

3.2 Preliminaries: Language-guided Affordance Detection Backbone

We build upon the 3D-AffordanceLLM [6] architecture, adopting it as our backbone, which comprises
a pre-trained point encoder fPE, a point cloud backbone fPB, a projection module fproj, a large language
model fLLM, and an affordance decoder fAFD. Given an input point cloud P and a natural language
instruction L, the system proceeds as follows: the point encoder first extracts geometric features
X = fPE(P) ∈ Rm×c, where m denotes the number of keypoints and c is the feature dimension.
These features are projected into the token space via fproj, yielding Y = fproj(X) ∈ Rm×d, where
d matches the dimensionality of the LLM token embeddings. The projected point tokens are
concatenated with the instruction tokens and passed into the LLM fLLM, which processes them
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Figure 2: Overview of the ViSPLA framework: given a point cloud P and a language instruction L,
first we extract geometric features X = fPE(P), project them to Y = fproj(X), and pass them along
with language tokens to the frozen LLM with trainable LoRA layer. Next, dense point-cloud features
X ′ = fPB(P) and affordance tokens from LLM haff = fLLM (Y,L) are extracted and passed to the
affordance decoder fAFD to produce an initial mask M0. The iterative affordance refinement module
then refines the mask via T steps. At each iteration t, geometric descriptors Zt = fGFE(G(Mt−1))
(e.g., Laplacian, curvature) are computed (subsection 3.3) and injected as visual prompts, along with
X ′ and haff to multi-stage refinement decoder fMG (subsubsection 3.4.1) to produce the refined
affordance prediction Mt, after processing them through INAFS (subsubsection 3.4.2) and SCSP
(subsubsection 3.4.3). The process converges after T steps, enabling precise, language-guided 3D
affordance segmentation MT through closed-loop geometric feedback.

to generate a response sequence that includes a special affordance token <AFF>. The hidden
representation corresponding to <AFF>, denoted as haff, is then extracted. Meanwhile, the point cloud
backbone fPB computes dense point-wise features X ′ = fPB(P) ∈ RN×c′ . Finally, the affordance
decoder fAFD fuses haff with X ′ to produce the initial affordance mask M0 = fAFD(haff, X

′).

3.3 Iterative Differential Geometry-based Self-Prompting

Building upon the initial prediction M0, we introduce our core contribution: Iterative Differential
Geometry-Based Self-Prompting (IDGSP). This module leverages geometric feedback derived from
prior affordance masks to progressively refine segmentation outputs. At each iteration t, we compute
a set of differential geometric descriptors from the previous mask Mt−1:

G(Mt−1) =
{
∇2Mt−1, ∇Mt−1 · n, H(Mt−1), κ1(Mt−1), κ2(Mt−1)

}
(2)

where ∇2Mt−1 denotes the Laplacian of the mask capturing local curvature variation, ∇Mt−1 · n
represents the normal derivative quantifying alignment with surface normals, H(Mt−1) is the mean
curvature of mask boundaries, and κ1, κ2 are the principal curvatures. These geometric signals encode
essential boundary-aware and topological properties that reflect the physical plausibility of affordance
regions. The extracted descriptors are transformed into a dense per-point representation Zt ∈ RN×d

using a learnable geometric feature extractor fGFE: Zt = fGFE (G(Mt−1)). This geometry-driven
prompt Zt is then injected into the multi-stage refinement decoder (subsubsection 3.4.1) to guide the
refinement process.

3.4 Iterative Affordance Refinement

3.4.1 Multi-Stage Refinement Decoder

To operationalize the geometric self-prompting mechanism, we employ a multi-stage refinement
decoder that iteratively updates the affordance mask using both language and geometry-informed
cues. At each iteration t, the geometric features Zt are fused with the initial LLM embedding haff
using a cross-attention mechanism:

h
(t)
aff = CrossAttn(haff,Zt) (3)

The refined embedding h(t)
aff is then combined with dense point cloud features X ′ via a mask generation

module fMG to produce the updated affordance mask:

Mt = fMG(h
(t)
aff , X

′) (4)
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3.4.2 Implicit Neural Affordance Field Self-Supervision

To complement the discrete iterative refinement process with a smooth, continuous representation,
we incorporate a regularization strategy based on implicit neural fields to enhance boundary precision
and geometric consistency without relying on additional labels. This component learns a continuous
implicit function Φω : R3 × Rd → [0, 1], parameterized by ω, which maps any 3D point x ∈ R3 and
its corresponding feature vector to a scalar-valued affordance probability.

The function Φω is trained via energy minimization loss LINAFS = E(Φω) over the 3D spatial
domain Ω, incorporating geometric priors and alignment with the current mask predictions. The
energy term is defined as:

E(Φω) =

∫
Ω

∥∇Φω(x)∥2dx+ λ1

∫
∂Ω

(Φω(x)−M(x))
2
dx+ λ2

∫
Ω

(|∆Φω(x)| − β∥κ(x)∥)2 dx
(5)

Here, the first term encourages spatial smoothness by minimizing the gradient norm of the implicit
field. The second term enforces fidelity to the current predicted mask M(x) at the boundary ∂Ω,
ensuring consistency with previously inferred affordances. The third term aligns the second-order
variation of the field, measured by the Laplacian ∆Φω, with the Gaussian curvature κ(x) (where
κ = κ1 ·κ2), thereby promoting geometric conformity with intrinsic surface structures. The weighting
parameters λ1, λ2, and scaling constant β balance the contributions of fidelity and curvature alignment.
After optimization, the final affordance mask is extracted by thresholding the implicit field at 0.5:

Mrefined = {x ∈ P | Φω(x) > 0.5} (6)

This implicit representation allows the model to refine coarse predictions into geometrically consistent
and semantically plausible affordance regions, even in the absence of explicit supervision.

3.4.3 Spectral Convolutional Self-Prompting

To complement spatial refinement with a frequency-aware perspective, we introduce Spectral Convo-
lutional Self-Prompting (SCSP), which enables the model to capture affordance structures at multiple
scales in the spectral domain of point cloud. We treat the 3D point cloud as a discrete manifold
encoded by the normalized Laplacian operator L = I − D−1/2AD−1/2, where A is the affinity
matrix derived from local geometric similarity, and D is the corresponding degree matrix. Given the
predicted affordance mask M ∈ RN , we project it to spectral domain via eigen-decomposition:

M̂ =

N∑
i=1

αiui, where αi = ⟨M,ui⟩ (7)

Here, {ui}Ni=1 are the eigenvectors of L, and {αi} are the corresponding spectral coefficients. Refine-
ment is performed by applying a learnable spectral filter g(λi), parameterized over the eigenvalues
{λi}, yielding the updated mask in the spectral domain:

M̂t+1 =
N∑
i=1

g(λi)α
(t)
i ui (8)

By operating in the spectral domain, SCSP provides a principled, resolution-aware mechanism for
affordance enhancement without explicit hierarchical supervision. The entire refinement process is
performed iteratively for T steps, allowing the model to progressively improve affordance localization
by incorporating differential geometric feedback.

3.5 Overall Learning Strategy

To effectively address data scarcity and ensure robust affordance understanding, we adopt a multi-
stage training strategy inspired by 3D-AffordanceLLM [6]. The pre-trained backbone is frozen,
and we train the proposed self-prompting modules, including IDGSP, INAFS, and SCSP, to refine
affordance masks using geometric and spectral cues. Our overall loss combines multitask objectives:

L = λtxtLtxt + λmaskLmask + λIDGSPLIDGSP + λINAFSLINAFS + λSCSPLSCSP (9)

Here Ltxt is autoregressive CE loss for LLM response generation, Lmask is BCE + Dice loss for initial
affordance mask prediction, both used in the affordance backbone (following [6]). LIDGSP penalizes
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inconsistencies between iterative mask refinements and encourages smoothness, LINAFS denotes
energy-based regularization over the implicit affordance field (described in subsubsection 3.4.2),
LSCSP performs spectral consistency and spatial regularization using total variation TV . Specifically,
LIDGSP and LSCSP are formulated as:

LIDGSP =

T∑
t=1

λt∥Mt −Mt−1∥2W2,2
+ α∥∇4MT ∥22, and (10)

LSCSP =

T∑
t=1

K∑
k=1

γk∥Wk(M̂t − M̂t−1)∥2F + τTV(MT ) (11)

where in Equation 10, || · ||2W2,2
is the Sobolev W 2,2 norm measuring the difference between

consecutive masks, capturing both value differences and derivatives (geometric properties), λt is
iteration-specific weight, ∇4 is biharmonic operator, and α|∇4MT |22 is Tikhonov regularization
term ensuring the final mask has smooth boundaries with controlled curvature. The first term in
Equation 11 penalizes changes in the spectral components of the mask across iterations, enforcing
frequency-consistent refinement, whereas the second term ensures that the final predicted mask MT

is spatially smooth, reducing over-segmentation and promoting contiguous affordance regions.
∑T

t=1

is summation over all iterations of the self-prompting process (from 1 to T ),
∑K

k=1 is summation
over K different frequency bands or scales of analysis, Wk is diagonal matrix that isolates the k-th
frequency band, γk is scale-dependent weight coefficients for each frequency band k, M̂t is spectral
decompositions of affordance masks at iteration t, | · |2F is Frobenius norm squared, measuring
differences in frequency components, τ denotes weight parameter balancing spectral consistency and
spatial coherence, and TV(MT ) is total variation regularizer promoting spatial smoothness in the
final mask.

This multi-stage optimization pipeline enables the model to progressively refine affordance predictions
by integrating linguistic reasoning with geometric and spectral feedback, leading to improved
generalization and mask accuracy in open-world settings.

4 Experiments and Results

4.1 Dataset Description

Following previous works [5, 14], we conduct evaluations on two complementary 3D affordance
datasets: PIAD [12] and LASO [14], each designed to test different aspects of generalization.
PIAD serves as a complementary benchmark, comprising 7, 012 point clouds from the same object
categories as LASO but introduces a stricter generalization setting—entire object instances are
withheld from training, requiring the model to predict affordances on previously unseen geometries.
As PIAD lacks textual annotations, we augment it with language instructions by sampling prompts
from LASO’s question pool, ensuring semantic alignment with each target affordance type. This
design enables evaluation of our model’s robustness in both instruction-conditioned and shape-driven
generalization scenarios. LASO, on the other hand, contains 19, 751 language-guided point cloud
pairs spanning 8, 434 unique object instances across 23 object categories and 17 affordance types. It
supports both Seen and Unseen splits, where the Unseen configuration deliberately excludes specific
affordance-object combinations during training to assess zero-shot generalization.

4.2 Implementation Details

Figure 3: Performance analysis (aIoU on "seen"
setting) with varying T and K values.

Following 3D-AffordanceLLM [6], we utilize
Phi-3.5-mini-instruct [27] as our base LLM with
LoRA [28] fine-tuning. For 3D processing, we
adopt Point-BERT [29] pre-trained with ULIP-
2 [30] as our point encoder (fPE) and Point
Transformer [31] as our point backbone (fPB).
The feature dimension d is set to 512 for both
language and point features. The projector layer
(fproj) is implemented as a simple linear layer
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Table 1: Qualitative comparison of our proposed method on the PIAD (left) and LASO (right) datasets.
The best and second-best results are highlighted in red and blue, respectively. LASO* indicates
reported results of LASO [14] in GEAL [5]. † denotes our reproduced results of [6].

Type Method aIoU ↑ AUC ↑ SIM ↑ MAE ↓

MBDF [33] 9.3 74.9 0.415 0.143
PMF [34] 10.1 75.1 0.425 0.141

FRCNN [35] 12.0 76.1 0.429 0.136
ILN [36] 11.5 75.8 0.427 0.137

PFusion [37] 12.3 77.5 0.432 0.135
XMF [38] 12.9 78.2 0.441 0.127

IAGNet [12] 20.5 84.9 0.545 0.098
LASO [14] 19.7 84.2 0.590 0.096

3DAffLLM† [6] 21.5 82.6 0.643 0.104
GEAL [5] 22.5 85.0 0.601 0.092

Seen

Ours 23.1 85.8 0.664 0.089
MBDF [33] 4.2 58.2 0.325 0.213
PMF [34] 4.7 60.3 0.330 0.211

FRCNN [35] 5.1 61.9 0.332 0.195
ILN [36] 4.7 59.7 0.325 0.207

PFusion [37] 5.3 61.9 0.33 0.193
XMF [38] 5.7 62.6 0.342 0.186

IAGNet [12] 8.0 71.8 0.352 0.127
LASO [14] 8.0 69.2 0.386 0.118

3DAffLLM† [6] 7.4 71.0 0.413 0.115
GEAL [5] 8.7 72.5 0.390 0.102

Unseen

Ours 9.2 73.1 0.431 0.099

Type Method aIoU ↑ AUC ↑ SIM ↑ MAE ↓

ReferTrans [39] 13.7 79.8 0.497 0.124
ReLA [40] 15.2 78.9 0.532 0.118

3D-SPS [41] 11.4 76.2 0.433 0.138
IAGNet [12] 17.8 82.3 0.561 0.109
LASO [14] 20.8 87.3 0.629 0.093

LASO* [14] 19.7 85.2 0.600 0.097
3DAffLLM† [6] 18.2 84.9 0.622 0.104

GEAL [5] 22.0 86.7 0.634 0.092

Seen

Ours 22.8 87.3 0.651 0.090
ReferTrans [39] 10.2 69.1 0.432 0.145

ReLA [40] 10.7 69.7 0.429 0.144
3D-SPS [41] 7.9 68.8 0.402 0.158
IAGNet [12] 12.9 77.8 0.443 0.129
LASO [14] 14.6 80.2 0.507 0.119

LASO* [14] 15.6 79.9 0.549 0.108
3DAffLLM† [6] 15.3 78.7 0.542 0.124

GEAL [5] 16.7 80.9 0.567 0.106

Unseen

Ours 17.1 81.5 0.571 0.103

mapping point features to match the LLM token dimension. For the Affordance Decoder, we follow
the architecture from LISA [32] but adapted for 3D data. For our iterative self-prompting mechanism,
we set the number of refinement iterations T = 3 (as performance plateaus beyond this point while
computational cost rises sharply (see Figure 3)), with weight parameters λt = 0.8t to gradually
reduce consistency constraints. In the IDGSP loss, we set α = 0.1 for the Tikhonov regularization
term. For INAFS, we use λ1 = 0.5, λ2 = 0.3, and β = 0.05. The SCSP module uses K = 3
frequency bands (following validation in Figure 3) with weights γ1 = 1.0, γ2 = 0.7, γ3 = 0.4,
and τ = 0.2 for the total variation term. We use AdamW optimizer with an initial learning rate
of 4 × 10−5 with cosine scheduling and warm-up ratio of 0.03. All experiments are done on four
NVIDIA V100 GPU with a batch size of 16, training for 20 epochs in ∼ 12hr.

4.3 Findings and Comparison with SoTA

"Your preferred open-point for dishwasher"

"If you look at the computer display, which points will
you look at"

"If you want to ensure the trash can doesn't get
damaged, what part would you open"

"Point the areas ideal for displaying"

GT GEAL Ours

Figure 4: Qualitative comparison of our affor-
dance segmentation results with GEAL [5].

Our proposed framework achieves consistent and sub-
stantial performance improvements across the PIAD
benchmark, as shown in Table 1, setting a new state-
of-the-art for language-guided 3D affordance detec-
tion. To ensure a fair and consistent comparison,
we reproduced the results of 3D-AffordanceLLM
[6] under our evaluation protocol and dataset setup,
accounting for differences from the original imple-
mentation. In the seen configuration, our method
achieves 23.1% aIoU, 85.8% AUC, and 0.664 SIM,
outperforming the prior best (GEAL) by relative
2.66%, 0.92%, and 10.48%, respectively. In the un-
seen split—designed to evaluate zero-shot general-
ization to novel affordance-object pairs—we obtain
9.2% aIoU, 73.1% AUC, and 0.431 SIM, again sur-
passing GEAL by 0.5% in aIoU, 0.8% in AUC, and
4.1% in SIM. This improvement reflects our frame-
work’s ability to preserve spatial and structural coher-
ence in predicted masks, particularly in ambiguous
or underrepresented regions. Earlier fusion-based ap-
proaches like [33–38] exhibit significantly inferior
performance due to their generic multimodal archi-
tectures that fail to model the specialized nature of
affordance relationships. These methods are unable
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to bridge the geometric-semantic gap, resulting in
substantial performance degradation (relative aIoU dropping by more than 50% compared to our
method). Unlike prior methods such as [14, 6, 5] that operate in a single-pass decoding mode and
rely heavily on textual embeddings, our method incorporates closed-loop refinement with geometric
feedback, allowing it to resolve fine-grained boundaries in a context-aware manner.

Similar trends are observed on the LASO dataset, where our model achieves 22.8% aIoU, 87.3%
AUC, and 0.651 SIM on seen objects, and 17.1% aIoU, 81.5% AUC, and 0.571 SIM in the more
challenging unseen setting. Notably, in the unseen split, our framework outperforms the best baseline
(GEAL) by 2.4% aIoU, 0.9% AUC, and 0.8% SIM relative. Traditional baselines such as [12, 26, 14]
suffer huge degradation in performance when transitioning from seen to unseen due to their rigid,
non-adaptive architectures. Even stronger models like [6, 5] exhibit sharp performance drops (e.g.,
GEAL: 22.0→16.7 aIoU on PIAD), revealing their limited ability to transfer learned affordance
priors to unfamiliar topologies.

4.4 Ablation Study

The ablation study in Table 2 demonstrates the incremental contribution of each component in our
self-prompting framework. When comparing the baseline (row 1) to the full model (row 4), we
observe consistent performance improvements across all metrics and datasets, with particularly
significant gains in the unseen settings.

"Ideal seat spot on chair"

"Where would you grasp the mug and what makes you
choose that part?"

Ours 
(full model)

Ours 
w/o SCSP

Ours 
w/o INAFS

Ours 
w/o IDGSP

Figure 5: Qualitative visualization of ablation
experiments.

(1) The Spectral Convolutional Self-Prompting
(SCSP) module provides the initial performance lift
(+0.6/+1.3 aIoU on PIAD/LASO seen), confirming
the effectiveness of frequency-domain processing for
capturing multi-scale affordance patterns. By op-
erating in the spectral domain, SCSP enables the
model to modulate signal components at different
structural frequencies, processing both coarse affor-
dance regions and fine boundary details simultane-
ously (shown in rows 1, 2 of Figure 4). (2) Adding Im-
plicit Neural Affordance Field Self-Supervision (IN-
AFS) yields further improvements (+0.8/+0.8 aIoU),
particularly in structural similarity metrics. This sug-
gests that the continuous implicit field representation
enhances boundary precision and produces geometri-
cally coherent affordance regions. The implicit field’s
ability to capture smooth transitions and model topo-
logical relationships proves especially beneficial for
complex object geometries, as evident in row 3 of
Figure 4. (3) The most substantial gains come from

incorporating Iterative Differential Geometry-Based Self-Prompting (IDGSP), which provides a
significant boost on LASO seen (+2.5 aIoU) and notable improvements across unseen scenarios.
This demonstrates that leveraging geometric features (Laplacians, curvatures, normal derivatives)
as visual prompts enables the model to progressively refine affordance boundaries through geo-
metric feedback, particularly crucial for distinguishing fine-grained functional regions (row 4 of
Figure 4). The synergistic effect of all three components is most pronounced in generalization
scenarios, where the relative improvements are larger for unseen settings than seen settings. This
confirms our hypothesis that geometric self-prompting enhances the model’s ability to adapt to novel
object-affordance relationships by leveraging intrinsic geometric cues rather than relying solely on
seen training examples. Qualitative visualization is provided in Figure 5. Additional findings can be
found in the supplementary file.

4.5 Cross-dataset Generalization

Table 3 highlights the cross-dataset generalization performance when models trained on
LASO are evaluated on PIAD. Our full model outperforms prior state-of-the-art (GEAL)
across all metrics, achieving 19.7%/12.5% aIoU, 84.5%/75.2% AUC, and 0.610/0.465
SIM in seen/unseen splits—marking up to +1.3% aIoU and +0.025 SIM improvements.
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Table 2: Ablation study of different components. The best results are in bold.

Type PIAD LASO
IDGSP INAFS SCSP aIoU AUC SIM MAE aIoU AUC SIM MAE

Seen

21.5 82.6 0.643 0.104 18.2 84.9 0.622 0.104
✓ 22.1 83.5 0.650 0.099 19.5 85.4 0.631 0.099

✓ ✓ 22.9 84.2 0.657 0.093 20.3 86.1 0.643 0.094
✓ ✓ ✓ 23.1 85.8 0.664 0.089 22.8 87.3 0.651 0.090

Unseen

7.4 71.0 0.413 0.115 15.3 78.7 0.542 0.124
✓ 8.0 72.1 0.420 0.109 16.0 79.3 0.558 0.116

✓ ✓ 8.5 72.5 0.429 0.105 16.5 80.7 0.566 0.110
✓ ✓ ✓ 9.2 73.1 0.431 0.099 17.1 81.5 0.571 0.103

Table 3: Cross-dataset generalization (LASO→PIAD)

Method Seen Unseen
aIoU AUC SIM aIoU AUC SIM

3DAffLLM [6] 17.6 82.4 0.57 10.8 72.5 0.425
GEAL [5] 18.4 83.2 0.59 11.6 73.8 0.44

Ours w/o SCSP 18.9 83.6 0.595 11.8 74 0.445
Ours (Full Model) 19.7 84.5 0.61 12.5 75.2 0.465

The ablation variant without SCSP
shows a clear drop (-0.8% seen, -0.7%
unseen aIoU), confirming SCSP’s role
in learning transferable, multi-scale af-
fordance cues. Even without it, our
model still outperforms [5, 6], validating
the strength of our differential geometry-
based self-prompting. All methods ex-
hibit performance degradation in unseen
scenarios, but our model maintains the smallest drop, indicating greater robustness to distribution
shifts—enabled by shape-aware reasoning rather than dataset-specific memorization.

5 Conclusion and Future Works

We presented ViSPLA, a geometry-aware iterative framework for language-guided 3D affordance
detection. By combining differential geometric self-prompting, implicit neural fields, and spectral
refinement, our model progressively improves affordance segmentation beyond the constraints of
single-pass or fixed-label paradigms. Experimental results on LASO and PIAD benchmarks show
strong generalization, particularly in zero-shot and cross-dataset settings. Despite its strengths,
ViSPLA incurs additional computation due to iterative refinement and may face challenges with
highly deformable or articulated objects. Future work will explore hybrid prompting strategies
that combine geometric and learned latent cues, as well as adaptive iteration control for real-time
efficiency. Extending to dynamic scenes and scene-level affordance reasoning is another promising
direction. Together, these developments will move us closer to robust, generalizable affordance
understanding in complex real-world environments—paving the way for more capable and adaptable
embodied agents.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims articulated in both the abstract and introduction precisely
encapsulate the technical contributions and scope of this work. Each claim is substantiated
in the main body through formal mathematical exposition and comprehensive empirical
evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A few limitations of our work are included in the Conclusion and Future Works
section and detailed elaborations are provided in Supplementary File. We briefly discuss the
possible limitations and how our future work could address them.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental details are provided in sufficient detail, ensuring repro-
ducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Although the datasets used in the paper are open-sourced, we do not release
the code for this work. However, sufficient details are provided in the paper to ensure
reproducibility.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are provided in section 4.2: Implementation Details.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: No statistical analysis is provided.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in section 4.2: Implementation Details.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and accepted the NeurIPS Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There are many robotics applications that are discussed, however, no negative
societal impact could be found, hence, not discussed.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Proper citations are provided for all the existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used.

Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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