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ABSTRACT

Deep learning surrogate models aim to accelerate the solving of partial differential
equations (PDEs) and have achieved certain promising results. Although several
main-stream models through neural operator learning have been applied to delve
into PDEs on varying geometries, they were designed to map the complex geom-
etry to a latent uniform grid, which is still challenging to learn by the networks
with general architectures. In this work, we rethink the critical factors of PDE
solutions and propose a novel model-agnostic framework, called 3D Geometry-
Guided Conditional Adaption (3D-GeoCA), for solving PDEs on arbitrary 3D
geometries. Starting with a 3D point cloud geometry encoder, 3D-GeoCA can
extract the essential and robust representations of any kind of geometric shapes,
which conditionally guides the adaption of hidden features in the surrogate model.
We conduct experiments on the public Shape-Net Car computational fluid dynam-
ics dataset using several surrogate models as the backbones with various point
cloud geometry encoders to simulate corresponding large-scale Reynolds Aver-
age Navier-Stokes equations. Equipped with 3D-GeoCA, these backbone models
can reduce their L-2 errors by a large margin. Moreover, this 3D-GeoCA is model-
agnostic so that it can be applied to any surrogate model. Our experimental results
further show that its overall performance is positively correlated to the power of
the applied backbone model.

1 INTRODUCTION

The Partial differential equation (PDE) is a powerful model to describe various physical phenomena
and help us to understand this world to a large extent. However, most PDEs do not have closed-
form solutions, which leads to a resort to numerical methods for solving them. Actually, various
approaches have been proposed, including finite difference (Strikwerda, 2004) and finite element
methods (Hughes, 2012), whereas these methods usually have high computational costs, which are
unendurable in many real-time settings. As a data-driven method, the deep learning surrogate model
can learn from numerical solutions to a family of PDEs and generalize well to the unseen equations
via forward propagation within a second, which is much faster than traditional numerical solvers,
exhibiting a promising future.

Most traditional numerical solvers simulate PDEs with varying geometries on irregular mesh grids.
Although one can form the input to uniform grids and then adopt convolution-based architectures to
train the surrogate model, such as U-Net (Ronneberger et al., 2015), this process is less efficient and
might introduce extra interpolation error (Li et al., 2022). Therefore, several researchers adopted
Graph Neural Networks (GNN) as the backbone of surrogate model (Belbute-Peres et al., 2020;
Pfaff et al., 2020). Moreover, Bonnet et al. (2022b;a) proposed benchmarking graph-mesh datasets
taking graph or point cloud as the input data. In their work, and Point Cloud Networks were used to
study 2D steady-state incompressible Navier-Stokes equations.

Another mainstream of the research falls into the Neural Operator Learning paradigm, whose target
is to learn a mapping between infinite-dimensional function spaces. Li et al. (2020b) made certain
theoretical analyses and proposed a novel iterative architecture using the kernel integral operator.
Fast Fourier Transform (FFT) was applied to implement the kernel integral operator when the input
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type was uniform grids. This operator, known as FNO (Li et al., 2020b), transforms features in
the physical and spectral domain. Graph Neural Operator (GNO) (Anandkumar et al., 2020) was
proposed to handle irregular grid input, where kernel integral operator was formulated as a message
passing on a radius graph. These two neural operators have been popular and have been developed
into many other improved methods capable of solving PDEs with varying geometries, such as Geo-
FNO (Li et al., 2022), Factorized FNO (F-FNO) (Tran et al., 2022), and Multipole GNO (MGNO)
(Li et al., 2020a).

While the work above has achieved remarkable progress in solving 2D equations, many real-world
applications face the problem of 3D PDEs on varying geometries, ranging from industrial and engi-
neering design to real-time physics simulation engines in games and virtual reality. However, when
it comes to solving more complex 3D problems, the mentioned state-of-the-art approaches have
severe limitations as follows:

Inefficient Representation for 3D Inputs: Most existing approaches treat each position in the
field equally and coarsely feeds all grids into the model (Bonnet et al., 2022a;b). However, this
may increase the difficulty to learn geometry features of the problem domain, since the boundary
points is actually much more informative than other points for PDE solving. In this sense, existing
approaches inefficiently represent the input field. This limitation becomes even more significant as
the input dimension increases. To our knowledge, very few works have addressed this issue. The
only previous work we found is Geo-FNO (Li et al., 2022), which suggests learning a geometric
deformation between the computational domain to latent uniform grids and then feeding the data
into an FNO-based architecture. However, learning an accurate coordinate transformation is quite
difficult, and in some settings, the problem domain may not be diffeomorphic to any uniform grids.
Concurrent work (Li et al., 2023b) have further revealed that such a strategy of geometric mapping
does not help improve the overall performance. This raises an essential question of how to efficiently
and effectively fuse geometry information into the field representation.

Poor Generalization on Limited Training Samples: Another limitation lies in data scarcity. In the
field of deep learning surrogate models, generating a dataset is usually computationally exhaustive
and time-consuming. For instance, creating a Computational Fluid Dynamics (CFD) dataset con-
taining 551 samples, (Li et al., 2023b) ran large-scale 3D simulations on 2 NVIDIA V100 GPUs and
16 CPU cores, with each one taking 7 to 19 hours to complete. The small number of training samples
further increases the difficulty of learning geometry features generalizable to unknown shapes.

To overcome the above challenges, we propose a brand new model-agnostic framework, 3D
Geometry-Guided Conditional Adaption (3D-GeoCA). Based on a general deep learning architec-
ture, 3D-GeoCA adopts a novel method that conditionally guides the adaption of hidden features
with latent geometry representations. The involved point cloud geometry encoder has low com-
putational costs since boundary points occupy a very small portion of the input field. Regarding
the problem of data scarcity, we apply weight transfer, utilizing pre-trained point cloud models.
Equipped with 3D-GeoCA, the backbone model becomes more geometry-aware and generalizes
better on small-sample 3D PDE datasets. The main contributions of our paper are as follows:

1. We propose a novel framework, called 3D Geometry-Guided Conditional Adaption (3D-
GeoCA), for solving large-scale 3D PDEs on arbitrary geometries. 3D-GeoCA originally
introduces a point cloud geometry encoder to encode the boundary of the problem do-
main, and conditionally guides the adaption of hidden features in the backbone model with
geometry information. Experimental results demonstrate that our framework provides gen-
eralizable geometry features beneficial to the backbone surrogate model, which is lacking
in other approaches.

2. Our 3D-GeoCA is model-agnostic and orthogonal to various deep learning based 3D PDE
frameworks, including MLP, GNN, GNO and so on.

3. To the best of our knowledge, our framework unprecedentedly introduces 3D understanding
pre-training to the deep surrogate model for PDEs to alleviate the shortage of training
samples, bridging the relationship between these two fields.
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2 PROBLEM SETTING AND PRELIMINARIES

Problem setting. We consider a family of PDEs with varying domains of the following general
form:

∂u(x, t)

∂t
= Lau(x, t), (x, t) ∈ Dω × T

u(x, 0) = f(x), x ∈ Dω

u(x, t) = g(x, t), x ∈ ∂Dω × T,

(1)

where La is a differential operator describing the governing equation and is parameterized by a; f
and g denote corresponding initial and boundary condition; and Dω is the problem domain, param-
eterized by some latent parameters ω ∈ Ω.

In practical applications, we ideally assume that there exists a map F : (a, f, g,Dω) 7→ u that gives
the solution of equations 1. When we consider the steady-state equations where u is independent of
the time t, equations 1 convert to Lau(x) = 0 and the solution map simplifies to F : (a, g,Dω) 7→ u,
from which we clearly aware that the boundary of the domain, ∂Dω , is a decisive factor to the
solution u.

However, learning the geometry of ∂Dω from a small dataset is challenging, especially for 3D
cases. We believe this is one of the bottlenecks current studies have to confront. Considering that
the boundary ∂Dω can be discretized to the point cloud data, we introduce a point cloud encoder
to enrich the learning of geometries. Moreover, a state-of-the-art 3D understanding pre-training
framework, ULIP-2 (Xue et al., 2023b), is adopted to strengthen our encoder. By using point cloud
models pre-trained on large-scale 3D object datasets, we can learn better geometry features to solve
this dilemma.

Preliminaries: ULIP-2. Deriving from the Unified Representation of Language, Images, and
Point Clouds (ULIP) framework proposed by Xue et al. (2023a), ULIP-2 is a tri-modal pre-training
framework, which leverages a pseudo self-supervised contrastive learning approach to align features
across: (i) 3D shapes, (ii) their rendered 2D image counterparts, and (iii) the language descriptions
of 2D images of all views. Among them, language descriptions of 2D images come from BLIP-2
(Li et al., 2023a), a large multimodal model. In ULIP-2, a fixed and pre-aligned language-vision
model, SLIP (Mu et al., 2022), is used to extract text and image features, after which the authors
train point cloud encoders under the guidance of 3D-to-image and 3D-to-text contrastive alignment
losses. ULIP-2 yields significant improvements on downstream zero-shot and standard classification
tasks, showing a powerful capability for 3D representation learning.

3 3D GEOMETRY-GUIDED CONDITIONAL ADAPTION

In this section, we present our framework, 3D-GeoCA, in detail. Figure 1 illustrates the main ar-
chitecture of 3D-GeoCA. As a model-agnostic framework, 3D-GeoCA consists of three main com-
ponents: (i) a point cloud geometry encoder, (ii) an arbitrary backbone model, and (iii) geometry-
guided conditional adaptors. The point cloud encoder takes merely the boundary of the problem
domain as input, extracting its geometry features, while the backbone model considers the whole
problem domain, along with the signed distance function (SDF) and normal vector features of each
grid. As a core part of our framework, several geometry-guided conditional adaptors are embedded
in the backbone model to conditionally guide the adaption of hidden features according to different
input geometries.

Point cloud geometry encoder. As per previous discussions in section 2, one of the bottlenecks of
current work is the under-exploited geometry features of various problem domains. To overcome
this difficulty, we propose a point cloud encoder EP specialized to extract features of different
geometries, whose input is a 3D point cloud P = {x∂D

1 ,x∂D
2 , · · · ,x∂D

n } ⊂ ∂D discretized from
the boundary of the problem domain D.

Compared to the whole problem domain D, the point cloud P ⊂ ∂D usually contains a tiny part
of the input grids (especially for 3D settings), thus leading to a relatively low computational cost.
Current work usually under-emphasizes grids in P ⊂ ∂D and coarsely feeds all grids with simple
hand-crafted features (such as SDF) into their model (Bonnet et al., 2022b;a). However, this may
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Figure 1: The main architecture of the 3D-GeoCA framework. Our 3D-GeoCA originally introduces
a point cloud geometry encoder to encode the PDEs problem domain. Geometry-guided conditional
adaptors after each backbone layer are designed to guide the adaption of hidden features in the
surrogate model.

lead to a loss in the learning of geometries, as the small portion of grids at the boundary contains
most underlying geometry information of the problem domain D.

To improve our encoder EP , we employ a state-of-the-art 3D understanding pre-training framework,
ULIP-2, to pre-train it on large-scale 3D object datasets. Once the encoder is pre-trained, the param-
eters of EP can either be fine-tuned or fixed. In the latter case, we can further reduce the number of
trainable parameters and shorten the training process without seriously harming the effectiveness of
our framework. See section 4.3 for experimental details.

Backbone models. As a model-agnostic framework, 3D-GeoCA is compatible with arbitrary back-
bone models, ranging from the basic multi-layer perceptron (MLP) to the GNO that follows the
popular neural operator learning paradigm. In our work, the backbone model aims to solve PDEs
in the problem domain D and its boundary ∂D. It takes either the point cloud data V or graph data
G = (V,E) as input, where the vertex set V = {xD̄

1 ,xD̄
2 , · · · ,xD̄

N} ⊂ D̄ = D ∪ ∂D contains all
grids of interest. We also compute the SDF feature and normal vector to ∂D for each vertex as a
part of feature engineering. For the graph-based backbone model, the edge set E can be constructed
according to the corresponding meshes or the radius graph with a maximum number of neighbors
(Bonnet et al., 2022b). In this way, we can prevent the degree of each vertex from being too large
and reduce the computation complexity.

Geometry-guided conditional adaptor. We propose a geometry-guided conditional adaptor, which
enables the adaption of hidden features according to various geometries. At first, the adaptor con-
ducts a feature fusion between hidden features in the backbone model and geometry features ex-
tracted by the point cloud encoder. Then, a feed-forward network processes the fused features to
add non-linearity. Skip connections, normalization layers, and dropout layers are also added to our
adaptor.

Denote f
(l)
hidden as the hidden features output by the l-th layer of the backbone model (l =

1, 2, · · · , L), and fgeo = EP (P) as the geometry features extracted by the point cloud encoder
EP . Formally, each adaptor can be formulated as follows:

f
(l)
fused = f

(l)
hidden + norm(f

(l)
hidden) ∗W

(l)
hidden + norm(fgeo) ∗W (l)

geo (2)
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and
f
(l)
adapted = f

(l)
fused + feedforward(l)(norm(f

(l)
fused)), (3)

where W
(l)
hidden and W

(l)
geo are learnable parameters and norm(·) represents L-2 layer normalization.

Equation 2 describes the process of feature fusion, by which we yield the fused feature f
(l)
fused of the

l-th layer. In equation 3, f (l)
fused are input into a feed-forward network to acquire adapted features

f
(l)
adapted of the l-th layer.

For the structure of the feed-forward network, we select
feedforward(l)(f) = GEGLU(l)(f) ∗W (l) + b(l), (4)

where GEGLU(l)(·) (Shazeer, 2020) is defined as

GEGLU(l)(f) = GELU(f ∗W (l)
1 + b

(l)
1 )⊗ (f ∗W (l)

2 + b
(l)
2 ), (5)

and W (l), b(l), W (l)
1 , b(l)1 , W (l)

1 , b(l)1 are learnable parameters.

Finally, the adapted features f (l)
adapted are fed into the (l + 1)-th layer of the backbone model to get

the hidden features f (l+1)
hidden of the (l + 1)-th layer.

Although our adaptor introduces additional structures to the backbone model, it requires only O(h ∗
(h+ hgeo)) parameters, where h is the hidden size of the backbone model and hgeo is the dimension
of geometry features. Thus, our adaptor brings relatively low computational cost and inference
latency once the backbone is a large model. As an example, an original 3D FNO layer with hidden
size h requires O(h2M3) parameters, where M is the number of top Fourier modes being kept and
usually be a large number, ranging from O(101) to O(102).

4 EXPERIMENTS

To empirically validate our findings, we conduct experiments on the public Shape-Net Car CFD
Dataset generated by Umetani & Bickel (2018). Several previous works have explored this dataset
(Umetani & Bickel, 2018; Li et al., 2023b), while Umetani & Bickel (2018) adopted the Gaussian
process regression approach that falls outside the category of deep learning. Li et al. (2023b) also
proposed the powerful GINO model for 3D PDEs with varying geometries, whereas their goal was
to predict the pressure field at the boundary of the problem domain, namely ∂D. In contrast, we
intend to simultaneously simulate plural physical properties (including both pressure and velocity)
at all grids of interest in D̄ = D ∪ ∂D. We trail multiple architectures of the point cloud geometry
encoder and the backbone model, and all experiments can run on a single NVIDIA RTX A6000
GPU.

4.1 SHAPE-NET CAR CFD DATASET

The Shape-Net Car CFD Dataset was generated to study how fluid flows around various 3D objects
(Umetani & Bickel, 2018). In that work, different object shapes of cars from the ”car” category of
ShapeNet Chang et al. (2015) were prepared, with their side mirrors, spoilers, and tries manually
removed. The dataset contains 889 samples, each of which is a simulation result of a finite element
solver. During the simulation, time-averaged fluid pressure on the surface and velocity field around
the car was computed by solving the large-scale Reynolds Average Navier-Stokes equations with
the k-ϵ turbulence model and SUPG stabilization. All the simulations ran with a fixed inlet velocity
of 72 km/h and a Reynolds number of 5× 106.

The dataset has already been randomly divided into nine folds. We take the first fold as our testing
set, while the rest of the data consists of the training set. In each sample, the simulation result is
discretized to 32k mesh grids, while the car surface counts merely 3.7k, implying that our backbone
model and point cloud geometry encoder take 32k and 3.7k grids as input, respectively.

4.2 EXPERIMENTAL SETTINGS

Backbone models. Multiple architectures of the backbone model and the point cloud geometry
encoder are employed to demonstrate the effectiveness of our framework. Since 3D-GeoCA is a
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groundbreaking framework that correlates PDEs with the field of 3D understanding, we start with
the simple MLP as our backbone model. Several classical GNNs, such as GraphSAGE (Hamilton
et al., 2017) and Graph Attention Network (GAT) (Veličković et al., 2018) are also attempted in later.
We also explore the application of 3D-GeoCA in the popular neural operator learning paradigm,
where we consider GNO due to its ability to deal with irregular grid input directly.

Point cloud geometry encoders. As for the point cloud geometry encoder, we trial with two
state-of-the-art point cloud architectures, Point-BERT (Yu et al., 2022) and PointNeXt (Qian et al.,
2022). Point-BERT adopts transformer-based architecture, while PointNeXt is a lightweight back-
bone based on PointNet++ (Qi et al., 2017) with improved training and scaling strategies. Both
point cloud models are pre-trained with the ULIP-2 framework on the Objaverse Triplets dataset
(Xue et al., 2023b) to promote their capabilities to learn 3D geometry representations.

Training schemes. We normalize all inputs and outputs for data pre-processing. Since we target to
predict the pressure and velocity by one forward propagation, we use the following weighted MSE
loss to train models:

Loss =
1

N

N∑
i=1

 1

n(i)

n(i)∑
j=1

∥v(i)
j,pred − v

(i)
j,gt∥

2
2 + λ

1

m(i)

∑
x

(i)
j ∈∂D

∥p(i)j,pred − p
(i)
j,gt∥

2
2

 , (6)

where N denotes the number of training samples. v(i)
j and p

(i)
j represent velocity and pressure of the

i-th sample at the j-th grid, respectively. n(i) denotes the number of input grids in the i-th sample,
and m(i) =

∑n(i)

j=1 1x
(i)
j ∈∂D

is the number of boundary grids in the i-th sample. The hyper-parameter

λ balances the weight of the error between velocity and pressure, taking the default value of 0.5.

We train our models with Adam optimizer and one-cycle learning rate scheduler (Smith & Topin,
2019). The batch size B = 11, and the maximum and minimum learning rates are 1 × 10−3 and
1 × 10−6, respectively. For the GNO backbone, the hidden size h = 32, and we train models for
200 epochs to save GPU memories and training times. Models of other backbones are trained for
400 epochs with the hidden size h = 64. For more implementation details, see appendix A.1.

Evaluation metrics. We introduce L-2 error and relative L-2 error to evaluate our models, which
are defined as

L-2 error =
1

N

N∑
i=1

∥u(i)
pred − u

(i)
gt ∥2 (7)

and

relative L-2 error =
1

N

N∑
i=1

∥u(i)
pred − u

(i)
gt ∥2

∥u(i)
gt ∥2

, (8)

where u represents the physical property of interest.

4.3 RESULTS

The effectiveness of 3D-GeoCA. Table 1 illustrates test L-2 errors of multiple backbone models
with various point cloud geometry encoders. Since PointNeXt requires a training batch size greater
than 1 to apply batch normalization, we keep its parameters frozen and do not fine-tune them. From
table 1, we notice that 3D-GeoCA universally promotes all backbone models, reducing their L-2
errors by a large margin. For instance, with the trainable Point-BERT geometry encoder, MLP yields
a marked descent in L-2 errors by 26% and 37% for pressure and velocity, respectively. The GNO
2, which follows the paradigm of operator learning, also benefits from our 3D-GeoCA framework,
with its L-2 errors decreasing by 4% for pressure and 18% for velocity. By introducing a specialized
geometry encoder, we take full advantage of the rich geometry information, and our adaptors enable
backbone models to become more geometry-aware to generalize to unknown shapes.

1B = 1 implies we train the model on a batch of 32k graph nodes.
2We use a variant of GNO that utilizes hexahedral meshes generated by Umetani & Bickel (2018) to con-

struct graphs. For original GNO, we also conduct experiments, see appendix A.2 for details.
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Geo. Encoder
Backbone

MLP GraphSAGE GAT GNO

None 8.044 0.556 6.590 0.523 6.128 0.525 5.120 0.434

PointNeXt (frozen)
6.705 0.375 5.618 0.363 5.510 0.355 4.970 0.386

(-17%) (-33%) (-15%) (-31%) (-10%) (-32%) (-3%) (-11%)

Point-BERT (frozen)
6.456 0.368 5.630 0.349 5.629 0.346 4.991 0.365

(-20%) (-34%) (-15%) (-33%) (-8%) (-34%) (-3%) (-16%)

Point-BERT (fine-tuned)
5.916 0.352 5.569 0.349 5.438 0.339 4.906 0.356

(-26%) (-37%) (-15%) (-33%) (-11%) (-35%) (-4%) (-18%)

Table 1: Test L-2 errors of different backbone models with various geometry encoders. Errors of
pressure is presented on the left side, while errors of velocity is presented on the right side. All
errors are denormalized. Values in brackets represent the percentage of error reduction compared to
the baseline with no geometry encoder.

Figure 2 visualizes a ground truth and prediction generated by the GNO backbone with the Point-
BRET (fine-tuned) encoder. For more visualization examples, see appendix A.4. The inference of
each sample costs 0.066 seconds, much faster than traditional numerical solvers. As a comparison,
in their efforts to generate the Shape-Net Car dataset, Umetani & Bickel (2018) spent about 50
minutes per sample to run the simulations.

 prediction

-248.03 -133.68 -19.32 95.04 209.39
pressure

0.00 5.88 11.75 17.63 23.51
velocity

 ground truth

Figure 2: Visualization of a prediction and ground truth. The prediction is generated by the GNO
backbone with Point-BRET (fine-tuned) encoder.

Moreover, 3D-GeoCA accelerates the convergence of the backbone model as well. Figure 3 exhibits
the training loss of the GNO backbone with different geometry encoders for the beginning 20 epochs.
The training loss of the GNO baseline decreases slowly, while the other three models equipped with
3D-GeoCA show higher convergence rates.

Discussions on different geometry encoders. Surprisingly, we observe that once pre-trained, even
though the geometry encoder keeps frozen during training, it still extracts useful geometry informa-
tion that can guide the adaption in the backbone model. As shown in table 1, the fixed PointNeXt
and Point-BERT features pre-trained by ULIP-2 still perform well in the 3D-GeoCA framework and
lead to competitive results compared to the fine-tuned features. This finding is of great significance,
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Figure 3: Training losses of GNO with different geometry encoders for the beginning 20 epochs.

implying that under our 3D-GeoCA framework, 3D understanding pre-training techniques may di-
rectly enhance the performance of PDEs surrogate models. Moreover, once the geometry encoder
is frozen, we can pre-calculate geometry features and reduce the number of learnable parameters
during training, further shortening the training process. Our GNO backbone with pre-trained Point-
BERT features requires merely 0.6 million trainable parameters while reaching competitive low L-2
errors (relative L-2 errors) of 4.991 (7.91%) for pressure and 0.365 (3.23%) for velocity.

The impact of various backbones. As a novel framework that unprecedentedly correlates PDEs
with the field of 3D understanding, we start with the simple MLP as our backbone model. Con-
ceptually, according to the discussion in section 2, in steady-state equations with fixed parameters a
and boundary conditions g, the physical property u at (x, y, z) is merely decided by the geometry of
problem domain D and its coordinate (x, y, z). However, as shown in table 1, the simple MLP gains
relatively large L-2 errors, which might be because u is a smooth function, and adjacent data points
may share similar features. With the introduction of graph input structure, GNNs can learn better
features from adjacent nodes via the message-passing mechanism. Consistent with our analysis,
GraphSAGE and GAT perform better than MLP. Differing the above backbones, GNO aims to learn
operators that map between function spaces via the kernel integration mechanism and shows an ad-
vantage in predicting pressure fields in our experiments. Moreover, according to the test loss, the
overall performances of our models are positively correlated to the power of the applied backbone
model.

Comparisons with other works. GNO with the trainable Point-BERT encoder achieves the low-
est test loss in our experiments, with the L-2 error (relative L-2 error) of pressure and velocity of
4.906 (7.79%) and 0.356 (3.19%), respectively. As some reference values, the Gaussian Process
Regression approach proposed by Umetani & Bickel (2018) reached a nine-fold mean L-2 error of
8.1 for pressure and 0.48 for velocity. The concurrent work GINO (Li et al., 2023b), submitted in
the same month as our work, reported a relative L-2 error of pressure of 7.19% for GINO (decoder)
and 9.47% for GINO (encoder-decoder). The relative L-2 error of GINO (decoder) is lower than that
of our current experiments, though we should mention that their work has different training schemes
and train-test split from ours. Another factor is that the GINO adopts a complex GNO-FNO archi-
tecture, while we have merely explored GNO as our backbone model. Moreover, the GINO can
only simulate the pressure field at the surface of each car (3.7k grids). As the opposite, we train our
models to simultaneously predict the velocity field around the car (32k grids) as well.

4.4 ABLATION STUDIES

The selection of batch size. During experiments, we find that the training batch size is the most
critical hyper-parameter that impacts the quality of training. Table 2 shows the test L-2 errors under
different batch sizes 3, from which we observe that using a larger batch size during training brings
a universal negative influence on our models, especially for simple architectures, such as models

3We also fine-tune PointNeXt under B = 2, see appendix A.3
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with MLP backbone and models with no geometry encoder. When the model structure becomes
complex, there is relatively less increase in test L-2 error. Although it is more obvious to validate
the effectiveness of our 3D-GeoCA framework when the batch size B = 2, we set B = 1 in our
experiments to ensure that every model obtains the best results.

Geo. Encoder
Backbone

MLP GraphSAGE GAT GNO

None (bs=1) 8.044 0.556 6.590 0.523 6.128 0.525 5.120 0.434
None (bs=2) 9.976 0.688 7.470 0.611 6.957 0.622 5.872 0.517

PointNeXt (frozen, bs=1) 6.705 0.375 5.618 0.363 5.510 0.355 4.970 0.386
PointNeXt (frozen, bs=2) 8.758 0.546 6.293 0.467 6.273 0.471 5.581 0.479

Point-BERT (frozen, bs=1) 6.456 0.368 5.630 0.349 5.629 0.346 4.991 0.365
Point-BERT (frozen, bs=2) 7.796 0.437 5.909 0.411 5.922 0.399 5.329 0.411

Point-BERT (fine-tuned, bs=1) 5.916 0.352 5.569 0.349 5.438 0.339 4.906 0.356
Point-BERT (fine-tuned, bs=2) 6.689 0.423 5.571 0.360 5.454 0.351 4.957 0.374

Table 2: Test L-2 errors under different batch sizes. Errors of pressure is presented on the left side,
while errors of velocity is presented on the right side. All errors are denormalized.

The robustness of geometry encoders. We further demonstrate the robustness of our fine-tuned
geometry encoder by randomly dropping its input data points in the inference time. Figure 4 depicts
how L-2 errors varied with the rate of dropping increases. Surprisingly, even if we drop each data
point with a high probability of 60%, our encoder still extracts essential geometry features that can
guide the adaption of hidden features in the backbone model, demonstrating its strong robustness.
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Figure 4: Inference with input of geometry encoder randomly dropped.

5 CONCLUSION

Learning the solution of 3D PDEs with varying geometries is challenging due to the complexity
of 3D shapes and insufficient training samples. By introducing a specialized point cloud geometry
encoder, our proposed 3D-GeoCA framework learns essential and robust geometry features that can
guide the adaption of hidden features in the backbone model. 3D understanding pre-training further
enhances our framework. Several backbones reduce L-2 errors by a large margin equipped with
3D-GeoCA. So far, our way of conditional adaption remains simple and may not be optimal. For
future work, we are interested in exploring other effective and efficient structures for our adaptor.
Moreover, we expect our framework to be compatible with the backbones of broader fields, such as
FNO and Physics-Informed Neural Network (PINN) (Raissi et al., 2019).
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Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Le Xue, Mingfei Gao, Chen Xing, Roberto Martı́n-Martı́n, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1179–1189, 2023a.

Le Xue, Ning Yu, Shu Zhang, Junnan Li, Roberto Martı́n-Martı́n, Jiajun Wu, Caiming Xiong, Ran
Xu, Juan Carlos Niebles, and Silvio Savarese. Ulip-2: Towards scalable multimodal pre-training
for 3d understanding. arXiv preprint arXiv:2305.08275, 2023b.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19313–19322, 2022.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

All backbones contain L = 3 hidden layers with sizes of h. In our implementations, each backbone
is preceded by an MLP with 7 − 32 − h neurons to ascend the dimension of hidden features and
followed by an MLP with h − 32 − 4 neurons to perform regression. We use GELU as activation
function.

As for the feed-forward network, we select W (l)
1 ,W

(l)
2 ∈ Rh×4h, b(l)1 , b

(l)
2 ∈ R4h and W (l) ∈

R4h×h, b(l) ∈ Rh. In addition, in our geometry-guided conditional adaptor, W (l)
hidden ∈ Rh×h and

W
(l)
geo ∈ Rhgeo×h. Overall, each adaptor requires 13h2 + hhgeo + 9h = O(h(h+ hgeo)) parameters.

For MLP, GraphSAGE and GAT backbones, h = 64. For the GNO backbone, h = 32. In accordance
with (Xue et al., 2023b), the size of geometry feature hgeo = 512.

A.2 GNO AND ITS VARIANT

The original GNO backbone implements the kernel integration by considering neighbor nodes lie
in a ball of radius r. During the message passing, a shared kernel network encodes the attribute of
each edge to a h2-dimension feature to determine the corresponding weight of feature aggregation.

11
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However, when r is large, numerous edges are needed to process, and the whole training procedure
becomes memory-consuming. Instead, we use a GNO variant that constructs graphs according to
the hexahedral mesh generated by Umetani & Bickel (2018) (which is the same way as we construct
graphs for GNNs in this work) and yields low L-2 errors. For the original GNO, we also conducted
experiments. We choose radius r = 0.2 and a maximum number of neighborhoods to be 32 to
construct radius graphs. The average number of edges of these graphs roughly matches that of our
mesh-based graphs. Figure 3 shows the experimental results, where we still observe the effectiveness
of 3D-GeoCA when radius graphs are adopted, while the GNO backbone performs worse than our
GNO variant.

Geo. Encoder
Backbone GNO (radius) GNO (mesh)

None 5.546 0.465 5.120 0.434
PointNeXt (frozen) 5.189 0.405 4.970 0.386

Point-BERT (frozen) 5.298 0.399 4.991 0.365
Point-BERT (fine-tuned) 5.212 0.373 4.906 0.356

Table 3: Test L-2 errors of the GNO backbone and its variant. Errors of pressure is presented on the
left side, while errors of velocity is presented on the right side. All errors are denormalized.

A.3 FINE-TUNING POINTNEXT

Table 4 shows test L-2 errors of the GNO backbone under batch size of 2. Since PointNeXt requires
a training batch size greater than 1 to apply batch normalization, we only fine-tune it under batch
size B = 2.

Geo. Encoder
Backbone GNO

None (bs=2) 5.872 0.517

PointNeXt (frozen, bs=2) 5.581 0.479
PointNeXt (fine-tuned, bs=2) 5.530 0.472
Point-BERT (frozen, bs=2) 5.329 0.411

Point-BERT (fine-tuned, bs=2) 4.957 0.374

Table 4: Test L-2 errors of the GNO backbone under batch size of 2.

A.4 VISUALIZATION

In this section, we provide more visualization examples. All predictions are generated by the GNO
model with the Point-BERT (fine-tuned) encoder.

 prediction

-185.46 -88.11 9.25 106.61 203.97
pressure

0.00 6.04 12.07 18.11 24.15
velocity

 ground truth  prediction

-138.44 -52.43 33.58 119.58 205.59
pressure

0.00 5.77 11.54 17.31 23.08
velocity

 ground truth
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 prediction

-198.23 -96.98 4.27 105.52 206.77
pressure

0.07 5.90 11.74 17.57 23.41
velocity

 ground truth  prediction

-182.70 -86.04 10.61 107.27 203.93
pressure

0.11 6.04 11.96 17.88 23.81
velocity

 ground truth

 prediction

-198.37 -96.70 4.96 106.62 208.28
pressure

0.15 5.84 11.52 17.20 22.89
velocity

 ground truth  prediction

-169.94 -76.41 17.12 110.66 204.19
pressure

0.00 5.64 11.27 16.91 22.55
velocity

 ground truth

A.5 DETAILED INFORMATION ABOUT FIGURE 2

Figure 5 provides detailed information about Figure 2. Since it is hard to visualize the difference of
velocity fields, only relative L2 error and difference of pressures are visualized.

0.00 13.39 26.77 40.16 53.54

 relative l2 error

0.00 45.17 90.34 135.51 180.67
pressure

 difference

Figure 5: Detailed information about Figure 2.
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