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ABSTRACT

Wearable sensors have become ubiquitous thanks to a variety of health tracking
features. The resulting continuous and longitudinal measurements from everyday
life generate large volumes of data; however, making sense of these observations
for scientific and actionable insights is non-trivial. Inspired by the empirical suc-
cess of generative modeling, where large neural networks learn powerful represen-
tations from vast amounts of text, image, video, or audio data, we investigate the
scaling properties of sensor foundation models across compute, data, and model
size. Using a dataset of up to 40 million hours of in-situ heart rate, heart rate
variability, electrodermal activity, accelerometer, skin temperature, and altimeter
per-minute data from over 165,000 people, we create LSM, a multimodal founda-
tion model built on the largest wearable-signals dataset with the most extensive
range of sensor modalities to date. Our results establish the scaling laws of LSM
for tasks such as imputation, interpolation and extrapolation, both across time
and sensor modalities. Moreover, we highlight how LSM enables sample-efficient
downstream learning for tasks like exercise and activity recognition.
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Figure 1: Scaling foundation models on wearable data. Making sense of physiological and be-
havioral signals derived from wearables is challenging. (A) We present a systematic scaling analysis
of sensor models using up to 40 million hours of multimodal data from over 165,000 people. (B)
Using a random masking pretext task, we evaluate on tasks of imputation, forecasting, and down-
stream classification. (C) Experiments show scaling compute, data, and model size are all effective.
Scaling is shown on the random imputation task.

1 INTRODUCTION

Wearable devices that monitor physiological and behavioral signals have become ubiquitous. In-
creasing evidence suggests that these devices can significantly contribute to promoting healthy be-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

haviors (Ringeval et al., 2020), detecting diseases (Yang et al., 2022), and enhancing the design and
implementation of treatments (Munos et al., 2016). These devices generate large volumes of con-
tinuous, longitudinal, and multimodal data. However such wearable time series data can be difficult
for consumers and experts to interpret. To this end algorithms have been developed to translate time
series sensor data into human-readable representations, such as step counts and heart rates.

Historically, algorithms for wearable sensors have relied on supervised, discriminative models de-
signed to detect specific events or activities (Lubitz et al., 2022). This approach, however, faces
several significant limitations. First, the limited volume and severe data imbalance of labeled events
results in large amounts of valuable unlabeled data being left unused. Second, supervised models
are typically trained for a single task (e.g., classification), producing representations that may not
generalize well to other tasks. Third, training data is often collected from small study populations
(usually involving only tens or hundreds of participants), leading to a lack of diversity in the data.

Self-supervised learning (SSL) using generic pretext tasks (Noroozi et al., 2017; Caron et al., 2018;
Yang et al., 2023) can yield versatile representations that are useful for a wide range of downstream
applications. SSL allows for the use of a much larger proportion of available data without being
restricted to labeled data regions (e.g., a limited number of subjects who self-report labels for exer-
cises/activities). These advantages have motivated efforts to apply similar training strategies to build
models from large volumes of unlabeled wearable data (Adaimi et al., 2024; Thapa et al., 2024; Yuan
et al., 2024; Abbaspourazad et al., 2023) (see Table 1 for a summary).

Building on this, the empirical and theoretical success of scaling laws in neural models (Kaplan et al.,
2020; Bahri et al., 2024) suggests that model performance improves predictably as compute, data,
and model parameters increase. These findings raise a critical research question: Do scaling laws
apply to models trained on wearable sensor data? We aim to investigate whether the principles
that drive the scaling of neural networks in domains like language and vision also extend to large-
scale, multimodal wearable sensor data. Understanding how scaling manifests in this context could
not only shape model design but also enhance generalization across diverse tasks and datasets.

In this paper, we present the results of our scaling experiments on the largest and the most diverse
wearable dataset published to date, comprising 40 million hours of multimodal sensor data from
over 165,000 users (Fig. 1). Leveraging these data, we train a foundation model, referred to as
the Large Sensor Model (LSM), which is designed to capture generalizable representations across
diverse populations, wearable sensor modalities, and downstream tasks. We demonstrate the scaling
properties of LSM with respect to compute, data size, and model parameters, leading to substantial
performance gains on generative imputation, interpolation and extrapolation as well as downstream
discriminative tasks. Our contributions can be summarized as follows:

• Implementation of the largest study to date on the scaling behavior of sensor foundation models,
encompassing 40 millions hours, over 165,000 users and multiple sensor modalities, including ac-
celerometer, photoplethysmography (PPG), electrodermal activity (EDA), skin temperature, and
altimeter signals.

• Identification of key strategies for training large-scale sensor foundation models (LSM), and the
LSM’s scaling properties with respect to compute, data size, and model parameters.

• Demonstration of the model’s ability to impute, interpolate, and extrapolate across temporal and
sensor modalities, with a particular focus on generalization to unseen users.

• Verification that learned representations can be applied to downstream classification tasks, such
as exercise and activity recognition, using ecologically valid, user-annotated events.

2 RELATED WORK

Sensor Foundation Models. Recent advances have demonstrated improved accuracy, robustness,
and generalizability of models for sensor data by utilizing self-supervised pretraining on large-scale
corpora of behavioral and physiological signals (Yuan et al., 2024; Thapa et al., 2024; Merrill &
Althoff, 2023). Existing sensor foundation models primarily leverage contrastive learning, creating
positive and negative data pairs (Yuan et al., 2024; Thapa et al., 2024; Abbaspourazad et al., 2023).
Yuan et al. (2024) employ time domain augmentations (e.g., reversal, warping, permutation) to
formulate the SSL task for motion data. Abbaspourazad et al. (2023) adopt a similar strategy,
incorporating Gaussian noise, time and magnitude warping, and channel swapping. Thapa et al.
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Table 1: Comparisons of studies on wearable sensor foundation models.

Study # Peo
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Adaimi et al. (2024) 0.05 0.20 7 7 3 7 7 7 3
Abbaspourazad et al. (2023) 141 400 3 3 7 7 7 7 7

Yuan et al. (2024) 100 15,700 7 7 3 7 7 7 7

LSM (Ours) 165 40,000 7 3 3 3 3 3 3

ECG : Electrocardiography, PPG : Photoplethysmography, ACC : Accelerometer,
SCL : Skin Conductance Level, TMP : Skin Temperature, ALT : Altimeter

(2024) generate data pairs using different sensory modalities. In contrast, we focus on masked input
modeling due to the generative capabilities that it offers and explore its properties when scaling
compute, data size, and model size. Compared to prior work we consider more sensor inputs,
a larger data sample, and systematically investigate scaling laws (see Table 1). We also present
contrastive baselines (Assran et al., 2022; Chen et al., 2020) where applicable.

Time-Series Foundation Models. Wearable sensor data typically takes the form of multivariate
time series. Foundation models for time-series signals have been trained and evaluated on data from
domains such as energy use, transportation, finance, and climate. TimeGPT (Garza & Mergenthaler-
Canseco, 2023) and Lag-Llama (Rasul et al., 2023) represented early versions of pretrained models
for predicting time-series signals. Families of models for general-purpose time series analysis em-
phasize common properties present in many signals, even those from different sources (Goswami
et al., 2024). Recent efforts explore different model architectures (Das et al., 2023) and scaling
multiple data sources (Ansari et al., 2024), examing how language models can perform zero-shot
reasoning (Liu et al., 2023; Merrill et al., 2024). Yet, time series from different domains can exhibit
considerably different properties. Drawing inspiration from prior work, we focus on the analysis of
sensory time-series data, exploring scaling behavior, and interrogating whether they are consistent
with other domains or show unique properties.

Scaling Laws in Deep Learning. The scaling of computational resources, data volume, and model
size has driven remarkable advancements in deep learning (Zhai et al., 2022; Kaplan et al., 2020;
Xie et al., 2023). Recent investigations indicate that testing loss follows a power law relationship
with each of these three resources when the other two are held constant (Kaplan et al., 2020). Power
law behavior has been observed across various domains, including large language models (Kaplan
et al., 2020), large vision models (Zhai et al., 2022), transfer learning (Hestness et al., 2017), and
multimodal models (Aghajanyan et al., 2023). In this work, we take a step further and investigate
the scaling behavior of training foundation models for multimodal wearable sensor data.

3 DATA FOR WEARABLE FOUNDATION MODELS

3.1 SENSOR DATA AND PROCESSING

Fitbit Sense 2 and Pixel Watch 2 have four sensors of highest relevance to this work: PPG, ac-
celerometer, skin conductance, and altimeter/pressure sensors. From these input signals we com-
pute a set of 26 signals (features), as described in Table 18 of Appendix G. Raw sensor data is not
stored at this scale as it would impact the battery life and memory on the device. Thus, we focus on
one-minute resolution signals.

SCL Skin Conductance. The EDA sensor is used to infer sympathetic arousal via changes in
micro-sweat levels, a physiological response to stress. Two electrodes on the back of the device
measure changes in skin conductance level (SCL), which varies with skin moisture levels. SCL data
is sampled at 200 Hz, downsampled to 25 Hz via a boxcar filter, and smoothed with a 5-minute

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Details of the datasets. Summary of the demographic composition of our pretraining set
and class distribution of our downstream set samples.

(a) Demographics of the pretraining set.

Category # People %

Sex Female 110,780 67.0%
Male 53,895 32.6%

Not Specified 415 0.3%
Age 18-39 55,653 33.7%

40-59 75,627 45.8%
60-79 32,251 19.5%
≥80 1,548 0.9%

BMI Healthy (<25) 57,015 34.5%
Overweight (25-30) 52,950 32.0%

Obese (≥30) 54,727 33.1%
Not Specified 575 0.3%

Total 165,090 100%

(b) Class sample distribution of the downstream set.

Class # Training # Testing

Exercise 3,272 671
Non-Exercise 6,195 1,329

Total 9,467 2,000
Biking 1,191 412

Elliptical 152 49
High Intensity Training 332 104

Strength Training 229 425
Swimming 2,332 441

Running 1,860 315
Walking 6,887 1,301

Weightlifting 669 98
Total 14,372 3,262

median low-pass filter (McDuff et al., 2024). Per-minute tonic SCL slope and magnitude are then
calculated. Due to the nature of the sensing mode operation, SCL data is only collected during
non-exercise wake-periods.

TMP Skin Temperature. A temperature sensor located near the wrist-facing surface of the device
takes measurement every 10 seconds. Per-minute slope and magnitude values are calculated via
linear regression. Skin temperature signals are available whenever EDA signals are available.

PPG Photoplethysmography. A validated algorithm (Nissen et al., 2022) is used to extract heart
rate (HR) once per second from PPG. The per-minute HR data was calculated by taking the mean of
the interpolated, per-second data across non-overlapping one-minute windows. An on-device peak
detection algorithm identified PPG-based R-wave peaks from which RR intervals were calculated.
RR intervals are susceptible to noise from multiple sources, including movement, electronic noise,
and missed heartbeats. To account for noise, outliers were removed from each sliding 5-minute
window using the median-filter based approach (Natarajan et al., 2020). The percentage of each 5-
minute window with valid RR intervals are calculated and referred to as “heart rate variability (HRV)
percent good”. Nine standard HRV metrics (Shaffer & Ginsberg, 2017) are calculated every minute
over a sliding 5-minute window: RR mean, RR median, RR 20th percentile, RR 80th percentile, RR
Shannon Entropy, RR differences Shannon Entropy, standard deviation of RR, root mean squared
difference of RR intervals, and percentage of RR intervals greater than 30ms (PNN30).

ACC Accelerometer. Ten signals are extracted from the 3-axis accelerometer: Jerk, steps, ac-
celerometer log energy and energy ratio, covariance, number of zero crossings and standard de-
viation. These signals are extracted by converting the 3-axis accelerometer to root mean squared
magnitude (1D), and applying a high-pass filter (HPF) to the remove the DC component. In parallel,
the 3-axis accelerometer signal is put through a second-order band-pass filter (BPF) and the prin-
cipal component of the filtered 3-axis signal covariance matrix is calculated and updated every 25
seconds. Jerk is a measure based on the time-derivative of the acceleration calculated from the prin-
cipal component. It is the logarithm of the ratio of the absolute of the t=1 autocorrelation lag over
the t=0 autocorrelation lag. Steps is a per-minute count of steps taken calculated based on a machine
learned classifier. Log energy is the logarithm of the sum of the squared HPF signal over the window.
Log energy ratio is the logarithm of the ratio of energy computed from principal-component over the
magnitude of the HPF signal. Zero-crossing count is the number of crossings in the principal com-
ponent and standard deviation is the calculated from the sample window. Kurtosis is calculated from
the BPF signal. Each of these features is originally computed every 51 seconds and then resampled
to a minutely resolution. Sleep coefficient is calculated as the sum of the 3-axes max-min range and
binned into 16 log scaled bins before being input into a machine learned classifier to predict wake
vs. sleep probability.

ALT Altimeter. The standard deviation of the altimeter (pressure sensor) measurements.
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All sensor signals were globally normalized (z-score) to remove differences in magnitude due to dif-
ferent units of measurement. As the masked autoencoder cannot process missing data, we imputed
minutes that had missing values. Within each 300-minute window, missing data between valid data
points was linearly interpolated, and leading missing minutes were backfilled.

3.2 BUILDING A LARGE SCALE PRETRAINING SENSOR DATASET

To build the large dataset for our experiments we sampled wearable data from 165,090 subjects
during the period January 1st 2023 to July 2nd 2024. The subjects wore Fitbit Sense 2 or Google
Pixel Watch 2 devices and consented for their data to be used for research and development of new
health and wellness products and services. We sub-selected from people wearing one of these de-
vices as older device generations included fewer sensors. The subjects were asked for self-reported
sex, age and weight. Table 2(a) summarizes the characteristics of the pretraining data. All data
were de-identified and not linked with any other information. To create a dataset that maximized the
number of subjects we randomly sampled 10 5-hour windows of data from each subject, for a total
of 8 million hours (6.6 million pretrain hours). We further explore the extremes of data scaling by
experimenting with a subject-imbalanced 40 million hour pretraining dataset (see Appendix C.1).
Note that this dataset is comprised of wearable data from daily-living, including diverse timestamps
and a range of life events, and thus is not biased toward specific events or activities.

The dataset was split 80-20 based on subjects into train-test splits (132072 subjects in training,
33018 subjects in testing) as described in Table 2(a). We then created several “slices” of the training
set to conduct the scaling experiment. The test set remains identical throughout all experiments. In
the “sample-scaling” experiments we shuffled the training data and took N samples per experiment.
In the “subject-scaling” experiments we grouped the training data by subject identifier and took all
samples from N subjects per experiment.

4 SENSOR MODELING TASKS

4.1 GENERATIVE TASKS

We posit that defining generative tasks in the training of wearable sensor models may not only
result in learned representations that are useful for downstream classification tasks, but also produce
models that can impute missing or incomplete data (interpolate) and extrapolate future sensor values
(forecast). To train the model and to test these capabilities we define several tasks (see Fig. 2).

Random Imputation. Our primary pretext task involves removing patches randomly from the input
sample across the time-axis and signal-axis. During training this requires the model to infer missing
values and make predictions based on partial input.

Temporal Interpolation. Sensor inputs can be missing for a number of reasons. Devices need to
be removed from the wrist for charging, and certain sensors might be turned off for periods to save
on battery life (McDuff et al., 2024). Interpolation of sensor data is an important and necessary step
for many algorithms (see Fig. 2). In this task we test the model’s ability to fill gaps in the data where
all sensor data is missing for a period of time, usually between two observations.

Sensor Imputation. Sensor imputation refers to the process of inferring a subset of partially miss-
ing sensor-streams, from other continuously online sensing modalities. By leveraging correlations
between different physiological signals, sensor imputation ensures that insights can be derived even
when some sensor modalities are absent, enhancing the overall versatility and capabilities of multi-
sensor systems. Under the constraints of hardware limitations (battery, wireless connectivity, etc.),
sensor imputation can enable the delivery of more realistic metrics to the user (e.g., step count,
average resting heart rate) even if when sensors are not continuously online.

Temporal Extrapolation (Forecasting). A more challenging task than interpolation is extrapo-
lation of sensor values forward in time. Temporal extrapolation involves predicting future sensor
measurements. The ability to anticipate future physiological states based on current and histori-
cal data has applications in areas such as health interventions, where extrapolation can be used to
schedule recovery times, detect early signs of fatigue, predict wake-up times, and detect anoma-
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Figure 2: Generative LSM tasks and pretraining. We define four distinct generative tasks: random
imputation, temporal interpolation, signal/sensor imputation, and temporal extrapolation (forecast-
ing). Random imputation was empirically chosen as the pretraining task.

lies. Accurate signal extrapolation is a key task that can empower wearable devices to provide more
just-in-time, proactive, and personalized health recommendations.

4.2 DISCRIMINATIVE TASKS

Discriminative tasks focus on classifying or identifying specific activities, states, or conditions based
on sensor data. These tasks are essential for translating raw sensor inputs into actionable, personal-
ized, and relevant feedback. The corresponding datasets are split 80-20 into user-stratified train-test
splits unless otherwise specified. Two exemplary tasks are considered here. Additional discrimina-
tive tasks (sex, binned age, and subject dependent mood) and results can be found in Appendix C.7.

Activity Recognition. Activity recognition is the process of classifying different user activities such
as biking, running, or walking, based on the patterns detected in sensor data. This allows wearable
devices to monitor daily routines accurately, providing insights into fitness levels, activity trends,
and overall health. Effective activity recognition enables applications like fitness tracking, lifestyle
monitoring, and personalized coaching. Our dataset includes eight user-labeled activities: Biking,
Elliptical, High-Intensity Interval Training (HIIT), Strength Training, Swimming, Running, Walking,
and Weightlifting. The activity event labels are self-reported by users post hoc.

Exercise Detection. Exercise detection identifies when a user is exercising, enabling real-time
feedback and performance tracking. This task involves recognizing exercise events from continuous
sensor data, allowing devices to log workout sessions, track progress, and provide personalized
recommendations. Additionally, detecting exercise unlocks related experiences, such as identifying
exercise types, marking session start times, or tracking post-exercise feedback. We developed a
dataset with windows of user-labeled exercise and non-exercise events (see Table 2(b)). The exercise
event labels are based on self-reported activity labels.

5 EXPERIMENTS & RESULTS

5.1 TRAINING PROCEDURES

We pretrain our wearable foundation models on a diverse collection of multimodal sensor data. Each
sample is processed as a two-dimensional matrix of 26 signals by 300 minutes (see Fig. 2). Our pri-
mary pretraining objective is to optimize the masked signal reconstruction loss (i.e., mean squared
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(a) Data Scaling Across Model Sizes

(b) Model Scaling Across Data Sizes

Overfitting

Overfitting

Model Parameters Data Size (Hours)

Figure 3: Scaling performance of LSM. We show performance on generative tasks across varying
data and model sizes. LSM begins to saturate at approximately 107 hours of data. The effects of
scaling are more pronounced in imputation, interpolation, and extrapolation tasks. Results indicate
that as model size increases, significantly larger data volumes are required to prevent overfitting.

error), averaged over randomly masked patches from the input matrix (He et al., 2022). The primary
performance metric is the mean squared error on the held-out test set, evaluated across all the nor-
malized signals. We employ a masked autoencoder (MAE) due to it’s ability to handle multitarget
generative tasks like forecasting and interpolation, and discriminative tasks such as activity recogni-
tion, unlike traditional time-series models that focus on single-target prediction (Ansari et al., 2024).
Furthermore, MAE gracefully handles missingness which is inherent in wearable data. MAE has
proven effective in pretraining and scalable learning across domains (Huang et al., 2022; Xie et al.,
2023), which aligns with our focus on establishing scaling laws in the wearable data domain.

We pretrain our models on Google v5e TPUs with a total batch size of 4096 across 50,000 training
steps. The training process uses the AdamW optimizer with a base learning rate of 5e−3 and weight
decay set to 1e − 4. A linear warm-up schedule is applied for the first 2,500 steps, followed by a
cosine learning rate decay to zero. All pretraining experiments use an 0.8 masking ratio (masking
out random patches that cover 80% of the total input signals). Additional details on implementation
and hyperparameters can be found in Appendix E.

5.2 RESULTS & DISCUSSION

Do scaling laws apply to wearable data? We present the Pareto front of the reconstruction loss
and downstream performance as a function of compute scaling (see Fig. 1). The front highlights
the models with optimal compute allocation across model size, data size and training duration. Over
multiple orders of magnitude of compute, the relationship between compute and performance fol-
lows a power-law (L = aCb), resulting in a nearly linear trend on the log-log plot. However, we
observe a saturation effect at the upper end of the compute spectrum, where the largest models do
not asymptotically approach zero error. This behavior has also been observed for scaling language
models (Henighan et al., 2020) and vision transformers (Zhai et al., 2022); therefore, we add an
additive constant c to model this saturation effect: L = aCb + c.

7
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Figure 4: Analysis on scaling LSM. (a) Total number of hours is more important than total number
of subjects. (b) Data scaling on discriminative tasks with ViT-110M. (c) Larger models are more
sample efficient.

We illustrate data scaling across various model sizes (Fig. 3(a)). Performance improves monoton-
ically to approximately 105 data hours, beyond which the rate of improvement diminishes, partic-
ularly around 107 hours. We validated that scaling beyond 107 hours yields minimal benefits by
training with 40 million hours (see Appendix C.1). Consequently, results in Table 3 are pretrained
with 6.6 million hours of data. Larger models, especially the ViT-110M, continue to benefit from
data scaling, showing substantial gains when training on over 1 million hours of data. These obser-
vations underscore the large data requirements needed to fully exploit the capacity of larger models,
which are far greater than those required by smaller models. A similar trend is observed in discrimi-
native tasks (Fig. 4(b)). We further note that these trends are based on minutely aggregated wearable
data; raw sensor signals are traditionally collected at substantially higher sampling frequencies and it
is possible that feature extraction on more fine-grained sensor data may require even larger models.

Model scaling results as a function of data size demonstrate that as both model size and dataset size
are scaled, sufficient data is essential to prevent overfitting (Fig. 3(b)). Models trained on smaller
datasets exhibit limited generalization capacity, whereas scaling up to 108 parameters results in
significant gains in test loss and generative zero-shot performance. These findings highlight the
need to align model size with adequate data to fully leverage the model’s representational power.
Our experiments also show larger models are more sample efficient as illustrated in Fig. 4(c).

By scaling compute, data, and model size together, LSM achieves improvements of 16% to 23%
in temporal interpolation MAE and 20% to 21% in extrapolation MAE across five time durations
as compared to the best baseline method (Table 3(a)). Additionally, LSM outperforms baselines in
exercise detection and 8-class activity recognition over the supervised baseline by 27% / 29% in
accuracy and 57% / 54% in mAP, as detailed in Table 3(c). Our baseline approaches are commonly
used in existing sensor algorithms (Gershon et al., 2016; van Rossum et al., 2023). More scaling
results can be found in Appendix C.

Is scaling subjects or wearable data hours per subject more helpful? As shown in Fig. 4(a),
when training using the same total number of wearable signal hours, reducing the number of sub-
jects (but drawing more hours per subject) can yield similar performance. This suggests that total
number of hours rather than number of subjects drives gains. One possible hypothesis to explain
this effect is that the diversity of activities per subject (as reflected by the increase in hours per sub-
ject) plays a crucial role. Alternatively, subject diversity may become more important when learning
representations if we scale up the data sample size from 5 hours (e.g., 7 days vs. 5 hours). As each
subject has a finite number of hours, to maximize model generalization, it is important to scale both
the number of subjects and the wearable data hours per subject simultaneously. While temporal
data is crucial for capturing intra-subject variability, increasing the number of subjects introduces
valuable inter-subject diversity. Therefore, scaling both dimensions—subjects and hours—together
is essential to fully leverage the model’s capacity and improve performance across tasks.

Can wearable foundation models impute the past and predict the future? As shown in Fig. 3,
scaling laws apply to all imputation, interpolation, and extrapolation tasks, with larger models and
more data resulting in improved performance. The utility of LSM is further emphasized in Table 3(a).
However, despite these quantitative gains, the qualitative results in Fig. 11 of Appendix C.6 reveal
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Table 3: Comparisons of LSM and competing methods on generative and discriminative tasks.

(a) Generative Task Results

Task + Method Error (MAE / MSE)
Temporal Interpolation 10 mins 20 mins 30 mins 60 mins 120 mins
MEAN 0.36 / 0.42 0.36 / 0.43 0.37 / 0.44 0.38 / 0.46 0.39 / 0.49
MICE 0.36 / 0.42 0.36 / 0.43 0.37 / 0.43 0.38 / 0.45 0.39 / 0.48
NEAREST NEIGHBOR 0.21 / 0.29 0.26 / 0.37 0.28 / 0.42 0.33 / 0.51 0.38 / 0.62
LINEAR INTERP. 0.19 / 0.23 0.23 / 0.30 0.26 / 0.34 0.30 / 0.42 0.36 / 0.51
LSM (MAE) 0.16 / 0.14 0.19 / 0.18 0.20 / 0.21 0.24 / 0.26 0.29 / 0.33
GAINS OVER INTERP. +16% / 39% +17% / 40% +23% / 38% +20% / 38% +19% / 33%
Temporal Extrapolation 10 mins 20 mins 30 mins 60 mins 120 mins
MEAN 0.48 / 0.66 0.48 / 0.65 0.47 / 0.65 0.47 / 0.64 0.45 / 0.64
MICE 0.48 / 0.66 0.48 / 0.66 0.47 / 0.65 0.47 / 0.65 0.45 / 0.64
NEAREST NEIGHBOR 0.35 / 0.52 0.40 / 0.62 0.43 / 0.68 0.47 / 0.76 0.48 / 0.81
LINEAR INTERP. 0.35 / 0.52 0.40 / 0.62 0.43 / 0.68 0.47 / 0.76 0.48 / 0.81
LSM (MAE) 0.28 / 0.31 0.32 / 0.37 0.34 / 0.40 0.37 / 0.44 0.38 / 0.47
GAINS OVER INTERP. +20% / 40% +20% / 40% +21% / 23% +21% / 31% +21% / 27%
Sensor Imputation 10 mins 20 mins 30 mins 60 mins 120 mins
MEAN 0.36 / 0.42 0.36 / 0.43 0.37 / 0.43 0.38 / 0.45 0.39 / 0.49
MICE 0.30 / 0.33 0.30 / 0.36 0.31 / 0.38 0.33 / 0.46 0.37 / 0.61
NEAREST NEIGHBOR 0.21 / 0.29 0.26 / 0.37 0.28 / 0.42 0.33 / 0.51 0.38 / 0.62
LINEAR INTERP. 0.19 / 0.23 0.23 / 0.30 0.26 / 0.34 0.30 / 0.42 0.36 / 0.51
LSM (MAE) 0.15 / 0.11 0.15 / 0.12 0.16 / 0.13 0.17 / 0.15 0.19 / 0.17
GAINS OVER INTERP. +21% / 52% +35% / 60% +38% / 62% +43% / 64% +47% / 67%

(b) Exercise Detection.

Pretrain Probe/FT Acc. mAP
- RAND. FOREST 73.0 76.8
- LOGISTIC REG. 72.4 67.3
- SUPERVISED 70.9 61.7
MSN Linear Probe 67.6 60.0
DINO Linear Probe 66.0 57.0
SIMCLR Linear Probe 66.5 51.5
LSM (MAE) Linear Probe 84.7 89.0
MSN Fine-tune 76.7 74.6
DINO Fine-tune 78.2 80.3
SIMCLR Fine-tune 74.9 66.6
LSM (MAE) Fine-tune 90.3 97.0
GAIN OVER SUPERVISED +27% +57%

(c) Activity Recognition.

Pretrain Probe/FT Acc. mAP
- RAND. FOREST 56.5 43.1
- LOGISTIC REG. 60.4 39.3
- SUPERVISED 53.2 33.4
MSN Linear Probe 44.6 24.0
DINO Linear Probe 50.3 26.0
SIMCLR Linear Probe 45.3 20.8
LSM (MAE) Linear Probe 49.4 24.6
MSN Fine-tune 62.5 43.4
DINO Fine-tune 66.2 46.3
SIMCLR Fine-tune 67.3 46.0
LSM (MAE) Fine-tune 68.5 51.4
GAIN OVER SUPERVISED +29% +54%

All neural methods, including the supervised method, utilize a ViT-Base (110M) backbone. Relevant methods are pretrained
with 6.6 million hours of data. In the sensor imputation task, we randomly mask 67% of the sensor modalities.
MICE (Van Buuren & Groothuis-Oudshoorn, 2011), Random Forest (Breiman, 2001), MSN (Assran et al., 2022),
DINO (Caron et al., 2021), SimCLR (Chen et al., 2020), MAE (He et al., 2022).

that these tasks remain highly challenging. Imputing large portions of missing data, especially over
extended time intervals, often leads to degraded accuracy, with performance deteriorating as the
missing data window increases. Similarly, extrapolation further into the future (e.g., several hours
ahead) introduces significant uncertainty, making it difficult to predict fine-grained physiological or
behavioral patterns. These findings suggest that while scaling helps improve generative capabilities,
substantial challenges remain, particularly in handling long-range dependencies and large data gaps.

Are wearable foundation models label efficient on discriminative tasks? Our experiments on
probing, fine-tuning, and few-shot learning for activity indicate that wearable foundation models are
highly label efficient. As shown in Table 3(b), 3(c), and Appendix Table 14, the performance of
the fine-tuned LSM consistently outperforms supervised baselines. A confusion matrix of the best
performing model is shown in Fig. 7 of the Appendix. As shown in Table 11 of Appendix C.2, even
in the low-data regime (e.g., 5-shot, 10-shot), foundation models demonstrate strong generalization
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capabilities, achieving significantly lower error rates compared to models trained from scratch or
with limited supervision. As the number of labeled examples increases, the performance gap widens,
with foundation models leveraging pretraining to more effectively transfer learned representations
to downstream tasks. T-distributed Stochastic Neighbor Embeddings (t-SNE) plots show the impact
of pretraining on more data and fine-tuning are shown in Appendix C.4 (Fig. 8).

Why did models saturate? Our experiments indicate promising opportunities in scaling wearable
sensor models but also highlight several unresolved questions. Notably, we observe saturation in
scaling laws with a dataset size of 107 hours and model sizes in 100 millions. We attribute this
to three factors: (1) the current pretraining task may not be sufficiently scalable, and decoder-only
approaches might better leverage data rather than filling masked inputs; (2) the dataset construction
lacks sufficient challenge, and extending the sensor context window from 5 hours to a day or even
a week could introduce more complexity that enables the model to learn longer time dependency
relationships; (3) our data cleaning process was minimal, and increasing data diversity, akin to
large-scale language model training, could significantly enhance model generalization. For example,
while our dataset spanned all four seasons, there was an imbalance in temporal coverage, with two
years of data from January to June but only a single year from July to December. This uneven
distribution could bias the model towards activities more common in the earlier part of the year.

Additional discussions regarding scaling LSM to the edge, contextualizing large sensor models, and
the utility of physiological proxy tasks can be found in Appendix D. Additional results of model
design choice are presented in Appendix A. Qualitative examples of signal and embedding are pro-
vided in Appendix C.4 & C.6.

6 LIMITATIONS & FUTURE WORK

A key characteristic of wearable sensor data is its inherent missingness. Handling missing data in
both pretraining and downstream tasks remains an open question. While we used imputation for
this study, a more principled approach would involve designing models that naturally account for
missing data without introducing imputation biases. The nature of missing data in wearable sensors
often correlates with real-world events (e.g., charging the device, loose fitting), which can mean that
data is missing not at random (MNAR). We recognize our study does not have a deep investigation
on various of missingness in wearable data, understanding these factors and designing methods to
handle them robustly remains an important direction for future work. Lastly, we acknowledge the
lack of comprehensive evaluation on more discriminative tasks and diverse set of wearable devices.
Future work will expand the dataset to include a broader range of classification and regression tasks
across different dataset sources and devices.

We acknowledge that creating generic input representations for data from different sensors, each
with unique properties, is challenging. This motivated our choice to build the model on minutely
features derived from raw sensor data, which inherently vary in sampling rates. These features can
be similarly derived from a wide range of sensors, making the inputs somewhat device-agnostic.
However, wearable signals in their raw form (e.g., 120Hz accelerometer values) often exhibit strong
periodicity, which is not retained in the aggregated minutely features. As a result, we focused on
time-domain representations for our inputs, but we acknowledge that this approach may not fully
leverage the fine-grained temporal or spectral characteristics of raw signals, potentially limiting
generalization across diverse modalities and resolutions. We acknowledge that the 5-hour window
represents a trade-off, balancing the complexity needed for pretraining with the temporal specificity
required for downstream tasks. Future work will explore task-specific window sizes, refined mask-
ing strategies to better align with the temporal characteristics of downstream events, and the ability
of these models to generalize across wearable devices with varying sensor capabilities.

7 CONCLUSION

We present LSM, a large multimodal foundation model trained on 40 million hours of wearable sen-
sor data from over 165,000 individuals, establishing scaling laws for sensor models. LSM improves
performance across generative tasks and discriminative tasks. Our results demonstrate that scal-
ing data, model size, and compute leads to substantial gains in generalization and efficiency. LSM
highlights the potential of scaling wearable sensor models for real-world health applications.
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APPENDIX

A MODEL DESIGN CHOICES AND ABLATIONS

We perform ablations on the configurations used for our masked autoencoder LSM design. Follow-
ing the convention of previous works (He et al., 2022; Huang et al., 2022), we explore masking
ratio, masking strategies, patch sizes, and model sizes. Uniquely, we explore the ordering of sen-
sor signals, as these signals do not share the same explicit ordered dependencies as exist in images
and audio spectrograms. For all experiments we employ random masking, a 0.8 masking ratio, or-
dered sensor signal order, a patch size of 10x5, and a LSM-Base (110M) backbone, unless otherwise
specified.

A.1 SELECTING A MASKING RATIO

Selecting the appropriate masking ratio is critical for ensuring effective representation learning in our
sensor MAE training. We explore different masking ratios, ranging from 30% to 90%, to evaluate
their impact on reconstruction quality and model generalization. We find that a masking ratio of
80% yields the best performance on temporal interpolation and extrapolation as shown in Table 4).

Table 4: Ablation study of masking ratios.

Mask Ratio Interpolation 60 mins Extrapolation 60 mins

MAE MSE MAE MSE

0.3 0.29 0.31 0.38 0.47
0.4 0.35 0.39 0.38 0.45
0.5 0.25 0.27 0.39 0.46
0.6 0.44 0.57 0.38 0.45
0.7 0.40 0.51 0.37 0.44
0.8 0.24 0.26 0.37 0.44
0.9 0.31 0.33 0.40 0.49

A.2 SELECTING A MASKING STRATEGY

To train a wearable foundation model effective for both generative and discriminative tasks, mask-
based pretraining proves superior to contrastive pretraining. Choosing the right masking strategy is
crucial, as it directly influences the quality of the learned embeddings and the model’s generaliz-
ability. In Table 5, we systematically compare five different masking strategies and demonstrate that
random masking consistently yields the best performance across the two primary generative tasks.
Example visualizations of these masking strategies can be seen in Fig. 5.

Table 5: Ablation study of masking strategies.

Mask Strategy Interpolation 60 mins Extrapolation 60 mins

MAE MSE MAE MSE

RANDOM 0.24 0.26 0.37 0.44
STRUCTURED (TEMPORAL) 0.24 0.26 0.37 0.44
STRUCTURED (SENSOR) 0.54 0.71 0.53 0.73
TEMPORAL INTERPOLATION 0.41 0.48 0.52 0.66
TEMPORAL EXTRAPOLATION 0.43 0.51 0.51 0.64

A.3 SELECTING A SENSOR SIGNAL ORDER

For multimodal sensor data, the order in which signals are processed by the model can impact
performance. Specifically, for architectures, such as vision transformers, that take patched inputs,
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(B) Random Mask

(C) Structured Temporal Mask
(D) Structured Sensor Mask

(E) Forecast Mask

Sample 1 Sample 2 Sample 3

(C) Structured Temporal Mask

(D) Structured Sensor Mask

(E) Forecast Mask

(F) Imputation Mask

(A) Original

Figure 5: LSM MAE pretrain masking strategies. All strategies employ a masking ratio of 0.8.
(A): original, unmasked sensor image, (B): random masking, (C): structured temporal masking,
(D): structured sensor masking, (E): temporal extrapolation masking, (F): temporal interpolation
masking. Both random and structured temporal masking enable strong down-stream performance.
We select random masking for all scaling experiments and evaluations.

the clustering of signals in patches may have a profound impact on the learned representation. We
evaluate ordering the sensor signals by: (a) sensor types (as in Table 18), (b) randomized order
(repeated with several random seeds) and (c) interleaving signals with uncorrelated signals. Cross
correlation matrices are shown in Fig. 10. We find that ordering by clustering sensor type generally
yields better results (see Table 6), particularly when dealing with heterogeneous sensor modalities
like accelerometry, electrodermal activity (EDA), and heart rate. This order allows the model to
leverage specific sensor characteristics more effectively, improving performance on downstream
tasks.

Table 6: Ablation study of sensor orders.

Sensor Order Interpolation 60 mins Extrapolation 60 mins

MAE MSE MAE MSE

CLUSTERED 0.24 0.26 0.37 0.44
RANDOMIZED (N=5) 0.28 0.32 0.38 0.45
MAX ENTROPY 0.30 0.34 0.45 0.55

A.4 SELECTING A PATCH SIZE.

Patch size in our pretraining is defined by time steps and the number of sensor features per patch,
both impacting model capacity and computation (gFlops). In contrast to previous works (He et al.,
2022; Huang et al., 2022) we expensively sweep across both dimensions of the input. This is crit-
ical for sensor models, where both dimensions, of time and features, share unique correlations and
dependencies along their corresponding axis.

A time-step of 10 minutes strikes the best balance with low gFlops (15.94) and strong performance
(MAE of 0.24 for imputation, 0.37 for forecasting) (See Table 7). Similarly, increasing features per
patch shows that five features per patch achieves the best trade-off between accuracy and computa-
tional cost, outperforming both smaller (10x1) and larger patches (10x26). Thus, a moderate patch
size of 10 minutes by 5 features is what we select.

As a patch-size of 10-minutes x 5-sensors (10x5) cannot evenly patch a input sensor-image of 300-
minutes x 26-sensors (300x26), we zero-pad the sensor dimension to 30 resulting in an 300-minute
x 30-feature (300x30) input sensor-image.

A.5 MODEL SIZE VARIANTS

In Table 8, we present four variants of the LSM models we trained. The model sizes and naming
conventions partially follow the tradition established by T5 (Raffel et al., 2020). Our results indicate
that scaling the model beyond LSM-B offers no additional improvements in either reconstruction loss
or downstream task performance. Based on this insight all neural methods in Table 3 employ a
ViT-110M backbone.
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Table 7: Ablation study of patch sizes.

(a) Sweep across time-steps per patch. (5 feats. per patch)

Patch Size gFlops Interpolation 60 mins Extrapolation 60 mins

MAE MSE MAE MSE

5X5 33.09 0.34 0.41 0.37 0.46
10X5 15.94 0.24 0.26 0.37 0.44
20X5 7.82 0.26 0.28 0.41 0.48
30X5 5.18 0.28 0.30 0.37 0.44

(b) Sweep across features per patch. (10 mins. per patch)

Patch Size gFlops Interpolation 60 mins Extrapolation 60 mins

MAE MSE MAE MSE

10X1 77.83 0.30 0.33 0.43 0.53
10X2 36.07 0.30 0.33 0.45 0.53
10X5 15.94 0.24 0.26 0.37 0.44
10X10 7.82 0.33 0.38 0.45 0.55
10X26 2.58 0.28 0.31 0.43 0.51

Table 8: Vision transformer size variants used in LSM. An LSM-[size] model indicates a ViT-[size] backbone.

Model Encoder Decoder Encoder Decoder Encoder Decoder Total gFLOPsBlocks Blocks Dim Dim Heads Heads Params

LSM-Tiny 4 2 192 128 3 4 2M 0.37
LSM-Small 8 2 256 192 4 4 7M 1.28
LSM-Base 12 8 768 512 12 16 110M 15.94
LSM-Large 24 8 1,024 512 16 16 328M 56.10

B ADDITIONAL RELATED WORK

Learning from Multimodal Sensor Data. A significant body of work has explored representation
learning for multimodal physiological time-series data from wearable devices. Spathis et al. (2021)
employed pretext tasks to pre-train models on multimodal inputs such as heart rate and raw IMU
signals, demonstrating their effectiveness across various downstream tasks. Saeed et al. (2021)
introduced a self-supervised framework specifically designed for wearable sensors, emphasizing
robustness through representation learning from diverse signal types. Deldari et al. (2024) proposed
CrossL, a cross-modal self-supervised learning approach that utilizes latent masking to effectively
model interactions between modalities. Haresamudram et al. (2021) applied contrastive predictive
coding to human activity recognition, showcasing its capability to capture temporal dependencies
in wearable sensor data. Further advancements include multitask learning for multi-dimensional
clinical time series (Raghu et al., 2023) and physiological measurements (Narayanswamy et al.,
2024). In contrast to prior work, our work emphasizes scalable modeling across a broader range of
wearable sensor modalities and a significantly larger data sample size. We systematically investigate
scaling behavior across compute, data size, and model capacity, and examine the generalizability of
the learned representations on large-scale real-world datasets.

C ADDITIONAL RESULTS AND ANALYSIS

C.1 RESULTS OF SCALING EXPERIMENTS FOR GENERATIVE TASKS

Generative Performance wrt. Data Scaling. Table 9 presents the full results for the generative
tasks, evaluated across four model sizes and all data scales, including an experiment on the largest
40 million hour pretraining set. The LSM Base model, trained on 6.6 million hours of data, achieved
the best overall performance.

Scaling Pretraining Data to 40 Million Hours. As mentioned in Sections 3 and 5, we derive our
dataset, used for presented scaling and downstream task results from 6.6M hours of data balanced
across 160K people. To test the extremes of data scaling we also build a dataset comprising of 40M
data hours by combining the 6.6M hours with an additional 33M hours of data from a 78569 subject
subset of the total 160K subjects. However, as shown in Table 9, we observed that scaling benefits
taper off when training the LSM-Base model with this extended dataset. We believe this is due to
two key factors: the structure of our dataset and the inherent limitations of the masking pretraining
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task, as discussed in Section 6. It is also possible that as the additional 33M hours are not evenly
distributed across subjects that the careful balance of the 6.6M dataset is disturbed.

C.2 RESULTS OF SCALING EXPERIMENTS FOR DISCRIMINATIVE TASKS

5 10 15 20
Number of Shots

10

20

30

40

50

Ac
cur

acy
 (%

)

LSM + FT
LSM + Linear Probe
Baseline

Figure 6: Few shot learning. Ac-
tivity recognition results.

Discriminative Performance wrt. Data Scaling. In Table
10, we demonstrate that scaling up the dataset significantly
benefits downstream discriminative tasks, particularly in the
fine-tuning stage. Furthermore, our pretrained LSM model ex-
hibits superior performance in label-efficient transfer learning,
as shown in Table 11. Activity recognition few-shot results,
as compared to a supervised baseline, are also visualized in
Fig. 6. From the visualization it is clear that pretraining helps
LSM learn a strong representation of sensor data that enables
more sample efficient performance on discriminative tasks.

Convolutional Probe. Following prior work (He et al., 2022)
we explore an intermediary evaluation to linear probing and
full-model fine-tuning. Specifically, we explore the learnable
pooling of embeddings. This probe takes patch-embeddings,
produced by the encoder, and reshapes them to [num. patches
H , num. patches W , embedding dimension], similar to the shape of the original patched sensor-
image. This embedding is fed through two shallow convolutional layers and a linear head. We find
that with less that 0.2% of the trainable-parameters needed for full-model fine-tuning, we are able to
achieve similar performance on exercise detection and activity recognition tasks. These results can
be seen in Tables 10 and 11.

Table 9: Detailed Results of Generative Tasks. Performance across Data and Model
Sizes on Generative Tasks. Data Size is in hours.

Data Size Model Size
Task Error (MSE)

Random Extrapolation Interpolation
Imputation 80% 60 min 60 min

0.005 M

Tiny 0.50 0.71 0.53
Small 0.57 0.77 0.62
Base 0.67 0.80 0.68
Large 0.64 0.82 0.75

0.05 M

Tiny 0.25 0.70 0.47
Small 0.29 0.58 0.36
Base 0.38 0.65 0.42
Large 0.38 0.65 0.43

0.5 M

Tiny 0.22 0.62 0.42
Small 0.21 0.53 0.37
Base 0.22 0.48 0.28
Large 0.22 0.50 0.34

3.8 M

Tiny 0.22 0.62 0.42
Small 0.21 0.49 0.36
Base 0.19 0.44 0.26
Large 0.21 0.64 0.46

6.6 M

Tiny 0.22 0.63 0.42
Small 0.21 0.49 0.35
Base 0.19 0.44 0.26
Large 0.20 0.54 0.40

40 M Base 0.19 0.45 0.27
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Table 10: Data Scaling on Discriminative Tasks.

Data Size Method Exercise Detection Activity Recognition

Accuracy mAP Accuracy mAP

0.005 M

Linear Probe

60.6 49.8 35.1 17.5
0.05 M 67.3 61.0 39.6 23.4
0.5 M 84.5 78.8 47.1 24.7
3.8 M 88.0 85.0 47.6 25.3
6.6 M 84.7 89.0 49.4 24.6

0.005 M

Convolutional Probe

71.3 71.8 50.9 25.1
0.05 M 78.0 82.3 62.2 43.7
0.5 M 88.2 96.4 68.1 45.5
3.8 M 88.2 96.4 70.5 47.1
6.6 M 87.5 95.8 67.6 48.5

0.005 M

Fine Tune

68.3 58.9 51.5 30.0
0.05 M 73.8 77.0 64.0 48.0
0.5 M 84.9 93.7 68.8 50.0
3.8 M 87.5 96.4 64.2 48.7
6.6 M 90.3 97.0 68.5 51.4

Table 11: Few-Shot Performance on Discriminative Tasks.

Samples per Class Method Exercise Detection Activity Recognition

Accuracy mAP Accuracy mAP

5

Linear Probe

51.3 48.0 12.2 17.5
10 58.3 57.1 20.1 18.4
15 65.4 68.8 21.0 18.7
20 65.1 69.8 22.3 18.8

5

Convolutional Probe

40.5 43.8 20.6 24.7
10 63.2 59.4 27.9 26.7
15 57.3 60.8 27.9 26.7
20 67.0 56.9 36.9 25.3

5

Fine Tune

54.7 56.8 19.4 21.5
10 65.8 65.1 30.1 22.7
15 71.1 73.1 36.6 24.8
20 65.6 67.1 51.2 33.2

5

Supervised

43.1 52.9 10.3 14.5
10 49.3 46.0 16.4 14.6
15 49.6 50.6 16.3 14.4
20 48.2 45.8 18.5 23.0

C.3 CLASSIFICATION CONFUSION MATRICES

Fig. 7 presents the complete confusion matrix for our activity recognition task from the full-model
fine-tuned LSM-B model. Note that many classes get mistaken for Walk. This is likely as there are
significant periods of walking in the 5-hour inputs, even if the activity is labeled otherwise.

C.4 FEATURE EMBEDDINGS

We present t-distributed Stochastic Neighbor Embedding (t-SNE) plots. In Fig. 8 illustrates that
scaling pretraining data results in noticeable, albeit subtle, improvements of clustering across activ-
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Figure 7: Activity recognition confusion matrix. Results for the full-model fined-tuned LSM
Masked Auto-Encoder.

ities in the learned representation. We also find that fine-tuning the model is critical to effectively
discriminate between activities. In Fig. 9 we see that the learned representation does embed some
subject dependencies. This can be attributed to variance in the physiology and activity definitions
for individuals (e.g., a hard run may look very different for two different people). We present quan-
titative results of a subset of these embeddings in Table 12.

Table 12: Measures of Embedding Clustering. These quantitative evaluations of embedding clustering
support the claim that there are subtle differences in embeddings pretrained on different scales of data, as
visualize in Fig. 8.

Finetune Pretrain Size (Hrs) Pretrain Size (People) Calinski-Harabasz ↑ ARI ↑ NMI ↑
No 49K 1K 11508 0.026 0.083
No 6.6M 132K 11855 0.034 0.113
Yes 49K 1K 11972 0.256 0.465
Yes 6.6M 132K 11993 0.253 0.501

Calinski-Harabasz Score (Caliński & Harabasz, 1974), Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), Normalized
Mutual Information Score (NMI) (Vinh et al., 2009).

C.5 SIGNAL CORRELATIONS

The 26 signals used as input to our model come from four sensors (accelerometer, PPG, temperature,
altimeter). As a result, some signals are more correlated with certain ones than with others.. A signal
diagonal correlation matrix was calculated to show the pairwise correlations between signals. Fig. 10
shows the correlation matrix for signals clustered by sensor and for signals ordered to minimize the
absolute correlation coefficient between adjacent features.

C.6 EXAMPLES OF RECONSTRUCTIONS

A qualitative example of ground-truth signals and corresponding reconstructions are shown in
Fig. 11. The gray regions are sections that were masked in the input. Additional sensor-image level
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Figure 8: t-SNE Embeddings for Pretraining and Fine-tuned Models Labeled by Activity. t-
distributed Stochastic Neighbor Embedding (t-SNE) plots showing that there are differences (albeit
subtle) between pretrained embeddings using data from almost 50k and 6.6 hours.

reconstructions, across generative down-stream tasks (eg. imputation, extrapolation, interpolation)
can be seen in Fig. 12. Examples of the often visually subtle affects of scaling on reconstruction can
be seen in Fig. 13.

C.7 ADDITIONAL DISCRIMINATIVE TASKS

Here we discuss the additional discriminative tasks of sex and age classification, and subject depen-
dent mood recognition. The datasets for these tasks are presented in Table 13. The performance of
our methods and baselines are presented in Table 14.

Biological Sex Classification. Biological sex classification attempts to categorize an individuals as
either Female, or Male from a sample of their wearable data. Though we do not explicitly intend our
learnt representation to encode this information this discriminative tasks may allude to a methods
ability to understand some-sense of differences in human biology. This experiment mirrors those
conducted by similar works (Abbaspourazad et al., 2023).
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Figure 9: t-SNE Embeddings Labeled by Gender, Age and Subject. t-distributed Stochastic
Neighbor Embedding (t-SNE) plots showing that the learned embeddings do capture subject specific
information (and therefore also exhibit some subtle gender and age clusters). Age was not available
for all subjects.

SCL Value

SCL Slope

Skin Temperature

Hea� Rate

HRV %

HRV 80th %

HRV 20th %

RR Median

RR Mean

RR Shannon Entropy

PNN 30

RMSSD

SDNN

Sleep Coe�cient

On Wrist

Acc. Jerk

Step Count

Acc. Log Energy

Acc. Covariance

Acc. Log Energy

Acc. Zero Crossing St. Dev.

Acc. Zero Crossing Mean

Acc. Axis Mean

Altimeter St. Dev. Norm

Acc. Ku�osis

SCL Value

SCL Slope

Skin Temperature

Hea� Rate

HRV %

HRV 80th %

HRV 20th %

RR Median

RR Mean

RR Shannon Entropy

PNN 30

RMSSD

SDNN

Sleep Coe�cient

On Wrist

Acc. Jerk

Step Count

Acc. Log Energy

Acc. Covariance

Acc. Log Energy

Acc. Zero Crossing St. Dev.

Acc. Zero Crossing Mean

Acc. Axis Mean

Altimeter St. Dev. Norm

Acc. Ku�osis

RR Di�s. Shannon Entropy

RR Di�s. Shannon Entropy

SC
L 

Va
lu

e

SC
L 

Sl
op

e

Sk
in

 T
em

pe
ra

tu
re

H
ea
�

 R
at

e

H
RV

 %

H
RV

 8
0

th
 %

H
RV

 2
0

th
 %

RR
 M

ed
ia

n

RR
 M

ea
n

RR
 S

ha
nn

on
 E

nt
ro

py

PN
N

 3
0

RM
SS

D

SD
N

N

Sl
ee

p 
C

oe
�

ci
en

t

O
n 

W
ris

t

A
cc

. J
er

k

St
ep

 C
ou

nt

A
cc

. L
og

 E
ne

rg
y

A
cc

. C
ov

ar
ia

nc
e

A
cc

. L
og

 E
ne

rg
y

A
cc

. Z
er

o 
C

ro
ss

in
g 

St
. D

ev
.

A
cc

. Z
er

o 
C

ro
ss

in
g 

M
ea

n

A
cc

. A
xi

s 
M

ea
n

A
lti

m
et

er
 S

t. 
D

ev
. N

or
m

A
cc

. K
u�

os
is

RR
 D

i�
s.

 S
ha

nn
on

 E
nt

ro
py

SC
L 

Va
lu

e

SC
L 

Sl
op

e

Sk
in

 T
em

pe
ra

tu
re

H
ea
�

 R
at

e

H
RV

 %

H
RV

 8
0

th
 %

H
RV

 2
0

th
 %

RR
 M

ed
ia

n

RR
 M

ea
n

RR
 S

ha
nn

on
 E

nt
ro

py

PN
N

 3
0

RM
SS

D

SD
N

N

Sl
ee

p 
C

oe
�

ci
en

t

O
n 

W
ris

t

A
cc

. J
er

k

St
ep

 C
ou

nt

A
cc

. L
og

 E
ne

rg
y

A
cc

. C
ov

ar
ia

nc
e

A
cc

. L
og

 E
ne

rg
y

A
cc

. Z
er

o 
C

ro
ss

in
g 

St
. D

ev
.

A
cc

. Z
er

o 
C

ro
ss

in
g 

M
ea

n

A
cc

. A
xi

s 
M

ea
n

A
lti

m
et

er
 S

t. 
D

ev
. N

or
m

A
cc

. K
u�

os
is

RR
 D

i�
s.

 S
ha

nn
on

 E
nt

ro
py

C
or

re
la

ti
on

Signals Clusterd By Sensor Signals Minimising Correlation 
between Adjacent Features

Figure 10: Sensor Signal Diagonal Correlation Matrix. The pair-wise correlation between the 26
sensor features based on our training set.
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Figure 11: Example of Signal Reconstructions. Comparison between the ground-truth (blue) and
reconstruction (black) for a 5-hour sample. Gray regions were masked in the input. 80% Random
Masking (Patch Size 10 mins x 5 sensors). Note: model outputs are only shown for the masked
regions in the reconstructions.

Sample 2Sample 1 Sample 3
Original

Random 
Imputation

Temporal 
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Temporal 
Interpolation

Sensor 
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Figure 12: Examples of Signal Reconstructions Across Generative Down Stream Tasks. The top
row of each sample shows the original sensor signal image. Subsequent row-pairs plot the masked
input followed by the model reconstruction below. All reconstruction come from LSM-Base based
LSM employing a 10x5 patch size and pretrained with 80% random masking. Note: model outputs
are only shown for the masked patches in the reconstructions.

Binned Age Classification. Binned age classification defines 4 discrete age buckets. These binned
ranges are [18 - 34], [35 - 49], [50 - 64], 65+. Although our pre-training methods do not explicitly
intend to learn age, there are known correlations between a persons age and their physiological
state (Cheitlin, 2003). To this end, the task of binned age classification provides a proxy signal to
understand the extent to which a system is able to model differences in physiology. This experiment
mirrors those conducted by similar works (Abbaspourazad et al., 2023).
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Sample 2 Sample 3
Original

Masked Sample

500 TPU v5e Core Hours

Sample 1

10 TPU v5e Core Hours

Original

Masked Sample

6.6 M Hours

0.005 M Hours

Original

Masked Sample

LSM-Base

LSM-Tiny

Figure 13: Examples of Signal Reconstructions with Respect to Scaling. These plots illustrate
the (often visually subtle) affect of A compute, B data, and C model scaling for sensor models.
Note: model outputs are only shown for the masked patches in the reconstructions.

Subject Dependent Mood Recognition. Mood recognition is the processes of categorizing a per-
son’s emotion events given patterns detected in their sensor data. Such mood events may causes
changes in the activity of the autonomic nervous system and thus result in measurable physiological
changes (Ekman et al., 1983). Our dataset includes five user-labeled mood states: Content, Frus-
trated, Excited, Calm, Stressed. We find, however, that these mood events vary significantly from
person to person. This is likely due to the innate ambiguity associated with people’s emotions. For
example, one person’s Frustration may easily be construed as Stress by another. Motivated by this,
we focus on the task of subject dependent mood recognition, where for a given person their mood
event samples are split 80-20 between train-test sets.

Table 13: Details of additional discriminative datasets. Summary of class distributions for our additional
discriminative task datasets.

Task Class # Training # Testing

Sex Female 9,181 2,160
Male 5,022 1,090
Total 14,203 3,250

Age 18-35 1,179 499
35-49 5,697 793
50-64 5,246 1,297
≥ 65 2,250 673

Mood Content 786 238
Frustrated 460 199

Excited 408 118
Calm 767 265

Stressed 1,132 334
Total 3,553 1,154
Total 14,372 3,262
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Table 14: Comparisons of LSM and competing methods on the discriminative tasks of biological sex
classification, binned age classification, and subject dependent mood recognition.

Pretrain Probe/FT Sex Classification Age Classification Mood Recognition
Acc. mAP Acc. mAP Acc. mAP

- RANDOM FOREST 66.2 56.6 42.3 35.3 41.8 44.4
- LOGISTIC REGRESSION 59.9 54.0 28.9 28.5 43.5 42.8
- SUPERVISED 66.0 60.1 35.3 33.4 42.4 32.7
MSN Linear Probe 68.0 61.9 36.4 29.2 36.7 34.8
DINO Linear Probe 66.4 64.6 31.0 29.9 40.6 36.5
SIMCLR Linear Probe 67.6 60.3 37.6 26.3 36.2 30.1
LSM (MAE) Linear Probe 75.4 75.3 40.9 38.2 42.0 34.7
MSN Fine-tune 68.3 63.8 43.8 36.6 41.2 38.8
DINO Fine-tune 67.9 60.9 36.9 34.4 43.5 37.9
SIMCLR Fine-tune 65.2 57.6 37.3 33.5 43.8 37.4
LSM (MAE) Fine-tune 75.4 79.8 42.2 38.7 49.0 43.0

GAIN OVER SUPERVISED +14.1% +32.8% +19.5% +15.9% +15.6% +31.5%

All neural methods, including the supervised method, utilize a ViT-Base (110M) backbone. Relevant methods are pretrained
with 6.6 million hours of data. In the sensor imputation task, we randomly mask 67% of the sensor modalities. Random
Forest (Breiman, 2001), ViT (Dosovitskiy, 2020), MSN (Assran et al., 2022), DINO (Caron et al., 2021), SimCLR (Chen
et al., 2020), MAE (He et al., 2022).

D ADDITIONAL DISCUSSIONS, AND FUTURE WORK

D.1 DISCUSSIONS

Can Wearable Foundation Models Scale to Edge Devices? Our model saturation in 110M param-
eters highlights a practical advantage: models of this size can potentially run in real-time on modern
mobile devices, leveraging advancements in on-device large language models that often exceed 1
billion parameters in on-device deployments (Xu et al., 2024). We further note that the strong per-
formance of statistical machine learning baselines, on classification tasks, indicate that there may be
utility in distilling LSM to be smaller and more edge-performant. Additionally, unlike prior research
focused on raw sensor data (e.g., (Yuan et al., 2024)), our results establish that scaling is effective
with per-minute aggregated data. This approach not only reduces privacy risks but also introduces
a standardized format that is easier to unify across platforms and devices. Looking forward, these
findings open the door to collaborative efforts such as federated learning (Lim et al., 2020) across
different wearable manufacturers, enabling scalable, privacy-preserving training while maintaining
compatibility across diverse hardware ecosystems.

Contextualizing Wearable Foundation Models. As highlighted by Bommasani et al. (2021),
foundation models are often characterized by their training on vast and diverse data (data scaling),
and their use of large-scale architectures (model scaling), which jointly enable the robust under-
standing of general domain features and adaptability to a breadth of downstream tasks. Bommasani
et al. (2021) further emphasize that transfer learning underpins the versatility of these models, while
scaling amplifies their power. Additionally, while some foundation models exhibit multimodal ca-
pabilities, this is not a universal requirement; for example, early GPT models (Brown, 2020) focus
on text, and models like DALL-E (Ramesh et al., 2021) specialize in images. Handling multiple
devices, similarly, should be viewed as an application-specific extension rather than a core defining
characteristic. This work, on scaling laws in the domain of multimodal wearable data, aligns with
these principles along with those of relevant prior work (Abbaspourazad et al., 2023), and sets a
foundation for future studies regarding the application of such models across more diverse devices,
sensor arrays, and downstream tasks.

Understanding Demographic Proxy Tasks. The ability of a foundation model to predict demo-
graphic information does not necessarily imply that the model is explicitly designed to capture this
information (Vaidya et al., 2024; Yang et al., 2024). As shown in prior work, even randomly initial-
ized neural networks can predict demographic attributes such as age or gender in medical imaging
contexts (e.g., chest X-rays) without targeted design (Glocker et al., 2023).

Although we do not explicitly train our methods to encode demographic information, proxy tasks,
such as predicting age or biological sex, shed light on a models ability to understand physiological
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characteristics relevant to general health. Similar analyses have been conducted in relevant prior
work (Abbaspourazad et al., 2023).

The ability of these methods to encode such information may raise privacy concerns. To this end,
we again emphasize that our models were not explicitly trained to encode demographic information,
and the observed results of in Table C.7 are modest even with task specific fine-tuning. Furthermore,
we postulate that our minutely aggregate features help preserve privacy, as compared with prior
works (Abbaspourazad et al., 2023) which use raw sensor feeds and are able to more robustly predict
demographic information.

D.2 FUTURE WORK

The Effect of Missing Data on Discriminative Tasks. As previously mentioned, missingness is
inherent in wearable sensor data. This may occur due sporadic, un-planned events such as bat-
tery depletion, environmental factors (e.g., extreme temperatures), or due to planned events such as
charging one’s device at night. To this end our current evaluation utilizes missingness during MAE
pretraining. However, we do not explore the ability of missing data to affect downstream classifica-
tion tasks. Future work may explore the tolerance of LSM like models to missingness and the ability
of these models to provide accurate classifications based on incomplete data.

E ADDITIONAL IMPLEMENTATION DETAILS

E.1 HYPERPARAMETERS

This section provides details about the pretraining and fine-tuning of LSM and other baseline meth-
ods. The pretraining hyperparameters, detailed in Table 15, were chosen with hyperparameter
sweeps. In Table 16, we include hyperparameters for linear probe and fine-tuning. The hyper-
parameters for supervised baseline training are detailed in Table 17. Note that hyperparameters used
for the few-shot experiments found in Table 11 are similar to those found in Tables 16 and 17 with
slight changes in learning rate.

E.2 TRAINING AUGMENTATIONS

Traditional image augmentations are not always valid when applied to sensor-images. For example,
random crop and resize, often applied in contrastive pretraining are invalid for sensor images, as a
random crop may remove a subset of senor signals. Thus, we define a subset of augmentations valid
for sensor-images. These are random Flip: a flip along the temporal axis; Stretch: a stretch along
the temporal axis of and subsequent crop of back to original time length; and Noise: the addition of
Gaussian noise.

E.3 DISCRIMINATIVE TASK TUNING AND EVALUATION

In an effort to mitigate confusion regarding the implementation of our downstream discriminative
tasks we cover possible questions and implementation details. All discriminative tasks operate on
5-hour wearable sensor feeds, the same form of input used during pre-training. These windowed
samples are associated with metadata including a person’s biological sex, age, and any activity
events occurring during the 5 hour span. Activity labels are self-reported and with the corresponding
events varying in duration (e.g., a bike ride may last several hours, whereas a HIIT workout may
only last 30 minutes). Generally, these events are self-reported post hoc. As activity events are self-
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Table 15: Hyperparameters for pretraining with MAE (He et al., 2022), MSN (Assran et al., 2022), DINO
(Caron et al., 2021) and SimCLR (Chen et al., 2020). A solitary row value indicates that the value was used for
all methods.

Configuration LSM MAE MSN DINO SimCLR

Training Steps 50000
Warmup Steps 2500
Optimizer AdamW (Loshchilov, 2017)
Opt. momentum [β1, β2] [0.9, 0.95] [0.9, 0.99] [0.9, 0.99] [0.9, 0.99]
Base learning rate 0.005 0.001 0.004 0.001
Batch size 4096
Weight decay 0.0001
Gradient clipping 1.0 3.0 3.0 3.0
Dropout 0.0
Learning rate schedule Linear Warmup & Cosine Decay
Loss Function Mean Squared Error
Data resolution 26 (signal)×300(minute)
Augmentation Flip, Stretch, Noise

Table 16: Hyperparameters for LSM Linear Probing and Fine-Tuning on Discriminative Tasks detailed in
Section 4.2. A solitary row value indicates that it was used for all methods. LP=Linear Probe. FT=Fine-Tune
(full model).

Task Exercise Detection Activity Recognition Sex Classification Age Classification Mood Recognition
Configuration LP FT LP FT LP FT LP FT LP FT

Training Steps 400 400 300 300 300 300 300 300 300 300
Warmup Step Percent 20 20 15 15 15 15 15 15 15 15
Optimizer AdamW (Loshchilov, 2017)
Opt. momentum [β1, β2] [0.9, 0.95]
Base learning rate 0.5 0.00005 0.5 0.00005 0.05 0.0005 0.05 0.00005 0.005 0.005
Batch size 128 128 128 128 128 128 256 256 256 256
Weight decay 0.0001
Gradient clipping 1.0
Dropout 0.3 0.3 0.3 0.3 0.1 0.3 0.1 0.1 0.7 0.1
Learning rate schedule Linear Warmup & Cosine Decay
Loss Function Balanced Softmax Loss (Ren et al., 2020)
Data resolution 26 (signal)×300(minute)
Augmentation Noise

Table 17: Hyperparameters for Supervised Training on Discriminative Tasks A solitary row value indi-
cates that it was used for all methods.

Configuration Exercise Detection Activity Recognition Sex Classification Age Classification Mood Recognition

Training Steps 400 300 300 300 300
Warmup Steps 20 15 15 15 15
Optimizer AdamW (Loshchilov, 2017)
Opt. momentum [β1, β2] [0.9, 0.95]
Base learning rate 0.0001 0.0005 0.005 0.0001 0.00005
Batch size 128 128 128 256 256
Weight decay 0.0001
Gradient clipping 1.0
Dropout 0.0
Learning rate schedule Linear Warmup & Cosine Decay
Loss Function Balanced Softmax Loss (Ren et al., 2020)
Data resolution 26 (signal)×300(minute)
Augmentation Noise

reported it is possible that other unreported events may also exist in the 5 hour span. As we discuss
in Appendix C.3, this may result in degraded performance.

F DESCRIPTION OF PRETRAINING AND BASELINE METHODS

F.1 PRETRAINING METHODS

There are two main approaches to pretraining, one based on contrastive learning and the other based
on the reconstruction or prediction of input features. At a high-level contrastive methods where rep-
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resentations are learned for different views of the same training example (positives), and dissimilar
embeddings for different training examples (negatives). However, there are challenges or drawbacks
to this approach. First, in the sensor domain it can be non-trivial to create augmentations that do
not alter the meaning (label) of the sample. For example, does stretching data for someone run-
ning mean that it more closely resembles the data when they walk? Second, generative capabilities
are attractive as imputing missing data and forecasting signals into the future are useful in and or
themselves. As such, purely contrastive set-up has limitations and a pretraining task based on the
reconstruction of masked input tokens is attractive. A masked autoencoder is one example of such
an approach that is effective at scalable learning of representations (He et al., 2022). Below we
describe the pretraining methods used for LSM and our baselines.

Masked Auto Encoder (MAE) (He et al., 2022). MAE is a self-supervised learning method where
the input data is randomly masked, and the model is trained to reconstruct the missing parts. It oper-
ates on the principle that forcing the model to predict missing information helps it learn meaningful
representations. MAE has shown strong performance in various vision and signal tasks, particularly
in cases where large-scale unlabeled data is available.

SimCLR (Chen et al., 2020). SimCLR is a contrastive learning framework that learns representa-
tions by maximizing agreement between different augmented views of the same data sample. The
method uses a contrastive loss, which encourages the model to pull together similar views of the
same sample while pushing apart views of different samples. SimCLR has been widely used in both
vision and sensor data for representation learning without requiring labeled data.

Masked Siamese Network (MSN) (Assran et al., 2022). MSN combines the benefits of invariance-
based pretraining with mask denoising. MSN operates by matching the representation of an image
view with randomly masked patches to the representation of the corresponding unmasked image.
This pretraining strategy leverages Vision Transformers by processing only the unmasked patches,
significantly enhancing scalability. The framework enables the generation of semantically rich rep-
resentations, which perform competitively in low-shot image classification tasks.

DINO (Caron et al., 2021). DINO is a self-distillation method that trains the model using knowl-
edge distillation, without the need for labeled data. It leverages a teacher-student network archi-
tecture, where the teacher generates target representations for the student to learn from. DINO has
demonstrated success in generating robust representations that can be transferred to various down-
stream tasks.

F.2 GENERATIVE BASELINES

We define a number of baselines for our generative tasks. Similar methods are common-place in
the image domain (often used for up-sampling) (Han, 2013), and the Internet of Things (IoT) sensor
domain (often for imputing corrupted and/or missing data) (Adhikari et al., 2022).

Mean Fill. Mean Fill is a simple baseline for generative tasks, where the missing values for a sensor
stream are replaced by the mean value of the sensor data present in a given sample. Though naive,
this method provides a reasonable estimate in certain contexts where missing values are randomly
distributed.

Nearest Neighbor Fill. Nearest Neighbor Fill imputes missing data by using the value of the nearest
observed neighbor for a given feature along the temporal axis. In the absence of a past and future
neighbors this method mirrors back/forward fill. This method works well when there is a high degree
of local similarity in the data.

Linear Interpolation. Linear Interpolation fills missing values by interpolating linearly between
known values along the temporal dimension. In the absence of a past and future neighbors this
method mirrors back/forward fill. This baseline is often used in time-series and spatial data, where
the assumption is that changes between data points occur in a smooth, continuous manner.

Multivariate Imputation by Chained Equations (MICE) (Van Buuren & Groothuis-
Oudshoorn, 2011). MICE is an imputation technique which builds a regression model, per feature,
conditional upon all observed data across all variables. The method iterates through feature variables
and imputes missing data. This iteration process is run multiple times with the imputation being re-
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fined each iteration. It should be noted that MICE performs best when missingness is random (Azur
et al., 2011) and may under-perform in situations of large or structured missing data.

For all generative baseline methods, in the rare cases where the sensor feature is completely missing,
the feature values are replaced with zeros. This remains a valid strategy as all features are z-score
normalized and centered around zero.

F.3 CLASSIFICATION BASELINES

Vision Transformer (ViT) (Dosovitskiy, 2020). The Vision Transformer (ViT) is a transformer-
based architecture that treats image patches or signal segments as input tokens, similar to how trans-
formers handle sequences in natural language processing. ViT has shown competitive performance
across various classification tasks, especially when trained with large amounts of data, and serves as
a strong baseline in both vision and sensor classification tasks.

Random Forest (Breiman, 2001). Random forest is a statistical machine learning method. This
ensemble method fits multiple decision trees to various splits of a dataset. When applied to a clas-
sification task, the random forest uses a majority voting scheme across the decision trees to classify
the sample.

Logistic Regression Classifier. A logistic regression model applies the sigmoid function to a linear
combination of input variables to predict some output value. In the case of a N multi-class classi-
fication problem N logistic regression models are created, each modeling binary classification of a
single class. The resultingN model probability scores are compared with the highest score dictating
the predicted class.

G ADDITIONAL DETAILS OF DATASET

G.1 DATASET DETAILS

In Table 18 we detail the 26 derived sensor signal features leveraged by our methods.

G.2 PRACTICAL CONSTRAINTS OF DATA COLLECTION

As mentioned earlier in Section 3.1, we use 1-minute granularity features due to practical con-
straints. Specifically these features are aggregated at the minute level and saved on-device at a
minute granularity. The exception is heart rate which is calculated per second. This is to reduce the
battery and memory burden of writing and saving raw features. Further more, streaming data from
the wearable device presents another practical constraints, and the use of aggregated features allows
easier transfer of this data.

G.3 SAMPLING OF EVENT CLASSES

Event labels, for tasks like activity and mood recognition, do not occur naturally balanced. For this
reason, we sub-sample event data to generate more balanced task-specific datasets. For example
almost 90% of logged activities are walking, and thus activities are sampled to increase the relative
proportion of under-represented classes (e.g., elliptical, and weightlifting). The natural distribution
of these events along with our sample distributions can be found in Table 19.

G.4 THE UTILITY OF MINUTELY FEATURES

Raw sensors are generally sampled at much higher rate than our minutely features. Through this
compression it is likely that we lose features vital in capturing higher frequency activities. For this
reason it is important to ground the utility of our minutely features and their ability to discriminate
different life events. To this end we add a qualitative example of minutely wearable data across
different activities aggregated across samples. Fig. 14 indicates that there are differences (albeit
subtle) for activities at the minutely resolution.
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Figure 14: Average Features by Activity Class. Average (i) Heart Rate, (ii) Step Count, (iii)
Accelerometer Log Energy and (iv) HRV RMSSD for each of the activity classes.

Table 18: Sensor Feature Definitions. Names, units and definitions of the 26 Accelerometer, PPG,
skin conductance and altimeter features we use.

Feature Unit Definition

SCL Skin Conductance
Skin Conductance Value µSiemens Center of linear tonic SCL value fit.
Skin Conductance Slope µS/Min Intraminute slope of SCL values.

TMP Skin Temperature
Skin Temperature Value ◦C Mean skin temperature.

PPG Photoplethysmography
Heart Rate Beats/Min Mean of instantaneous heart rate.

RR Percent Valid % % of 5-minute window with valid RR intervals.
RR 80th Percentile Msec 80th percentile of 5-minute window of RR ints.
RR 20th Percentile Msec 20th percentile of RR ints.

RR Median Msec Median RR interval.
RR Mean Msec Mean RR interval.

Shannon Ent. RR Nats Shannon entropy of the RR intervals.∗∗

Shannon Ent. RR Diffs Nats Shannon entropy of the RR interval differences.∗∗

PNN30 % % of successive RR ints. that change by > 30ms.
RMSSD Msec Root mean squared st. dev. of RR ints.

SDNN Msec Standard deviation of RR intervals.
On Wrist Boolean If optical-sensor off-wrist within a 30-second window,

then false.
ACC Accelerometer

Jerk Autocorrelation Ratio a.u. Ratio of lag=1 autocorrelation to energy in 1st 3-axis
principal component.

Step Count Steps Number of steps.
Log Energy a.u. Log of sum of 3-axis root mean squared magnitude.

Covariance Condition a.u. Estimate of condition number for 3-axis covariance ma-
trix.

Log Energy Ratio a.u. Log of ratio of sum of energy in 1st 3-axis principal
component over energy of 3-axis root mean squared
magnitude.

Zero Crossing St.Dev. Seconds Standard deviation of time between zero crossing of 1st
3-axis principal component.

Zero Crossing Average Seconds Mean of time between zero crossing of 1st 3-axis prin-
cipal component.

Robust Arm-Tilt a.u. Log of mean square root of squared X & Z axes.
Kurtosis a.u. Kurtosis of 3-axis root mean squared magnitude.

Sleep Coefficient a.u. Sum of 3-axis max-min range, binned into 16 log-scaled
bins.

ALT Altimeter
Altimeter St.Dev. Norm Hectopascals Standard deviation of altimeter readings.
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Table 19: Details of Natural and Sampled Event Datasets. Summary of class distributions (as a percent of
total task events) for activity and mood datasets.

Task Class Natural Distribution Sampled Distribution
Train Test

Activity Biking 2.54% 8.73% 13.1%
Elliptical 0.02% 1.11% 1.56%
High Intensity Training 0.22% 2.44% 3.31%
Strength Training 0.24% 1.68% 13.52%
Swimming 1.41% 17.08% 14.02%
Running 6.65% 13.62% 10.01%
Walking 88.59% 50.44% 41.36%
Weightlifting 0.33% 4.90% 3.11%

Mood Content 29.71% 22.13% 20.62%
Frustrated 11.65% 12.95% 17.24%
Excited 5.52% 11.48% 10.23%
Calm 31.73% 21.58% 22.96%
Stressed 21.39% 31.86% 28.95%

H BROADER IMPACT

Wearable sensors have been shown to have a positive effect on health and well-being, promoting
physical activity, sleep and have potential to surface unseen or unperceived actionable health infor-
mation. Foundation models increase the potential value of these data for the above applications and
hold promise for enabling new insights and opportunities to improve health.

We support open science principles and the value of open data for scientific research; however,
we have to balance these considerations with the privacy of the participants and protection of their
health data. Although the training data could be de-identified, some of the data streams could not be
fully anonymized. We recognize that the inability to share data of this kind is a limitation; however
we believe that the results enable us to share valuable insights to the community.

Meanwhile, LSM serves as the stepping stone towards generating large-scale, realistic synthetic
datasets. These synthetic data could mimic real-world sensor patterns without compromising par-
ticipant privacy and offer a promising resource for cross-institutional research collaboration. By
facilitating data sharing in this way, we can overcome the current limitations in data availability and
unlock new opportunities for collaborative insights and advancements for the community.

Finally, as discussed in Appendix D.1, health and well-being are personal and sensitive topics and the
abilities of such wearable foundation models may pose privacy concerns. It is essential to recognize
that these ethical considerations apply to foundation models at large, not solely our method. Anyone
seeking to implement or use our model should be mindful of these concerns. Both our specific
method and foundation models, in general, should be used cautiously to avoid situations where their
deployment might contribute to unethical outcomes or interpretations.
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We build our methods upon the Scenic project (Dehghani et al., 2022), an open source codebase for
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