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ABSTRACT

Machine Learning (ML) has the potential to revolutionise the field of automotive
aerodynamics, enabling split-second flow predictions early in the design process.
However, the lack of open-source training data for realistic road cars, using high-
fidelity CFD methods, represents a barrier to their development. To address this, a
high-fidelity open-source (CC-BY-SA) public dataset for automotive aerodynamics
has been generated, based on 500 parametrically morphed variants of the widely-
used DrivAer notchback generic vehicle. Mesh generation and scale-resolving CFD
was executed using consistent and validated automatic workflows representative of
the industrial state-of-the-art. Geometries and rich aerodynamic data are published
in open-source formats. To our knowledge, this is the first large, public-domain
dataset for complex automotive configurations generated using high-fidelity CFD.

INTRODUCTION

External aerodynamics plays an important role in the design of road vehicles (30). Aerodynamic drag
directly influences emissions from internal combustion engines, and the range of electric vehicles. For
high-performance cars, the magnitude and distribution of aerodynamic downforce are key factors in
cornering and handling (37). Pressure fluctuations from turbulent airflow can give rise to aeroacoustic
noise sources, with a negative impact on passenger comfort (53). Especially in the consumer vehicle
segment, these factors are decisive differentiators influencing product competitiveness. Alongside
aesthetic design, aerodynamics is therefore central in defining the external shape of the vehicle.

Engineering approaches to evaluate the external aerodynamics and aeroacoustics of road vehicles
began in the 1960s with wind tunnels, which remain an important tool to this day (64). Although
an approximation of true open-road conditions, wind tunnels have the advantage of measuring real
airflow over real vehicles (often at full scale) (31). Furthermore, variations of vehicle configurations
(e.g. wheel and tyre options, ride height) and operating conditions (e.g. vehicle speed, yaw angle) can
be assessed very efficiently. Alongside forces, modern techniques also allow measurement of surface
pressure and off-body quantities at selected locations (61).

Computational Fluid Dynamics (CFD) is a more recent innovation, routinely used since the 1990s
(30). CFD can simulate real open-road conditions and provide insight into the entire flow field.
However, each configuration change requires a separate simulation, so CFD is typically used only
for a subset of scenarios measured in the wind tunnel. Furthermore, computational cost necessitates
modelling approximations, most notably regarding the onset and effects of turbulence.

Strategies for turbulence modelling in CFD (59) occupy different positions in the trade-off between
computational cost and accuracy. Reynolds-averaged Navier-Stokes (RANS) approaches predict the
time-averaged flow field using statistical turbulence models. They are inexpensive and run within a
few hours, however the correlation to measurements is unreliable for complex flows (e.g. large-scale
flow separation) (9; 4; 5; 8).

Greater accuracy is achieved by resolving some of the turbulent motion using “scale-resolving
simulation” (SRS) methods. Depending on the method, these time-accurate simulations can easily
consume an order of magnitude greater computational resources than RANS, due to the wide range
of length scales inherent to turbulence (3). A road vehicle is metres long and multiple-second
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time samples are required for robust statistics. Resolving all turbulent eddies via Direct Numerical
Simulation (DNS), or only the largest local scales via wall-resolved Large-Eddy Simulation (WRLES),
will remain unaffordable for decades to come, since the eddies are extremely small close to the vehicle
surface at full-scale Reynolds number.

Bridging the inner boundary layer region using wall-modelled LES (WMLES) (39) delivers a
significant cost reduction. However the eddies in the outer boundary layer still need to be resolved,
and towards the front of the vehicle the boundary layers are thin (in the order of mm). Pioneering
WMLES have been demonstrated e.g. by participants of the Automotive CFD Prediction Workshop
series (33), but the approach is not yet routinely applied in industry.

Hybrid RANS-LES (HRLES) methods (such as Delayed Detached-Eddy Simulation (DDES) (58))
are the most mature and widely used category of SRS. These generally model attached boundary
layers entirely with RANS, deploying the scale-resolving capability of LES only in separated flow
where the eddies are larger. Typical grids for full scale vehicles have minimum cell spacings in mm,
solved with time steps in tenths of milliseconds (33). HRLES is currently applied routinely in the
automotive industry as a higher-fidelity option alongside RANS (4; 33). Simulation turnaround times
between several hours (overnight) and a few days are typical.

MACHINE LEARNING FOR AUTOMOTIVE AERODYNAMICS

Machine Learning (ML) has the potential to revolutionise automotive aerodynamics by offering faster
and cheaper ways to predict fluid flow. For example, surrogate ML models, once trained, can be used
to predict the aerodynamic performance of a given geometry in seconds, rather than hours or days
required by CFD. This can be used to give vehicle designers near-instant aerodynamic feedback, as
well as to accelerate design optimisation studies (2). The development of ML for fluid dynamics
has seen significant progress in recent years, and a review is beyond the scope of this paper (see
e.g. the review of Lino et al. (45)). Generally, progress has been achieved in two key directions,
namely physics-driven and data-driven approaches. Physics-driven approaches often include the
partial differential equation (PDE) to the loss function in methods such as Physics-Informed Neural
Networks (PINNs) (57) and Physics-Informed Neural Operators (PINOs) (43).

In contrast, data-driven approaches do not explicitly learn a PDE but rather use simulation data to
learn the solutions or solution operator (16), e.g. supervised learning to minimise the difference
between the predicted and “true” solutions. Examples include message-passing graph neural networks
(GNNs) (10; 25), e.g. MeshGraphNets (56; 17; 38) and pure data-driven Neural Operators (40; 41;
27; 42)

The size and quality of training datasets are of paramount importance to the development of any ML
method (especially data-driven approaches). Canonical flows (e.g. boundary layers, vortices, wakes)
are already challenging to predict in isolation. In industrial aerodynamics, multiple such features
interact in highly non-linear ways, raising the challenge to a higher level. It is therefore doubtful
that an ML approach trained only using canonical flows can succeed in complex scenarios. For the
same reason, it is important to include complex cases when testing ML approaches intended for such
applications. For traditional CFD, the ability of a single model to predict a wide range of different
flows (without the need for ad-hoc tuning) is a hallmark of a general-purpose approach.

RELATED WORK

The presented dataset, named “DrivAerML”, is not the first aimed at ML in automotive aerodynamics.
Jacobs et al. (34) demonstrated the potential for surrogate ML models to speed up automotive design
using a dataset of 1000 DrivAer variants but the data has never been made publicly available. The
recent “DrivAerNet” dataset of Elrefaie et al. (15), which was generated concurrently to DrivAerML
and is also open-source (CC-BY-NC), features an impressive 4000 DrivAer variants. Since the CFD
data was generated with RANS on comparatively coarse meshes (8M to 16M cells), it is inherently in
the low-fidelity category.

The DrivAerML dataset has been prepared in conjunction with two further high-fidelity CFD datasets
(i.e. deploying SRS methods), for the simpler Ahmed (“AhmedML”) (7) and Windsor (“WindsorML”)
(6) car bodies. The consistency of file structure and naming conventions among these datasets is
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intended to facilitate the development and testing of ML approaches across multiple datasets, ensuring
better robustness and generalisability.

OBJECTIVES AND MAIN CONTRIBUTIONS

Progress in ML for aerodynamics is constrained by the scarcity and expense of high-quality data,
and it is the primary motivation of this work to address this. The paper describes the creation and
publication of the DrivAerML dataset, as well as the validation of the deployed CFD methods. The
DrivAerML dataset has the following specifications:

• A complex geometry relevant to the field, for which the “OCDA” variant (32) of the
established DrivAer (29; 28) research model has been selected as baseline1.

• A large dataset consisting of 500 variants of the baseline geometry, covering the main
features seen on this category of road vehicle.

• The use of hybrid RANS-LES, the highest-fidelity scale-resolving CFD approach routinely
deployed by the automotive industry, ensuring best possible correlation to experimental data.

• Consistency of the dataset, ensured by automated meshing and simulation workflows with
statistical quality control.

• A rich dataset, comprising full flow-field data, surface data and application-relevant quanti-
ties (e.g. force and moment coefficients).

• An open-source dataset, freely available, free of usage constraints and using open-source
file formats.

Based on input from automotive companies, we decided to focus only on geometry variants of
the DrivAer vehicle rather than also changing the boundary conditions (e.g. Reynolds number or
incoming flow angle).

To the best of our knowledge, the DrivAerML dataset represents the first large, open-source ML
training dataset comprising high-fidelity CFD data for complex automotive aerodynamics geometries.
Although it primarily targets data-driven surrogate ML approaches, the dataset may also prove useful
for other ML approaches, or even for purposes beyond the field of ML entirely.

The paper is organised as follows: The baseline case and experimental data is described in Sect. ,
and the generation of the high-fidelity CFD dataset is covered in Sect. , including descriptions of
the methods and their validation. The contents and structure of the dataset are then described in
Sect. before discussing conclusions and limitations of the current work in Sect. . Extensive additional
material is provided in the Supplementary Information; SI.

BASELINE GEOMETRY AND FLOW CONDITIONS

The DrivAer model was introduced (29; 28) as an open-source road vehicle for research into au-
tomotive aerodynamics, giving a more realistic stepping stone from simpler geometries such as
the Ahmed (1) and Windsor (62; 54) bodies. A variant including cooling flow was defined by
Ford (32). With three defined configurations—estate, fastback and notchback—it has been subject to
numerous experimental studies (29; 65; 12; 62; 31) as well as a wide range of CFD investigations
(28; 26; 65; 55; 5; 12; 35; 36; 44; 11; 14; 34; 33; 9).

For the baseline geometry of the DrivAerML dataset, we adopt the specific test case from the 2nd
to 4th Automotive CFD Prediction (“AutoCFD”) workshops2, to benefit from and build upon this
extensive body of work (33). The geometry is the notchback variant of the Ford OCDA DrivAer (32)
with static wheels, sealed cooling inlets and a detailed underbody, Fig. 1a. Although wheel rotation
effects are important, static wheels were chosen in the AutoCFD workshops to reduce complexity,
since the focus was on comparing CFD approaches for the overall flow field.

1This Ford-designed variant was introduced with an optional engine bay cooling path, hence the nomenclature
“Open-Cooling DrivAer” (OCDA). The cooling path is closed in the considered geometry, hence the differences
to the original DrivAer model are minor, see Hupertz et al. (32).

2https://autocfd.org
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(a) Details of geometry (b) 1:1 scale model in wind tunnel

Figure 1: Ford OCDA DrivAer model with closed cooling inserts (33).

The CFD setup assumes incompressible flow with a freestream velocity of U∞ = 38.889 m/s,
ambient temperature of T = 293.15 K and kinematic viscosity of ν = 1.507 × 10−5 m2/s. The
Reynolds number of ReL = U∞L/ν = 7.19× 106 based on the wheelbase L = 2.786 m is large
enough to assume turbulent flow over most of the car. The reference frontal area A = 2.17 m2 is
used for force and moment coefficients.

A large “open road” domain is used in the CFD, whereas the Pininfarina wind tunnel used in the Ford
experiments (31) has an open-jet test section with 11 m2 nozzle area, Fig. 1b. To mimic the wind
tunnel ground boundary layer, its starting point in the CFD is located at xBL = −2.339 m ≈ −0.84L,
2.346 m upstream of the front axle. Symmetry conditions are set for the lateral and top boundaries.
Due to the large domain, the blockage ratio is negligible (approx. 0.25%) in all simulations.

GENERATION OF HIGH-FIDELITY CFD TRAINING DATASET

PARAMETRISATION AND GENERATION OF GEOMETRY VARIANTS

A set of morphing boxes was constructed around the baseline geometry using the ANSA software
of BETA-CAE Systems3, see Fig. 25a, allowing geometry variants to be created in a systematic
manner. Figs. 25b-25d show the 16 morphing parameters and their range constraints, designed to
avoid unrealistic shapes based on engineering judgement. The wide range of geometries is intended
to produce different flow topologies and to test the generalisability of ML approaches.

A design of experiments (DoE) tool in ANSA was used to create the parametric values for 500
experiments using a Modified Extensible Lattice Sequence algorithm, which fills the parameter
space evenly, also for subsets of and extensions to the dataset. The DoE and morphing process
was automated through Python scripts to save each of the 500 variants along with metrics such as
wheelbase and frontal area. The choice of 500 geometries was based upon a mixture of computational
budget as well as expectations of industrial feasibility. The dataset could be expanded in future work,
based on user feedback.

COMPUTATIONAL MESHES

The models were meshed in ANSA version 24.1.0 using the HeXtreme algorithm, which generates
hexa-dominant & polyhedral meshes. Approximately 160 million cells were generated in less than
an hour and satisfied OpenFOAM quality criteria. The boundary layer mesh was optimised for wall
functions, with 7 layers, a first layer height of 0.75 mm, a total layer height of 12 mm and a variable
growth rate between 1.2 and 1.4. The choice of high y+ mesh vs. resolving to the wall was based
on findings from the 2nd AutoCFD workshop, where direct comparisons by multiple participants
found only a minor difference in results (33), with benefits of significantly faster run times. The mesh
in various sensitive areas, such as the wake, the underbody and the mirrors, was refined using size
fields that follow the geometry and extend downstream to capture these features, see Fig. 3. The
overall mesh resolution and topology was refined based on industrial feedback during the AutoCFD

3https://www.beta-cae.com/ansa.htm
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(a) (b)

(c) (d)

Figure 2: Generation of geometry variants based on the baseline DrivAer model. Visualisation of
ANSA morphing boxes (a), visualisation of the 16 design parameters (b-d).

workshop series. The aim is to represent current industrial SRS meshing practice, hence a grid
refinement study is not undertaken. The whole meshing process was automated using Python scripts.

(a) Car surface, ground and y = 0 plane (b) z-normal slice through wheel axles

Figure 3: Mesh visualisations for the DrivAer baseline geometry.

CFD METHODS, WORKFLOW AND VALIDATION

The open-source software library OpenFOAM (v2212) was used to solve the incompressible Navier–
Stokes equations via the finite volume method (FVM) (63). The incompressible (constant density)
assumption is valid for such low Mach numbers. The high Reynolds number requires a turbulence
model (see Sect. ), for which a scale-resolving HRLES approach is chosen as the highest fidelity level
routinely applied in the automotive industry. The model of Fuchs, Mockett et al. (47; 23; 22) is used,
which a variant of the Delayed Detached-Eddy Simulation (DDES) approach of Spalart et al. (58).
It uses the Spalart-Allmaras RANS model (60) in the near-wall region and an LES formulation
equivalent to the σ model of Nicoud et al. (52) in regions of separated flow. The latter accelerates the
transition from RANS to LES after separation, a problem commonly referred to as the “grey area”
(49). The approach has been successfully applied for numerous applications and in different CFD
codes (20; 18; 21; 48; 19; 24). To ensure that RANS is active throughout the entire boundary layer,
the “enhanced protection” (EP) shielding formulation from Deck & Renard’s ZDES approach (13)
is additionally applied. This avoids the problem of modelled stress depletion (46) from unwanted
LES-mode activity inside attached boundary layers, which can induce premature flow separation
where the near-wall grid is fine. See SI for a more detailed description of the simulation approach.
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CFD workflow: The fully-automated simulation workflow, is illustrated in Fig. 4. Taking the mesh
as input, the workflow executes domain decomposition, parallel flow simulation and post-processing.
Validated, application-specific best practices are automatically applied alongside computational
benchmarking data to optimise high-performance computing (HPC) efficiency. The automated
workflow ensures setup consistency between simulations.

Achieving statistical consistency is challenging, since the simulation times needed to bridge the
initial transient (memory of arbitrary initial conditions) and converge the mean vary widely and
unpredictably from case to case (50). Simulation runtime is dynamically controlled by interfacing
the solver with the time series analysis tool Meancalc, which detects initial transient and quantifies
statistical error (51). The simulation stopping criteria were:

1. Initial transient, detected using the drag, lift and side forces, is bridged;

2. Target statistical accuracy of ±1.5 drag counts4 is achieved.

This approach ensures that all data is free of initial transient and meets defined statistical accuracy
targets whilst optimising HPC cost. The flow field averaging sample is subsequently trimmed to the
optimal transient-free length using a custom OpenFOAM utility, ensuring statistical consistency with
the mean integral forces (see SI for more details).

Figure 4: Overview of automated simulation workflow.

All simulations were run on Amazon Web Services (AWS) using a dynamic HPC cluster provisioned
by AWS ParallelCluster v3.7.2. A typical simulation took around 40 hours on 1536 cores using
Amazon EC2 hpc6a.48xlarge instances (AMD Milan-based processor with 96 cores per node), with
variation due to mesh size and statistical convergence. The OpenFOAM code was run in double
precision mode using IntelMPI for parallel communication between cores.

Validation of numerical methodology: The CFD methodology has been validated against experi-
mental data of Hupertz et al. (31) for the baseline geometry (“case 2a”), and an additional case (“2b”)
with added front wheel air deflectors (FWAD) (figures in SI).

Instantaneous vortex structures are shown in Fig. 5a. Rich resolved turbulence is seen in areas of
separated flow, resolved by the model’s LES mode. In contrast, the attached boundary layers (e.g. on
the roof and bonnet) are modelled with RANS and generally free of resolved turbulence, except for
isolated pockets shed from the windscreen cowl. The fine-grained eddies and absence of spurious
oscillations indicate the numerical setup’s low-dissipation and robustness, respectively.

Experiment and CFD are generally in close agreement for the time-averaged pressure coefficient over
the upperbody centreline (Fig. 5b), with negligible influence of the FWAD seen here. The constant
component of the offset between CFD and experiment is due to minor differences in the reference
pressure. The rear notch at x ≈ 3.25 m is a sensitive area, with strong scatter typical in CFD (33).
The measured pressure plateau, indicating a small recirculation region, is less pronounced in the CFD.

4An automotive drag count corresponds to a change in drag coefficient of 0.001
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However, visualisation of the CFD surface flow (see SI) reveals a symmetric pair of recirculation
regions at the notch, either side of the nominally attached centreline.

(a) Iso-surfaces of the Q-criterion (Q = 100 ×
U2

∞/L2) coloured by x-component of velocity
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Figure 5: Comparison of local flow quantities for cases 2a and 2b with Ford experimental data from
Hupertz et al. (31).

The airspeed under the vehicle is important for the magnitude and distribution of aerodynamic
downforce. Fig. 5c shows encouraging agreement between CFD and experiment along the underbody
centreline, another area of strong scatter in CFD (33). The influence of the FWAD is again weak here.
In contrast, the front wheel wakes (Fig. 5d) show a clear effect of the FWAD, which is well captured
by the CFD. The inboard wheel wake in the CFD appears narrower than in the experiment at this
profile location.

The overall conclusion is positive, with encouraging levels of agreement generally seen between
experiment and CFD. Where deviations do occur, e.g. in the vertical force and wake velocity profiles,
our results agree with the “CFD consensus” from the AutoCFD workshops. It can therefore be
concluded with confidence that deviations are due to setup differences (e.g. open-road CFD vs. wind
tunnel domains).

DATASET CONTENTS AND AVAILABILITY

The time-averaged outputs from the simulation of each geometry variant (e.g pressure, velocity &
turbulence quantities) were integrated into a dataset structure that maintains consistency with the
associated AhmedML (7) and WindsorML datasets (6). A complete list of the dataset contents is
given in the SI. For each geometry variant, flow field data for the entire volume (.vtu format), the car
surface (.vtp format), 2D slices of the volume in the x, y & z directions, geometry data (.stl format),
time-averaged force coefficients, and flow visualisation images are provided.

Figures 6c & 6d shows the variation of the lift and drag coefficients for all 500 design variants,
showing a variability representative of notchback-type car geometries. There is a significant spread
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in drag and lift, due to large changes in flow-field separation, which is illustrated in Figures 30a and
30b for the total pressure coefficient for a high and low drag variant respectively.

CD = 0.340

Run 115

(a) Total pressure coefficient for high drag geometry
variant example

CD = 0.237

Run 289

(b) Total pressure coefficient for low drag geometry
variant example

(c) Variation of drag coefficient against run number (d) Variation of lift coefficient against run number

Figure 6: Variation of total pressure coefficient and force coefficients across the dataset.

The dataset is provided with the CC-BY-SA license5 (which permits commercial use) and is available
to download at no cost through Amazon S3 without the need for an AWS account. Full details are
provided in the SI and the dataset README6.

ML EVALUATION

We conducted an example ML evaluation using a Graph Neural Network (GNN) approach (more
details in the SI) to demonstrate how this dataset could be used to train a ML model to predict unseen
cases. We find that using a 60/20/20 split of train, validation and test, it is possible to obtain a MAE
of less than 0.035 for the drag coefficient and MAE less than 0.0164 for the lift coefficient via the
integration of predicted wall-shear stress and pressure quanities on the 8M node surface mesh of the
vehicles (shown in Figure 7). We hope many more groups will use this data to improve upon this and
go further to also predict the volume quanities using a range of different ML approaches.

CONCLUSIONS

A new large scale, public dataset has been established to advance the state of the art for the devel-
opment of ML methods for the automotive external aerodynamics community. A specific emphasis
has been placed on the high fidelity level of the CFD data, using scale-resolving methods, consistent
meshing and simulation workflows, and computational grids closely aligned to current industrial best
practices. ML models can therefore be trained and tested with greater confidence regarding their
accuracy and applicability to complex industrial challenges.

5https://creativecommons.org/licenses/by-sa/4.0/deed.en
6https://xxxxx.s3.us-east-1.amazonaws.com/drivaer/dataset/README.txt
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(a) Drag coefficient (b) Lift coefficient

Figure 7: Actual vs predicted for the force coefficients obtained through integration of the wall-shear
stress and pressure

LIMITATIONS

Whilst the DrivAerML dataset goes beyond current public-domain datasets in several respects, a
number of remaining limitations could be addressed in future work. Parameter variations could
be expanded to help build more complete ML models, e.g. with variations of inflow conditions
(speed and yaw), the effect of moving ground and rotating wheels, or the inclusion of under-hood
cooling flow. Different baseline vehicle geometries could expand the dataset to include e.g. fastback,
estate, SUV categories. The inclusion of coarser (and potentially finer) mesh resolutions could
facilitate the development of super-resolution and downsampling techniques, as well as addressing
the challenges of training ML models on such large mesh counts. The dataset could be extended to
include RANS results to investigate transfer learning between fidelity levels, which may lead to more
computationally efficient ML approaches.
Whilst there are limitations to this work we believe this is one of the first examples of a large-scale
dataset, developed specifically for the automotive community using state-of-the-art CFD approaches.
We look forward to learning about other potential uses of the dataset and welcome feedback.
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A NUMERICAL METHODOLOGY

The open-source software library OpenFOAM (v2212) has been employed in this work for generating
the dataset. In this case, the incompressible Navier-Stokes equations for a Newtonian fluid are solved
to compute the unsteady fluid motion around the car, where the partial differential equations are
discretised in the software package via the finite volume method (FVM) (24). In addition, Reynolds-
averaging is applied to the equations to reduce the computational costs of solving. However, this
introduces additional modelling empiricism in the form of a turbulence model that is subsequently
required (see Sect. A.1). The equations can then be written in Einstein notation and Cartesian
coordinates as:

∂Ui
∂xi

= 0 , (1)

∂Ui
∂t +

∂(UjUi)
∂xj

= −∂p
∗

∂xi
+ ∂

∂xj

[
(ν + νt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
, (2)

where Eq. 1 describes the conservation of mass and Eq. 2 the conservation of momentum. The
three-dimensional vector Ui contains the instantaneous velocity components in all three Cartesian
directions, p∗ = p/ρ is the kinematic pressure with the dimensions m2/s2 and ν is the molecular
kinematic viscosity of the fluid (which is a constant fluid property). The quantity νt is referred to as
(turbulent) eddy viscosity and results from the Reynolds-averaging procedure and the Boussinesq
linear eddy viscosity assumption that is applied to the Navier-Stokes equations. An additional closure
model referred to as a turbulence model is required to compute the νt field, which is described in more
detail in Sect. A.1. The assumption of an incompressible fluid (i.e. ρ = const.) is commonly used
for automotive applications, since local Mach numbers Ma (i.e. ratio between velocity magnitude
|Ui| and speed of sound c, Ma = |Ui|/c) are typically low. The Mach number can be interpreted as
a measure for compressibility effects. As such a common threshold below which compressibility
effects can be neglected is Ma = 0.3. In this study, the highest local velocities are around 70 m/s so
that the maximum local Mach number is approximately 0.2, which indicates that the compressibility
assumption is justified here.

A fundamental scaling parameter in fluid dynamics is the dimensionless Reynolds number Re, which
represents the ratio between inertial and viscous forces in a flow. It is defined by a characteristic
velocity scale Uref, a characteristic length scale Lref and the kinematic viscosity ν:

Re =
Uref Lref

ν
(3)

The Reynolds number is often used in fluid dynamics to manage “scale effects”, e.g. between a
small-scale test model in a wind tunnel and a full scale production vehicle. In case the Reynolds
number is equivalent between both applications, the flow is assumed to be statistically equivalent
when all flow quantities are normalised accordingly. In addition, the Reynolds number delivers an
indication about the flow regime, where a low Reynolds number corresponds to a laminar flow state
(where viscous forces are dominant) and a high Reynolds number triggers a turbulent flow state that
is dominated by inertial forces. In external automotive applications, the flow is commonly considered
to be turbulent in nature since Reynolds numbers are typically very high, so that three-dimensional
turbulent eddies of different temporal and spatial sizes are generated in the flow field.

In the following sub-sections, the turbulence modelling approach applied in this work is
detailed in Sect. A.1 before the solver and numerical infrastructure is described in Sect. A.2.

A.1 TURBULENCE MODELLING

The turbulence model employed in this work belongs to the class of hybrid RANS-LES models that is
able to switch locally between a lower fidelity RANS model in near-wall regions and a high-fidelity
LES model in detached flow regimes. Especially the application of LES to separated flow regions
increases the fidelity of the method significantly relative to RANS, since LES allows to resolve most
of the turbulent eddies in the flow.
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The model used in this work is based on the original delayed detached-eddy simulation
(DDES) formulation proposed by Spalart et al. (21), implemented on the basis of the Spalart-
Allmaras RANS model (20). A number of key modifications have been applied to this model, which
are described in Fuchs et al. (6). The resulting model is referred to as SA-σ-DDES in this work. It
solves for one additional transport equation of the modified eddy viscosity ν̃:

∂ν̃

∂t
+ Uj

∂ν̃

∂xj
= Pν̃ − εν̃ +Dν̃ , (4)

where the production (Pν̃), dissipation (εν̃) and diffusion (Dν̃) terms of the ν̃ transport equation are
defined via:

Pν̃ = Cb1S̃ν̃ , εν̃ = Cw1fw

(
ν̃

LDDES

)2

, (5)

Dν̃ =
1

σν̃

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
. (6)

The turbulent eddy viscosity νt is directly calculated from the transported modified viscosity ν̃ via:

νt = ν̃fv1 , fv1 =
χ3

χ3 + C3
v1

, χ =
ν̃

ν
. (7)

The modified velocity scale S̃ in the production term Pν̃ is defined via:

S̃ = max

(
Sσ-DDES +

ν̃

κ2d2
w

fv2, 0.3 · Sσ-DDES

)
, (8)

Sσ-DDES = SRANS − fP,ZDES · pos (LRANS − LLES) · (SRANS −BσSσ) , (9)

SRANS :=
√

2ΩijΩij , Ωij =
1

2

(
∂Ui
xj
− ∂Uj

xi

)
, (10)

Sσ :=
σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

, (11)

where dw is the wall distance field (i.e. local distance to the closest solid wall). In Eq. 11, Sσ is the
velocity operator of the σ LES model of Nicoud et al. (16), which is built on the three singular values
σ1 ≥ σ2 ≥ σ3 ≥ 0 of the velocity gradient tensor gij = ∂Ui/∂xj . This modification allows the
model to rapidly switch from RANS to LES in separated shear layers, which is vital for an accurate
flow prediction. The pos-function in Eq. 8 is defined via:

pos(a) =

{
0 , if a ≤ 0

1 , if a > 0
. (12)

The DDES length scale used in the dissipation term εν̃ is defined via:

LDDES = LRANS − fP,ZDES ·max (0, LRANS − LLES) , (13)

LRANS = dw , LLES = ΨCDES∆ , Ψ2 = min

[
102,

1− Cb1
Cw1κ2f∗

w
fv2

fv1

]
, (14)
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In both the definition for the production term in Eq. 9 as well as for the dissipation term in Eq. 13, a
blending function fP,ZDES is used which is designed to prevent the erroneous activation of the LES
mode inside of attached boundary layers. This function referred to as “shielding function” is an
enhanced formulation proposed by Deck & Renard as part of their ZDES approach (4) and offers a
more robust behaviour relative to the original DDES shielding function fd of Spalart et al. (21). The
formulation reads:

fP,ZDES = fd(rd) · [1− (1− fd(Gν̃)) · fR(GΩ)] , (15)

fd(x) = 1− tanh
[
(Cd1x)

Cd2
]

, rd =
νt + ν

κ2d2
w max

(√
∂Ui
∂xj

∂Ui
∂xj

; 10−10
) , (16)

Gν̃ =
C3 max (0, −∂ν̃/∂n)

κdw
√

∂Ui
∂xj

∂Ui
∂xj

, GΩ =
∂(|ω|)
∂n

√√√√ ν̃(√
∂Ui
∂xj

∂Ui
∂xj

)3 , (17)

fR(GΩ) =


1 , if GΩ ≤ C4

1
1+exp( −6α

1−α2 )
, if C4 < GΩ < 4

3C4

0 , if GΩ ≥ 4
3C4

(18)

α =
7
6C4 − GΩ

1
6C4

, C3 = 25, C4 = 0.03 . (19)

The LES filter width ∆ in the LES length scale definition of Eq. 14 is based on a formulation
originally proposed by Spalart (13), which was subsequently adapted by the authors to allow for an
easier implementation into the cell-centred OpenFOAM code:

∆ = ∆̃ω = α∆ · max
i=1,n

∣∣∣2~nω × (~fi − ~c)∣∣∣ , α∆ = 1.035 , (20)

where n is the number of faces of each cell, ~nω is a normal vector pointing in the direction of the
vorticity vector, ~fi is the face centre vector of face i and ~c is the cell centre vector. The remaining
model functions read:

fv2 = 1− χ

1 + χfv1
, fw = g

(
1 + C6

w3

g6 + C6
w3

)1/6

, (21)

g = r + Cw2

(
r6 + r

)
, r =

ν̃

S̃κ2d2
w

. (22)

Finally, the model coefficients read:

Cb1 = 0.1355 , Cb2 = 0.622 , Cw1 =
Cb1
κ2

+
1 + Cb2
σν̃

,

Cw2 = 0.3 , Cw3 = 2 , Cv1 = 7.1 , κ = 0.41 , σν̃ = 2/3 ,

CDES = 0.65 , Cd1 = 10 , Cd2 = 3 , Bσ = 67.7 . (23)

A more detailed discussion of the model and its components can be found in Mockett et al. (13),
Fuchs et al. (7), Shur et al. (19), Nicoud et al. (16) and Deck & Renard (4).
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A.2 FLOW SOLVER AND DISCRETISATION

The flow solver employed in the scale-resolving simulations (SRS) is a derivative of the
pimpleFoam solver of the central OpenFOAM v2212 release version, which was customised
by Upstream CFD. It is based on the transient SIMPLE algorithm (17) which performs multiple
sub-iterations per time step to achieve a sufficient convergence of the coupled non-linear equation
system that arises from the discretised Navier-Stokes equations. The custom solver features an
enhanced version (12; 15) of the original Rhie-Chow formulation (18) which offers a consistent
pressure-velocity coupling and lower numerical dissipation in the LES regions. The hybrid blending
scheme of Travin et al. (23) is used to discretise the convection term in the momentum equations,
where a second-order central differencing scheme was employed in regions of resolved turbulence and
a second-order upwind-biased scheme elsewhere. The latter scheme was also used to discretise the
convection term in the ν̃ transport equation of the turbulence model. Time integration was performed
via a second-order accurate implicit Euler scheme. For the boundary conditions of the turbulence
model at solid walls, a formulation based on Spalding’s law of the wall (22) is used that is valid for
arbitrary values of the non-dimensional near-wall spacing y+.

A.3 TIME-AVERAGING PROCEDURE

Due to the fact that the Navier-Stokes equations are solved in time, only snapshots of the flow are
computed at each physical time step, which can vary greatly due to the chaotic nature of turbulence.
To obtain meaningful flow statistics that can be further analysed for engineering purposes, averaging
over multiple time steps has to be conducted. Assuming that a simulation consists of N snapshots /
calculated time steps, the first and second order flow statistics are then computed via:

φ =
1

N − n+ 1

{
N∑
t=n

φ

}
, φ′2 =

1

N − n+ 1

{
N∑
t=n

φ2

}
− φ2

, (24)

Φi =
1

N − n+ 1

{
N∑
t=n

Φi

}
, Φ′iΦ

′
j =

1

N − n+ 1

{
N∑
t=n

ΦiΦj

}
− ΦiΦj , (25)

where φ is an arbitrary scalar quantity (e.g. pressure) and Φ is a vector quantity (e.g. velocity). The
overbar hereby denotes time-averaged values. In general, using all time steps N of a simulation
for computing the flow statisics is not possible, since a time interval at the start of the simulation
exists in which the flow field snapshots are still affected by the non-physical initial conditions. This
simulation phase is often referred to as “initial transient”. The time-averaging procedure is hence
only started at a certain point in time t = n, which has to be determined by the user based on suitable
criteria. A second issue concerns the total length of the simulation after the initial transient has been
bridged and time-averaging has been started, which determines both the computational expense of
the simulation as well as the statistical accuracy of the flow statistics.

In this work, the statistical analysis tool Meancalc has been used for these tasks, which is
developed and maintained by Upstream CFD. The tool automatically controls the runtime of each
transient simulation by simultaneously evaluating the expected initial transient interval and the
statistical accuracy of user-selected variables. An example plot of such an analysis is shown in Fig. 8,
where the time series of the drag coefficient Cd (see Sect. B) from one of the validation simulations
(see Sect. C) is evaluated.

These templated Meancalc plots are also provided as part of the data set archive for all simulated
cases (see Sect. D.6). In the plots, the time axis (i.e. x-axis) is scaled both in physical simulation
time (i.e. ~seconds) as well as in non-dimensional units referred to as “convective time units” (CTU).
The normalisation is achieved by multiplying the physical simulation time t with a characteristic
velocity and time scale, i.e. CTU = t× U0/l0. For this application, the characteristic velocity scale
is the freestream velocity U0 = U∞ and the characteristic length scale is set to be the wheelbase
of the car l0 = lwheelbase (see Fig. 10). This enables a better comparability between different car
geometries, since the time a fluid particle needs to completely pass over the body surface is usually a
good measure for the physical scales of the flow.
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Figure 8: Example plot for evaluation of the time series of the drag coefficient Cd via the statistical
analysis tool Meancalc. The time series originates from the validation simulation of the DrivAer 2a
case.

In the upper left hand plot of Fig. 8, the analysed time series is plotted. The time interval that has been
determined as statistically steady-state and selected for time-averaging by the algorithm is coloured
in blue, and the discarded initial part of the signal is greyed out. The calculated time-averaged mean
value µ is plotted via a dashed black line. In addition, the running average is plotted via the dashed
light-purple line. The Meancalc tool also computes a 95% statistical confidence interval (CI) based
on the analysed time series, and the shrinking of the CI with growing sample size is visualised via the
yellow-coloured area in Fig. 8.

The final values of the mean µ, its standard deviation s and the confidence intervals σ[µ] and σ[s]
are provided in the upper right-hand side plot in Fig. 8, where 95% CI[µ] = 2σ[µ]. This plot also
visualises the binned distribution of the signal around the final mean value as blue bars overlayed with
the theoretical normal distribution as blue line, the final mean value as dashed purple line, its standard
deviation as dashed green line and the 95% CI again as yellow-coloured area. The small boxes in
the lower left corner are trend indicators of the signals evaluated in the transient detection. Green
indicates a lower probability of a trend while orange or red indicate a higher probability. If a box is
red, the corresponding signal does not fulfil the assumptions for the calculation of the confidence
intervals.

The lower two plots in Fig. 8 give additional insight into the criteria for detecting initial transient
(lower left) and information on the reduction of error with increasing sample size (lower right). The
lower left diagram shows the evolution of the relative estimated error σ(t)/σ for the mean value, its
standard deviation and the geometric mean of both normalised by the respective final estimated error.
The lower right plot shows when the target accuracy has been reached, or if not, when it is estimated
to be reached. More background on the underlying mathematics is given in ref. (14).

The following criteria have been applied for the automatic runtime control of each simulation:

1. Initial transient: Time series of the three non-dimensional coefficients for drag (Cd),
lift (Cl) and side force (Cs) are analysed to determine the overall initial transient. The
initial transient portion is then truncated from the overall flow field average using periodic
checkpoints. A minimum time sample of at least 25 CTUs is used in the initial transient
detection to avoid a premature termination of the simulation due to spurious effects of short
time series.

6
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2. Target statistical accuracy: The statistical accuracy of the drag coefficient is used as a
criterion, where the simulation is stopped when a target accuracy (i.e. 95% confidence
interval) of ±1.5 drag counts has been reached in the transient-free (i.e. statistically steady-
state) portion of the simulation. An automotive drag count corresponds to a change in drag
coefficient of ∆Cd = ±0.001. In addition, the overall simulation length has been limited to
40 ≤ t×U∞/L ≤ 60 to prevent excessive hardware usage for outlier cases with insufficient
statistical convergence. However less than 5% of the cases reached this limit. Figure 9
shows an example of the statistical history from runs 1 to 18, to give a larger sense of the
typical averaging times.

This procedure ensures that the statistical accuracy of all simulations is comparable. Adapting the
simulation length dynamically to obtain a desired target accuracy is a novel approach of particular
value, as we expect that statistical consistency is important in a machine learning training dataset.
In case it becomes evident that a lower error threshold is required, the simulations can also be more
easily re-run with this mechanism in place by simply decreasing statistical error target.

7
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Figure 9: Initial transient detection and time-averaging periods shown for drag coefficient traces for
runs 1 to 18
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B DEFINITION OF AERODYNAMIC QUANTITIES USED IN THE DATASET

B.1 FORCE AND MOMENT COEFFICIENTS

In fluid dynamics, dimensionless quantities are often used to allow for a comparison between different
geometries and flow conditions in a more systematic manner. For automotive aerodynamics, the
integral forces and moments acting on the car are of prime interest. In Fig. 10, the nomenclature and
coordinate system used in this work is introduced.

(a) xz-view (b) yz-view

Figure 10: Definition of aerodynamic forces in CFD coordinate system used in this work.

The total forces F(x,y,z) and moments M(x,y,z) are hereby typically given as coefficients in non-
dimensional form, where the local forces / moments are first integrated over the entire surface S of
the vehicle:

F(x,y,z) =

∫
S

F tot
i n(x,y,z),i dS , (26)

M(x,y,z) =

∫
S

(
eijk (xj − xref,j)F

tot
k

)
n(x,y,z),idS , (27)

where xref,i is the reference point for the calculation of the moments, n(x,y,z),i are the unit vectors
pointing in the x, y and z directions (i.e. nx = [1, 0, 0], ny = [0, 1, 0], nz = [0, 0, 1]), xi is the
surface coordinates vector and eijk is the Levi-Civita symbol. The aerodynamic forces on the body
are composed of two contributions, a normal pressure force F pi and a viscous force F vi resulting from
the wall shear stresses:

F tot
i = F pi + F vi , (28)

F pi = (p− pref)Sn,i , F vi = τw,i = ρ∞ (ν + νt)

[
∂Ui
∂xj

+
∂Uj
∂xi

]
Sn,j , (29)

where Sn,i is the surface normal vector and τw,i is the wall shear stress force vector. The nor-
malised force coefficients are then obtained by normalising the force components in the defined
spatial directions with a dynamic reference pressure pdyn,ref , a reference area Aref and a refer-
ence length scale Lref (see Section D.6 for details on the two different files (force_mom_i.csv and
force_mom_constref_i.csv) that are provided in the dataset based upon constant Aref & Lref or one
based upon each geometry)

9
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Cd =
Fx

pdyn,refAref
, Cl =

Fz
pdyn,refAref

, Cs =
Fy

pdyn,refAref
, (30)

Cm,roll =
Mx

pdyn,refAref lref
, Cm,pitch =

Mz

pdyn,refAref lref
, (31)

Cm,yaw =
My

pdyn,refAref lref
, pdyn,ref =

1

2
ρ∞|U∞|2 , (32)

The primary force coefficients are hence given by the drag coefficient Cd, the lift coefficient Cl and
the side force coefficient Cs. The three moment coefficient are referred to as roll moment coefficient
Cm,roll, pitch moment coefficient Cm,pitch and yaw moment coefficient Cm,yaw. For assessing the
aerodynamic characteristics of a car, the total lift coefficient is often additionally split into two parts
which represent the respective contributions of the lift acting on the front and rear axles:

Clf =
1

2
Cl +

Cm,pitch

lref
, Clr =

1

2
Cl −

Cm,pitch

lref
, (33)

where Clf is the front lift coefficient and Clr is the rear lift coefficient. It is important to note that the
values of all presented coefficients depend on the reference parameters Aref , lref and ~xref .

B.2 PRESSURE AND SKIN-FRICTION

Equivalent to the integral force coefficients, normalisation is often also applied to specific flow fields
to account for scale effects between different configurations. A frequently analysed quantity is the
dimensionless static pressure coefficient Cp, which describes the relative static pressures throughout
the flow field normalised by the dynamic reference pressure. It is defined as:

Cp =
p− pref

0.5ρ∞|U∞|2
. (34)

Example plots of Cp for the volume and surface fields are given in Figs. 24b and 24f respectively.
Note that the value of Cp inherently depends on the reference pressure value pref , which is often
extracted at a specific point of the domain (typically in a freestream region away from the wall). In
our CFD, the pressure reference point is located at xPR = 80 m, yPR = zPR = 10 m on the outlet
boundary patch, where pref = 0 Pa. Equivalent to the static pressure coefficient, the total pressure
coefficient Cpt can be defined as follows:

Cpt =
pt − pref

0.5ρ∞|U∞|2
, pt = p+ 0.5ρ∞|Ui|2 , (35)

where the given definition for the total pressure pt is valid for an incompressible fluid. Likewise, the
wall friction coefficient Cf is a frequently used quantity, which represents the normalised magnitude
of the wall shear stress vector:

Cf =
|τw,i|

0.5ρ∞|U∞|2
. (36)

See Fig. 24h for an example visualisation of Cf . A dimensionless quantity specifically used in
automotive aerodynamics is the micro drag or local drag coefficient Cdl first defined by Cogotti (3).
This quantity is designed to identify areas in wake regions which contribute most to the overall drag
(i.e. areas with Cdl > 0.5). It is defined via the total pressure coefficient and the velocity vector:

Cdl = 1− Cpt −
(

1− Ux
|U∞|

)2

+
U2
y + U2

z

|U∞|2
. (37)
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where x is the streamwise direction and y/z are the two perpendicular directions. An example is
shown in Fig. 24d.
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C EXTENDED VALIDATION RESULTS OF NUMERICAL METHODOLOGY

This section complements the validation results presented in Section 3.3 of the main paper with
an extended analysis. Validation of the CFD workflow is carried out for the Ford OCDA DrivAer
model (10), which is one of the two test cases of the 4th Automotive CFD Prediction Workshop
(“AutoCFD-4”)7. In the following, we demonstrate that the CFD methodology presented in the
paper provides a reliable correlation to high-quality experimental data, which builds confidence that
the approach can also reasonably predict the 500 other geometric variations of the DrivAer (see
Sect. D.7).

Figure 11: Sketch of computational domain used in the CFD setup (11).

Since its original publication by Heft et al. (8), numerous wind-tunnel campaigns have been conducted
for the DrivAer model. In this work, we validate against the experimental data of Hupertz et al. (9),
where an extensive wind tunnel campaign was conducted in the Pininfarina facility. In CFD, the
computational domain and boundary conditions are often adjusted to either reproduce open road
or experimental conditions. In this case, a large open-road domain, sketched in Fig. 11 has been
chosen, which is representative of the types of setups commonly used in the automotive industry.
To mimic the ground boundary layer present in the Pininfarina wind tunnel, the domain floor has
been divided into two parts, an inviscid part upstream of the car (“Slip floor”) and a viscous wall
starting at xBL = −2.339 m (“No-slip floor”), which is located 2.346 m upstream of the front axle.
However, geometrical details of the wind tunnel, such as the upstream nozzle (with 11 m2 area) and
downstream collector of the finite open test section, are not integrated into the CFD setup. The side
and top patches of the CFD domain are prescribed as inviscid walls, and blockage ratios can be
considered negligible (≈ 0.25%) thanks to the large domain. This computational domain has been
used for all dataset simulations.

An important further aspect of the CFD setup concerns the location of the reference pressure pref ,
which is set at the outlet patch that located 80 m downstream of the start of the viscous wall patch
(see Fig. 11). Due to the friction losses associated with the car wake and the ground boundary
layer, the static pressure continuously decreases in the downstream direction, so that shifting the
reference pressure location in the x-direction would result in different values of pref . It is important
to remember when processing the provided data that the absolute local kinematic pressure values
p∗ = p/ρ∞ contained in the dataset are influenced by the specific boundary conditions used in
this setup. This also concerns other quantities derived from the p∗ field such as the static and total
pressure coefficients Cp and Cpt. This means that e.g. surface distributions of Cp provided in the
database might not be strictly comparable to other cases in which different boundary conditions were
used. In contrast, this issue is less relevant for the integral force coefficients, for which only the
relative pressure distribution on the surface is relevant (a constant offset in pref is cancelled out in the
integration).

7https://autocfd.org/
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(a) Case 2a (b) Case 2b

Figure 12: Visualisation of configurations 2a and 2b of Ford OCDE DrivAer model.

One of the central aims of CFD and numerical tools in general is to accurately predict deltas between
different geometry designs, which is key to introducing these tools into the certification process for
road vehicles. Two different configurations of the Ford OCDA DrivAer model denoted “2a” and “2b”
(corresponding to their case designation in the 3rd & 4th AutoCFD workshops) were therefore used
in the validation. Variant 2b includes additional front wheel air deflectors (FWAD) relative to the
baseline 2a (highlighted in red in Fig. 12).

Both configurations have been simulated with exactly the same CFD workflow as the other 500
geometries of the dataset, where the simulation runtime was controlled via the statistical analysis
tool Meancalc (see Sect. A.3). For the simulation of the DrivAer 2a case, this resulted in a simulated
time of 3.0 s ≈ 42 CTU, whereas the DrivAer 2b case ran for 3.6 s ≈ 50 CTU. In Fig. 13, the
automatically generated Meancalc plots of the drag coefficient time series analysis are shown. It
can be seen that the initial transient has been successfully removed from both evaluated signals.
Furthermore, the two simulations have been automatically stopped after the target accuracy of
2σ(Cd) = 95% CI(Cd) ≤ 0.0015 was reached.

(a) Case 2a (b) Case 2b

Figure 13: Meancalc generated plots showing the statistical evaluation of the time series of the drag
coefficient Cd for the two validation simulations of the Ford OCDA DrivAer.
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One of the primary quantities of interest in car design are the integral force coefficients. Table 1,
compares different force coefficients between experiment and CFD, including the effect of the FWAD
(case 2b relative to 2a). For additional perspective, we also refer to third-party CFD results from the
3rd AutoCFD workshop for the same test cases, which were computed by numerous (anonymised)
participants and codes. This valuable resource is freely available via an interactive online dashboard8,
from which we show the absolute force coefficients for case 2a (Fig. 14) and the deltas for case 2b
relative to case 2a (Fig. 15). The red data points highlight results from SRS methods on the committee
mesh from that workshop, which is an earlier version of the current mesh giving very similar results.

Table 1: Comparison of time-averaged forces coefficients between Ford experiment (9) and simulation
approach of the CFD workflow. ∆(2b-2a) denotes the effect of the FWAD (change in the case 2b
value relative to the 2a value).

Part

Case CFD/Exp Cd Cl Clf Clr

2a Exp: Hupertz et al. (2021) 0.255 0.087 -0.023 0.111
2b Exp: Hupertz et al. (2021) 0.242 0.082 -0.019 0.101

∆(2b-2a) Exp: Hupertz et al. (2021) -0.013 -0.005 0.004 -0.010

2a CFD: SRS 0.274 0.033 -0.073 0.106
2b CFD: SRS 0.267 0.039 -0.064 0.103

∆(2b-2a) CFD: SRS -0.007 0.006 0.009 -0.003

(a) Absolute Cd (b) Absolute Cl

(c) Absolute Clf (d) Absolute Clr

Figure 14: Absolute force coefficients for all CFD results from the 3rd AutoCFD work-
shopfn:AutoCFDDashboard (symbols) compared to the Ford experiment (9) (black line), ordered by
anonymous participant ID. Results from SRS methods on the committee ANSA mesh are highlighted
(red symbols).

8https://auto-cfd-workshop-3.cfdsolutions.net/
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(a) ∆(2b-2a) for Cd (b) ∆(2b-2a) for Cl

(c) ∆(2b-2a) for Clf (d) ∆(2b-2a) for Clr

Figure 15: Deltas of force coefficients for case 2b relative to case 2a (effect of FWAD) for all CFD
results from the 3rd AutoCFD workshopfn:AutoCFDDashboard (symbols) compared to the Ford
experiment (9) (black line), ordered by anonymous participant ID. Results from SRS methods on the
committee ANSA mesh are highlighted (red symbols).

The drag coefficient is relevant for the CO2 emissions and hence certification. The predicted drag
coefficient is higher than experiment by roughly 20 counts9 in both simulations, and the FWAD effect
is weaker than in the experiment (Tab. 1). All SRS results from the 3rd AutoCFD workshop likewise
predict higher drag than the experiment (Fig. 14a), and most (82%) also predict a weaker FWAD effect
(Fig. 15a). The acceptance criterion for CFD defined by the United Nations regulation ECE 154, also
known as WLTP10, is an accuracy threshold of δWLTP := |∆(CdA)CFD −∆(CdA)EXP| ≤ 0.015 m2

for the prediction of deltas between two designs (where A is the car frontal area). This criterion is
fulfilled by the CFD approach, which returns a certification value of δWLTP = 0.013 m2 for the delta
between configurations 2a and 2b. It should be noted, however, that car manufacturers strive for a
much higher accuracy of 1-2 drag counts in predictions of ∆(Cd), since every single count directly
impacts the energy efficiency of a car.

No specific criterion is targeted for the lift prediction, but Cl is around 50 counts lower in the CFD
(Tab. 1). This deviation mainly originates in the prediction of front lift (i.e. Clf ), whereas the rear
lift is in close agreement. Most SRS contributions to the 3rd AutoCFD workshop show the same
discrepancies to similar levels. This may be related to uncertainties in the comparability between
CFD and experiment: “pad corrections” to the lift measurement, to account for the aerodynamic force
acting on the wheel belt surface near the tyre contact patch, are a topic of ongoing research (25).The
front lift is a very sensitive quantity, with a spread of 48 counts (spanning positive and negative
values) observed between three different wind tunnels by Hupertz et al. (11).

When looking at the delta prediction of the lift, it stands out that the change for case 2b relative to
case 2a is positive in the simulation while it is negative in the experiment. This is also the case for
73% of the AutoCFD SRS results (Fig. 15b). The CFD deltas of front and rear lift individually have

9An automotive “count” corresponds to a change in force coefficient of 0.001
10WLTP = Worldwide harmonized Light vehicles Test Procedure, https:

//unece.org/transport/vehicle-regulations-wp29/standards/
addenda-1958-agreement-regulations-141-160
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the same sign as the experiment. In the simulations, the FWAD seems to have a stronger impact on
the front lift than on the rear lift, which seems to be the opposite in the experiment.

While the prediction of integral forces is an important metric for the assessment of a simulation
approach, it can also be misleading due to the potential for error cancellation. A good agreement of
the force coefficients with experimental benchmark data does not necessarily mean an overall good
prediction of the flow field. It is also hard to understand the causes of differences in the integral
forces withouth further analysis. It is therefore important to also compare local quantities.

(a) Case 2a: |U |/U∞ on y = 0 m slice (b) Case 2a: Surface streamlines

Figure 16: Contour plots for an general impression of the flow field of the DrivAer case 2a. (a)
Time-averaged normalised velocity on the center plane. (b) Top view of time-averaged surface
streamlines.

Fig. 16 gives an impression of the time-averaged flow field for case 2a, where contour plots of the
normalised velocity magnitude on the centre plane and a top view showing surface streamlines are
depicted. Equivalent plots for case 2b look almost identical since the influence of the FWAD on the
flow is minimal here. The velocity contour plot shows the flow deceleration at the front of the vehicle
near the stagnation point and subsequent acceleration over and under the vehicle. Underneath the car,
a small recirculation region can be seen at the leading edge, which has a significant influence on the
front lift. On the upper side, one of the most challenging regions to predict is the notch at the base of
the rear window, where the incoming boundary layer from the roof is subjected to an adverse pressure
gradient and thickens considerably. The surface streamlines in this region indicate flow separation and
reattachment at the notch, which is also indicated by a pressure plateau in the experiment (Fig. 17a,
discussed later). The CFD flow topology shows a symmetric pair of recirculation regions either side
of the y = 0 centreline, where the flow is nominally attached.

In Fig. 17, a comparison between CFD and experiment is shown for the time-averaged static pressure
coefficient distributions on the upperbody and underbody centrelines (only discrete probe positions
are shown for all data). The prediction of the separation behaviour on the rear window (i.e. 2.7 m <
x < 3.3 m on the upperbody) is especially challenging for CFD, but the simulation approach
adopted in this work manages to reasonably predict this. Looking closely, it can be seen that the
experimental pressure distribution features a small plateau in the separation region on the rear window
(3.0 m < x < 3.5 m) which is less pronounced in the simulations due to the nominally attached
centreline flow revealed in Fig. 16b and described earlier. Despite small differences in the separation
region, the overall agreement for the pressure probes on the upperbody centreline is encouraging.
Compared to the experiment, a mild shift of the pressure level on the roof (i.e. 1.8 m < x < 2.6 m)
can be observed. This is at least partially due to a slight systematic negative offset in the pressure
coefficient data between CFD and experiment, which most likely originates from inconsistency in the
reference pressure locations between CFD and the experiment (at the outlet plane in CFD; in the test
section plenum, outside the flow stream, adjacent to and upstream of the nozzle in the experiment).
The small deltas between cases 2a and 2b for the probe positions plotted in Fig. 17a highlight that the
effect of the FWAD is negligible on the upper side of the vehicle.

The underbody centreline, plotted in Fig. 17b, exhibits generally good agreement in the pressure
distribution between CFD and experiment. The effect of the FWAD seems to be somewhat less
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(b) Underbody centerline (y = 0.0 m)

Figure 17: Comparison of time-averaged static pressure coefficient Cp for probe positions on
centreline between cases 2a and 2b. Lower figures showing probe positions (red dots) reproduced
with permission from (9).

pronounced in the CFD. Stronger differences can be observed at the leading edge of the underbody,
where the recirculating flow region seen in the CFD is less prominent in the experiment. It is important
to note that (like the front lift, as mentioned earlier) this is a very sensitive phenomenon, shown in
experiments to exhibit a significant Reynolds number and wind tunnel dependency (9).

It is perhaps unsurprising that this region is also sensitive to simulation parameters. Indeed, initial
tests with a two times finer time step of ∆t = 1× 10−4 s showed a closer agreement to experiment.
Since this region features the some of the highest CFL numbers in the domain11, which is a measure
for the local balance between temporal and spatial resolution of a simulation, the coarser time step has
a stronger effect on the prediction here. Insufficient temporal resolution can have a stabilising effect
on the separated shear layer, supressing resolved turbulence and delaying reattachment to further
downstream.

(a) Case 2a (baseline) (b) Case 2b (with FWAD)

Figure 18: Contours of time-averaged surface pressure coefficient from CFD simulations, view from
below.

The distribution of time-averaged pressure coefficient over the entire underfloor region is compared
between cases 2a and 2b in Fig. 18. The FWADs have a marked non-local influence, with additional
positive pressure lobes appearing just behind the leading-edge recirculation region either side of the

11Due to the fine mesh and high velocity. The Courant–Friedrichs–Lewy (CFL) number is defined as
CFL = U ·∆t/∆x.

17



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

lateral centreline. The lateral strip of negative pressure on the underbody just upstream of the front
wheel axle location is wider in the case with FWAD, and the mild positive pressure region near the
centre of the underfloor is more extensive. These features are missed when focussing only on the
centreline.

(a) profile positions
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(b) L1 (z = −0.2376m)

Figure 19: (a) Positions of velocity profiles (11). (b) Comparison of the normalised velocity magnitude
|U |/U∞ on centerline velocity profile L1 under the vehicle of Case 2a and 2b.

Fig. 19b shows the comparison of the velocity magnitude distributions on the measurement profile
line L1 that extends in the streamwise direction below the underfloor of the vehicle (the profile line
locations are visualised in Fig. 19a). Due to the complex geometry of the underfloor as well as the
complex interaction between the separated flow structures from the front region with the ground
boundary layer, this area is generally challenging to accurately predict in the CFD, especially for lower
fidelity turbulence modelling approaches such as steady-state RANS (11). The excellent agreement
with the experiment achieved by the employed SRS approach is therefore very encouraging. However,
the mild effect of the FWAD seen in the experiment in the diffusor region (4 m < x < 6 m) is not
apparent in the CFD.
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Figure 20: Comparison of vertical wake profiles of normalised velocity magnitude for cases 2a and 2b.
Results from the 3rd AutoCFD workshopfn:AutoCFDDashboard (SRS contributions on the high-Re
committee grid) are overlayed.

The momentum loss in the wake region behind the car is linked to the generated drag, so that an
accurate prediction of not only surface quantities but also the volume flow field is important. In
Fig. 20, two vertical wake profiles on the centreline at the experimental streamwise positions V3 and
V5 are compared. At the first vertical position V3, closely behind the vehicles, the velocity gradient
in the upper shear layer is slightly steeper in the simulations, perhaps reflecting a slightly smaller
flow separation at the upstream notch (c.f. Fig. 17a). The velocity plateau seen in the experimental
data is not apparent in the CFD, which shows undulations in the low-velocity region. Interestingly,
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all CFD data from the 3rd AutoCFD workshop also show similarly undulating profiles here. Larger
differences to the experiment can be seen at the downstream position V5, where both SRS show a
weaker velocity deficit, the upper edge of the wake is lower, and the velocity peak emanating from
the underfloor is weaker. Again, the SRS contributions from the 3rd AutoCFD workshop exhibit
the same phenomena as our CFD. Although different flow solvers and turbulence models were used
(including nominally higher-fidelity methods such as WMLES), the differences to the experimental
measurements for the V3 and V5 positions appear to be systematic. This implies that differences
between the CFD and experimental domains cause the deviations. From photographs (see e.g. (9; 11)),
the wind tunnel collector appears close to the vehicle wake and can be expected to influence the flow
here. For both centreline velocity profiles, the influence of the FWAD is negligible.
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(a) Profile U2, x = 0.35m (front wheel wake)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

rel. distance [m]
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|U
|/U

0 
[-]

U5 / Underbody x = 3.150m / z = -0.2376m
Ford Exp. (2a)
Ford Exp. (2b)
CFD SRS (2a)
CFD SRS (2b)

(b) Profile U5, x = 3.15m (rear wheel wake)

Figure 21: Profiles of normalised velocity magnitude at lateral profiles between underbody and
ground for cases 2a and 2b.

Fig. 21 shows comparisons of the time-averaged normalised velocity along different lateral sample
lines directly behind the front and rear wheels For profile U2 (behind the front wheels), the influence
of the FWAD is pronounced. At this position, the width of the wake behind the wheel is similar for
both cases, but the velocity deficit is more pronounced for case 2b with the FWAD. The shape of
the wake profile is also altered. The wheel-wake features two velocity minima separated by a local
maximum. The FWAD reduces the local maximum, and the absolute minimum switches from the
inboard to the outboard minimum. These differences in the wake behaviour are qualitatively similar
in both simulations and experiment. The inboard shear layer is however further outboard, giving a
narrower wake behind the front wheel in the CFD. From Fig. 21b, it can be seen that the influence of
the FWAD is much less noticeable behind the rear wheels. While the agreement for the U5 profiles is
again promising and the velocity deficit is in close agreement, the small differences between cases 2a
and 2b in the outboard shear layer are not captured by the CFD.

In Fig. 22a, time-averaged pressure coefficient values are compared for probe position on the
sidewall of the vehicles. It can be observed that the FWAD locally increases the static pressure just
downstream of the front wheelhouse, and the pressure levels return to those of the configuration
without FWAD within a short distance downstream. This is seen qualitatively in both experiment and
CFD, however the absolute pressure values are not in perfect agreement with the experiment directly
behind the front wheel (x ≈ 0.5 m), where the static pressure is higher in the CFD. Finally, Fig. 22b
shows some pressure probes located inside the left front wheelhouse, which is another challenging
area for CFD due to its highly unsteady turbulent flow. For most probe positions, the FWAD causes a
static pressure decrease, which is predicted in both CFD and experiment.

In summary, the employed numerical methodology delivers an encouraging agreement with experi-
ment for the main flow features. The integral forces however show significant deviations, particularly
for the absolute lift with a deviation of around 50 counts attributed to the front lift. This is believed
to be, at least partly, a consequence of the coarser time step deployed to limit computational cost,
a hypothesis supported by initial testing with a finer time step. The integral force deviations are
furthermore found to occur also in the overwhelming majority of existing CFD data from the 3rd
AutoCFD workshop.
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Figure 22: Comparison of time-averaged static pressure coefficient Cp for probe positions on the
sidewall (a) and in the front left wheelhouse (b) between cases 2a and 2b. The lower figures of probe
positions reproduced with permission from (9).

Local flow quantities generally show a very good agreement with the experimental benchmark data in
the most challenging flow areas. Trends between the two configurations are generally well captured
in most regions. In particular, the effect of the front-wheel air deflector on the flow around the front
wheels is in very good agreement. The strongest deviations to the experimental data occur for the
vehicle wake profiles. Here, the comparison with the CFD datasets from the 3rd AutoCFD workshop
strongly suggests a more systematic issue in the comparability of experimental and CFD setups.
In particular, the presence of the wind tunnel collector, not present in the open-road CFD domain,
is expected to influence the nearby wake region. Overall, it is demonstrated that the employed
scale-resolving simulation approach is capable of producing high quality dataset results.
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D DATASET DESCRIPTION

D.1 ACCESS TO DATASET

The dataset is openly accessible without any additional costs and is hosted on Amazon Web Services
(AWS) using the Amazon Simple Storage Service (S3). The dataset is hosted within a S3 bucket
located in the us-east-1 region (North Virginia region of the United States), thus additional latency
can be expected for downloads to locations away from this geographical area.

The dataset README.txt will be kept up to date for any changes to the dataset and can be found at
the following URL:

https://xxxxxxx.s3.us-east-1.amazonaws.com/drivaer/dataset/README.
txt

The dataset itself can be downloaded via the AWS Command Line Interface (CLI)
tool, which is free-of-charge. An instruction about how to install the AWS CLI
tool is given here: https://docs.aws.amazon.com/cli/latest/userguide/
getting-started-install.html. After installing AWS CLI, you can use the following
examples to download the dataset or subsets of it, given the full dataset is approximately 22TB.

Note: If you don’t have an AWS account you will need to add –no-sign-request within your AWS
command i.e aws s3 cp –no-sign-request –recursive etc...

Example 1: Download all files (~22 TB)

aws s3 cp --recursive s3://xxxxx/drivaer/dataset .

Example 2: Only download select files (STL, images & force and moments):

Create the following bash script that could be adapted to loop through only select runs or to change
to download different files e.g boundary/volume:

#!/bin/bash

# Set the S3 bucket and prefix
S3_BUCKET="xxxxxx"
S3_PREFIX="drivaer/dataset"

# Set the local directory to download the files
LOCAL_DIR="./drivaer_data"

# Create the local directory if it doesn’t exist
mkdir -p "$LOCAL_DIR"

# Loop through the run folders from 1 to 500
for i in $(seq 1 500); do

RUN_DIR="run_$i"
RUN_LOCAL_DIR="$LOCAL_DIR/$RUN_DIR"

# Create the run directory if it doesn’t exist
mkdir -p "$RUN_LOCAL_DIR"

# Download the drivaer_i.stl file
aws s3 cp "s3://$S3_BUCKET/$S3_PREFIX/$RUN_DIR/drivaer_$i.stl" \
"$RUN_LOCAL_DIR/" --only-show-errors

# Download the force_mom_i.csv file
aws s3 cp "s3://$S3_BUCKET/$S3_PREFIX/$RUN_DIR/force_mom_$i.csv" \
"$RUN_LOCAL_DIR/" --only-show-errors
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aws s3 cp --recursive "s3://$S3_BUCKET/$S3_PREFIX/$RUN_DIR/images" \
"$RUN_LOCAL_DIR/images/" --only-show-errors

done

D.2 LONG-TERM HOSTING/MAINTENANCE PLAN

The data is hosted on Amazon S3 for several reasons. Firstly it provides 11 nines of durability, i.e
the data has very low risk of not being available globally from a technical point of view. Secondly,
the data transfer speed can be as high as 300MB/s due to the high bandwidth Amazon network (the
bottleneck will likely be on the user rather than Amazon), since a poor server performance could
mean extremely long download times given the size of the dataset. Thirdly, no account or credentials
are required to download the data (only AWS CLI tools, described above, which are free to download
and use). Finally, there are very limited number of providers that can host such large datasets ( 22TB)
and make them available in such a manner. Over the coming year we will identify additional providers
to mirror this dataset, to further increase the availability in the very unlikely scenario there was a
problem with the Amazon S3 storage option. In addition, a dedicated website will be created for the
AhmedML (2), WindsorML (1) and DrivAerML datasets to help further clarify where the data is
hosted and to communicate any additional mirroring sites.

D.3 LICENSING TERMS

The dataset is provided with the Creative Commons CC-BY-SA v4.0 license12. The license grants
the user the right to share the work, e.g. by copying and redistributing the material in any medium
or format for any purpose, which includes redistribution for commercial purposes. Likewise, the
material can be adapted by remixing or transforming it, or building upon the material for any purpose.
In case of redistribution, you must give appropriate credit to the original authors, which includes
providing the names of the creators and attribution parties, a copyright notice, a license notice, a
disclaimer notice, and a link to the material. You must also indicate if you modified the material and
retain an indication of previous modifications. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use (“Attribution” clause). If you remix,
transform, or build upon the material, you must distribute your contributions under the same license
as the original (“ShareAlike” clause). No warranties are given. The license may not give you all of
the permissions necessary for your intended use. For example, other rights such as publicity, privacy,
or moral rights may limit how you use the material. A full description of the license terms is provided
under the following URL:

https://xxxxxxx.s3.us-east-1.amazonaws.com/drivaer/dataset/
LICENSE.txt

D.4 INTENDED USE & POTENTIAL IMPACT

The dataset was created with the following intended uses:

• Development and testing of data-driven ML surrogate models (e.g meshGraphNet (5)) for
the prediction of external aerodynamics quantities (lift, drag, pressure, velocity) on road car
geometries of the notchback type.

• Testing of physics-driven ML approaches on a complex set of geometries and test conditions.

• For academia, a stepping-stone dataset after more fundamental, ‘simpler’ datasets (e.g
AhmedML (2) and WindsorML (1)). For an automotive company, it can be a useful dataset
that is similar in size and complexity to an internal non-public dataset, i.e an automotive
company’s own data.

• As a ‘challenge’ test-case at future conferences/workshops to benchmark the performance
of different ML approaches for an open-source automotive dataset.

12https://creativecommons.org/licenses/by-sa/4.0/deed.en
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• The dataset was created for the AutoCFD4 13 workshop, as a test case for the AI/ML
technical working group, to allow for the assessment of different ML approaches on an
identical open-source dataset.

• Large-scale dataset for the study of flow physics over road-cars, i.e potential non-ML
use-case.

The potential impact could be:

• Establishing an industry-standard benchmark for the testing of ML methods for the automo-
tive external aerodynamics community.

• Allowing for fairer testing of large-scale CFD versus ML approaches, i.e training and
inference time on non-canonical problems.

• Addressing the lack of high-quality, public-domain training data, thereby fostering innova-
tion in ML for automotive aerodynamics.

D.5 DOI

At present there is no specific DOI for the dataset itself, given Amazon S3 is not a resource that can
easily be assigned a DOI. However it is the intention of the authors to create a DOI once a suitable
mechanism is found. For the time-being, users of the dataset will be encouraged to cite this dataset
paper.

D.6 DETAILS OF PROVIDED DATA

In the dataset, each folder (e.g run_1, run_2, ..., run_i, etc.) corresponds to a different geometry,
where "i" is the run number that ranges from 1 to 500. All run folders feature the same structure:

run_i/
|
|- boundary_i.vtp
|- drivaer_i.stl
|- force_mom_i.csv
|- force_mom_constref_i.csv
|- geo_parameters_i.csv
|- geo_ref_i.csv
|- volume_i.vtu
|- images/

|
|- fig_runi_SRS_<Q-value>_<view>_<variable>.png
|- fig_runi_SRS_<variable>_<slice>_<position>.png
|- fig_runi_SRS_<surface>_<variable>.png
|- fig_runi_SRS_<slice>_<position>_grid.png
|- fig_runi_evolution_Cd.png
|- fig_runi_evolution_Cl.png
|- fig_runi_evolution_Cs.png
|- fig_runi_solverStats_initialResidual.png

|- slices/
|
|- <sliceNormal>\_<position>.vtp

A brief description of the contents in each file, including the file format and the file size, is given in the
Tab. 2. Tab. 4 provides a list of output flow variables, which were all obtaining through time-averaging
of the initial-transient free portion of the unsteady flow field. In general, the dataset contains outputs
of different complexity. This offers ML researchers the flexibility to train their models either via the
full three-dimensional flow solution of the CFD domain or to use subsets of the solution instead:

13https://autocfd.org
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• Volume field: The complete, three-dimensional and time-averaged flow field is provided.
The most commonly analysed quantities in automotive aerodynamics were stored, including
first and second order flow statistics (see Tab. 4).

• Surface field: The complete, time-averaged flow field on the car surface is provided. All
flow quantities necessary to compute the integral force coefficients (see Sect. B) along with
time-averaged surface pressure fluctuations are included.

• Slices of the volume field: A total of 65 two-dimensional slices through the volume mesh
are provided, where the slice positions are shown in Fig. 23. The x-normal slices range
from x = −1.5 m to x = 6.5 m, the y-normal slices from y = −1.4 m to y = 1.4 m and
z-normal slices from z = −0.2 m to z = 1.4 m, with a step size of 0.2 m in between. Three
additional slice positions located at x = 0.407 m, y = 4.007 m and z = −0.2376 m are
included, which are specific to the post-processing conducted in the AutoCFD-4 workshop.
The user of the dataset should be aware that the positions of the slices are fixed to the CFD
coordinate system and are thus not adapted to the morphed geometry (e.g. by scaling the
x-positions with the car length). This implies that one particular slice position does not also
represent the same relative position in the flow field, e.g. an x-normal slice that is located
in the car wake for one geometry might cut through the rear window region for another
geometry.

• Force coefficients: Time-averaged force and moment coefficients are also provided, together
with their 95% statistical confidence intervals evaluated by Meancalc. These are given
with two different normalisations (see Tab. 3): One using the reference values for the car
wheelbase Lref , the frontal areaAref and the centre of rotation ~xref specific to each geometry
variant, and a second using the nominal reference values of the baseline DrivAer geometry
(denoted with the suffix "Ref"). Additionally, the Meancalc evaluation plots of the force
coefficients described in Sect. A.3 and shown in Figs. 8 and 9 are included.

• Flow visualisations: Image files with contour plots of selected time-averaged flow quantities
on the 2D slices and the car surface are provided for every case. They are intended to give
an impression of the flow field quickly and conveniently, without having to process the raw
data first. Examples of the plots for selected 2D slices and surface contours are given in
Fig. 24. Care was taken to plot meaningful variable ranges for each quantity.

All provided data is either written in ASCII or in the open source format VTK (i.e. *.vtp and *.vtu).
The VTK output files can be loaded in the most common 3D data visualisation tools, e.g. using the
open source software ParaView14. The data can also be further post-processed with Python and Java
scripts with the corresponding VTK extension/module.

14https://www.paraview.org/
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(a) x-normal slices (b) y-normal slices

(c) z-normal slices

Figure 23: Positions of extracted slices in .vtp format. Slices in red correspond to the additional
AutoCFD-4 workshop post-processing planes.
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Table 2: Description of the main components of the dataset

Output Size Format Description

drivaer_i.stl 135 MB stl surface mesh (tris) of the Dri-
vAer geometry (≈ 750k cells)

images/...
fig_<case>_<quantity>_<view>_
<sliceNormal>_<position>.png
fig_<case>_<surface>-
<view>_<quantity>.png

87 MB png folder containing images of
the flow-field

slices/...
<sliceNormal>_<position>.vtp

907 MB vtp folder containing slices of the
domain volume in X, Y, Z with
time-averaged flow quantities

boundary_i.vtp 612 MB vtp time-averaged flow quantities
on the DrivAer (≈ 8.8M cells)

volume_i.vtu 44 GB vtu time-averaged flow quantities
within the domain volume (≈
160M cells)

geo_ref_i.csv 66 KB csv reference values such as Aref
and Lref of each geometry

geo_parameters_i.csv 66 KB csv reference geometry values
used to define the particular
geometry via the DoE method

force_mom_i.csv 66 KB csv time-averaged drag, lift, front-
lift, rear-lift and side force co-
efficients

force_mom_constref_i.csv 66 KB csv time-averaged drag, lift, front-
lift, rear-lift and side force
coefficients using constant
frontal-area and moment
length

Table 3: Reference quantities used for normalisation of force and moment coefficients.

Variable force_mom_i.csv force_mom_constref_i.csv

U∞ 38.889 m/s 38.889 m/s
ρ∞ 1 kg/m3 1 kg/m3

Aref 1.779− 2.636 m2 2.17 m2

Lref 2.636− 3.035m 2.78618 m

~xref

[
1.325 m

0 m
−0.3176 m

]
−

[
1.5245 m

0 m
−0.3176 m

] [
1.40009 m

0 m
−0.3176 m

]
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Table 4: List of output quantities in the provided dataset files, all quantities are time-averaged.

volume_i.vtu
Symbol Units Field name Description

p∗ [m2/s2] pMeanTrim relative kinematic pressure

(p∗′)2 [m4/s4] pPrime2MeanTrim square of mean pressure fluctuations

Ui [m/s] UMeanTrim velocity vector

u′iu
′
j [m2/s2] UPrime2MeanTrim resolved Reynolds stress tensor

Rij [m2/s2] turbulenceProperties:RMeanTrimmodelled Reynolds stress tensor

νt [m2/s] nutMeanTrim turbulent eddy viscosity

Cp [−] CpMeanTrim static pressure coefficient

Cpt [−] CptMeanTrim total pressure coefficient

|Ui|/U∞ [−] magUMeanTrimNorm normalised velocity magnitude

Cdl [−] microDragMeanTrim micro drag coefficient
slices/<sliceNormal>_<position>.vtp

Symbol Units Field name Description

p∗ [m2/s2] pMeanTrim relative kinematic pressure

(p∗′)2 [m4/s4] pPrime2MeanTrim square of mean pressure fluctuations

Ui [m/s] UMeanTrim velocity vector

u′iu
′
j [m2/s2] UPrime2MeanTrim resolved Reynolds stress tensor

νt [m2/s] nutMeanTrim turbulent eddy viscosity

Cp [−] CpMeanTrim static pressure coefficient

Cpt [−] CptMeanTrim total pressure coefficient

|Ui|/U∞ [−] magUMeanTrimNorm normalised velocity magnitude

Cdl [−] microDragMeanTrim micro drag coefficient
boundary_i.vtp

Symbol Unit Field name Description

p∗ [m2/s2] pMeanTrim relative kinematic pressure

(p∗′)2 [m4/s4] pPrime2MeanTrim square of mean pressure fluctuations

τi [m2/s2] wallShearStressMeanTrim wall shear stress vector

Cp [−] CpMeanTrim static pressure coefficient
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(a) slice at y = 0 m, |U |/U∞ (b) slice at y = 0 m, Cp

(c) slice at z = 0 m, kres/U
2
∞ (d) slice at x = 0.39 m, Cdl

(e) top view, surface streamlines (f) plan view, Cp

(g) underfloor view, C′
p = Cp−RMS (h) side view, Cf

Figure 24: Examples of provided contour and surface plots. Selected images of validation case 2a are
shown.
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D.7 GEOMETRY VARIANTS

500 geometric variations of the DrivAer notchback were created to replicate as closely as possible
the potential range of design studies that an automotive company would create for this category of
vehicle. This differs from the AhmedML (2) and WindsorML (1) datasets, where more freedom was
given to adapt the geometry more strongly given the academic nature of the geometry and to test the
ability of a model to predict a wide range of geometries. This DrivAerML dataset is designed to
test the ability of a ML model to predict subtle and small changes in the geometry, which is more
representative of industry use of CFD for product design.

To achieve this a set of morphing boxes was constructed around the baseline DrivAer Notchback
using the ANSA software of BETA-CAE Systems15, (see Fig. 25a), allowing geometry variants
to be created in a systematic manner. The morphing box topology prevents undesired distortions
(e.g. the wheels remain circular when the vehicle length is stretched). The parameters for morphing
the baseline geometry are listed together with their ranges in Tab. 5, which were chosen to avoid
unrealistic shapes based on engineering judgement. The range of geometries is intended to produce
different flow topologies and to test the generalisability of ML approaches, but within a typical
engineering process.

Table 5: Geometry parameters and limits for the DrivAerML model. Note that parameters are defined
as changes relative to the baseline geometry.

Parameter Min Max

Vehicle_Length -150 mm +200 mm
Vehicle_Width -100 mm +100 mm
Vehicle_Height -100 mm +100 mm
Front_Overhang -150 mm +100 mm
Front_Planview -75 mm +75 mm
Hood_Angle -50 mm +50 mm
Approach_Angle -40 mm +30 mm
Windscreen_Angle -150 mm +150 mm
Greenhouse_Tapering -100 mm +100 mm
Backlight_Angle -100 mm +200 mm
Decklid_Height -50 mm +50 mm
Rearend_tapering -90 mm +70 mm
Rear_Overhang -150 mm +100 mm
Rear_Diffuser_Angle -50 mm +50 mm
Vehicle_Ride_Height -50 mm +50 mm
Vehicle_Pitch (positive nose up) -1◦ +1◦

In order to ensure optimal coverage of the design space, a design of experiments (DoE) tool in ANSA
was used to create the parametric values for 500 experiments using a Modified Extensible Lattice
Sequence algorithm, which fills the parameter space evenly, also for subsets of and extensions to the
dataset. Figure 26 shows an example of how the distribution of points is optimally spread through the
parameter space for two of the 16 parameters (rear end tapering and backlight angle).

Figures 27 & 28 show the variation of drag, lift, front-lift & rear-lift coefficients for each run, the
former for constant Aref and Lref and the latter with these quantities varied for each geometry.
Providing both outputs was intentional, since a constant reference area and length are sometimes
used in the industry. Once multiplied by the area, it gives a sense of the actual force, e.g. a car with a
larger frontal area will most likely produce in absolute terms a larger drag force. However, if one
wants to focus on the aerodynamic efficiency of the vehicle (which is ultimately what the drag or
lift coefficient expresses in practice), the effect of shape changes should be separated from simply
changing the size of a given shape. In this scenario it is better to use a reference area and length
dependant on the specific geometry. The outcome is that the spread (i.e. between minimum and
maximum) of force and moment coefficients is larger when a constant reference area and length are

15https://www.beta-cae.com/ansa.htm
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(a) (b)

(c) (d)

Figure 25: Generation of geometry variants based on the baseline DrivAer model. Visualisation of
ANSA morphing boxes (a), visualisation of the 16 design parameters (b-d).

(a) (b)

Figure 26: Visualisation of sample distribution in 2D design space, exemplary for the parameters
Backlight Angle and Rearend Taper (a). Histogram of parameter values for design parameter Backlight
Angle (b).

used (Fig. 27) compared to when the geometry-specific reference quantities are used (Fig. 28). From
a ML perspective it is unclear which variant is preferable, thus both were provided.

Regardless of the choice of normalisation, the spread of drag and lift values covers a range that would
be considered large in the automotive community, i.e. a drag coefficient of 0.24 would be considered a
highly aerodynamically optimised vehicle, whereas Cd = 0.32 would be considered inefficient. Thus
from a practical point of view, the range of force coefficients indicates that the geometry variants
have created a diversity of designs representative of industrial automotive aerodynamics.

To give an initial impression of the effect of some geometry parameters on the aerodynamic force
coefficients, Fig. 29 shows some examples where particularly clear trends emerge. The drag coefficient
tends to increase with positive (nose-up) vehicle pitch, as seen in the top row of the figure. Increasing
the vehicle width correlates with increasing lift coefficient, perhaps due to growth in the surface
area of upward-facing surfaces where negative pressure coefficient dominates (e.g. bonnet and roof,
c.f. Fig. 17a). Decreasing the approach angle (i.e. moving the underfloor leading edge downwards)
is seen to increase front downforce (decrease front lift), since doing so is expected to intensify
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Figure 27: Variation of different force coefficients against geometry design using constant Aref and
Lref

Figure 28: Variation of different force coefficients against geometry design using Aref and Lref
calculated per geometry

the suction peak here. Finally, upward movement of the deck lid is associated with increased rear
downforce (reduced rear lift). This also makes sense aerodynamically: Considering the car as a lifting
body, the change reduces its effective camber, thereby reducing lift.
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Figure 29: Variation of force coefficients with selected geometry parameters over all 500 samples
in the dataset. The force coefficients (plotted in the right-hand column) are normalised with the
individual reference area of each variant. The left-hand column visualises the geometry parameter by
superimposing transparent images of the min/max range values.
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D.7.1 FLOW FIELDS

To illustrate the difference between a high drag geometry and a low drag geometry, we show a range
of post-processing outputs for two such runs (run 115 withCd = 0.340 and run 289 withCd = 0.237)
in Fig. 30. The main difference in the geometry is the length and width, where the shorter, wider
vehicle results in a larger wake and a larger drag coefficient (even when non-dimensionalising for the
larger frontal area).

However, whereas these two examples show a clear difference in flow field, the differences in the flow
fields are in general much more subtle, as illustrated in Figures 31, 32, 33, 34 & 35 for runs 1 to 18.

For example the mean skin-friction in Figures 32 & 33 indicate largely similar separation patterns
despite large changes in drag coefficient (c.f. Fig. 28), which suggests a cumulative effect of smaller
drags rather than dramatic changes in flow separation from a single location. This is potentially a
useful test for the capability of ML methods to predict these smaller changes compared to a large
abrupt change in geometry and flow field.
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CD = 0.340

Run 115

Run 115

Run 115

Run 115

Run 115

(a) Skin friction coefficient, Q criterion isosurfaces
coloured with streamwise velocity and total pressure
coefficient for high drag geometry variant example

CD = 0.237

Run 289

Run 289

Run 289

Run 289

Run 289

(b) skin friction coefficient, Q criterion isosurfaces
coloured with streamwise velocity and total pressure
coefficient for low drag geometry variant example

Figure 30: Variation of flow fields for high-drag (left) and low-drag (right) designs
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Figure 31: Isosurfaces of the Q criterion (coloured by streamwise velocity) for runs 1 to 18
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Figure 32: Skin friction contours for runs 1 to 18
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Figure 33: Skin friction contours for runs 1 to 18 from rear camera angle
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Figure 34: Total pressure coefficient at y = 0 plane for runs 1 to 18
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Figure 35: Total pressure coefficient at z = 0 plane for runs 1 to 18
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E ML EVALUATION

E.1 SUMMARY

We have conducted preliminary analysis on our dataset using a modified version of one of the
state-of-the-art scientific machine learning (SciML) methods, MeshGraphNet (5) on various tasks to
illustrate the practicality of the dataset for ML evaluation. We utilize the encoder-processor-decoder
architecture in MeshGraphNets and modify the method to enable it to make time-averaged predictions
(2).

The entire drivaer dataset is split into training (60%), validation (20%), and test (20%) sets. For each
use case, the model is trained on the training set, and the checkpoint that had the best validation error
was used to obtain the inference results on the test set.

For the DrivAer dataset, using the predicted surface pressure and wall-shear stress on the 8M node
vtp surface mesh, we obtain predictions (shown in Figure 36) for the drag coefficient with a mean
absolute percentage error (MAPE) of 0.032 and a mean absolute error (MAE): 0.009. For the lift
coefficient the mean absolute error (MAE): 0.0164. The surface contours of the actual, predicted
and error for the mean pressure and wall-shear stress are shown in Figure 37. Training time is
approximately 108 hours on x8 NVidia L40s GPUs and the inference time is less than a minute on
the same hardware. Please note that these runs are preliminary and further work to optimize the
methodology and hyperparameters is on-going which will published in future papers.

(a) Drag coefficient (b) Lift coefficient

Figure 36: Actual vs predicted for the force coefficients obtained through integration of the wall-shear
stress and pressure
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(a) Mean pressure actual, prediction and error for a sample DrivAer run

(b) Mean wall-shear stress actual, prediction and error for a sample DrivAer run

Figure 37: Actual, Prediction and error for the mean pressure and wall-shear stress for a sample
DrivAer unseen geometry

41



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

F DATASHEET

F.1 MOTIVATION

• For what purpose was the dataset created? The dataset was created for the development
and testing of machine learning methods for Computational Fluid Dynamics and automotive
aerodynamics. It addresses current limitations of a lack of high-fidelity training data in this
field.

• Who created the dataset (e.g., which team, research group) and on behalf of which en-
tity (e.g., company, institution, organization)? The dataset was created by a collaboration
between industry, software vendors and cloud computing providers listed in the author list.

• Who funded the creation of the dataset? Upstream CFD received partial funding from
the German Federal Ministry of Education and Research and the European Union via the
EXASIM project (as acknowledged in the main paper). Otherwise, funding was provided
in-kind by each of the author organisations (i.e no explicit grant).

F.2 DISTRIBUTION

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset is
open to the public.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The
dataset will be free to download from Amazon S3 (without the need for an AWS account).

• When will the dataset be distributed? The dataset is already available to download via
Amazon S3.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? The dataset is licensed under
CC-BY-SA license.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

F.3 MAINTENANCE

• Who will be supporting/hosting/maintaining the dataset? AWS are hosting the dataset
on Amazon S3.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
The owner/curator/manager of the dataset can be contacted at xxxx (these are also provided
in the dataset README and paper).

• Is there an erratum? No, but if we find errors we will provide updates to the dataset and
note any changes in the dataset README.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the dataset will be updated to address errors or provide extra functionality.
The README of the dataset will be updated to reflect this.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? N/A

• Will older versions of the dataset continue to be supported/hosted/maintained? Yes, if
there are substantial changes or additions, older versions will still be kept.

• If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? We will consider this on a case by case basis and they can contact
xxxxxxx to discuss this further.

42



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

F.4 COMPOSITION

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Each instance represents the aerodynamic field of a different synthetic,
generic car geometry of “notchback” type.

• How many instances are there in total (of each type, if appropriate)? There are 500
different instances in total.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic coverage)? If so, please
describe how this representativeness was validated/verified. If it is not representative of
the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable). Each instance has been generated
synthetically in a parametric fashion. The dataset is a sample of 500 possible instances. The
chosen Design Of Experiments algorithm gives a uniform coverage of the sample space,
hence the dataset is representative of the larger set by design.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description. The “raw” aerodynamic field
data, derived quantities (e.g. aerodynamic forces), data reductions (e.g. slices through the
volume) and visualisations (image files). Full details are given in Sect. D.

• Is there a label or target associated with each instance? If so, please provide a descrip-
tion. Each instance is numerically indexed.

• Is any information missing from individual instances? If so, please provide a descrip-
tion, explaining why this information is missing (e.g., because it was unavailable). This
does not include intentionally removed information, but might include, e.g., redacted
text. No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
N/A.

• Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.
Users are free to decide their own data splits.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description. Statistical noise is inherent to time-averaged data with finite sample
sizes. The statistical error magnitude is quantified for the aerodynamic forces and moments.
The run-time of each simulation has been optimised to give a similar statistical error
magnitude for drag for all cases.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a)
are there guarantees that they will exist, and remain constant, over time; b) are there
official archival versions of the complete dataset (i.e., including the external resources
as they existed at the time the dataset was created); c) are there any restrictions (e.g.,
licenses, fees) associated with any of the external resources that might apply to a dataset
consumer? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate. The dataset
is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why. No.

If the dataset does not relate to people, you may skip the remaining questions in this section.
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• Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their
respective distributions within the dataset.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.

• Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.

F.5 COLLECTION PROCESS

• How was the data associated with each instance acquired? The data was obtained through
Computational Fluid Dynamics (CFD) simulations and then post-processed to extract only
the required quanitities.

• What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated? The data was created synthetically
using automated software processes. The CFD methodology was validated by comparison
to wind tunnel experiment. The processes and their validation is detailed extensively in this
document.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? The parametric design
space has been sampled using a Modified Extensible Lattice Sequence algorithm.

• Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)? The
data generation was carried out by the authors of this document, whose salaries were paid
by their employers (stated in the author list).

• Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created. The data was generated between December 2023 and May 2024.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation. An ethical review
process was not considered necessary.

F.6 PREPROCESSING/CLEANING/LABELING

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip
the remaining questions in this section. No.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.

• Is the software that was used to preprocess/clean/label the data available? If so, please
provide a link or other access point.

F.7 USES

• Has the dataset been used for any tasks already? Yes, limited testing with various ML
approaches has been undertaken by the author team to ensure that the data provided in the
dataset is suitable for ML training and inference.
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• Is there a repository that links to any or all papers or systems that use the dataset? No.
• What (other) tasks could the dataset be used for? In addition to ML development and

testing, the dataset could be used to explore the flow-physics around a large sample of road-
cars and the relationship between them and the resulting aerodynamic force coefficients.

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? Not to the knowledge of
the authors.

• Are there tasks for which the dataset should not be used? No.
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