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ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable success on relational
data, yet their interpretability in heterogeneous information networks (HINs) re-
mains underexplored, largely due to the absence of reliable benchmarks with
ground-truth explanations. We introduce SynHING, a synthetic HIN generation
framework that supports both graph learning and explainability research. Syn-
HING constructs synthetic graphs by extracting motifs from reference networks,
assembling them through motif-guided composition, and refining them via post-
pruning to preserve structural and statistical fidelity. Importantly, SynHING is not
limited to the extracted motifs: users can incorporate their own motifs of interest,
which the framework integrates seamlessly into the generated graphs. This flexi-
bility enables controlled and reproducible studies across diverse domains. Exper-
iments on IMDB, Recipe, ACM, and DBLP demonstrate that SynHING produces
realistic and semantically consistent HINs, while providing a principled testbed
for evaluating Heterogeneous GNNs (HGNNs) and explanation methods. To our
knowledge, SynHING is the first framework to enable user-defined, motif-aware
HIN synthesis, establishing a foundation for interpretable and reproducible re-
search in heterogeneous graph learning.

1 INTRODUCTION

Graph Neural Networks (GNNs) have advanced state-of-the-art performance across diverse graph-
based tasks, including community detection, molecular property prediction, and recommendation
systems (Shchur & Günnemann, 2019; Stokes et al., 2020; Cui et al., 2020). Among them, heteroge-
neous information networks (HINs)—graphs with multiple node and edge types—offer a rich mod-
eling paradigm for complex relational data. This has spurred rapid progress in heterogeneous GNNs
(HGNNs), exemplified by HAN (Wang et al., 2019a), MAGNN (Fu et al., 2020), and transformer-
based variants (Yun et al., 2020; Hu et al., 2020b).

Alongside predictive performance, there is a growing demand to interpret GNN decision-making.
For homogeneous graphs, synthetic benchmarks with planted structures and ground-truth explana-
tions have been instrumental in advancing explainability (Dwivedi et al., 2020; Abbe, 2017; Ying
et al., 2019). In contrast, heterogeneous settings lack comparable resources. Existing graph genera-
tors often rely on random wiring or oversimplified templates, producing graphs that are semantically
inconsistent and ill-suited for benchmarking. Moreover, most approaches constrain the structural
patterns that can be generated, limiting flexibility for systematic explainability studies.

We propose SynHING, a synthetic HIN generation framework designed to support both graph learn-
ing and explainability research. SynHING builds synthetic graphs by extracting motifs from a
reference HIN, assembling them through motif-guided composition, and refining the results with
post-pruning to preserve structural and statistical fidelity. Unlike prior approaches, SynHING is not
limited to the extracted motifs: users can specify motifs of interest, which the framework integrates
seamlessly into the generated graphs. This design makes SynHING broadly adaptable across do-
mains and tasks, while enabling controlled and reproducible evaluation of HGNNs and explanation
methods.

1
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We validate SynHING on four widely used HINs: IMDB1, Recipe (Majumder et al., 2019), ACM
(Wang et al., 2019a), and DBLP2, spanning entertainment, e-commerce, and scholarly communi-
cation. Experiments show that SynHING generates semantically coherent and structurally realistic
graphs, serving as robust testbeds for both HGNN models and explanation techniques. To our knowl-
edge, SynHING is the first framework to enable controlled, user-defined motif integration in HIN
synthesis, providing a foundation for interpretable and reproducible research in heterogeneous graph
learning.3

2 RELATED WORKS

2.1 SYNTHETIC GRAPH GENERATION

Synthetic data has long been central to machine learning, spanning images (Kingma & Welling,
2013; Frid-Adar et al., 2018), tabular data (Bowyer et al., 2011; Xu et al., 2019; Figueira & Vaz,
2022), and music (Dong et al., 2018). With the rise of GNNs, synthetic graphs have become equally
important for testing robustness and generalization. Classical generators such as the Stochastic
Block Model (SBM) (Snijders & Nowicki, 1997), Degree-Corrected SBM (DC-SBM) (Abbe, 2017),
and GraphWorld (Palowitch et al., 2022) primarily focus on homogeneous graphs, often neglecting
semantic heterogeneity. While tools like GNNExplainer (Ying et al., 2019) are often validated on
simple synthetic motifs, no existing generator creates HINs with semantic structure and controllable
explanatory units. SynHING fills this gap by enabling the generation of semantically consistent
HINs with user-defined motifs that support systematic explainability studies.

2.2 EXPLANATION TECHNIQUES FOR GRAPH NEURAL NETWORKS

Explainability is key to building trustworthy machine learning systems. For GNNs, existing meth-
ods can be grouped into two categories: (i) inherently interpretable models, such as ProtGNN (Dai
& Wang, 2021), which embed explanation mechanisms directly into the model; and (ii) post-hoc ex-
plainers, which identify important subgraphs (Luo et al., 2020; Yuan et al., 2021) or features (Ying
et al., 2019) after training. Despite rapid progress, most evaluations still rely on homogeneous syn-
thetic graphs with overly simplistic motifs (e.g., grids, houses) (Ying et al., 2019), limiting their
ability to capture the complexity of real-world settings. Recent work has begun to explore explain-
ability in heterogeneous contexts (Li et al., 2023; Lv et al., 2023), but the absence of principled
synthetic HINs with controllable motifs has prevented rigorous benchmarking. SynHING directly
addresses this gap by offering a flexible testbed tailored for heterogeneous explainability research.

2.3 GRAPH DATASETS WITH GROUND-TRUTH EXPLANATIONS

Graph explanation methods are commonly evaluated on molecular datasets, such as MUTAG (Deb-
nath et al., 1991), where functional groups serve as ground-truth explanations, or on synthetic bench-
marks using simple generative models (e.g., Barabási–Albert, trees) (Ying et al., 2019). While
useful, these datasets are homogeneous and structurally simple, failing to represent the semantic
richness and type diversity of real-world heterogeneous graphs. In contrast, SynHING provides a
framework that not only extracts motifs from real HINs but also allows users to define additional
motifs of interest. This enables synthetic graphs that remain faithful to the structural and semantic
distributions of the source data while supporting controlled, motif-level ground truths for explain-
ability evaluation.

3 PROPOSED METHOD: SYNHING

3.1 PRELIMINARIES

HINs, also called heterogeneous graphs, consist of multiple node and edge types, which can be
defined as a graph G = (V, E ,Φ,Ψ), where V and E are the set of nodes and edges, respectively.

1https://www.kaggle.com/datasets/karrrimba/movie-metadatacsv
2http://web.cs.ucla.edu/˜yzsun/data/
3Code will be released upon acceptance.

2

https://www.kaggle.com/datasets/karrrimba/movie-metadatacsv
http://web.cs.ucla.edu/~yzsun/data/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Each node v ∈ V has a type Φ(v) ∈ TV , and each edge e ∈ E has a type Ψ(e) ∈ TE , where TV and
TE are collections of node and edge types. The node feature matrix is denoted by Fϕ ∈ R|Vϕ|×dϕ ,
where Vϕ is the set of node with node type ϕ, i.e. Vϕ = { v ∈ V | Φ(v) = ϕ }, and dϕ is the feature
dimension of the node type ϕ. Target nodes of the graph G, denoted by Vϕ0 , are associated with
labels collected as Y ∈ Y |Vϕ0 |, where ϕ0 ∈ TV denotes the target node type.

3.2 OVERVIEW OF SYNHING

Figure 1: SynHING

We propose SynHING, a framework for generating synthetic HINs G̃ with ground-truth explana-
tions, designed to replicate the structural and statistical properties of a target graph Ĝ. SynHING
follows a structured bottom-up pipeline: (1) generating key motifs and base subgraphs, (2) merging
subgraphs within (Intra-Cluster) and across (Inter-Cluster) clusters, and (3) applying node feature
generation and post-pruning. An overview is shown in Figure 1, with further methodological details
presented in the following sections.

3.3 MAJOR MOTIF GENERATION (MMG)

Motifs capture semantically meaningful interaction patterns in heterogeneous graphs (e.g., au-
thor–paper–venue in DBLP, actor–movie–director in IMDB) and are widely regarded as natural
explanatory units. From the perspective of HGNNs, motifs define the relational structures over
which message passing and reasoning occur (Wang et al., 2019b), making them suitable ground-
truth explanations. However, existing graph generators do not synthesize HINs with such verifiable
explanatory structures.

To address this limitation, we design the Major Motif Generation (MMG) module, which identifies
dominant, explanation-relevant patterns from real networks. These motifs form the building blocks
for controlled synthesis and serve as benchmark units for evaluating GNN explainability. Concretely,
MMG discovers meta-paths that start and end at target nodes while traversing intermediate node
types. A major motif is then constructed by selecting two anchor nodes of the target type and
connecting them through all valid meta-paths within a user-defined hop limit (Wang et al., 2019a; Fu
et al., 2020). The hop limit can be manually set or aligned with the receptive field of the downstream
HGNN (i.e., its n-hop neighborhood).

Figure 1 illustrates this process: MMG composes a motif from three one-hop meta-paths, yielding
graphlets similar to those observed in real networks (Milo et al., 2002). For example, in IMDB we
recover the G20 motif, which connects two anchors via bridging nodes, a structure also leveraged
in MEGNN (Chang et al., 2022). In addition, MMG is not limited to extraction from existing
graphs: researchers can also define custom motifs, which the framework integrates seamlessly into
the generation process. This flexibility enables SynHING to support both realistic replication of
observed patterns and task-specific benchmarking tailored to user needs.

3.4 BASE SUBGRAPH GENERATION (BSG)

We generate base subgraphs from major motifs by introducing controlled variations and structural
noise. As illustrated in Figure 1, randomness is injected into each motif, which is then augmented
with several non-target nodes, or minor nodes. These minor nodes are connected to the target nodes,
mimicking real-world graph noise while maintaining core structures.

3
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Minor nodes fulfill two key roles: they help match the degree distribution of the target nodes in
the subgraphs to that of the reference graph, modeled as Pϕ(k), where k denotes the number of
connections to nodes of type ϕ, and they serve as junction points for merging operations between
subgraphs.

Each base subgraph is created by assigning the same label to the two target nodes within a motif,
forming a labeled instance (Si, yi), where Si = (Vi, Ei) represents the subgraph structure and yi ∈
Y is its class label. The subgraphs are grouped into sets Ky for each class y ∈ Y , forming the
foundational components for assembling full graphs.

3.5 MERGE TO GENERATE HINS

Conventional methods for graph construction typically involve adding edges between nodes or sub-
graphs to create a connected graph. However, this approach can lead to the introduction of illegal
connections, making it challenging to maintain type-specific constraints and degree distributions in
heterogeneous graphs.

To overcome these limitations, we introduce a novel Merge operation that fuses two nodes into
a single node while preserving all edges from the original pair. This technique maintains local
structure, semantic validity, and degree profiles of the reference graph, allowing for the controlled
assembly of larger graphs that are consistent with both motif-level semantics and global statistics.
Formally, given a graph G and two nodes v1, v2 ∈ V , the merge of v2 into v1 is defined as:

(V ′, E ′) = Merge(v1, v2;G) (1)
= (V \ {v2}, E ∪ {(v1, u) | u ∈ N(v2), u ̸= v1}\

{(v2, u) | u ∈ N(v2)}) , (2)

where (v1, u) denoted the edge connecting node v1 and u, and N(v) is the set of neighbors of the
node v. This operation connects all neighbors of v2 to v1 (except v1 itself), then removes v2 and
its edges. We also extend this definition to multiple node pairs by writing Merge(P;G), where
P ⊆ V ×V is a set of node pairs to merge. The order of merges in P does not affect the final result.
For merging of pairs across multiple graphs G1, G2, . . . , we denote Merge(P;G1 ⊕ G2 ⊕ . . . ),
where ⊕ is the disjoint union operator. Using this operation, we construct the full synthetic HIN
through a bottom-up process of Intra- and Inter-Cluster Merges.

3.5.1 INTRA-CLUSTER MERGE (INTRA-CM)

Intra-CM iteratively merges base subgraphs with identical labels to form a cluster Cy = (Vy, Ey),
emulating the “Superstar” phenomenon observed in community networks (Albert & Barabási, 2002;
Abbe, 2017), where certain nodes accumulate many connections and emerge as influential hubs or
opinion leaders.

For each class y ∈ Y , let Ky denote the set of base subgraphs from the BSG step. These subgraphs
are sequentially merged using the Merge operator to form cluster Cy , and the process is repeated
|Y| times to construct the full set of clusters Cy | y ∈ Y . Because HINs involve multiple node
types, Intra-CM is applied separately for each type ϕ to ensure semantic consistency across the
heterogeneous network. Specifically, the initial subgraph S0 is selected from Ky to initialize the
cluster, denoted as C0

y . At each iteration i, a subgraph Si = (Vi, Ei) is chosen from the remaining
set Ky \{S0, . . . , Si− 1 }, and merged with the current cluster Ci−1

y to produce the updated cluster
Ci

y . The number of Merge operation, denoted bynϕ
intra, for each minor node type ϕ ̸= ϕ0 is sampled

from a binomial distribution:

nϕ
intra ∼ B

(
n = |Vϕ

i |, p = pϕ
)
, (3)

where pϕ controls intra-cluster density: larger pϕ increases connectivity and reduces inter-cluster
overlap. To perform merging between nodes in Si and Ci−1

y , we define the candidate pair sampling
space:

Mϕ
intra = { { vy, vi } | vy ∈ Vϕ

y , vi ∈ Vϕ
i } . (4)

This formulation ensures type-specific, semantically valid merges during cluster construction. Sub-
sequently, nϕ

intra pairs are then sampled uniformly from Mϕ
intrainto Pϕ ⊆ Mϕ

intra without replacement.

4
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(a) Intra-Cluster (b) Inter-Cluster

Figure 2: Intra-Cluster and Inter-Cluster Merges

The Merge operation is performed on the sampled pairs of all minor node types to merge the Si into
the cluster:

Ci
y = Merge

 ⋃
ϕ∈TV ,ϕ̸=ϕ0

Pϕ; Ci−1
y ⊕ Si

 , (5)

where
⋃

denotes the union over all minor node types. Through this process, we generate label-
specific clusters that preserve type constraints while reflecting heterogeneous community structures
(Figure 2a).

3.5.2 INTER-CLUSTER MERGE (INTER-CM)

Inter-CM combines clusters with distinct labels {Cy | y ∈ Y} from the Intra-CM step to create the
final synthetic heterogeneous information network (HIN) G̃. In contrast to the Intra-CM process,
this merging occurs concurrently, as the clusters are formed independently without any hierarchical
dependencies. Merges are conducted separately for each node type ϕ to ensure semantic coherence.
The candidate set of cross-cluster node pairs is defined as follows:

Mϕ
inter =

{
{v1, v2} | v1 ∈ Vϕ

y1
, v2 ∈ Vϕ

y2
, {y1, y2} ⊆ Y, y1 ̸= y2} , (6)

where Vϕ
y1
,Vϕ

y2
are nodes of type ϕ from two different clusters Cy1

, Cy2
, respectively. The number

of inter-cluster merges (nϕ
inter) is sampled as:

nϕ
inter ∼ B

n =
∑
y∈Y

|Vϕ
y |, k = qϕ

 , (7)

where qϕ is the merge probability. A higher value of qϕ increases cross-cluster merging and reduces
cluster separation. The sampled pairs Pϕ ⊆ Mϕ

inter are then merged to form a complete graph G̃:

G̃ = Merge

 ⋃
ϕ∈T ′

V

Pϕ;
⊕
y∈Y

Cy

 , (8)

where
⊕

denotes disjoint union. For multi-label graphs, merging operations are allowed across all
node types, including the target type ϕ0, i.e., T ′

V = TV . In contrast, for single-label generation, target
nodes are excluded to preserve label integrity (T ′

V = TV \ {ϕ0}). Following the Inter-CM process,
we obtain a fully connected synthetic HIN with controllable structural entanglement, governed by
intra- and inter-cluster probabilities (Figure 2b). These parameters allow researchers to study GNN
behavior under varying levels of structural entanglement and label separation.

3.6 NODE FEATURE GENERATION (NFG)

Following previous research (Palowitch et al., 2022; Tsitsulin et al., 2022), NFG generates features
for target nodes by sampling from multivariate normal distributions within clusters, specifically
N (µy, α), where the cluster center µy is drawn from a global distribution N (0, β). The feature
signal-to-noise ratio (SNR) is defined as the ratio of inter-cluster distance to intra-cluster covari-
ance, which is controlled by the parameters β and α. For multi-label target nodes, features are
derived from a joint distribution that captures overlapping label semantics. For minor nodes that
may have missing features, we use approximations by assigning features based on node IDs, types,
or simple encodings (Lv et al., 2021). This strategy ensures semantic coherence and compatibility
with lightweight node representations for subsequent models.

5
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3.7 POST-PRUNING (P-P)

P-P is an optional step that enables users to manually adjust the distributions of node types to better
reflect real-world constraints. For example, in the IMDB dataset, each movie is typically linked to no
more than three actors. During the P-P process, node degrees are restricted by predefined thresholds,
leading to the removal of excess edges. This edge removal is conducted in a priority-aware manner,
ensuring that edges within significant motifs are preserved. This approach maintains the integrity of
embedded explanations and guarantees the reliability of evaluation tasks.

3.8 COMPLEXITY AND SCALABILITY OF SYNHING

To assess the scalability of SynHING, we conducted a complexity analysis, examining each module
theoretically. The processes of MMG and BSG are independent, leading to a time complexity of
O(N) for both. The complexity of Intra-CM is O(N |Vi| + N |Ei|) or O(N), since |Vi| and |Ei|
represent the number of nodes and edges in the base subgraph, which remain constant with respect
to N . The processes in Inter-CM are analogous to those in Intra-CM, resulting in a similar time
complexity of O(N). Therefore, the overall time complexity of SynHING is dictated by the number
of motifs N , resulting in a time complexity of O(N), which highlights the scalability of the frame-
work. A comprehensive theoretical analysis can be found in Appendix A, with empirical runtime
data in Appendix B.

4 EXPERIMENTAL SETTINGS

Datasets and HGNNs. We evaluate the SynHING using synthetic graphs derived from four widely
used HIN node classification datasets: IMDB1, Recipe (Majumder et al., 2019), ACM (Wang et al.,
2019a), and DBLP2. To identify major motifs, we anchor two target nodes and connect them via
feasible meta-paths within a fixed hop limit — two hops for IMDB, Recipe, and ACM, and four
hops for DBLP (see Figure 3). For node classification, we use transductive learning, with 24%
of target nodes for training, 6% for validation, and 70% for testing, as suggested in (Lv et al.,
2021). To validate the synthetic HINs, we employ three prominent HGNNs: HGT (Hu et al., 2020b),
SimpleHGN (Lv et al., 2021), and TreeXGNN (Hong et al., 2023) as the encoders (Appendix D and
E). Additional details, including studies of minor node degrees of reference graphs, are provided in
Appendix G.

Figure 3: Graph schema and major motifs of the four heterogeneous graph datasets

5 RESULTS AND DISCUSSION

Our work focuses on generating synthetic datasets for model evaluation. To the best of our knowl-
edge, no existing approach provides synthetic HINs with explanation ground truths or suitable
benchmarks. Therefore, we designed a series of experiments for systematic validation and multi-
faceted analysis.

5.1 CLUSTER EXCLUSION CONTROLS ENABLE STRUCTURED BENCHMARKING OF HGNNS

To showcase SynHING’s capability in generating synthetic HINs with varying levels of cluster ex-
clusion, we utilize the intra-cluster merge probability p and inter-cluster merge probability q. These
parameters significantly impact the structural purity of the generated graph: higher values of p com-
bined with lower values of q result in stronger intra-cluster connectivity and weaker inter-cluster
overlap, leading to more distinctly separated clusters. Thanks to the flexible design of SynHING,
this level of exclusion can be easily adjusted. To assess the impact of exclusion levels on model

6
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(a) Macro-F1(%) (b) Fidelity

(c) p = 0.7, q = 0.4 (d) p = 0.7, q = 0.1 (e) p = 0.4, q = 0.1

Figure 4: Visualization of synthetic IMDB in different Intra-/Inter-CM probabilities. Dark blue
represents minor nodes. Others indicate target nodes with different labels.

performance, we benchmarked the HGT using synthetic IMDB datasets (Syn-IMDB) created under
various combinations of p and q, with p > q. As shown in Figure 4a, the Macro-F1 score of HGT
improves with increasing p, indicating better cluster purity, while higher q leads to increased inter-
cluster noise and diminished performance. We also visualize the generated Syn-IMDB graphs under
three configurations in Figures 4c, 4d, and 4e, highlighting the structural changes driven by the val-
ues of p and q. The results confirm that SynHING enables precise control over cluster exclusion,
aiding in the benchmarking of HGNN models. Similar trends were observed with SimpleHGN and
TreeXGNN, with detailed results in Figure 7 in Appendix F.

5.2 FIDELITY TRENDS REVEAL THE EXPLANATORY POWER OF MAJOR MOTIFS

To verify that the motifs in synthetic HINs encode essential structural patterns and yield reliable
explanatory signals, we evaluate explanation quality using fidelity-. This metric measures the aver-
age drop in predicted probability when only the features highlighted by the explanation are retained
(Ying et al., 2019; Yuan et al., 2020). As fidelity- captures the sufficiency of an explanation, it is well
aligned with our setting, where SynHING generates explanations directly rather than approximating
them. A detailed formula for fidelity can be found in Appendix C

Figure 4b shows that the overall fidelity trend is consistent with HGT’s Macro-F1 scores: synthetic
HINs with greater cluster exclusion achieve lower fidelity scores, indicating higher explanatory
sufficiency. Notably, fidelity remains stable across different values of the Intra-CM probability p
(Figure 5a). While larger p introduces additional connections beyond the motifs, the core predictive
signals continue to revolve around motif structures, confirming their central role in GNN predic-
tions. In contrast, Figure 5b demonstrates that increasing the Inter-CM probability q raises fidelity
scores, reflecting degraded sufficiency due to reduced cluster exclusion and the introduction of inter-
cluster noise. Finally, Figure 5c highlights the effect of feature quality: higher SNR leads to lower
fidelity scores, indicating that informative node features strengthen the sufficiency of motif-based
explanations when graph structure is fixed.

Overall, these findings affirm that SynHING’s motifs provide reliable ground-truth explanations that
capture essential graph patterns. At the same time, they underscore the importance of transparent
evaluation practices, as inappropriate settings (e.g., excessive inter-cluster merging) may reduce
fidelity and obscure the role of motifs in model decision-making.

5.3 ABLATION STUDIES

To assess the contribution of each module within SynHING, we conducted ablation studies by se-
quentially removing key modules in the IMDB dataset. More specifically, the Random-Motifs study

7
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(a) Intra-CM Probability (b) Inter-CM Probability (c) SNR of Node Features

Figure 5: Fidelity of major motifs under different SynHING parameter settings

Table 1: Ablation studies of SynHING. Significance levels are indicated as follows: * for p < 0.05,
** for p < 0.01, and *** for p < 0.001, compared to SynIMDB.

SynIMDB Random-Motifs Random-Merge
Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%)

HAN 82.37 ± 0.45 82.42 ± 0.52 77.21 ± 0.69*** 77.20 ± 0.81*** 37.31 ± 5.57*** 41.47 ± 4.40***
HGT 87.86 ± 0.30 87.88 ± 0.31 80.99 ± 0.55*** 80.97 ± 0.58*** 68.52 ± 3.74*** 69.11 ± 3.24***
SimpleHGN 87.60 ± 0.49 87.66 ± 0.49 83.04 ± 0.48*** 83.02 ± 0.48*** 72.77 ± 6.33*** 72.88 ± 6.30***
TreeXGNN 87.68 ± 0.35 87.70 ± 0.36 81.77 ± 1.14*** 81.73 ± 1.15*** 68.92 ± 6.57*** 69.07 ± 6.56***

involves disabling the MMG module and randomly generating motifs. The Random-Merge study
focuses on randomly merging nodes without performing Intra-/CM and Inter-CM operations. As
shown in Table 1, the performance of Random-Motifs declines markedly compared to the origi-
nal SynIMDB across all HGNNs—HAN, HGT, SimpleHGN, and TreeXGNN—with reductions of
-5.16%, -6.87%, -4.56%, and -5.91% in Macro-F1, respectively. This decrease underscores the im-
portance of the MMG module. Additionally, the performance of Random-Merge further diminishes,
with losses of -45.06%, -19.34%, -14.83%, and -18.76% in Macro-F1 for HAN, HGT, SimpleHGN,
and TreeXGNN, respectively. These results reveal consistent trends across the HGNNs and illustrate
the efficacy of the proposed Merge method for generating synthetic HINs.

5.4 SYNTHETIC GRAPH PRETRAINING LEADS TO POSITIVE TRANSFER IN REAL HIN TASKS

To investigate whether structurally similar synthetic graphs can enhance downstream learning, we
perform transfer learning experiments by pretraining on synthetic graphs and then finetuning on
their corresponding real-world counterparts. This approach is inspired by previous research indi-
cating that transfer learning without semantic alignment can lead to negative transfer (Hu et al.,
2020a; Rosenstein et al., 2005). We assess similarity from two perspectives: (i) When the synthetic
and reference graphs are both structurally and semantically aligned, we anticipate positive transfer.
(ii) Conversely, if the synthetic graphs are intentionally corrupted, we expect to see negative trans-
fer, which would impair model performance. Detailed implementation information is provided in
Appendix H.

Positive Transfer. We compare models finetuned on real graphs with and without pretraining on
their synthetic counterparts. Table 2 shows that pretraining on SynHING-generated HINs signifi-
cantly improves performance across four datasets. For instance, on IMDB, Macro-F1 improves by
up to 3% for HGT and 2% for SimpleHGN. We also observe reduced standard deviations in IMDB,
Recipe, and ACM, indicating greater model stability. These consistent gains across both HGNNs
confirm that SynHING graphs support effective and reliable transfer.

Table 2: Performance comparison: Evaluating pretraining on Syn-HINs vs. no pretraining, followed
by fine-tuning on real-world graphs. Boldface highlights improvements. Significance levels are
indicated as follows: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001.

HGT SimpleHGN
Dataset Pretrained on Macro-F1 Micro-F1 Macro-F1 Micro-F1

IMDB - 63.00 ± 1.19 67.20 ± 0.57 63.53 ± 1.36 67.36 ± 0.57
Syn-IMDB 66.10 ± 0.21*** 68.03 ± 0.53* 65.52 ± 0.50* 68.45 ± 0.53*

Recipe - 57.26 ± 1.84 56.98 ± 2.02 60.29 ± 1.31 60.15 ± 1.41
Syn-Recipe 57.82 ± 0.46 57.83 ± 0.64 60.40 ± 0.22 60.21 ± 0.23

ACM - 91.12 ± 0.76 91.00 ± 0.76 93.42 ± 0.44 93.35 ± 0.45
Syn-ACM 92.55 ± 0.20** 92.54 ± 0.21** 94.16 ± 0.43* 94.11 ± 0.44*

DBLP - 93.01 ± 0.23 93.49 ± 0.25 94.01 ± 0.24 94.46 ± 0.22
Syn-DBLP 93.88 ± 0.25*** 94.35 ± 0.23*** 94.27 ± 0.58 94.73 ± 0.56
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Negative Transfer. To simulate negative transfer, we construct malicious synthetic graphs by: (i)
Node shuffling: Randomly permuting rows in the adjacency matrix A to disrupt graph structure and
homophily. (ii) Feature shuffling: Randomly permuting rows of the feature matrix F , breaking the
correspondence between node features and labels. Table 3 reveals that manipulations significantly
degrade performance, confirming negative transfer. Feature shuffling generally has a more severe
impact, due to the disruption of input-label alignment and impairing message passing.

Table 3: HGT performance comparison: Pretraining on node- and feature-shuffled Syn-HINs, then
fine-tuning on real HINs. Boldface highlights the lowest score, and underline marks the second-
lowest. Significance levels are indicated as follows: * for p < 0.05, ** for p < 0.01, and *** for
p < 0.001.

Pretrain on SynHING Macro-F1 Micro-F1

IMDB
w/o Shuffled 66.10 ± 0.21 68.03 ± 0.53
Node Shuffled 64.54 ± 0.58*** 67.44 ± 0.59
Feature Shuffled 62.06 ± 1.28*** 63.96 ± 0.79***

Recipe
w/o Shuffled 57.82 ± 0.46 57.83 ± 0.64
Node Shuffled 47.87 ± 0.83*** 47.66 ± 0.88***
Feature Shuffled 55.46 ± 1.09** 55.55 ± 1.11**

ACM
w/o Shuffled 92.55 ± 0.20 92.54 ± 0.21
Node Shuffled 90.45 ± 0.49*** 90.45 ± 0.48***
Feature Shuffled 89.02 ± 1.54*** 89.09 ± 1.46***

DBLP
w/o Shuffled 93.88 ± 0.25 94.35 ± 0.23
Node Shuffled 93.56 ± 0.32 94.06 ± 0.30
Feature Shuffled 93.25 ± 0.29** 93.75 ± 0.30**

It is important to note that when the goal is to study explainable ground truths, synthetic graphs need
not resemble any real dataset. SynHING supports the generation of novel HINs via user-defined ma-
jor motifs, enabling controlled experiments beyond real-world constraints. To quantitatively assess
structural similarity, we also apply the Comparing Degree Distribution (CDD) metric (Darabi et al.,
2023). Results confirm that SynHING allows controlled generation of synthetic HINs with high
fidelity to real-world structural patterns. Further details are provided in Appendix G.

5.5 SYNHING SUPPORTS THE EVALUATION OF HGNN EXPLANATION METHODS

We applied our generated synthetic datasets to HGNN explainers and demonstrated that our syn-
thetic datasets can indeed be used for HGNN explanation algorithms. Further details can be found
in Appendix I. However, research on heterogeneous GNN explainers remains limited, highlighting
the need for further exploration in this area.

6 CONCLUSION

We presented SynHING, a general framework for generating synthetic HINs with controllable ex-
planatory structures. By extracting motifs from real HINs and assembling them via Intra-/Inter-CM
operations, SynHING produces large-scale graphs that preserve both structural fidelity and semantic
consistency. Crucially, the framework is not restricted to extracted motifs: users can also define
their own motifs of interest, enabling flexible and reproducible evaluation across diverse domains.
Experiments on IMDB, Recipe, ACM, and DBLP demonstrate that SynHING generates realistic
and semantically coherent graphs, while providing ground-truth motifs that serve as reliable bench-
marks for explanation methods. To our knowledge, SynHING is the first framework to support
user-defined, motif-aware HIN synthesis, addressing a fundamental gap in explainability research
for heterogeneous graphs. We hope SynHING will serve as a foundation for advancing interpretable,
reproducible, and domain-adaptive research in heterogeneous graph learning.

REPRODUCIBILITY

To ensure reproducibility, the source code and datasets are included in the supplementary materials.
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A SYNHING’S COMPLEXITY AND SCALABILITY

In this section, we theoretically analyze the complexity of the SynHING framework module by
module to demonstrate its scalability. Let N represent the motif number, determining the scale of
the generated graph. We demonstrate that the total time complexity for SynHING is O(N). For
simplicity, we omit node type in the analysis for both Intra-CM and Inter-CM, as nodes merge only
with those of the same type, making the complexity linear to the number of types. The generations
of the motif (MMG) and the base subgraph (BSG) can be parallelized, and execution time is linear
to the number of items. Therefore, the time complexity of MMG and BSG is O(N).

The complexity of Intra-CM is analyzed step-by-step as follows:

(i) Eq.(3), we determine nintra, the number of pairs to be sampled.
(ii) Eq.(4), we sample nintra nodes from Vy and Vi, and pairing them as Pintra.

(iii) Eq.(5), the merge process.
(iv) We offset the “incoming” subgraph Si by the maximum IDs of Cy (graph disjoint union).
(v) We drop the selected nodes in Vi.

(vi) We re-index the edges in Ei based on the mapping determined by Pintra.

The complexity of steps (i), (ii), and (v) is O(|Vi|). The complexity of step (iv) is O(|Vi| + |Ei|).
The complexity of step (vi) is O(|Ei|). One iteration complexity is O(|Vi| + |Ei|). There will be
(N − |Y|) iterations, making the total complexity O(N |Vi| +N |Ei|) or O(N), as |Vi| and |Ei| are
the number of nodes and edges in the base subgraph, which are constant w.r.t. N .

Following a similar process, the complexity of Inter-CM is analyzed:

(i) Eq.(6) and Eq.(7), we identify all
(|Y|

2

)
combinations of clusters and determine the number

of pairs that need to be merged for each combination.
(ii) After the pair number has been determined, we derive the node number that needs to be

merged for each cluster. We randomly select nodes from each cluster based on this number
without replacement. (iii) Merge process eq.(8).

(iii) We offset all the clusters Cy . (the graph disjoint union in eq.(8)).
(iv) We drop one of the nodes in each pair in Pinter in Vy for each cluster.
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(v) We re-index the edges in Ey for each cluster based on the mapping determined by Pinter.

The complexity of steps (iv), (v), and (vi) are O(
∑

y∈Y(|Vy| + |Ey|)), O(
∑

y∈Y |Vy|), and
O(

∑
Y |Ey|). Since

∑
y∈Y |Vy| ≤ N |Vi|,

∑
y∈Y |Ey| ≤ N |Ei|. The complexity of Inter-CM is

O(N |Vi|+N |Ei|) = O(N).

Overall, SynHING can generate large-scale HINs in a reasonable timeframe, with complexity of
O(N) where N denotes the number of motifs.

B SYNHING’S EMPRICIAL RUNTIME

To validate the theoretical linear time complexity of SynHING in Appendix A, we conducted scaling
experiments on the SynIMDB dataset by varying the number of motifs and measuring the runtime
of the core merge process.

We specifically measured only the merge stages, excluding Major Motif Generation (MMG) and
Base Subgraph Generation (BSG), as both are clearly linear in complexity—each subgraph is pro-
cessed independently in these stages.

Table 4: Merge process runtime over varying motif counts.

# Motifs IntraCM (ms) InterCM (ms) Total (ms)
20 5 8 13

200 43 20 63
2,000 408 129 539

20,000 4,116 1,230 5,347
200,000 40,878 13,678 54,556

2,000,000 417,085 161,362 578,447

Experiments were run on a machine with an Intel(R) Core(TM) i7-10700 CPU using a single pro-
cess, with no hardware acceleration or parallelism. As shown in Table 4, the runtime grows linearly
with the number of motifs. SynHING successfully processed up to 2 million motifs in under 10
minutes. Note that the IntraCM step can be parallelized across clusters, potentially achieving up to
|Y|-fold speedup.

C EVALUATION METRICS

We use Micro-F1 and Macro-F1 as evaluation metrics for node classification and fidelity for ex-
planation evaluation. Micro-F1 scoring assesses a model’s predictions across all samples, with a
tendency to emphasize the majority category. In contrast, Macro-F1 scoring equally weights each
category, promoting a balanced evaluation of data across different categories. Therefore, we mainly
use Macro-F1 as the major evaluation metric (Wang et al., 2019a; Lv et al., 2021; Hong et al., 2023).

Fidelity is a metric commonly used to evaluate the performance of the explanation model (Yuan
et al., 2021; Li et al., 2022). It measures how closely related the explanations are to the model’s
predictions. If the critical information is included in the explanation subgraph, the classification
model prediction probability should be close to the original prediction, resulting in low fidelity. We
use fidelity as the evaluation metric to support that the major motifs can be excellent explanations of
ground truths. The following are the details of the fidelity score:

Fidelity =
1

N

N∑
i=1

1

L

L∑
l=1

∥∥∥f(Gi)yl
− f(Ĝi)yl

∥∥∥ , (9)

where f(Gi)yl
and f(Ĝi)yl

denote the prediction probability of yl of the original graph Gi and
major motifs Ĝi (explanation subgraph), respectively. We denote N as the total number of target
node samples and L as the number of node labels.

D BENCHMARK HETEROGENEOUS GRAPH NEURAL NETWORKS

We used three HGNN models, each representing a different underlying concept, to validate the
synthetic graphs. The model parameters follow the recommendations of the original paper. The
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Table 5: Performance comparison of three HGNNs on real and synthetic HINs

IMDB Recipe ACM DBLP
Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%)

HGT 63.00 ± 1.19 67.20 ± 0.57 57.26 ± 1.84 56.98 ± 2.02 91.12 ± 0.76 91.00 ± 0.76 93.01 ± 0.23 93.49 ± 0.25
SimpleHGN 63.53 ± 1.36 67.36 ± 0.57 60.29 ± 1.31 60.15 ± 1.41 93.42 ± 0.44 93.35 ± 0.45 94.01 ± 0.24 94.46 ± 0.22
TreeXGNN 65.59 ± 0.89 69.28 ± 0.64 59.99 ± 0.94 59.97 ± 0.96 94.32 ± 0.54 94.29 ± 0.54 94.94 ± 0.63 95.24 ± 0.59

SynIMDB SynRecipe SynACM SynDBLP
Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%)

HGT 87.86 ± 0.30 87.88 ± 0.31 87.95 ± 1.90 87.95 ± 1.88 99.45 ± 0.30 99.46 ± 0.30 97.97 ± 0.75 97.99 ± 0.74
SimpleHGN 87.60 ± 0.49 87.66 ± 0.49 87.82 ± 0.23 87.83 ± 0.23 99.41 ± 0.37 99.41 ± 0.37 98.48 ± 0.41 98.48 ± 0.41
TreeXGNN 87.68 ± 0.35 87.70 ± 0.36 86.68 ± 0.37 86.72 ± 0.36 99.12 ± 0.67 99.12 ± 0.66 99.18 ± 0.18 99.18 ± 0.18

following briefly introduces the models: (1) HGT (Hu et al., 2020b) adopts a transformer-based
design for handling different node and edge types without manually defining the meta-path for the
HGNN model. (2) SimpleHGN (Lv et al., 2021) introduces the attention mechanism, projects dif-
ferent node-type features to the shared feature space, and then uses GAT as the HGNN backbone.
(3) TreeXGNN (Hong et al., 2023) leverages the decision tree-based model XGBoost to enhance
the node feature extraction, assisting the HGNN model in getting more prosperous and meaningful
information.

In order to evaluate the performance of SynHING, we utilize the transductive learning approach for
node classification tasks and randomly select 24% of the target nodes for training, 6% for validation,
and 70% for testing (Wang et al., 2019a; Lv et al., 2021; Hong et al., 2023). We repeated all
experiments five times and evaluated performance using average Micro-F1 and Macro-F1 for node
prediction and fidelity for interpretation evaluation.

E SYNTHETIC HINS WITH GROUND-TRUTH EXPLANATIONS

Figure 6: Major motifs of the four heterogeneous graph datasets

We evaluate SynHING using three HGNNs on four synthetic HINs (with Syn- in front) based on
their corresponding real-world graphs, shown in Table 5. HGNNs achieve better performance on
Macro-F1 and Micro-F1 scores for learning and inference on synthetic graphs compared to real
graphs. These improvements can be attributed to the designated major motifs in synthetic graphs,
shown in Figure 6, which provide ground-truth explanations for assessing explainability methods
and result in synthetic graphs containing purer information for graph learning. We mimic the graph
properties of the reference graph and identify the parameters for generating the synthetic graph. This
selection ensures that the resulting synthetic graphs closely approximate the graph structure of the
referenced graphs. In addition, the degree of exclusion in SynHING can be customized for different
motifs and datasets, which will be discussed in the next subsection.

F MORE EXPERIMENTAL RESULTS

As found in Figure 4a, a similar trend is found in SimpleHGN and TreeXGNN as shown in Figure
7. It demonstrated that we can use p and q to control the exclusion of clusters within the generating
synthetic HIN and benchmark the ability of HGNN graph learning. This allows us to control graph
generation with high flexibility.

Figure 8a illustrates the performance changes of HGT, Simple-HGN, and TreeXGNN at different
SNRs of the features. It shows that as the SNR increases, the disparity between node features in
different groups widens, and it is easier to discriminate between different clusters only based on
their features. Consequently, when the classification model makes predictions, it can leverage this
additional information in the nodes, leading to improved performance in classification tasks.

We also explored the impact of adjusting the number of major motifs shown in Figure 8b, which
directly affects the number of target nodes and the size of the synthetic graph dataset. It is important
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(a) Macro-F1(%) using SimpleHGN (b) Fidelity using SimpleHGN

(c) Macro-F1 using TreeXGNN(%) (d) Fidelity using TreeXGNN

Figure 7: Macro-F1 and Fidelity of synthetic IMDB in different Intra-/Inter-Cluster probabilities
across different HGNNs

(a) Macro-F1 w.r.t. SNR (b) Macro-F1 w.r.t. #Motifs (c) Fidelity w.r.t. #Motifs

Figure 8: Macro-F1 and Fidelity of synthetic IMDB in different SNR and number of motifs

to note that since we kept the hyperparameter settings of the classification model consistent with the
original values, rather than finetuning them for each synthetic graph dataset, reducing the dataset
size to half caused the model to become overfitted, resulting in a decline in performance.

The fidelity results of HGT, Simple-HGN, and TreeXGNN for varying numbers of major motifs are
shown in Figure 8c. When adjusting the number of motifs, which corresponds to the size of the
graph, the fidelity performance remains stable.

G APPROXIMATING REFERENCED GRAPH

Users can customize the synthetic graph for various scenarios using the parameters of SynHING.
including the number of major motifs N , the number of clusters |Y|, the Intra-CM probabilities
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pϕ, the Inter-CM probabilities qϕ, and the signal-to-noise ratio (SNR) of features α/β. For example,
adjusting the Intra-CM probability pϕ and the Inter-CM probability qϕ results in changes in the
exclusion of clusters and the difficulty of the synthetic graph. However, these parameters can also
be directly determined by the referenced graph Ĝ. Although some statistical properties and network
schema have been used for generating graphs, it is further demonstrated that the synthetic graph
can approximate the referenced graph more closely by adjusting these parameters: The number of
major motifs N can be set as half of the number of target nodes in Ĝ, i.e., N = 1

2 |V̂
ϕ0 |, since each

motif contains exactly two target nodes. The number of clusters can be determined by the number
of labels |Ŷ| in Ĝ. The SNR of features α/β can adjust the difficulty of the task on G̃, or users can
determine the means and variances of clusters of features by maximum likelihood estimation.

The Intra-/Inter-CM probabilities pϕ, qϕ for minor node type ϕ ̸= ϕ0 control the exclusion of clus-
ters, the degree distributions of source nodes, and their counts in the resulting graph G̃. For instance,
in Figure 9, we observe the node degree distributions for minor node types in both real-world IMDB
and SynIMDB, with p = 0.7 and q = 0.3. In contrast, Figure 10 compares these distributions with
SynIMDB using different probabilities: p = 0.9, q = 0.8, and p = 0.2, q = 0.1. As depicted,
improper selection of p and q can lead to notable deviations in the degree distribution of minor node
types.

Figure 9: Degree distributions of minor node types in IMDB and SynIMDB

Figure 10: Comparison of degree distribution deviations in SynIMDB with varying Intra-/Inter-CM
probabilities

We further applied a statistical-based method, Comparing Degree Distribution (CDD) (Darabi et al.,
2023), to measure the structure similarity between real and synthetic graphs. The CDD value ranges
between 0 and 1, with 1 indicating that the distribution of the two structures is the same. We applied
the settings as Figure 9 and Figure 10 for structure similarity analysis. Table 6 indicates that the
generated SynIMDB can be controlled by the Intra-CM/Inter-CM ratio that influences the similarity
with real IMDB. When p=0.7 and q=0.3, Macro-CDD and Micro-CDD are 0.8545 and 0.8279,
respectively, which is the most similar to the real IMDB compared to the other two settings. This
result highlights the effectiveness of SynHING in regulating the generation of synthetic HINs.

Table 6: Comparing degree distribution (CDD) between IMDB and SynIMDB with varying Intra-
/Inter-CM probabilities

Intra-CM (p), Inter-CM (q) Macro-CDD Micro-CDD
p=0.7, q=0.3 0.8545 0.8279
p=0.9, q=0.8 0.7636 0.7612
p=0.2, q=0.1 0.7597 0.7354
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H PRETRAINING AND FINETUNING

In this study, we employ synthetic graphs for pretraining. Models are pretrained based on the recom-
mended settings from their respective original papers, with early stopping applied after 30 epochs
without validation set improvement. For finetuning, the weights of the HGNN backbone, exclud-
ing the adapter layer that maps the heterogeneous features into shared space, are inherited from the
pre-trained model. We note that the weights of the backbone and adapter are trained using different
learning rates, as the results are sensitive to the learning rate. For instance, while finetuning from
pretrained weights, a lower learning rate for the backbone and a higher learning rate for the adapter
generally yield better results, whereas a higher learning rate for the backbone and a lower learning
rate for the adapter generally leads to better performance when learning from scratch. Consequently,
we conduct a grid search for learning rates in both scenarios, as presented in Tables 2 and 3. For the
learning rate of the backbone, we try values of { 10−3, 10−4 }. For that of the adapter, we try values
of { 1, 5 } × { 10−2, 10−3, 10−4 }.

I IMPLEMENTED ON HGNN EXPLAINER

We utilized synthetic ACM and DBLP datasets and input them into the xPath framework (Li et al.,
2023). The synthetic IMDB dataset is excluded from this experiment as the corresponding dataset
will be a multiple-choice dataset, which is not supported by xPath. The recipe dataset is not used in
xPath, so it will not be discussed here. We utilized xPath’s default parameters, including the HGNN
encoder and explainer. We followed the instructions in xPath, which involved two main steps: (1)
Training the HGNN and (2) Generating explanations.

We used HGT as our backbone prediction model. During the training stage, it can effectively
converge and achieve solid performance (Macro-F1=99.42%, Micro-F1=99.43%) and (Macro-
F1=80.06%, Micro-F1=80.81%) on SynACM and SynDBLP, respectively. During the explanation
stage, xPath can successfully generate an explanation subgraph with decent accuracy fidelity, and
probability fidelity, Facc and Fprob (Yuan et al., 2020): Facc=0.15665, Fprob=0.15297 on SynACM
and Facc=0.16935, Fprob=0.08701 on SynDBLP, both presenting quite reasonable scores. The
above preliminary results show that our generated synthetic datasets can indeed be used to evaluate
HGNN explanation algorithms. This warrants a more complete further exploration in future work.

J COMPUTING RESOURCES

In our experiments, GNN learning utilized an NVIDIA RTX 3060, with fitting a GNN on a het-
erogeneous information network (HIN) taking under an hour. Graph generation algorithms were
executed on a CPU (Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz) with 62GB of RAM, with each
graph requiring less than an hour to generate.

K USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized for language polishing and manuscript editing. The
authors independently designed and conducted all technical content, theoretical results, and experi-
ments.
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