RETRIEVAL AUGMENTED IMPUTATION USING DATA
LLAKE TABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Data imputation is an essential problem in many data science applications. Exist-
ing methods often struggle to impute missing values in scenarios where there is a
lack of sufficient data redundancy. In this paper, leveraging large language mod-
els (LLMs) and data lakes, we propose a novel approach for retrieval-augmented
imputation called RAI, utilizing fine-grained tuple-level retrieval instead of tra-
ditional coarse-grained table-based retrieval. RAI addresses the challenges of re-
trieving relevant tuples for missing value imputation from a data lake, where tuples
have heterogeneous attributes, diverse values, and missing values. Rather than
simply searching for similar tables, RAI employs a tuple encoder to learn mean-
ingful representations for capturing tuple similarities and differences, enabling ef-
fective identification of candidate tuples. The retrieved results are further refined
by a tuple reranker. We also introduce a new benchmark, mvBench, to advance
further research. We conduct extensive experiments, demonstrating that RAI sig-
nificantly outperforms state-of-the-art table-based retrieval-augmented imputation
methods by 10.7%.

1 INTRODUCTION

Data quality is crucial for effective data analysis, with missing values being a common issue (Abed-
jan et al., 2016). These arise from reasons including undefined values, collection errors, and errors in
SQL joins while merging datasets. Excessive missing values can significantly degrade the reliability
of downstream applications (Chai et al. 2023) and decision-making processes (Luo et al.| [2020).
Therefore, numerous efforts have been made to address the problem of missing values (Abiteboul
et al., [1995; Jerez et al.| 2010; Mahdavi & Abedjan, 2020). We can classify existing solutions into
two categories: leveraging data redundancy in the table itself or leveraging external knowledge, as
shown in Table[Tl

Leveraging Data Redundancy. Most existing solutions fall into this category. The presence of
repeating or similar data within the table enables these methods to extract patterns, dependencies,
and relationships, facilitating missing value imputation. However, there is no one-size-fits-all so-
lution for imputation, as different methods are tailored to different scenarios and types of missing
values. For instance, this category is especially effective for continuous numerical data because the
imputation heavily depends on the context within the table itself.

Nevertheless, these methods often fall short in scenarios that lack sufficient data redundancy. For
example, small or sparse datasets, such as web tables, typically do not have enough similar data
points to infer missing values. This challenge is further amplified in cases where each row contains
highly diverse or unique information, making it difficult to apply patterns from one part of the table
to another. Therefore, there is a growing need for methods that leverage external or domain-specific
knowledge to compensate for the lack of data redundancy.

Leveraging External Knowledge. LLMs have emerged as a promising approach by utilizing their
vast internal knowledge (Deng et al.| 2022} L1 et al., [2023). However, LLMs can suffer from issues
like hallucinations and a lack of interpretability, making it difficult for users to trust and understand
the imputed values. A potential solution to these challenges is Retrieval-Augmented Generation
(RAG), which enhances LLMs by incorporating external data sources, offering more grounded and
reliable imputation.

Table 1: A summary of imputation methods. ~— ___________________________

I plete tuple
Type Category Existing Work List of living former members of the U.S. HOR
. FD (fqnctlonal dependenpy) [Representative] State | District | Party l Birth Date l
Integrity (Abiteboul et al.|[1995), l Bob Riley l AEDoTa | NA l NA | NA
Leverage Constraint CFD (Bohannon et al.[[2007),
Data Redundancy RFD (Breve et al.[[2022) o1 .
in Table Itself Statistical Mean (Farhangfar et al.j2007], tables in the data lake
Methods KNNI (Altman]| 1992}, T1: List of Members of the U.S. HOR in the 107th Congress
i CDI (Jerez et al.[[2010) Rank | Representative | Party | District | Seniority Date
MissFI (Stekhoven & Biihimann][2012}, 328 Bob Riley R AL-3 | January 3, 1997
Machine MICE (Royston & White|2011}, } s
Learning Baran (Mahdavi & Abedjan|[2020), Bill Shuster R PA-09 May 15, 2001

HoloClean (Rekatsinas et al.{[2017)

VAET (McCoy et al 018}, T2: List of Governors of Alabama_Living Former Governors

Le]?;:})n GAIN (Yoon et al.{|2018], Governor Term of office Date of Birth
g DataWig (Biessmann et al.[[2019) Bob Riley 2003-2011 | October 3, 1944 (age 69) 10+
Fine-Tuning
LLMs TURL (Deng et al.}2022), T3: United States Gubernatorial Elections, 2002
Leverage Table-GPT (L1 et al.|[2023) Stat Incumbent Pa OBOoNeHE
External Knowledge In-Context Learning = = o) - __Dpponer 5
GPT (Narayan et al.|[2022} Alabama | Don Siegelman | Democratic | Bob Riley (Republican) 49.2%

RAG Table-based Retrieval N >

for LLMs RATA (Glass et al.|[2023)

Tuple-based Refrieval . L. . .
Our Proposal: RAI Figure 1: Example of missing value imputation

utilizing external knowledge.

Challenges of RAG for Missing Value Imputation. Despite the potential of RAG for data imputa-
tion, current methods face several limitations.

(C1) The precision of retrieval and imputation. Existing methods, e.g., RATA (Glass et al., |2023)),
often operate at a coarse granularity by indexing and retrieving entire tables rather than fine-grained
tuples. However, in practice, imputing missing values for a single tuple often requires information
from only a few relevant tuples, which may be scattered across different tables in a data lake.

Figure [I]illustrates this, where filling in the missing “district”, “party”, and “birth date” values for
the incomplete tuple requires gathering specific facts from multiple tables. Moreover, even when
a relevant table is retrieved, precisely locating the useful tuples is still necessary. In the example,
table T1 contains 400+ tuples, but only the matching “Bob Riley” tuple provides the information
needed. Our experiments show that inputting excessive irrelevant information can actually degrade
the imputation model’s performance.

(C2) Handling heterogeneous data. Data lakes often contain heterogeneous data sources with vary-
ing schemas, missing values, and textual representations. For example, in Figure E], T1, T2, and
T3 have schema heterogeneity, with the attributes “Representative”, “Governor”, and “Incumbent”
having the same semantic meaning. The tables also contain missing values, e.g., “Rank” in T1.
Furthermore, “R” in T1 and “Republican” in T3 illustrate variations in textual representations. This
heterogeneity challenges retrieval mechanisms in aligning and comparing tuples for imputation.

Contribution. We introduce a novel approach for RAG-based missing value imputation at the tuple
level within a data lake. Our main contributions can be summarized as follows:

* We employ contrastive learning and synthesized training data to learn tuple embeddings
that capture similarities across heterogeneous data. This approach enables efficient simi-
larity searches among tuples with diverse schemas and values, addressing the challenge of
handling heterogeneous data (Challenge 1).

* We introduce RAI, a tuple-level retrieval-augmented framework that retrieves the top-K
relevant tuples from the data lake for a given incomplete tuple, reranks them to select a
compact subset of top-k tuples, and employs LLMs for accurate and context-aware impu-
tation. By efficiently retrieving, reranking, and leveraging relevant tuples for imputation,
RATI addresses the challenge of precision in retrieval and imputation (Challenge 2).

* We propose a large-scale benchmark, mvBench, with 15,143 incomplete tuples, 4.23 mil-
lion tuples within the data lake. For each incomplete tuple, the relevant tuples are labeled
manually, enabling a fine-grained evaluation of RAG-based data imputation.

* We conduct extensive experiments on mvBench and compare RAI with thirteen baseline
methods to showcase its effectiveness in imputing missing values in small tables. Our
results indicate that RAI significantly outperforms state-of-the-art table-based retrieval-
augmented imputation methods by 10.7%. Our code and data are open—source{ﬂ

'https://anonymous.4open.science/r/Retrieval_Augmented_Imputation-D376

https://anonymous.4open.science/r/Retrieval_Augmented_Imputation-D376

2 SOLUTION OVERVIEW

2.1 PROBLEM STATEMENT

A data lake L = {D1, Ds,..., Dy} is a collection of k tables, each of which may have a dis-
tinct schema. A relational table D consists of a schema, which is a set of attributes R(D) =
{4, As, ..., A,}, defining the columns of the table, a set of tuples {¢1,t2,. .., ¢y}, and a textual
caption. An incomplete tuple ¢ is a tuple that contains one or more missing values. Given an incom-
plete tuple ¢ and a data lake L, the problem of missing value imputation using data lakes involves
repairing ¢ by retrieving relevant tuples from L. The goal is to ensure that the repaired tuple ¢ closely
resembles its ground truth counterpart .

2.2 THE RAI FRAMEWORK

We adopt a Retrieve-Rerank-Reason RAG framework for data imputation, namely RAIL. An illus-
trative example is shown in Figure 2] which demonstrates how to fill in the missing team for player
Adrian Aucoin in the 2012-13 NHL season. The process is broken down as follows: Given an in-
complete tuple ¢, the Retriever initially retrieves the top-K tuples from the data lake that are most
relevant to t. In the example, the tuple ranked #1 lacks the team attribute, while the tuple ranked
#2 lists all the teams Aucoin has played for, but without specifying the time periods. Only the tuple
ranked #20, i.e., the relevant tuple, records Aucoin’s team change in the NHL in 2012. Subsequently,
the Reranker reranks these top- K tuples through a fine-grained comparison between ¢ and each re-
trieved tuple. The most relevant tuple is then elevated to rank #2 in this example. Finally, the top-k
(k = 5 in the example) retrieved tuples are then provided to the Reasoner for imputing the missing
value rationally.

To effectively implement RAI for data imputation using data lakes, we face several key challenges:

(1) Retrieving relevant tuples from heterogeneous data for impution: Existing tuple embedding
methods (Tang et al., 2021 fail to capture complex connections between an incomplete tuple and its
relevant tuples. Entity matching techniques (Wang et al., [2023} [Li et al.,|2020) are also inadequate,
as they are domain-specific, with each dataset consisting of two tables within the same domain. Thus
they cannot handle diverse and heterogeneous data in data lakes. Moreover, identifying a relevant
tuple for imputation differs from finding a matched tuple in entity matching, as in Figure |1} the
relevant tuple in T3 does not describe the same entity as the incomplete tuple.

(2) Precisely identifying relevant tuples: Previous retrieval-augmented imputation methods (Glass
et al.,|2023)) lack precision in identifying relevant tuples, hindering the imputation process and bur-
dening the reasoner.

(3) Enhancing reasoning with domain knowledge: Data imputation requires the reasoner to possess
domain knowledge and reasoning capabilities beyond simply aligning attributes and extracting val-
ues (Zhang & Balog] [2019; |Glass et al) 2023). For instance, in Figure El, understanding that the
“party” is about “Siegelman” but not “Reiley” in T3 is necessary for accurate imputation. Similarly,
in Figure[2] the reasoner must recognize that the “teams” in the second tuple describes all the teams
the player has been in and cannot be used as evidence for imputation of the team the player was on
during the 2012-2013 season.

In the following sections, we will discuss how each module in RAI is designed to address these
challenges, enabling effective data imputation using data lakes.

3 RETRIEVAL AUGMENTED IMPUTATION

3.1 RETRIEVER

One promising approach for handling heterogeneous data is to transform all tuples into embedding
vectors through a tuple encoder, enc(-). To achieve this, our basic idea is to train a tuple encoder,
enc(-), which ensures that embeddings of a tuple ¢ with missing values and its relevant tuple s from
a data lake are similar, i.e., enc(t) ~ enc(s). Conversely, embeddings of tuples irrelevant to ¢ will
be significantly distinct.

2012-13 NHL season last games
[Player [Team | Notability |
["Adrian Aucoin | Blue Jackets | Played 1108 games |

2012-13 NHL season last games
Incomplete O\ [_Player [Team | Notabilty |
Tuple t [Adrian Aucoin [NA [Played 1108 games |

Missing values being imputed

2005-2006 Chicago Blackhawks Season

' i
' : |
¢] [Paer [Pos [Ps [Pog | - | || P ‘
! (irrelevant) ‘Adrian Aucoin D 6 1 13 | | |
| #2 List of NHL players with 1000 games played | | #2 i
; i '
. ! (irrelevant [Player | Teams | Games played | | ! ' |
Retriever ! () | Adrian Aucoin__| Phoenix, Columnbus, .. | __ 1108 | | | Reranker] r Reasoner
| | P e :
2012-2013 NHL jons free agency i (t top-20) | i (ttop-5)
Data lake | #20 [Date | Payer | Newteam | Previousteam || | | #20 !
! (relevant) | [Juy1,2012] Aucoin | Biue Jackets | AvizonaCoyotes || | 1
Initial retrieved top-20 tuples (#20 is a relevant tuple) Relevant tuple is now ranked #2

Figure 2: A Running Example of the Retriever/Reranker/Reasoner Framework. (Note: for simplic-
ity, we omit the caption of the table.)

To better capture pairwise tuple relationships, we employ contrastive learning within a Siamese net-
work architecture. Despite the potential of it, there are still two main challenges. First, the hetero-
geneous nature of tuples in data lakes poses several obstacles in learning effective representations:
attribute heterogeneity due to varying schemas or formats, textual representation variance caused by
synonyms and abbreviations, and the presence of missing values complicate the learning of effective
representations and the comparison process. Furthermore, obtaining sufficient and diverse training
data is another significant challenge in learning tuple representations. Next, we will discuss how
to learn a tuple encoder with contrastive learning and how to synthesize diversified training data to
solve the above two challenges.

3.1.1 CONTRASTIVE LEARNING FOR TUPLE ENCODING.

We utilize contrastive learning within a Siamese network (Chopra et al.| 2005)), characterized by its
dual-encoder structure and shared weights (Reimers & Gurevych, [2019). Each training sample is a
pair consisting of an “anchor” tuple and either a “positive” or a “negative” tuple. A batch B consists
of training examples for N anchors, x; (i = [1, N|). For anchor z;, we construct one positive pair

. . N N Mo -
(z;,y;") and M negative pairs (z;, Y, ;) (G = [1, M]). We denote Y as Syt + > i=1Yi,)- In
the training process, we employ the in-batch negative strategy, since previous work (Karpukhin et al.,
2020) has demonstrated that increasing the number of negatives can improve retrieval performance.
We optimize the following contrastive loss function to maximize the similarity between positive
pairs while minimizing the similarity between negative pairs.

exp(sim(z;, yj))
yLEY exp(Sim(xia yk))

1N
Ez——Zlog
N X

where sim(z,y) = enc(x) - enc(y), which calculates the similarity between the embeddings of the
anchor tuple x and either the positive or negative y. We use dot product as the similarity function.

3.1.2 SYNTHESIZING TRAINING DATA.

Effectively training a tuple encoder with contrastive learning requires extensive training data. How-
ever, the lack of suitable datasets and the high cost of manual labeling (e.g. MS MARCO (Nguyen
et al., 2016))) necessitate the automatic synthesis of training data. To fill in this gap, we propose a
novel approach that employs tuple augmentation operators and a three-step process for synthesizing
training data. This approach also addresses key challenges tuple encoder faces, such as attribute
heterogeneity, diverse values, which we will demonstrate in the following.

Tuple Augmentation Operators. We first introduce tuple augmentation operators that transform a
tuple into its “equivalent” form. These systematically designed operators will be used to construct
training data that simulates the diverse and heterogeneous nature of data lakes.

Our data augmentation operators in Table [2] are designed to augment a tuple from three aspects:
caption, attribute, or value. These operators can help capture various forms of relevant tuples origi-
nating from diverse sources, enhancing flexibility and robustness in tuple retrieval and comparison.
For instance, value augmentation operators generate equivalent tuples with synonymous or missing
values, mimicking the variance in textual representations and the presence of missing values. For

specific examples of each category, please refer to the “Example” column in Table 2] Note that
our augmentation strategy deliberately avoids insertion operations to prevent excessive noise intro-
duction and uses the “replace_val” operator cautiously, only in instances where the cell contains
synonyms, which are obtained from values associated with the same entity across the dataset.

Then we explain the process of con-
structing anchor tuples and generat-
ing their corresponding positive and
negative pairs using these augmenta-
tion operators. In Appendix [D] we

Table 2: Tuple augmentation operators.

Consider a sample tuple with a caption and attribute/value pairs:
Caption: “Harrisburg, Pennsylvania, Sports”
(club: Harrisburg . . ., league: USL Soccer, venue: Skyline . . .)

. b Type Operator Example

provide examples of the training data delete_cap Harrisburg, NA, Sports
to present this process more clearly. Caption replace_cap Harrisburg, Pennsylvania, Athletic

shuffle_cap Pennsylvania, Harrisburg, Sports
Synthesizing Anchor Tuples. Attribute Shuffleatt new attribute order: (league, venue, club)
We utilize the WikiTables-TURL delete_att new attribute set: (club, venue)

_ replace_val Harrisburg, United Soccer League, . . .

dataset (Deng et al., [2022) to con Value empty_val Harrisburg, NA. Skyline

struct two types of anchor tuples: (1)
complete tuples without missing entries, enabling the model to learn the full semantic information
of tuples; and (2) tuples with 30% of significant cells (e.g., country names like “USA”) masked with
[MASK] symbol, helping the model learn the intent of imputation. We synthesize anchor tuples in
a 70/30 ratio of complete to masked tuples, which our experiments show yields superior results.

Synthesizing Positive Tuples. To create positive samples for an anchor tuple x;, we employ two
strategies: (1) augmenting x; using designed tuple augmentation operations to generate positive
tuples while maximizing the diversity; and (2) identifying tuples from other tables that share the
same subject entity with x; through entity linking, then augmenting those tuples. If the anchor tuple
contains masked cells, we ensure that the positives contain the content of a masked cell, reinforcing
the model’s ability to identify tuples that can successfully impute missing information. The latter
strategy addresses attribute heterogeneity and textual variance, simulating the common scenario
where relevant data sources vary widely. These strategies inject heterogeneity between positive and
anchor tuples, enabling the model to handle heterogeneous data for data imputation effectively.

Synthesizing Negative Tuples. We generate negative samples for each anchor tuple in two cate-
gories: easy and hard negatives. Easy negatives are randomly selected tuples from other tables, due
to the in-batch negative strategies, we do not need to construct them deliberately. Hard negatives, on
the other hand, are selected from the same table as the anchor tuple but represent different entities.
This distinction is essential as it forcing the encoder to learn more discriminative and meaningful
representations, enabling it to distinguish between similar but distinct tuples (Luo et al., [2023). All
negative samples are augmented for increasing diversity. By synthesizing both easy and hard neg-
atives, we create an informative and diversified training dataset. This dataset enables the model to
effectively recognize negative (i.e., irrelevant) tuples to a given incomplete tuple.

Training Data Summary. In summary, for our retriever, the training set comprises 282,862 anchor
tuples from 41,260 tables, and the development set includes 9,460 anchor tuples from 775 tables.
Each anchor tuple is paired with 1 positive and 7 negative tuples. Notably, our encoder, trained
on this dataset, has shown strong generalization capabilities, performing well on larger downstream
datasets that contain an even greater volume of table data.

Indexing. We employ the vector database Meta Faiss (Johnson et al., 2019) to encode all tuples
into 768-dimensional vectors using Faiss’s flat indexing system, which compresses the vectors into
fixed-size codes that are stored in an array.

3.2 RERANKER: A DESIGN SPACE EXPLORATION

After obtaining the top-K tuples from the retriever, we find that relevant tuple is often retrieved
only when K is sufficiently large (e.g., K = 100), increasing the complexity of the subsequent
reasoning. To mitigate this issue, we introduce a fine-grained reranker component. However, despite
the proven effectiveness of reranking in text retrieval, the optimal reranker for retrieval-augmented
imputation remains unclear due to the lack of comprehensive exploration. To address this gap,
we conduct an extensive investigation into the design space of reranking methods for calculating
the relevance of a retrieved tuple s from the retriever with respect to an incomplete tuple ¢t. We

Table 3: Statistics of mvBench (Tab. : Tables; Tup. : Tuples; Attrs: Attributes).

Datasets Incomplete Tuples Data Lake #-Relevant Tup. Part of #-Training
#-Tab. #-Tup #-Tab. #-Tup / #-Tup. Missing Attrs Tup.
WikiTuples (WT) 807 10,003 207,912 2,674,164 4.38 Party, Director, ... 100
Show Movie (SM) 1 30 2 19,586 1 Age Rating 6
Cricket Players (CP) 1 213 2 94,164 1.38 Batting Style, ... 20
Education (ED) 2 654 17 11,132 4 Address, Phone, ... 30
Business (BU) 1 4,243 3 1,436,951 2.62 City, ZipCode, .. 100

categorize existing methods into two main categories: fine-tuning methods and prompting methods,
as outlined in previous work (Zhu et al.| 2023).

Fine-tuned methods involve fine-tuning a language model to enhance reranking capabilities, which
can be further subdivided into scoring-based rerankings (Nogueira & Chol 2019; |Gao et al. [2021)
that compute a numerical relevance score for each (incomplete tuple ¢, retrieved tuple s) pair, and
generative relevance reranking (Nogueira et al.,2020) that outputs a “true” or “false” token, indicat-
ing the relevance between ¢ and s.

Prompting models, on the other hand, send prompts to LLMs without fine-tuning. These methods
can be classified as pointwise (Sachan et al.,|2022), which evaluates the relevance of a (incomplete
tuple ¢, retrieved tuple s) pair individually; listwise (Sun et al.,[2023;Ma et al.||2023)), which assesses
and ranks an entire list of retrieved tuples (s1, So . . ., si) collectively; and pairwise (Qin et al.|[2023)),
which compares a set of pairs (incomplete tuple ¢, retrieved tuple s;) to ascertain which s; is more
relevant to ¢.

Previous research (Sun et al., [2023} Ma et al., 2023) has indicated that the pointwise method per-
forms poorly compared to listwise and pairwise methods. Therefore, we focus on the remaining
methods, choosing the most widely recognized model framework for each. To our knowledge, this
is the first study on using prompting methods for reranking in tuple retrieval. Our empirical results
show that fine-tuned generative relevance reranking model performs best when trained on a dataset
of no more than 100 incomplete tuples. Next, we will discuss the best-performing model, while the
other models and experimental results are discussed in Section 4]

Our Default Reranker. Following the generative relevance reranking approach (Nogueira et al.
2020), we construct K pairs of an incomplete tuple ¢; and its top-K retrieved tuples from retriever.
Each pair is serialized and concatenated into a sequence, which is then input into a seq2seq model,
typically a T5-base model (Raffel et al., 2020a). The model outputs a single token, and a softmax
function is applied to the logits associated with the “true” and “false” tokens to generate a relevance
score, thus obtaining the likelihood of a retrieved tuple being relevant to the anchor. We then order
the top- K retrieved tuples based on these scores to rank their relevance and get top-k reranked tuples.

3.3 REASONER

After obtaining the top-k reranked results, the process proceeds to the crucial data imputation stage.
We leverage LLMs to perform the final reasoning step, using structured prompts to guide them in
generating the desired outputs. The template we used and example of the reasoning process are
provided in the Appendix |C| Note that when an incomplete tuple contains multiple missing values,
imputation can be performed as long as relevant tuples for filling those missing values are retrieved,
as demonstrated in the example.

4 EXPERIMENT

Our experiments aim to answer three key questions: (1) How does RAI compare to other methods
in terms of end-to-end imputation performance? (Section[4.3) (2) How effectiveness of our retriever
(Section ? (3) Which reranker is most suitable for data imputation to explore the factors influ-
encing RAI (Sectionf.5)?

4.1 DATASET

Although existing datasets (Mei et al.||2021; Mahdavi & Abedjan, 2020; |Glass et al.,|2023) for data
imputation provide missing data and their corresponding ground truth, they mostly lack: (1) large

data lakes containing massive tables to assist in filling missing values, and (2) labeled relevant tuples
or tables for imputation. To address these limitations, we introduce mvBench, a large-scale bench-
mark with 15,143 incomplete tuples and 4.23 million tuples from the data lake for missing value
imputation. We also provide relevant tuples annotated by human experts for each incomplete tuple
to enable a fine-grained evaluation of the retrieval module. Our benchmark focuses on challenging
scenarios that require external sources for imputation, which is not well addressed by existing work
that typically rely on the inherent data redundancy within the table. By including these scenarios,
we demonstrate the effectiveness and adaptation of our tuple-level RAG approach. The detailed
construction of datasets is presented in Appendix [

mvBench comprises five datasets collected from real-world scenarios, varying in scales, domains,
and sources. Table [3|presents detailed statistics of all datasets within mvBench. For each dataset,
a subset of incomplete tuples is randomly sampled to form the training set for the reranker (see
“#-Training Tup.” column of Table 3], while the remaining serves as the test set for evaluation. Our
retriever is trained only on the synthesized data and can be directly applied to the aforementioned
datasets without additional training.

4.2 EXPERIMENTAL SETTINGS

We introduce baselines and evaluation metrics for the reasoner, retriever, and reranker components
of RAI Detailed hyperparameters and environment settings are provided in Appendix [A]

Baselines for Reasoner (Data Imputation). We compare RAI with existing imputation solutions
that leverage external knowledge beyond the table itself, including LLM with in-context learning,
LLM with BM2S5 retriever, LM with fine-tuning TURL (Deng et al.,|2022)), and table-based retrieval-
augmented imputation RATA (Glass et all [2023). As mentioned in Section [T} we focus on the
scenario where data redundancy within the table is lack, and thus do not include comparisons with
methods that primarily rely on it. For retrieval-based methods, we send the top-5 retrieved results
along with incomplete tuples to LLMs for final imputation. We run the first two baselines on our
benchmark and compare them with RAI, while the comparisons with TURL and RATA are dis-
cussed separately due to differences in their settings.

Baselines for Retriever. We compare our retriever against five baselines: (1) BM25 (Robertson
et al., |2009), (2) Contriever (Izacard et al.l 2021), and (3) DPR-scale (Lin et al., 2023), all of
which have zero-shot capabilities and excel in few-shot and zero-shot passage retrieval; (4) a BERT-
based tuple encoder with masked language modeling (MLM) where 30% of tuple cells are randomly
masked, to compare with previous works on tuple representation that only accept individual tuples
as input and adopt pre-training tasks centered around language modeling (Tang et al., 2021)); and (5)
Sudowoodo (Wang et al., [2023)), a state-of-the-art entity matching method. For each dataset, follow-
ing its original settings, we randomly select 10,000 tuples from incomplete tuples and the data lake
as the labled data, then pretrain the model for 3 epochs and finetune it for 40 epochs. After that,
Sudowoodo can encode tuples into vectors, enabling retrieval using FAISS. Although Sudowoodo
can impute missing values, it relies on redundant information within the table itself, which differs
from our scenario.

Baselines for Reranker. Our default reranker is a fine-tuned generative relevance reranking model,
and we compare it with several baselines, including fine-tuned scoring-based methods: RoBERTa-
LCE (Gao et al.| 2021) and monoBERT (Nogueira & Cho, [2019), as well as prompting methods
using GPT-3.5 with listwise (Sun et al.| [2023; [Ma et al., 2023) and pairwise reranking (Qin et al.,
2023). In Appendix [B] we provide the implementation details for those reranking methods.

Evaluation Metrics. We evaluate the end-to-end performance of RAI for data imputation using
Exact Match (EM) Accuracy(lzacard & Grave} [2020), which considers a generated value correct if
it matches any acceptable answer after normalization. The performance of the retriever and reranker
are assessed using recall@K and success @K respectively.

4.3 EVALUATION FOR DATA IMPUTATION

Main Results. Table[d]shows that RAI significantly improves imputation accuracy over using LLMs
alone. LLMs often produce sub-optimal results due to limited accuracy and uncertainty in their

stored knowledge, even within the Wikipedia domain. In specific domains like Business and Educa-
tion, both GPT-3.5 and GPT-4 struggle, with accuracies as low as 0.017 and 0.128 for GPT-3.5, and
0.598 and 0.114 for GPT-4, respectively. In contrast, RAI demonstrates markedly superior perfor-
mance by integrating advanced reasoning capabilities of LLMs with rich knowledge from retrieved
tuples. Excluding outlier results from the Business and Education datasets, the average improve-
ments for RAI over GPT-3.5 and GPT-4 are 28.00% and 13.84%, respectively.

The results also highlight Table 4: Experimental results of data imputation.

the importance of an effec- ~Reasoner Retriever WT SM ED CP BU
tive retriever. BM25 per- w/o 0.715 0875 0.017 089 0.128
forms worse than RAIl on GPT-3.5 w/tuples(BM25) 0.577 0.792 0.894 0.889 0.983
most datasets, except for w/ tuples(RAI) 0.866 0.875 0.976 0.964 0.98
Business, where high lex- w/o 0.752 0.75 0.598 0.863 0.114
ical overlap favors BM?25. GPT-4 w/ tuples(BM25) 0.8 0.875 0.925 0.909 0.998
(You can see BM25°s ex- w/ tuples(RA) 0,902 0.917 0.979 0.972 0.998

cellent retrieving perfor-

mance on the Business dataset in Table[5]) Using a sub-optimal retriever like BM25 can adversely
impact the data imputation accuracy of a less advanced model like GPT-3.5, as inaccurately retrieved
tuples can misguide LLMs with weaker inferencing capabilities. GPT-4 generally outperforms GPT-
3.5, except on Cricket Players and Business datasets without retrieved tuples, where both models
lack domain-specific knowledge. In this case, GPT-3.5 guesses an answer, while GPT-4 often pro-
vides no answer. However, the performance gap between GPT-3.5 and GPT-4 diminishes when
retrieval-augmented imputation is used, indicating the advantage of our framework.

Ablation Study. We conduct two additional experiments to further explore the factors influencing
the performance of our retrieval-augmented imputation framework. These experiments are detailed

in Appendix [E.T|and

The first experiment investigates how the number of retrieved tuples fed to the reasoner affects
imputation accuracy. Surprisingly, sending more retrieved tuples to the reasoner does not guarantee
better imputation accuracy due to the added complexity it introduces to the reasoning process, and
in some cases, the performance even declines. This underscores the importance of an efficient
retrieval module capable of achieving a high success rate with the smallest possible number of
retrieved tuples, supporting our decision to select only the top-5 retrieved tuples and highlighting
the importance of employing a reranker to optimize outcomes.

The second experiment investigates the impact of the number of example tuples (complete tuples
from the same table as the incomplete tuple) sent to the reasoner on imputation performance. We
hypothesize that providing more complete example tuples would enable LLMs to impute missing
values more accurately by guiding the model towards the domain and format of the missing value.
However, the results show no clear correlation between the number of example tuples and imputation
accuracy. This might be attributed to the inherent lack of redundant data in the tables and LLMs’
limited accurate knowledge for filling in missing values.

Discussion on Other Data Imputation Methods. We compare RAI to two types of data imputation
methods: TURL (fine-tuned LM) and RATA (table-based RAG).

(1) RAI v.s. TURL (fine-tuned LM): We compare RAI against TURL (Deng et al., [2022)) on the
WikiTuples dataset, which is constructed from TURL'’s test set. It is important to note that TURL’s
performance on this dataset can be considered an upper bound, as all cells to be filled appear in
TURL’s training set at least three times and relations between different entities are learned. Although
RATI achieves a slightly lower imputation accuracy compared to TURL (0.902 vs. 0.967), it is
remarkable considering that RAI’s training data size is only 1/14 of TURL’s. Moreover, TURL
requires that the ground truth of the cell to be filled must be linked to an entity in its pre-constructed
entity vocabulary, and it can only output entity id from this vocabulary. In contrast, RAI is designed
to complement LLMs and can be easily adapted to different datasets without constraints. This
flexibility and adaptability make RAI a more robust solution for data imputation tasks across various
domains and datasets.

(2) RAI (tuple-based RAG) v.s. RATA (table-based RAG): While RATA focuses on table retrieval,
our dataset requires more fine-grained retrieval at the tuple level. Additionally, RATA’s definition
of the relevant table for an incomplete table is simply a table that contains the ground truth of the

Table 5: Performance of retriever (recall rate: R; success rate: S).

Retriever WT SM ED CP BU

R@100 S@5 R@100 S@5 R@100 S@5 R@100 S@5 R@100 S@5

BM25 0327 0286 0.792 0.5 0.743 0901 0.902 0.739 1.0 1.0
Contriever 0.484 0455 0.042 0.0 0.758 0.825 0.074 0.043 0.006 0.001
DPR-scale 0497 0253 0458 0.167 0.143 0016 0.048 0.005 0.035 0.004

BERT with MLM task ~ 0.262 0.203 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sudowoodo 0.727 0506 0417 0.125 0974 0.617 0987 0.926 1.0 0.972
Retriever (ours) 0945 0.813 1.0 0875 0.992 0.923 1.0 0.989 1.0 0.999

missing value. Thus, it’s hard to adapt RATA to our mvBench. To provide a comparison, we evalu-
ate RAI on RATA’s EntiTables dataset, following the settings of RATA. RAI outperforms RATA in
both retrieval (MRR @10 of 0.552, 47.28% improvement) and imputation accuracy (0.415, 10.7%
improvement), attributed to RAI’s more refined tuple-based retrieval system. Despite requiring more
storage space than RATA (30G v.s. 14G), RAI justifies its larger footprint by providing markedly
better results. Note that the improvement in imputation accuracy is not as significant as the retrieval
performance because RATA’s definition of relevant tuples is simplistic, labeling tables containing
the missing value as relevant without considering reasonable inference. For example, in Figure[2] a
table with #2 tuple would also be labeled as relevant. However, LLMs can filter out many “relevant
tuples” that do not lead to the correct answer.

4.4 EVALUATION FOR RETRIEVER

Main Results. Our retriever, leveraging contrastive learning, outperforms baselines in both recall
and success rate across all datasets, demonstrating its superior effectiveness and generalization.
Table [S| shows that our retriever achieves the highest recall and success rates on all datasets except
Business. Notably, our retriever is pre-trained on 40k Wikipedia tables and directly applied to the
five datasets without additional training, showcasing its robustness and generalization capability.
The results also indicate that: (1) Retrievers designed for passage retrieval tasks cannot be directly
applied to our task. (2) Contrastive learning is crucial for an effective tuple encoder for retrieval.
RAT’s retriever and BERT with MLM task share the same base model and training corpus, but
the latter performs worst across all datasets, indicating its unsuitability for our scenario. (3) Our
task differs from entity matching, as tuples describing the same entity are not necessarily relevant
tuples. This is evident from the fact that our retriever significantly outperforms Sudowoodo, which
uses labeled data, especially on the WikiTuples and Show Movie datasets. In contrast, Sudowoodo
performs well on Business and Cricket Players datasets since they contains many cases where the
relevant tuple and the incomplete tuple describe the same entity (one of the cases in our scenario).

Ablation Study. To investigate the effectiveness of our synthesizing training data and identify key
factors in its construction, we conduct comparative experiments focusing on anchor tuples, pos-
itives, and negatives. The experiments reveal that combining complete anchor tuples with those
having missing values enhances retriever performance, as including missing values aligns with the
intent of data imputation, while complete anchors help the retriever learn tuple structure and overall
semantics. Additionally, including diverse positive samples with various heterogeneous attributes
from other tables significantly improves the retriever’s performance, aligning with real-world sce-
narios. Moreover, intuitively, treating anchors with the masked missing cell deleted as negatives
should help the model better understand that, if a tuple does not contain the content corresponding
to the masked missing value, it cannot serve as a relevant tuple, even if it is very similar to the in-
complete tuple. Surprisingly, adding these hard negatives leads to a significant decrease in retrieval
results, possibly due to the difficulty in accurately capturing and distinguishing cell-level semantics
when encoding tuples. In summary, the data synthesizing method for our retriever proves to be very
effective, with the combination of anchor tuples, positives, and negatives being crucial. The details

are provided in Appendix

4.5 EVALUATION FOR RERANKER

We compare fine-tuned and prompting methods for reranking. Fine-tuned methods use the complete
test set, while prompt-based rerankers are evaluated on a sampled subset due to cost limitations.
Results are presented in Table @ (a) for the complete dataset and Table E] (b) for the sampled subset.

Table 6: Performance of reranker (success rate: S).

WT SM ED CpP BU
S@1 S@5 S@1 S@5 S@1 S@5 S@1 S@5 S@1 S@5
(a) results on full test set
Initial Retrieval 0.534 0.813 0.792 0875 0.577 0923 083 0989 0.033 1.0
monoBERT 0.553 0.799 0.667 0875 0973 0984 0.622 0931 0.992 0.991
RoBERTa-LCE 0.654 0904 0.083 0417 097 0984 0902 0974 0.998 1.0
Reranker (ours) 0.754 0.926 0708 0.875 0976 0.986 0.941 1.0 0.999 1.0
(b) results on partial test set
Initial Retrieval 0.465 0.74 0.792 0.875 0.655 0975 0.852 0989 0.095 0.99
GPT-3.5 w/ Pairwise ~ 0.475 0.76 0.833 0917 0.26 096 0932 0989 0.695 0.99
GPT-3.5 w/ Listwise 0.3 0.68 0.708 0.833 0.255 0.825 0.75 0.841 0.37 0.945
Reranker (ours) 0.71 0905 0.708 0.875 0995 0995 0.932 1.0 0.995 1.0

Reranker

RAT’s reranker (generative relevance reranking) achieves the highest success@5 compared to other
fine-tuned rerankers across various datasets. Excluding Show Movie and Business datasets, RAI’s
reranker improves success@1 by 41.2% and success@5 by 7.2% compared to our retriever’s ini-
tial results. The reranker’s failure on the Show Movie dataset is due to insufficient training data
(only 6 incomplete tuples). For the Business dataset, while the initial success@1 is only 0.033,
the success@5 reaches 1.0. This is mainly because the dataset contains many tuples describing the
same company without missing information, and the retriever struggles to differentiate cell-level
semantics while the reranker can distinguish this effectively, significantly improving success@1.
Our reranker also outperforms existing prompting methods across datasets, except Show Movie.
GPT-3.5 with listwise reranking is the least effective, with success@5 lower than RAI’s initial re-
trieval results, due to its limited understanding of tabular data and the challenge of reranking a large
list of tuples directly. GPT-3.5 with pairwise reranking shows improvements, as choosing between
two options is simpler than sorting an entire list. However, it still performs poorly compared to
our reranker, since incorrectly ranking a relevant tuple lower in a pairwise comparison leaves little
chance for its position to improve in subsequent sorting.

5 RELATED WORK

Data imputation without sufficient data redundancy has gained attention with the advancement of
LLMs. While some studies have applied LLMs directly to data imputation through in-context learn-
ing (Narayan et al.,|2022) or training models to understand tabular structure and knowledge (L1 et al.},
2023} |Zhang et al., |2023), ensuring high accuracy and reliability remains a challenge. Retrieval-
Augmented Generation (RAG), introduced by (Lewis et al.| 2020), involves retrieving relevant doc-
uments from external sources to generate answers. RAG has been adopted for table-related tasks,
such as TableQA (Herzig et al.,[2021)) and table augmentation (Glass et al.,|2023)), but the utilization
of RAG in data imputation remains relatively unexplored.

Previous imputation works incorporating retrieval ideas have limitations in addressing the challenges
of imputing tables with limited redundancy. Some approaches retrieve information from the same
table (L1 et al., 2015) or use simple matching (Zhang & Balog|, 2019), still relying on the table’s
inherent redundancy and failing to handle heterogeneous data. Others utilize external sources like
master data (Fan et al., 2012; [Interlandi & Tang| 2015) or knowledge bases (Hao et al., 2017} |Chu
et al) [2015), but require expert involvement, making them unsuitable for large-scale data lakes.
RATA (Glass et al.l 2023) employs a table-level retrieval framework for data imputation, but its
coarse-grained retrieval is insufficient for accurate imputation in tables lacking data redundancy.

6 CONCLUSION

We introduce a Retrieval-Augmented Imputation Framework called RAI, specifically tailored for
addressing missing value imputation in data lakes. RAI integrates a pre-trained retriever capable of
identifying relevant tuples, a fine-tuned reranker to ascertain fine-grained relevance, and a reasoner
that applies in-context learning for the reliable imputation process. Our experiments demonstrate
that RAI features an exceptionally effective retrieval module, surpassing various established base-
lines and markedly improving upon methods that depend solely on LLMs.

10

REFERENCES

Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Thab F. Ilyas, Mourad Ouzzani,
Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting data errors: Where are we and what
needs to be done? Proc. VLDB Endow., 9(12):993-1004, 2016.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. ISBN 0-201-53771-0. URL http://webdam.inria.fr/Alice/.

Mohammad Shahmeer Ahmad, Zan Ahmad Naeem, Mohamed Eltabakh, Mourad Ouzzani, and Nan
Tang. Retclean: Retrieval-based data cleaning using foundation models and data lakes. arXiv
preprint arXiv:2303.16909, 2023.

Naomi S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician, 46:175-185, 1992. URL https://api.semanticscholar.org/
CorpusID:17002880.

Felix Biessmann, Tammo Rukat, Phillipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Tap-
tunov, Dustin Lange, and David Salinas. Datawig: Missing value imputation for tables. Journal
of Machine Learning Research, 20(175):1-6, 2019.

Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional
functional dependencies for data cleaning. In ICDE 2007, The Marmara Hotel, Istanbul, Turkey,
April 15-20, 2007, pp. 746-755, 2007. doi: 10.1109/ICDE.2007.367920.

Bernardo Breve, Loredana Caruccio, Vincenzo Deufemia, Giuseppe Polese, et al. Renuver: A
missing value imputation algorithm based on relaxed functional dependencies. In EDBT, pp.
1-52, 2022.

Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. Data management for
machine learning: A survey. IEEE Trans. Knowl. Data Eng., 35(5):4646-4667, 2023.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application
to face verification. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pp. 539-546 vol. 1, 2005. doi: 10.1109/CVPR.2005.202.

Xu Chu, John Morcos, Thab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang, and Yin Ye. Katara:
A data cleaning system powered by knowledge bases and crowdsourcing. In Proceedings of the
2015 ACM SIGMOD international conference on management of data, pp. 1247-1261, 2015.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. Turl: Table understanding through
representation learning. ACM SIGMOD Record, 51(1):33-40, 2022.

Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. Towards certain fixes with editing
rules and master data. The VLDB journal, 21:213-238, 2012.

Alireza Farhangfar, Lukasz A. Kurgan, and Witold Pedrycz. A novel framework for imputation
of missing values in databases. IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, 37(5):692-709, 2007. doi: 10.1109/TSMCA.2007.902631.

Luyu Gao, Zhuyun Dai, and Jamie Callan. Rethink training of bert rerankers in multi-stage retrieval
pipeline. In Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28-April 1, 2021, Proceedings, Part Il 43, pp. 280-286. Springer,
2021.

Michael Glass, Xueqing Wu, Ankita Rajaram Naik, Gaetano Rossiello, and Alfio Gliozzo. Retrieval-
based transformer for table augmentation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 5635—
5648, Toronto, Canada, July 2023. Association for Computational Linguistics.

Shuang Hao, Nan Tang, Guoliang Li, and Jian Li. Cleaning relations using knowledge bases. In 2017
IEEFE 33rd International Conference on Data Engineering (ICDE), pp. 933-944. IEEE, 2017.

11

http://webdam.inria.fr/Alice/
https://api.semanticscholar.org/CorpusID:17002880
https://api.semanticscholar.org/CorpusID:17002880

Jonathan Herzig, Thomas Mueller, Syrine Krichene, and Julian Eisenschlos. Open domain ques-
tion answering over tables via dense retrieval. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pp. 512-519, 2021.

Matteo Interlandi and Nan Tang. Proof positive and negative in data cleaning. In 2015 IEEE 31st
International Conference on Data Engineering, pp. 18-29. IEEE, 2015.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv:2007.01282, 2020.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv:2112.09118, 2021.

José M Jerez, Ignacio Molina, Pedro J Garcia-Laencina, Emilio Alba, Nuria Ribelles, Miguel
Martin, and Leonardo Franco. Missing data imputation using statistical and machine learning
methods in a real breast cancer problem. Artificial intelligence in medicine, 50(2):105-115, 2010.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547, 2019.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. arXiv
preprint arXiv:2310.09263, 2023.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. Deep entity matching
with pre-trained language models. Proc. VLDB Endow., 14(1), 2020. ISSN 2150-8097. doi:
10.14778/3421424.3421431. URL https://doi.org/10.14778/3421424.3421431.

Zhixu Li, Lu Qin, Hong Cheng, Xiangliang Zhang, and Xiaofang Zhou. Trip: An interactive
retrieving-inferring data imputation approach. IEEE Transactions on Knowledge and Data Engi-
neering, 27(9):2550-2563, 2015.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau
Yih, and Xilun Chen. How to train your dragon: Diverse augmentation towards generaliz-
able dense retrieval. In Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 6385-6400, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.423. URL https://aclanthology.org/2023.
findings—-emnlp.423.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172,2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. Interactive cleaning for pro-
gressive visualization through composite questions. In ICDE, pp. 733-744. IEEE, 2020.

Yuyu Luo, Yihui Zhou, Nan Tang, Guoliang Li, Chengliang Chai, and Leixian Shen. Learned data-
aware image representations of line charts for similarity search. Proc. ACM Manag. Data, 1(1):
88:1-88:29, 2023.

12

https://doi.org/10.14778/3421424.3421431
https://aclanthology.org/2023.findings-emnlp.423
https://aclanthology.org/2023.findings-emnlp.423

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. Zero-shot listwise document rerank-
ing with a large language model. arXiv preprint arXiv:2305.02156, 2023.

Mohammad Mahdavi and Ziawasch Abedjan. Baran: Effective error correction via a unified context
representation and transfer learning. Proceedings of the VLDB Endowment, 13(12):1948-1961,
2020.

John T McCoy, Steve Kroon, and Lidia Auret. Variational autoencoders for missing data imputation
with application to a simulated milling circuit. /[FAC-PapersOnLine, 51(21):141-146, 2018.

Yinan Mei, Shaoxu Song, Chenguang Fang, Haifeng Yang, Jingyun Fang, and Jiang Long. Captur-
ing semantics for imputation with pre-trained language models. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 61-72. IEEE, 2021.

Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher R€. Can foundation models wrangle
your data? Proc. VLDB Endow., 16(4):738-746, 2022. doi: 10.14778/3574245.3574258. URL
https://www.vldb.org/pvldb/voll6/p738-narayan.pdfl

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human generated machine reading comprehension dataset. choice, 2640:
660, 2016.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. Document ranking with
a pretrained sequence-to-sequence model. In Findings of the Association for Computational
Linguistics: EMNLP 2020. Association for Computational Linguistics, 2020. URL https:
//aclanthology.org/2020.findings—emnlp.63.

Zhen Qin, Rolf Jagerman, Hui, et al. Large language models are effective text rankers with pairwise
ranking prompting. arXiv:2306.17563, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020a. ISSN 1532-4435.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020b.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Theodoros Rekatsinas, Xu Chu, Thab F. Ilyas, and Christopher Ré. Holoclean: Holistic data repairs
with probabilistic inference. Proc. VLDB Endow., 10(11):1190-1201, 2017.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Patrick Royston and Ian R White. Multiple imputation by chained equations (mice): implementation
in stata. Journal of statistical software, 45:1-20, 2011.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih, Joelle
Pineau, and Luke Zettlemoyer. Improving passage retrieval with zero-shot question generation.
2022. URL https://arxiv.org/abs/2204.07496.

Daniel J Stekhoven and Peter Biihlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112-118, 2012.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,

and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents, 2023.

13

https://www.vldb.org/pvldb/vol16/p738-narayan.pdf
https://aclanthology.org/2020.findings-emnlp.63
https://aclanthology.org/2020.findings-emnlp.63
https://arxiv.org/abs/2204.07496

Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel Madden, and Mourad
Ouzzani. RPT: relational pre-trained transformer is almost all you need towards democratizing
data preparation. Proc. VLDB Endow., 14(8):1254-1261, 2021.

Runhui Wang, Yuliang Li, and Jin Wang. Sudowoodo: Contrastive self-supervised learning for
multi-purpose data integration and preparation. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE), pp. 1502-1515. IEEE, 2023.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pp. 5689-5698. PMLR, 2018.

Shuo Zhang and Krisztian Balog. Auto-completion for data cells in relational tables. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Management, pp. 761—
770, 2019.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206, 2023.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Zhicheng
Dou, and Ji-Rong Wen. Large language models for information retrieval: A survey. arXiv preprint
arXiv:2308.07107, 2023.

14

VI will provide you with 30 tuples, each indicated by) [wil provide you with 2 tuples, each indicated by
number identifier [identifier]. number identifier [identifier] and an anchor tuple:
[1]: {retrieved_tuple_1} Tuple A: {retrieved_tuple_1}

...... Tuple B: {retrieved_tuple_2}

[30]: {retrieved_tuple_30} Incomplete tuple: {incomplete tuple}

Rank these tuples based on their relevance to Which tuple is more likely to provide relevant
incomplete tuple {incomplete tuple} to infer the missing ||information that can serve as cues to infer the missing

‘content that denoted as 'N/A'" in incomplete tuple.) l/alue denoted as 'N/A' in the incomplete tuple?

v v
— [2]>[6]>[1]>...... —» Tuple A
(a) Listwise Method (b) Pairwise Method

Figure 3: Template for prompt-based reranking
A EXPERIMENTAL SETUP

For retriever, we employ BERT-base-uncased (110M) E]to initialize the model parameters. We set
the batch size to 16 and the total training epochs to 2 and take AdamW (Loshchilov & Hutter, [2017)
as the optimizer. The retriever training took approximately 7 hours on 4 RTX 4090 GPUs. We
save the model every 10,000 step and select the one with the smallest loss on the development set.
For reranker, we adopt T5-base model (Raffel et al., 2020b) and initialize it with monoT5 220M)
trained on the MS MARCO passage dataset (Nguyen et al., 2016). For reasoner, we use gpt-35-
turbo-1106 (GPT-3.5) and gpt-4-1106-preview (GPT-4) with the temperature of 0.3. All experiments
are run on an Ubuntu 22.04 server with 8 RTX 4090 GPUs.

B IMPLEMENTATION DETAILS OF RERANKING METHODS

B.1 FINE-TUNED RERANKING

For the training data of the fine-tuned reranker, we use a randomly sampled subset of incomplete
tuples from each dataset (see the “#-Training Tup.” column of Table [3). We prepare training data
consisting of (Incomplete, Positive/Negative) pairs. For each incomplete tuple, the relevant tuples
that have already been labeled are used as positive samples. Negatives are randomly selected from
the top-20 results retrieved by our retriever with additional filtering to ensure they are not relevant
to the incomplete tuple.

B.2 PROMPTING-BASED RERANKING

GPT-3.5 with Listwise Reranking. The listwise method utilizes a strategy where the LLM is
prompted with a query and a document list and is asked to output the identifiers of the documents
in a reranked order based on their relevance to the query (Sun et al.| [2023; Ma et al.|, [2023). As
depicted in Figure[3](a), in our scenario, this method is implemented by feeding LLMs with a set of
retrieved tuples and an incomplete tuple, each retrieved tuple is paired with an identifier. The model
then generates a list of reranked identifiers according to the relevance to the query tuple. Due to
input size limitations of the LLM, a sliding window strategy is employed, with a window size of 30
and a step size of 14, to manage larger lists. This method is supported by the work in (Sun et al.,
2023; Ma et al., 2023)).

GPT-3.5 with Pairwise Reranking. In addition to listwise reranking, Qin et al. (Qin et al., 2023)
introduces a pairwise reranking method utilizing LLMs as rerankers. Similar to the bubble sort
algorithm, this technique requires LLMs to compare pairs of retrieved tuples and determine which
one is more relevant to the incomplete tuple, as shown in Figure 3] (b). Unlike the listwise strategy
that reranks an entire list, the pairwise method focuses on one-to-one comparisons, making it a less
complex task.

Zhttps://huggingface.co/bert-base-uncased
*https://huggingface.co/castorini/monot5-base-msmarco-10k

15

https://huggingface.co/bert-base-uncased
https://huggingface.co/castorini/monot5-base-msmarco-10k

C PROMPT AND EXAMPLE OF REASONER

For the final reasoning step, leveraging the advanced capabilities of LLMs, we employ a template-
driven approach to structure prompts that guide the LLMs in generating the necessary outputs, as
shown in Figure [4]

Given the retrieved tuples, LLMs can accurately infer missing values and provide explanations on
how the selected tuples aid in imputation if users require insight of the reasoning process. Even in
cases where no relevant tuples are retrieved, the powerful LLMs can accurately determine the lack of
relevance and refuse to imputation. Moreover, users can quickly assess the accuracy of the imputed
values based on the small number of retrieved tuples and the model’s explanations.

It is critical to note that simply increasing the ——-—-—-—-—-——-——-———————————————
number of retrieved tuples does not necessar- Input Prompt Template

ily enhance the performance of LLMs. The ef-
fectiveness of LLMs is significantly influenced
by the amount of contextual data provided (Liu
et al., 2023). While more retrieved tuples may
increase the chance of including relevant tuples,
it also burdens the model with excessive infor- Retrieved tuples @y
mation, potentially diminishing reasoning ac- } k
curacy. In Section[d we conduct comparative ——
experiments to explore how varying the num- - ----------—-—-—-—-—-—-—-———————
ber of retrieved tuples affects data imputation
accuracy. These experiments substantiate our
rationale for selecting only the top-5 retrieved
tuples and highlight the importance of employ-
ing a reranker to optimize outcomes. It also
demonstrates the advantage of tuple-level re- Figure 4: Prompt template for reasoner.
trieval over table-level one by significantly re-

ducing the number of irrelevant tuples.

Question: Based on the retrieved tuples, what's the most likely
value for the [NA] cell in the incomplete tuple below

Incomplete tuple 501213 NHL season last games
Player Team Notability
Adrian Aucoin NA Played 1108 games

|
|
|
|
|
|
|
|
|
|
|
|
|
l

The tuple with missing values being imputed is

Player Team Notability
Adrian Aucoin | Blue Jackets | Played 1108 games

Table [7] presents an example of our input to the GPT-4 and its corresponding output. The input
prompt basically follows the template structure described above, while we mandate the output format
as JSON for processing outputs in batches and evaluating performance effectively. In this example,
both the “district” and “party” values are missing. However, the retrieved tuple 1 contains the party
information (D) and district information (OH-19) for Eric Fingerhut. We can see that from the
output, the LLM successfully identifies the information needed to fill in the missing values and
understands that “D” srepresents Democratic.

D EXAMPLES OF SYNTHESIZING TRAINING DATA

Table [§] presents three examples of the synthesized training data used for the retriever model. Each
example consists of an anchor tuple, a positive tuple, and two negative tuples. For each tuple, we
provide the corresponding caption and attribute/value pairs. In the actual training data, each anchor
tuple is paired with seven negative tuples. while for brevity, only two negative tuples are shown
here, as they are sufficient to illustrate the characteristics of the negative samples.

E DETAILS OF ABLATION STUDY

E.1 NUMBER OF RETRIEVED TUPLES V.S. IMPUTATION PERFORMANCE

Intuitively, providing more retrieved tuples to LLMs seems beneficial as the chance of retrieving
relevant tuples increases with the number of tuples (k). However, the expanded input length also
introduces complexities in the LLMs’ reasoning. To explore the impact of k£ on data imputation, we
conduct experiments using all test tuples in the Show Movie and Cricket Players datasets and 500
sampled test tuples from the other three datasets. We feed various number of tuples retrieved by our
reranker into GPT-3.5, analyzing changes in data imputation accuracy and retrieval success rate. To
minimize costs, we do not use GPT-4.

16

Table 7: An example of reasoning step

Input: Based on the retrieved tabular data, what’s the most likely value for the [NA] cell in the table
below? Please respond using JSON: {district(s): ‘”, party:
[NA], value is the predicted value for each [NA].

132}

}, the key is attribute name of each

Missing Tuple:
caption: List of living former members of the United States House of Representatives

| representative | state | district(s) | served | party | date of birth | age |
| Eric Fingerhut | Ohio | [NA] | 1993-1995 | [NA] | May 6, 1959 | 54 years, 271 days |

Retrieved Tuples:
Tuple 1: caption: list of members of the united states house of representatives in the 103rd congress
by seniority

| rank | representative | party | district | seniority date | notes |
| 362 | Eric Fingerhut | D | OH-19 | January 3, 1993 | Left the House in 1995 |

Tuple 2: caption: united states house of representatives elections, 1994 Ohio

| district | incumbent | party | first elected | status | opponent |

| Ohio19 | Eric Fingerhut | Democratic | 1992 | Defeated Republican gain |

Steve LaTourette (R) 48.5% Eric Fingerhut (D) 43.5% Ron Young (I) 5.5% Jerome A. Brentar
(1) 2.5% |

Tuple 3: caption: republican revolution house of representatives

| name | district | predecessor | predecessor’s fate |
| Steve LaTourette | Ohio-19 | Eric Fingerhut | Defeated |

Tuple 4: caption: list of stanford university people members of the u.s. house of representatives

[name | class year | notability |
| Eric Fingerhut | J.D. 1984 | U.S. Congressman |

Tuple 5: caption: alpha epsilon pi notable alumni

| name | original chapter | notability |
| Eric Fingerhut | Honorary | Ohio State Senator, Chancellor of Ohio State Board of Regents |

Output: {“district(s)”: "OH-19”,’party”: "Democratic”}

17

Table 8: Examples of synthesizing training data.

Example 1

Anchor Tuple

caption: new york film critics circle award for best actress 1990s
(year: 1993, winner: Holly Hunter, film: The Piano, role: Ada McGrath)

Positive Tuple

caption: york film critics best award for traffic_circle actress 1990
(role: Ada McGrath, winner: Holly Hunter)

Negative Tuple - 1

caption: new york film critic award for actress best 1990s
(winner: Jodie Foster)

Negative Tuple - 2

caption: critics take actress award york best new circle 1990s
(year: 1995, role: Sadie Flood, winner: Jennifer Jason Leigh)

Example 2

Anchor Tuple

caption: 1992 texas rangers season farm system

(level: Rookie, team: GCL Rangers, league: Gulf Coast League, manager:
[MASK])

Positive Tuple

caption: 1992 texas rangers season farm system

(level: Rookie, team: GCL Rangers, league: Gulf Coast, manager: Chino
Cadahia)

Negative Tuple - 1

caption: TX rangers season farm system
(team: Tulsa Drillers, league: Texas League, manager: Bobby Jones)

Negative Tuple - 2

caption: 1983 texas rangers season farm system
(level: AA, team: Tulsa Drillers, league: Texas League, manager: Marty Scott)

Example 3

Anchor Tuple

caption: AFI’s 10 top 10 romantic comedy
(#: 6, film: When Harry Met Sally..., year: [MASK])

Positive Tuple

caption: academy award for best writing (original screenplay) 1980s
(year: 1989 (62nd), film: When Harry Met Sally..., screenwriter(s):)

Negative Tuple - 1

caption: AFT’s superlative 10 romanticist
(year: 1931, film: City Lights)

Negative Tuple - 2

caption: AFI’s 100 years...100 laughs the list
(#: 22, movie: Adam’s Rib, director: George Cukor, year: 1949)

18

1.00 WT Dataset 1.00 ED Dataset
Success

\/4\1 - EM

1 1 1 i 0.95 T 1 1

5 10 20 40 5 10 20 40
BU Dataset CP Dataset SM Dataset
1.00 1.00 1.00 » =
0.95
0.95
0.95 0.90
0.85
0.90
L L 1 L L | TR 1 I
0.90 0.80
5 10 20 40 5 10 20 40 5 10 20 40

Figure 5: Performance vs. #-retrieved tuples. X-axis: number of retrieved tuple sent to LLM. Y-axis:
evaluation scores.

Figure 5] reveals that data imputation accuracy does not significantly increase with the rising number
of retrieved tuples fed to LLMs. Instead, a decrease in accuracy is evident across all datasets, with
a marked decline when k reaches 40, suggesting that an excess of irrelevant tuples can severely
affect LLM’s imputation accuracy. This outcome highlights a trade-off: an increase in the number
of retrieved tuples sent to LLMs may inversely impact data imputation accuracy. This underscores
the importance of an efficient retrieval module capable of precisely identifying relevant tuples with
the smallest possible k£ and highlights the advantages of tuple-level over table-level retrieval.

E.2 NUMBER OF EXAMPLE TUPLES V.S. IMPUTATION PERFORMANCE

1.0 B n=0 n=1

0.8 n=3 n=5
0.6
0.4

- T T T T

GPT-3.5 w/ retrieval GPT-3.5 w/o retrieval GPT-4 w/ retrieval GPT-4 w/o retrieval

Accuracy

o
N
1

o
o
1

Figure 6: Accuracy vs. Number of Examples

The performance of LLMs is closely tied to the context they receive. Besides retrieved tuples,
another important factor that may influence performance is the example, i.e., complete tuple, which
can guide the model towards the domain and format of the missing value. For instance, in Table[7] for
the tuple with missing values (Eric Fingerhut, Ohio, [NA], 1993-1995, ...), we can include another
complete tuple, such as (Dan Miller, Florida, Florida’s 13th congressional district, 1993-2003, ...)
as an example. Intuitively, the example tuple can prompt the model with information about the
domain and format of the missing content.

To investigate the impact of examples, we randomly sample 200 incomplete tuples with missing
values from the WikiTuples test set. For each tuple, we select n (n € 0,1, 3,5) complete tuples
from the same table as examples, keeping the other inputs the same as in Figure

Figure [6] shows that, surprisingly, no clear correlation between the number of example tuples and
imputation accuracy. This might be attributed to the fact that the tables in our scenario inherently
lack redundant data, making it difficult to infer missing values solely based on the complete tuples
within the table.

19

E.3 IMPACT OF SYNTHESIZED TRAINING DATA

This experiment is designed to evaluate the impact of different methods of synthesizing training data
on the performance of our retriever. We focus on three main aspects: anchor tuples, positive tuples,
and negative tuples. The results of this coparative experiment are presented in Table [9]

Table 9: Performance of retriever vs. Training datasets.

Training Datasets WT SM ED CP BU
RAI 0945 1.0 0992 1.0 1.0
Anchor w/ complete tuples 0.936 0.958 0.985 1.0 1.0
w/ missing values 0.946 1.0 0976 0966 1.0
-, w/o tuples

Positives from other tables 0.924 1.0 0962 0967 1.0

. w/ augmented anchor
Negatives without masked cells 0.862 0.833 0.93 1.0 1.0

Anchor Tuples. In synthesizing training data, we employ two types of anchor tuples: complete
tuples and tuples with cells masked (i.e., simulating missing values). To show that combining these
two types of anchor tuples yields better results, we reconstruct training data considering: anchor
tuples consisting of only complete tuples and anchor tuples consisting of only tuples with masked
cells. From the row 1 to 3, it is evident that combining complete anchor tuples with those having
missing values enhances retriever performance.

Positive Tuples. Unlike traditional methods (Wang et al.| [2023)) that only consider augmented an-
chors as positives, we include relevant tuples from other tables in our synthesized data. Removing
such positives (row 4) leads to a significant decline in the retriever’s performance, highlighting the
importance of diverse positive samples with various heterogeneous attributes, which aligns with
real-world scenarios.

Negative Tuples. We only regard other tuples from the anchor’s table as hard negatives. However,
since our retriever works on data imputation, for an anchor tuple ¢ with ¢[j] masked, it’s intuitive
to consider augmented anchors with the j-th attribute deleted as additional negatives. These tuples
are very similar to the anchor but lack information to assist in imputing missing values. To test the
effectiveness of this intuitive approach, we add this type of hard negative to the training data and
report the corresponding result in row 5.

Surprisingly, we observe that it leads to a significant decrease in retrieval results. We hypothe-
size that this is mainly because it is challenging to distinguish cell-level semantics accurately when
encoding each tuple into an embedding. This variation causes the most substantial decrease in per-
formance compared to other changes in positives and anchors.

F CONSTRUCTION OF MVBENCH

F.1 DATASETS COLLECTION AND CONSTRUCTION

We target datasets that exhibit specific characteristics: (1) they should be derived from real-world
scenarios, and (2) they should cover a diverse range of data domains (e.g., business). Also, we partic-
ularly focus on datasets that require missing value imputation involving external sources, a challenge
that’s not well addressed by existing work that typically rely on the inherent data redundancy within
the table itself.

Guided by these criteria and informed by existing work in missing value imputation (Deng et al.,
2022; /Ahmad et al., [2023)), we collect five datasets from real-world data sources. By including these
challenging scenarios in our benchmark, we demonstrate the effectiveness and generalization of our
tuple-level RAG approach.

WikiTuples. Based on WikiTables-TURL (Deng et al., [2022), a large collection of high-quality
Wikipedia tables, we construct a data lake and incomplete tuples using the train and test sets of
WikiTables-TURL respectively.

20

Show Movie and Cricket Players. These two dataset are sourced from RetClean (Ahmad et al.,
2023)), which provides original tables and corresponding dirty columns in two domains: Cricket
Players and Shows Movies. For each domain, we select one table to create tuples with missing
values and store tuples from other tables in the data lake.

Education and Business. From two sections of the Chicago Data PortalE]— Education, and Commu-
nity & Economic Development, we collect tables about school information and business information
in the two sections respectively to construct these two datasets. Similarly to Show Movie and Cricket
Players, we select one or two tables to create incomplete tuples with missing values while saving
the rest in the data lake.

F.2 RELEVANT TUPLE ANNOTATION

After collecting original datasets and constructing incomplete tuples with data lakes, we start to
annotate the relevant tuples for each incomplete tuple. The process involves two steps: Candidate
Tuples Construction and Expert Annotation.

Candidate Tuples Construction. For an incomplete tuple, we first create a candidate set by select-
ing tuples that could potentially help in imputing its missing values. We use explicit information,
such as similar cell values or cells linking to the same entity, to establish effective filtering rules.

Expert Annotation. For each incomplete tuple, we present it and its candidate one by one to a
human expert to judge whether the candidate can fill at least one missing value in the incomplete
tuple, i.e., be identified as relevant. Before starting the annotation, experts are instructed to apply
their domain knowledge carefully. For example, they are advised that certain attributes like a movie
director do not change over time, whereas others, such as a sports team manager, may change and
thus the temporal alignment between the candidate tuple and the incomplete tuple should be verified.
This manual process is time-consuming and requires specific domain knowledge. We hire 10 PhD
students as our “human experts” to annotate candidate tuples corresponding to each incomplete
tuple, ensuring the quality of our labels. To reduce the cost of annotation, we primarily focus on
cases where the candidate set comprised 10 or fewer tuples. In total, over 200 human hours and
approximately $1,000 were spent on curating relevant tuple labels for each incomplete tuple.

Our mvBench is distributed under the Apache License 2.0, which permits use, distribution, and
reproduction in any medium, provided the original work is properly cited and is not used for com-
mercial purposes.

*nttps://data.cityofchicago.org/

21

https://data.cityofchicago.org/

	Introduction
	Solution Overview
	Problem Statement
	The RAI Framework

	Retrieval Augmented Imputation
	Retriever
	Contrastive Learning for Tuple Encoding.
	Synthesizing Training Data.

	Reranker: A Design Space Exploration
	Reasoner

	Experiment
	Dataset
	Experimental Settings
	Evaluation for Data Imputation
	Evaluation for Retriever
	Evaluation for Reranker

	Related Work
	Conclusion
	Experimental Setup
	Implementation Details of Reranking Methods
	Fine-tuned Reranking
	Prompting-based Reranking

	Prompt and Example of Reasoner
	Examples of Synthesizing Training Data
	Details of Ablation Study
	Number of Retrieved Tuples v.s. Imputation Performance
	Number of Example Tuples v.s. Imputation Performance
	Impact of Synthesized Training Data

	Construction of mvBench
	Datasets Collection and Construction
	Relevant Tuple Annotation

