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ABSTRACT

Unlearning in Large Language Models (LLMs) has gained increasing attention in
recent years due to its critical role in ensuring ethical and legal compliance. Al-
though significant progress has been made in developing unlearning algorithms,
relatively little attention has been devoted to the data perspective. In particular,
the role of retain-set selection in preserving model utility remains underexplored,
even though it is critical for making unlearning practical in real-world applica-
tions. In this work, we explore strategies for constructing effective retain sets by
adapting methods from coreset selection and prior unlearning research. We eval-
uate these approaches on two complementary datasets: (i) a monotonic dataset
built from a benchmark dataset, and (ii) a mixed, larger-scale dataset combining
WPU, TOFU, and Dolly, which better reflects realistic scenarios where forget and
retain samples are not explicitly defined. We find that model utility is strongly
influenced by the model’s representations within the selected retain set for het-
erogeneous dataset. Moreover, we show that simply choosing data samples with
high semantic or syntactic similarity to the forget set can yield substantially bet-
ter results than standard coreset techniques. To the best of our knowledge, this
work represents the first systematic study of practical retain-set selection for LLM
unlearning, highlighting its importance and the challenges it poses in practical
settings.

1 INTRODUCTION

Large Language Models (LLMs) (Vaswani et al., 2017), with their remarkable capabilities across
a wide range of tasks and training on vast amounts of web data, inevitably face alignment chal-
lenges. These models often memorize undesirable information (Carlini et al., 2021; Golatkar et al.,
2020) such as personal data, copyrighted material, and harmful content which can be outputted and
potentially misused (Staab et al., 2024). Alignment techniques, such as Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al., 2022) and red teaming, have been introduced to
mitigate these risks, but they require substantial human effort. Furthermore, these methods do not
fully address legal requirements, such as the GDPR’s Right to be Forgotten or the AI Act. Machine
unlearning (Yao et al., 2024; Miranda et al., 2025) has emerged as a promising alternative, aiming
to remove specific undesired information and abilities while preserving overall model utility.

LLM unlearning generally has two key objectives: (1) eliminating the specified target knowledge
along with its associated capabilities, and (2) preserving the model’s overall integrity by preventing
degradation of non-target knowledge and abilities Liu et al. (2025). Achieving these objectives at the
same time, requires two datasets: the forget set Df , containing the data to be removed, and the retain
set Dr, containing the knowledge to be preserved. By definition Dr and Df are disjoint, and together
they cover the complete corpus D, i.e., Dr = D \Df and Df = D \Dr. Since Df is usually smaller
than Dr, there is often a disproportionality in the dataset sizes. Mainstream unlearning approaches
(Zhang et al., 2024; Yuan et al., 2025; Maini et al., 2024; Liu et al., 2022; Jang et al., 2023) address
the two objectives through a weighted combination of losses: maximizing the forget loss on Df

while minimizing the retain loss on Dr, typically formulated as (Ji et al., 2024).

min
θ

E(x,y)∈Df
[ℓf (y | x; θ)] + λE(x,y)∈Dr

[ℓr(y | x; θ)] , (1)
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θ denotes the model parameters subject to update during unlearning, initialized from the pretrained
model. The terms Lf and Lr denote the forget loss (unlearning objective) and the retain loss (utility-
preserving objective), respectively. Both are evaluated when generating a response y from an input
x under parameters θ. The coefficient λ > 0 functions as a regularization parameter, balancing the
trade-off between forgetting and retention. Based on the above, unlearning performance is measured
along the two objectives, Forget Quality (FQ) focuses on objective (1) capturing how effectively the
model forgets the targeted knowledge, i.e., the extent to which the undesired information is no longer
recoverable through direct or indirect queries. In contrast, Model Utility (MU) focuses on objective
(2), reflecting how well the model retains its general capabilities, ensuring that unlearning does not
significantly impair its performance on unrelated tasks or knowledge domains. FQ is applied on Df

and MU applied on Dr.

Early unlearning methods (Yao et al., 2024; Zhang et al., 2024) focused solely on maximizing the
loss on Df , often leading to degeneration behavior and catastrophic forgetting (Jang et al., 2023;
Ji et al., 2024). Dr was later introduced as a regularization set to mitigate these issues. The retain
loss Lr is typically defined as the standard cross-entropy next-token prediction loss computed over
Dr. Much of the research in LLM unlearning has focused on developing algorithms to balance
the forgetting and retention objectives. Prominent approaches include: (i) Gradient Ascent and its
variants (Jin et al., 2025; Wang et al., 2025), which reverse the training loss to enforce forgetting;
(ii) preference optimization methods such as DPO (Rafailov et al., 2023) and its extensions NPO
(Zhang et al., 2024) and SimNPO (Fan et al., 2024), which indirectly bound the forgetting objective
by increasing preference for desired responses; (iii) representation misdirection techniques such as
RMU (Li et al., 2024), which disrupt internal representations tied to the undesired knowledge; (iv)
logit-based methods that leverage auxiliary models to reduce preference for Df (Ji et al., 2024);
and (v) model-editing strategies employing task vectors or surgical weight modifications to remove
specific knowledge (Wu et al., 2023; Jia et al., 2024; Hase et al., 2023). Across these approaches,
Dr is incorporated either directly in the loss function or as part of separate training stages to mitigate
catastrophic forgetting.

Although these algorithmic advances are significant, they have been primarily evaluated on bench-
mark datasets that are relatively simple, i.e., monotonic in structure, and offering a clear separation
between forget and retain sets. In addition to this, they typically rely on the full retain set provided.
In contrast, real-world scenarios are far more complex: the pre-training dataset D may span giga-
bytes of data and contain hundreds of thousands of samples, especially in specialized domains such
as law or medicine, making it impractical to use the entire dataset (excluding Df ) as the retain set.
This challenge motivates the question: “How can we select a subset Ds from Dr that faithfully
reflects Dr while preserving model utility?” Recent works (Ren et al., 2025; Geng et al., 2025)
have raised this question but no comprehensive methodology has been established to address it.

In this work, we address the bottleneck problem of retain set selection from a pre-unlearning per-
spective. We perform early selection of Dr. We draw on established research of “coreset” selection
methods, adapting it to the unlearning domain and conduct extensive empirical studies on these se-
lected retain sets and on their impact. More specifically, we investigate which samples are selected
for retention and examine which properties of the retained data influence model utility.

Our analysis indicates a key pattern: a statistically significant negative correlation between the vari-
ance of the model’s hidden state representations (hidden state variance, HSV) for data-points in the
selected retain set and the model’s overall utility, suggesting that higher variance in retained data
can reduce model utiliy; In other words, unlearning with widely distributed retain data points tends
to reduce model utility. Building on this insight, and informed by prior work showing that syntac-
tically similar samples are most affected during unlearning (Chang & Lee, 2025), we propose two
simple selection strategies: retaining semantically closer samples and retaining syntactically closer
samples. We then perform extensive empirical studies on Dr using coreset-based methods.

2 RELATED WORK

2.1 DATA SELECTION

Data selection involves choosing a subset of data from a larger dataset to train machine learning
models efficiently. These methods aim to reduce computational costs without compromising per-
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formance. Typical paradigms range from heuristic-based selection (e.g., statistical properties, dis-
tances) to optimization-based methods (e.g., ranking samples based on loss values, gradients, or
forgetting events). Common goals in data selection include distribution matching and distribu-
tion diversification (Albalak et al., 2024).

2.1.1 DATA SELECTION IN LARGE LANGUAGE MODELS

In LLMs, data selection is critical for achieving state-of-the-art performance across tasks such as
reasoning, instruction tuning, and alignment (e.g., Deepseek V3 (DeepSeek-AI et al., 2025), Wiz-
ardLM (Xu et al., 2025), Vicuna (Peng et al., 2023), Zephyr (Tunstall et al., 2023)). Typical pipelines
include filtering (e.g., language, toxicity, PII), de-duplication, and data mixing. Instruction-tuning
datasets often exploit larger models (e.g., GPT-4) for sample annotation, as in DEITA (Liu et al.,
2024a), Instag (Lu et al., 2024), and AlpagaSus (Chen et al., 2024), which assess sample complexity,
diversity, and quality. While effective, these methods still require costly tagging and pre-selection
procedures.

2.1.2 CORESET SELECTION

Coreset selection aims to identify a representative subset of data that preserves key distributional
properties while maintaining near full-data performance. Approaches in the literature assign impor-
tance scores to samples using training dynamics (e.g., gradient norm, error vector norms, forgetting
scores) (Paul et al., 2021; Toneva et al., 2019) or emphasize diversity through clustering distances
and coverage criteria (Xia et al., 2023; Zheng et al., 2023). Optimization-based methods lever-
age gradient information to construct subsets (Mirzasoleiman et al., 2020; Killamsetty et al., 2021;
Pooladzandi et al., 2022). In LLMs, sample influence can be estimated via gradient similarity with
validation data (Xia et al., 2024).

Recently, coreset selection has been applied to unlearning: Patil et al. (2025) prune forget sets using
anomaly detection on hidden representations, balancing forgetting and utility preservation, while
Pal et al. (2025) investigate underlying coreset behaviour (in Df ) in LLM unlearning benchmarks.

2.1.3 LLM UNLEARNING AND DATA PERSPECTIVES

Dynamic unlearning methods (Bărbulescu & Triantafillou, 2024) iteratively select highly memorized
forget-set samples, and gradient-based approaches (Tian et al., 2024) target sensitive parameters for
unlearning. While these methods focus on the model perspective, they highlight the importance of
data selection. From a retain-set perspective, Chang & Lee (2025) show syntactic neighbors are
highly influential and should be included in benchmark datasets. Bushipaka et al. (2025) explore
constructing Dr with multiple neighbors for benchmarks.

Compared with existing studies, our approach differs in two key aspects. First, we select Dr using
coreset mechanisms in realistic unlearning scenarios rather than relying on neighbor-based construc-
tions for benchmark datasets. Second, coreset selection does not require well-maintained datasets to
identify syntactic or semantic relationships, making it more practical for real-world applications.

2.1.4 IMPORTANCE OF RETAIN SET

(Ko et al., 2024)’s work on text-to-image diffusion model unlearning shows that unlearning without
a diverse Dr leads to degraded image quality and poor text-image alignment, showing how retain
data stabilizes model outputs when concepts are removed. In LLMs, (Thaker et al., 2025) show that
narrowly defined forget and retain sets lead unlearning to overfit on the test queries. Beyond MU
preservation, Dr is also used in adversarial attacks on the forgotten samples. For instance, (Łucki
et al., 2024) find that an unlearned model via RMU shows a significant drop in FE, when finetuned
with just 5 unrelated samples from the Dr.
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3 METHOD

3.1 PROBLEM STATEMENT

Assume we have a downstream task LLM, instruction-tuned on general knowledge, which has been
further fine-tuned on a dataset D containing undesired knowledge that must be removed. Our ob-
jective is to select a subset of the retain set, Ds ⊂ Dr, that preserves the model’s knowledge and
capabilities as they were prior to unlearning.

Here, Dr = D \Df is the retain set, and a sample si = (xr, yr) ∈ Dr is selected if si ∈ Ds. The
final subset Ds should be substantially smaller than Dr yet sufficient to maintain model utility. In
our experiments, we focus on entity-level unlearning, removing all knowledge related to a specific
concept or individual. Figure 1 illustrates this process.

Lfgt

Lret

Training

Downstream
Model

Dataset D

Unlearning
Requests

Df Dr

Pair Df &
Dr 

Unlearning
Algorithm

Unlearnt
Model

Lfgt

Lret

Training

Downstream
Model

Dataset D

Unlearning
Requests

Df Unlearning
Algorithm

Unlearnt
Model

Pair Df &
Ds 

DsDo

Figure 1: Top: the retain set Dr is traditionally the full dataset D minus the forget set Df . Bottom:
our goal is to select a smaller subset Ds ⊂ Dr that effectively represents D and preserves knowledge
after unlearning.

3.2 CORESET-BASED DATA SELECTION FOR UNLEARNING

To construct a reliable Dr in practical unlearning scenarios, we employ a rich set of coreset selection
methods, specifically EL2N and MODERATE. We observe a strong correlation between selected
Ds hidden state representation variance and model utility.

Additionally, we perform two alternative Ds selections:

1. Greedily selecting the top-n semantically closest samples to each forget sample.

2. Greedily selecting the top-n syntactically closest samples to each forget sample.

These strategies aim to maintain model knowledge while supporting efficient unlearning.

4 EXPERIMENTAL SETUP

We conduct entity-level unlearning experiments across two data regimes:

(a) Monotonic Dataset: We use the Wikipedia Person Unlearn (WPU) dataset (Liu et al., 2024b),
which consists of 100 entities along with their corresponding question-answer pairs extracted from
Wikipedia. This dataset follows a monotonic template, similar to other benchmark datasets such as
(Maini et al., 2024; Jin et al., 2024), providing Forget-Retain samples in a structured format covering
attributes like birthplace, profession, and other factual details.

(b) Mixed Dataset: To evaluate performance in a more heterogeneous setting, we combine WPU
with TOFU (Maini et al., 2024) and DOLLY (Ouyang et al., 2022). This mixed dataset introduces
diversity in content and format, better reflecting real-world unlearning scenarios.
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Overall, this setting provides us with a realistic scenario where Unlearning has to be done in a
downstream task such as generalized instruction tuning. The mixed dataset contains approximately
21k samples, with the majority sourced from DOLLY. For selecting Forget samples, we follow
the splits provided by WPU (Liu et al., 2024b), namely (2, 20, 100) entities. Specifically, for the
monotonic dataset, we designate Df = 2 entities for unlearning. For the mixed dataset, we use
Df = 20 entities from WPU as the forget set.

Assessing MU across the full 21k samples is computationally expensive and unrealistic. There-
fore, we create a test set that includes representative portions from each dataset to enable efficient
evaluation. Further details on dataset construction and splits are provided in Appendix A.1.

4.1 UNLEARNING SETUP

Our experiments require a retain dataset for regularization. Accordingly, we focus on fine-tuning-
based algorithms across three different paradigms. We employ Gradient Difference (Liu et al.,
2022), Simple Negative Preference Optimization (Fan et al., 2024) and Representation Misdi-
rection Unlearning (Li et al., 2024) for our experiments.

We do not perform vanilla unlearning (i.e., excluding the retain set) and always include the retain set
for regularization. Unlike common practice, which randomly selects retain samples equal in number
to forget samples for each epoch (Maini et al., 2024; Liu et al., 2024b; Yuan et al., 2025), we adopt
a Cyclic setup (Jang et al., 2023). In this setup, Df is repeatedly cycled until all Ds samples are
paired with one forget sample during unlearning. Under the standard implementation (Maini et al.,
2024), each epoch uses a retain batch matching the size of the forget batch, with retain examples
randomly sampled from the Dr. The cyclic approach has been shown to outperform the standard
implementation (Premptis et al., 2025; Bushipaka et al., 2025), though it is computationally more
expensive. In our setup, it is important to note that dataset partitions vary in cardinality, which
implies that the number of steps per epoch is not constant across the 5%, 10%, and 20% splits.

4.2 METRICS

Unlearning behavior is best assessed using multiple complementary metrics. We employ a stack of
metrics and aggregate them into two scores: Forget Quality (FQ) and Model Utility (MU).

The individual metrics are as follows:

• ROUGE-L: measures verbatim memorization via word-level overlap.

• Conditional Probability: likelihood of the ground-truth answer.

• Truth Ratio: likelihood of choosing the correct answer over an incorrect one.1

• Cosine Similarity: measures semantic similarity in the embedding space.

Following Yuan et al. (2025); Maini et al. (2024), we compute Forget Quality (FQ) as 1-Arithmetic
mean of ROUGE-L, Conditional Probability, and Truth Ratio on Df excluding Cosine Similarity.
where Cosine Similarity is excluded for robustness2.

For Model Utility (MU), we calculate the harmonic mean of ROUGE-L, Conditional Probability,
and Cosine Similarity on Dr, excluding Truth Ratio.

Our primary focus is on preserving model utility, which requires analyzing the drop in MU before
and after unlearning. To quantify this, we follow Chang & Lee (2025) and compute the Relative
Utility Drop (RUD):

RUD =
MUpre − MUpost

MUpre
× 100

where MUpre and MUpost denote model utility before and after unlearning, respectively.

1In contrast to Maini et al. (2024), we do not adopt the p-value from the Kolmogorov–Smirnov test as FQ,
since our setting does not allow comparison with a perfectly unlearned model—something even less feasible in
real-world scenarios.

2We observe that embedding models may return non-zero similarity scores even for nonsensical generations
(e.g., continuous dots).
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Table 1: Baseline performance on WPU and Mix datasets before and after unlearning (using the full
retain set Dr) for GradDiff, SimNPO, and RMU.

Method WPU Mix
FQ MU FQ MU

Pre-unlearning 0.17 0.97 0.30 0.75
GradDiff 0.90 0.92 0.94 0.65
SimNPO 0.80 0.94 0.84 0.76
RMU 0.89 0.55 0.93 0.46

Further details about the metrics are provided in Appendix A.5.

4.3 CORESET METHODS

For our experiments, we evaluate three data selection strategies: RANDOM, MODERATE (Xia
et al., 2023), and EL2N (Paul et al., 2021). Both MODERATE and EL2N were originally developed
for computer vision classification tasks, but have been applied to LLM unlearning by Pal et al.
(2025), from whom we gather the implementation procedure.

In particular, EL2N requires an initial warm-up run for a few epochs with the desired loss function.
Since unlearning algorithms operate by manipulating loss functions, extracting a coreset with EL2N
necessitates running the unlearning loss for several steps. To test whether this warm-up step can
be simplified, we additionally experiment with using the standard cross-entropy loss during coreset
extraction.

4.4 EXPERIMENTAL SETTING

We use the LLaMA 3.1 8B Instruct model (Grattafiori et al., 2024) as our base LLM. Both fine-
tuning on the datasets and unlearning are performed using LoRA (Hu et al., 2022). All experiments
are conducted on a single 40 GB A100 GPU. More details in Appendix:A.2.

5 RESULTS

We conduct experiments using three splits of the retain set, Dr, corresponding to 5%, 10%, and
20%3 for the selection of Ds. To maintain comparable evaluation across splits, we filter unlearnt
models using method-specific Forget Quality (FQ) criteria: GradDiff models with FQ > 0.90 Sim-
NPO with FQ > 0.85 and RMU with FQ > 0.90. The number of training epochs is treated as
a hyperparameter to reach this FQ threshold for all splits. This is crucial, as we are looking into
preserving the Model Utility, when Forgetting is implemented successfully.

Note that we aim to recover the pre-unlearning MU, which is 0.97 for WPU and 0.75 for Mix. Using
the full retain set Dr typically preserves MU closer to its pre-unlearning level. For the Mix dataset,
we evaluate MU on the constructed test set. The results of these baseline runs are reported in Table 1.

5.0.1 PERFORMANCE WITH FULL-RETAIN (BASELINE UNLEARNING)

Table 1 shows the baseline utility on WPU and Mix using the full retain set before and after unlearn-
ing. All three unlearning methods introduce a measurable degradation relative to the pre-unlearning
model, but the magnitude varies substantially. SimNPO preserves utility the best across splits,
matching or exceeding pre-unlearning MU on Mix and remaining close on WPU. GradDiff induces
moderate degradation, with utility reductions on both datasets but still performing competitively in
MU. In contrast, RMU exhibits the largest utility drop, especially in MU (0.55 on WPU vs. 0.97
pre-unlearning), indicating instability even when the full retain set is available.

3Initial experiments with 1% and 2% did not yield meaningful results and were therefore discarded.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

random
MODERATE

EL2N (CE)
EL2N (diff)

Semantic
Syntactic

full_re
tain

100

80

60

40

20

0

Re
la

tiv
e 

Ut
ilit

y 
Dr

op
(%

)

GradDiff  5% coreset

random
MODERATE

EL2N (CE)
EL2N (diff)

Semantic
Syntactic

full_re
tain

GradDiff  10% coreset

random
MODERATE

EL2N (CE)
EL2N (diff)

Semantic
Syntactic

full_re
tain

GradDiff  20% coreset

random
MODERATE

EL2N (CE)

EL2N (SimNPO)
Semantic

Syntactic
full_re

tain
100

80

60

40

20

0

Re
la

tiv
e 

Ut
ilit

y 
Dr

op
(%

)

SimNPO  5% coreset

random
MODERATE

EL2N (CE)

EL2N (SimNPO)
Semantic

Syntactic
full_re

tain

SimNPO  10% coreset

random
MODERATE

EL2N (CE)

EL2N (SimNPO)
Semantic

Syntactic
full_re

tain

SimNPO  20% coreset

random
MODERATE

EL2N (CE)

EL2N (RMU)
Semantic

Syntactic
full_re

tain
100

80

60

40

20

0

Re
la

tiv
e 

Ut
ilit

y 
Dr

op
(%

)

RMU  5% coreset

random
MODERATE

EL2N (CE)

EL2N (RMU)
Semantic

Syntactic
full_re

tain

RMU  10% coreset

random
MODERATE

EL2N (CE)

EL2N (RMU)
Semantic

Syntactic
full_re

tain

RMU  20% coreset

Figure 2: RUD scores for WPU Mix across 5,10,20% datasets for three unlearning algorithms.
We find that targeted selection with semantic and syntactic consistently performs better than other
selection mechanisms. However, full retain performs the best and often better than pre-unlearning
(SimNPO) showing overfitting of retain set.

5.0.2 RELATIVE UTILITY DROP WITH CORESETS

Figure 2 reports the relative utility loss when using coreset subsets of size 5%, 10%, and 20%.
Across all methods, WPU consistently exhibits larger utility drops than Mix, confirming it is the
harder split to preserve performance on. For Gradient Diff, utility is highly sensitive to coreset size
and selection strategy. At 5%, drops are large (60–80% on WPU), but increasing the coreset size
substantially improves stability. At 20%, informed selection strategies—especially EL2N (diff),
Semantic, and Syntactic achieve the best performance, reducing Mix utility drop to as low as 12%.
SimNPO shows the most stable behavior: utility drops are substantially smaller (often 8–13% at
20%) and vary minimally across selection methods. Syntactic and Semantic coresets consistently
perform well, closely matching random sampling at larger sizes. For RMU, utility drops remain
high across all coreset sizes and strategies, with limited improvement even at 20%. Even the best-
performing subsets (Semantic, Syntactic) only reduce the Mix drop to 37–39%, while WPU remains
above 42%, signaling persistent sensitivity to data reduction.

Finally, we examine the cluster-level distribution of selected retain samples. Figure 3 shows the log-
preference ratio (logPref) for each cluster in the Mix (left) and WPU (right) datasets. Clusters with
logPref(c) ≥ 1 are over-represented (red), logPref(c) .

= 0 are neutral (grey), and logPref(c) ≤ 1 are

7
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Figure 3: Log-preference ratio (logPref) for clusters in Mix (left) and WPU (right). Clusters with
logPref(c) ≥ 1 are over-represented (red), logPref(c) .

= 0 neutral (grey), and logPref(c) ≤ 1 under-
represented (blue).

under-represented (blue). This visualization allows us to compare how different selection methods
distribute samples across clusters without interpreting their effect on utility or forgetting.

6 DISCUSSION

Our experimental results reveal important insights regarding data selection strategies for unlearning
in LLMs. In the following, we analyze the effectiveness of different coreset methods, examine
per-source behavior in heterogeneous datasets, investigate the role of hidden state variance, explore
semantic and syntactic selection strategies, and study the impact of cluster-level preferences on
model utility and forgetting performance.

Effectiveness of Coreset Methods and Unlearning Algorithms. Across both the full-retain–set
and coreset experiments, several consistent patterns emerge. First, SimNPO is the most robust
and utility-preserving method, both when using the full retain set and when approximating it via a
coreset. Its relative utility drop remains small even with only 5–10% of the data, and it shows little
sensitivity to the choice of selection heuristic. This suggests that SimNPO’s update rule is inherently
stable to data sparsification.

Second, Gradient Diff benefits the most from high-quality selection signals. Its performance varies
widely depending on coreset choice, especially at small sizes. However, when paired with targeted
selection strategies like EL2N (diff) or semantics-driven sampling, GradDiff approaches low relative
utility loss at larger coreset sizes, indicating that the gradients it relies on can be well-approximated
by carefully chosen examples.

Third, RMU remains the least stable method, showing substantial degradation even with the full
retain set and only marginal improvements from any selection strategy. The method appears fun-
damentally sensitive to removing data from the retain distribution, suggesting its objective does not
generalize well under distribution thinning.

Finally, the results highlight a dataset-level trend: WPU is uniformly harder to maintain utility
on than Mix, with larger degradations across all methods, coresets, and sizes. This indicates that
WPU’s distribution has higher dependency on the retained samples, making it more susceptible to
information loss during unlearning.

Hidden State Variance as a Heuristic. Following (Skean et al., 2025; Tang & Yang, 2025; Duan
et al., 2024) we use the last token penultimate layer hidden state representations for our analysis.
We observe that Hidden State Variance (HSV) of Ds correlates strongly with Relative Utility Drop
(RUD) across all the three unlearning algorithms with GradDiff (ρ = 0.71, p = 0.01), RMU (ρ =
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0.62, p = 0.03) and SimNPO (ρ = 0.7, p = 0.01). In contrast, HSV correlates with Forget Quality
only for GradDiff (ρ = 0.64, p = 0.02), with no significant relationship for RMU or SimNPO. This
suggests that Variance in Ds consistently amplifies utility degradation, and in case of GradDiff, also
improves the forgetting performance, revealing a method specific trade off. and moderately with
Forget Quality on the Mix dataset, but not on WPU. This suggests that higher variance in Ds leads
to greater utility drop but also facilitates forgetting, highlighting a trade-off.

Additionally, we conducted a controlled experiment in which we partitioned the full retain set into
three subsets based on HSV: low, medium, and high. Using the 10% split, we ran Unlearning
experiments across all the three algorithms and observed a consistent pattern: the medium-variance
subset yielded the best performance, followed by the high-variance subset, with the low-variance
subset performing the worst. Together with the correlation results, this experiment suggests that
HSV does not exert a purely linear effect on unlearning, instead performance peaks at intermediate
variance, indicating a non-linear, possibly inverted-U relationship. Apart from this, we also find the
expected correlations such as RUD negatively correlated to Retain length and FQ. More details in
Appendix:7.

Semantic and Syntactic Selection. Semantic and syntactic selection methods are more effective
than coreset-based approaches, especially on the Mix dataset. Semantic similarity, in particular with
GradDiff, achieves comparable performance to full-retain with only 20% Ds. However, when the
full retain is unlearnt for same number of epochs as semantic, it performs substantially better (2%
RUD). The downside is computational cost: full-retain requires 13 hours, whereas semantic method
finishes just under 2 hours. This demonstrates that semantic selection can recover approximately
85% of pre-unlearning utility while using an order of magnitude less compute. Finally, we note that
relying on full-retain undermines the purpose of unlearning, since it effectively amounts to retraining
or fine-tuning the model on the entire Dr again excluding Df .

Cluster Preferences. Cluster-level analysis shows that semantic and syntactic methods dispropor-
tionately select samples from clusters heavily populated by forget samples (e.g., clusters 9 and 2 in
Mix). This selective over-representation explains their effectiveness, while coreset methods—which
aim to diversify—suffer higher utility drop A.6.3.

7 CONCLUSION

In this study, we address a key limitation in LLM unlearning: the selection of a retain set that
preserves Model Utility. We leverage techniques from the coreset selection literature and apply
them to entity-level unlearning, evaluating performance on two data regimes: a monotonic dataset
(WPU) and a diverse, mixed dataset (Mix). Across both regimes, we find that it is challenging to
fully recover the pre-unlearning Model Utility. For the monotonic dataset, the selected subset Ds

shows no significant correlation with utility, indicating that standard coreset strategies may not be
informative in highly structured or homogeneous data regimes.

In contrast, for the mixed dataset, hidden state variance (HSV) analysis reveals that increasing
V ar(Ds) leads to a higher Relative Utility Drop (RUD) but also improves Forget Quality. Moti-
vated by this, we implement simple semantic and syntactic-based selection strategies that choose
top samples most similar to each forget sample. These approaches consistently outperform tradi-
tional coreset methods and, in some cases, even exceed the performance of using the full retain set,
demonstrating that targeted retain set selection based on embedding proximity can effectively bal-
ance utility preservation and forgetting. Cluster-level analysis further indicates that these methods
preferentially select samples from clusters containing forget data, highlighting the importance of
considering both dataset structure and relationships between retain and forget samples.

Our findings suggest that while coreset methods provide a strong starting point, understanding the
distribution of forget samples in the embedding space and leveraging semantic or syntactic proximity
can lead to superior results, especially in heterogeneous datasets, which can be considered as a proxy
of real-world scenarios. However, we acknowledge that the observed behavior may not generalize to
all unlearning scenarios, such as those involving copyrighted, or harmful content, where additional
constraints and safeguards may be required.

9
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In other words, while our study demonstrates the effectiveness of semantic and syntactic-based re-
tain set selection, several avenues remain for future exploration. First, extending these techniques
to handle unlearning requests beyond entity-level data—such as instance-level privacy sensitive,
copyrighted, or harmful content—would test their generality and robustness. Second, adaptive or
dynamic selection strategies that take into account model feedback or embedding evolution during
fine-tuning could further improve the trade-off between Model Utility and Forget Quality. Finally,
evaluating these methods on larger-scale, multi-domain LLM benchmarks and integrating inter-
pretability or explainability techniques may provide additional insights into why certain selections
succeed and inform best practices for practical LLM unlearning.

8 LIMITATIONS

LLM unlearning is inherently a dynamic process, requiring continual updates to the model. In
contrast, most existing data selection methods are designed as one-time procedures, often involv-
ing computationally expensive setups performed prior to training. These static methods are not
directly suited for unlearning and would require adaptation to accommodate continuous model up-
dates. Additionally, existing selection strategies are optimized for diversity, ensuring broad dataset
coverage, but unlearning requests, particularly entity-level privacy may instead involve densely clus-
tered or non diverse samples. Our experiments show that despite constructing a mixed dataset, the
post-training hidden state representations of Df tend to cluster closely, making diversity oriented
selection mechanisms less effective in this context.

As mentioned above, Unlearning is a dynamic process and requires continuous recycling of the
model. Often LLM Unlearning is tested in Sequential Setup and found that it is more effective than
batch Unlearning. We did not test this setting and would be testing in the later works.

while we show that 20% of the retain set (Dr) is sufficient to achieve model utility comparable
to that of the full Dr, this proportion becomes impractically large for large-scale datasets (e.g.,
800k samples). In such scenarios, allocating 20% of the data to unlearn only a small forget set
(e.g., 100 samples) is inefficient. Future work should therefore focus on identifying and selecting
the most relevant subset of Dr, which could substantially reduce this overhead while maintaining
unlearning effectiveness. Our work uses only a single Unlearning method and also only one regular-
ization method. Additionally, our experiments are conducted only on single LLM and on only two
data regimes. We acknowledge that Unlearning requests can often be varied, such as in Privacy or
Copyright contexts. These scenarios require a robust testing of various use cases and Ds selection
mechanism.

9 REPRODUCIBILITY STATEMENT

We provide code in both notebooks and python scripts. Notebooks consist of the dataset creation,
coreset methods for selecting Ds and ablation studies. Python scripts consist of the unlearning and
evaluation. We provide a config file, which helps in configuring the settings for the Unlearning. Our
anonymized code can be found at - link to the repo
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banjan Ghosh, and Marcos Zampieri (eds.), Proceedings of the 19th International Workshop on
Semantic Evaluation (SemEval-2025), pp. 1383–1405, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-273-2. URL https://aclanthology.
org/2025.semeval-1.184/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–
3992, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410/.

Jie Ren, Yue Xing, Yingqian Cui, Charu C. Aggarwal, and Hui Liu. Sok: Machine unlearning for
large language models, 2025. URL https://arxiv.org/abs/2506.09227.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=WGXb7UdvTX.

Robin Staab, Mark Vero, Mislav Balunovic, and Martin Vechev. Beyond memorization: Violat-
ing privacy via inference with large language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
kmn0BhQk7p.

Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for LLM-based em-
bedding models?, 2025. URL https://openreview.net/forum?id=CWAvMSNUqT.

Pratiksha Thaker, Shengyuan Hu, Neil Kale, Yash Maurya, Zhiwei Steven Wu, and Virginia Smith.
Position: Llm unlearning benchmarks are weak measures of progress, 2025. URL https:
//arxiv.org/abs/2410.02879.

Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui,
Xi Chen, Huajun Chen, and Ningyu Zhang. To forget or not? towards practical knowledge
unlearning for large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
1524–1537, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.82. URL https://aclanthology.org/2024.
findings-emnlp.82/.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=BJlxm30cKm.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023. URL https://arxiv.org/abs/2310.16944.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

14

https://aclanthology.org/2025.semeval-1.184/
https://aclanthology.org/2025.semeval-1.184/
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://aclanthology.org/D19-1410/
https://arxiv.org/abs/2506.09227
https://openreview.net/forum?id=WGXb7UdvTX
https://openreview.net/forum?id=WGXb7UdvTX
https://openreview.net/forum?id=kmn0BhQk7p
https://openreview.net/forum?id=kmn0BhQk7p
https://openreview.net/forum?id=CWAvMSNUqT
https://arxiv.org/abs/2410.02879
https://arxiv.org/abs/2410.02879
https://aclanthology.org/2024.findings-emnlp.82/
https://aclanthology.org/2024.findings-emnlp.82/
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://arxiv.org/abs/2310.16944


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wenyu Wang, Mengqi Zhang, Xiaotian Ye, Zhaochun Ren, Zhumin Chen, and Pengjie Ren. Uipe:
Enhancing llm unlearning by removing knowledge related to forgetting targets, 2025. URL
https://arxiv.org/abs/2503.04693.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi
Xiong. DEPN: Detecting and editing privacy neurons in pretrained language models. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2875–2886, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.174. URL
https://aclanthology.org/2023.emnlp-main.174/.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: se-
lecting influential data for targeted instruction tuning. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal
method of data selection for real-world data-efficient deep learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=7D5EECbOaf9.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
complex instructions, 2025. URL https://arxiv.org/abs/2304.12244.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=8Dy42ThoNe.

Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer
look at machine unlearning for large language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Q1MHvGmhyT.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
trophic collapse to effective unlearning. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=MXLBXjQkmb.

Shengnan Zhang, Yan Hu, and Guangrong Bian. Research on string similarity algorithm based
on levenshtein distance. In 2017 IEEE 2nd Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), pp. 2247–2251, 2017. doi: 10.1109/IAEAC.2017.
8054419.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high
pruning rates. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=QwKvL6wC8Yi.

A APPENDIX

A.1 DETAILS ON THE DATA SET CREATION

For the monotonic unlearning setting, we employed the Wikipedia Person Unlearn (WPU) dataset
(Liu et al., 2024b), which contains 2,302 samples, including 10 designated samples corresponding
to two entities that are intended to be forgotten. The WPU dataset was originally proposed for
entity-level unlearning and is therefore well aligned with our objective.

To simulate a more realistic downstream scenario, we further constructed a mixed dataset by com-
bining WPU with the TOFU dataset (Maini et al., 2024) and the Dolly dataset (Ouyang et al.,
2022). This mixture serves two purposes: Dolly contributes general-purpose question–answering
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Table 2: Num epochs for each Ds on WPU and Mix datasets across coreset sizes.

5% 10% 20% Full Retain

Coreset WPU Mix WPU Mix WPU Mix WPU Mix

random 25 4 15 4 10 4 – –
MODERATE 25 5 30 5 25 5 – –
EL2N (CE) 30 5 25 5 25 5 – –
EL2N (diff) 40 5 60 5 55 5 – –
Semantic 30 5 15 5 15 5 – –
Syntactic 20 5 15 5 15 5 – –
Full Retain – – – – – – 8 2

data, while WPU introduces sensitive information that needs to be unlearned. Prior to merging,
we assigned unique identifiers to each sample, derived from the dataset and entity of origin, to
maintain traceability. We also incorporated the extended version of WPU introduced by Bushipaka
et al. (2025), which includes indirect neighbor samples and a predefined test set. For computational
tractability, samples exceeding 512 tokens were discarded. The final combined corpus consisted of
approximately 21k samples: 14.2k from Dolly, 4k from TOFU, and 2.8k from WPU. From WPU,
we selected 20 entities (98 samples) as the forgetting set.

Evaluating model utility on the entire 21k-sample corpus would have been computationally pro-
hibitive. Instead, we curated a balanced test set. Specifically, for WPU we adopted the test partition
provided by Bushipaka et al. (2025). From TOFU, we randomly sampled 500 instances, while
for Dolly we applied stratified sampling across categories to preserve distributional diversity. This
resulted in a test set comprising 1,992 samples in total.

A.2 HYPERPARAMETERS FOR FINE-TUNING & UNLEARNING

For both Fine-tuning and Unlearning, we use LoRA Hu et al. (2022) since full fine-tuning and full
unlearning is computationally expensive. For Fine-tuning, we used a batch size of 32, learning rate
of 2e-5, LoRA rank=64, alpha =64 and for 10 epochs. Where as for Unlearning, we used a fixed
batch size of 8, learning rate 1e-5, rank = 8, alpha = 16 for all the experiments. We used epochs as
an hyperparameter (Table:2) to reach the FQ threshold of 0.90.

A.3 UNLEARNING ALGORITHMS

A.3.1 GRADIENT DIFFERENCE

Proposed by Liu et al. (2022) to mitigate the issues of Gradient ascent. It builds on the concept of
Gradient Ascent, but not only aims to maximize the loss on forget set Df , simultaneously minimizes
the loss on the retain set Dr. This maintains the balance of forgetting and retaining. The loss function
can be written as in equation 1.

Given D and its samples (x, y), x is question and y is the answer. A pair pi = p(xi, yi) ∈ D and
y1, ..yT are the answer tokens, we calculate Negative-Log-Likelihood (NLL) loss for pi

L(y | x; θ) = NLL(y | x; θ) = −
T∑

t=1

log p
(
yt | x, y<t; θ

)
(2)

Gradient Ascent’s main idea is to maximize the loss as opposed to the training objective of mini-
mization by negating the loss. We can write it as

LGA(Df ; θ) = −L(yf | xf ; θ) (3)

From eq 1 and eq 3 we can write Gradient Difference as:
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LGD(θ) = −L(Df ; θ) + L(Dr; θ) (4)

A.3.2 SIMPLE NEGATIVE PREFERENCE

A modified variant of Negative Preference Optimization (NPO) (Zhang et al., 2024) that retains its
core forgetting behavior by replacing the reference model with δ in the loss formulation of NPO.

NPO which is already an optimized algorithm of DPO made for unlearning eliminates the use of
positive samples (often they are ”IDK” samples), can be written as:

LNPO,β(θ) = − 2

β
EDf

[
log σ

(
− β log

p(y | x; θ)
p(y | x; θref)

)]
(5)

SimNPO is optimized version of NPO, removes the need for reference model θref .

LSimNPO+retain = − 2

β
EDf

[
log σ

(
− β

|yf |
log p(y | x; θ)− δ

)]
+ γ L(Dr; θ) (6)

A.3.3 REPRESENTATION MISDIRECTION UNLEARNING

RMU (Li et al., 2024) assumes knowledge is encoded in model parameters and manipulates these
representations to suppress memorization signals for the forget set while preserving knowledge in
the retain set. Let ϕ(s; θ) denote the embedding features of the model, the loss is given by

LRMU+retain = EDf

1

|yf |

|yf |∑
i=1

||ϕ([x, y<i]; θ)− c.u||22 + L(Dr; θ) (7)

where u has elements randomly sampled from [0,1) and c is a scaling hyper-parameter.

A.4 DETAILS ON THE DATA SELECTION METHODS

A.4.1 MODERATE

The moderate coreset selection strategy was originally introduced in the context of classification
tasks, wherein samples are partitioned into clusters according to their class labels. Since, our setting
is instruction tuning, class labels are unavailable. We take the last token penultimate-layer repre-
sentations from the pre-unlearned model for the full retain set (excluding Df ). We then partition
it into four clusters using K-means algorithm. For each cluster, we determine its centroid and rank
samples according to their distance from this centroid. To identify representative points, we select
those whose distances are closest to the median within their respective clusters.

A.4.2 EL2N

The central idea of the EL2N method is that the importance of each forget sample zf is quantified
by the expected early-learning loss, measured as the ℓ2-norm of the model’s prediction error during
the early stages of training. Accordingly, the EL2N score for a forget sample is defined as

χ(zf ) = Eθt

∥∥fθt(xf )− yf
∥∥
2
, where zf = (xf , yf ) ∼ Df . (8)

Here, the expectation is taken over snapshots of the model parameters θt from the early optimization
trajectory, which captures how easily each sample is learned. Samples with higher EL2N scores
correspond to those the model struggles to fit early on, and are therefore considered more influential.
In practice, we compute this expectation over the unlearning trajectory, approximating it using 2
epochs for the monotonic setting and 1 epoch for the mixed setting in our experiments. As in our
unlearning pipeline, this early trajectory includes a warmup phase based on the cross-entropy loss
and also with Unlearning loss.
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A.4.3 SEMANTIC SIMILARITY

To calculate semantically closest samples to the forget samples, we used SBERT models. all-
MiniLM-L6-V2 (Reimers & Gurevych, 2019) for WPU dataset and bge-small-en-v1.5 (Xiao et al.,
2023) for Mix dataset. Then we picked the top semantically close samples to each forget sample by
allocating a certain sample size for each until globally we reach the desired Ds length. We didn’t re-
move the duplicates cause multiple forget samples can be semantically closer to a few retain samples
and increase in variance of the samples leads to low Model Utility (look into section6).

A.4.4 SYNTACTIC SIMILARITY

In the light of recent analysis (Chang & Lee, 2025), that syntactic similarity is the most impacted
by LLM Unlearning, we opted to do pick top synatctically similar samples as a Ds. To assess
syntactic similarity between the forget and retain sets, each text was transformed into a sequence of
part-of-speech tags and pairwise distances were computed using the normalized edit distance. This
metric provides a principled quantification of structural correspondence, enabling a fine-grained
comparison of syntactic patterns across the two sets (Zhang et al., 2017). Similar to Semantic, we
allocate a certain sample size for each forget sample and incrementally increase it until we globally
reach the desired Ds length and we do not remove the duplicates.

5 10 20
Selected Dataset

0

10

20

30

40

50

Du
pl

ica
te

s (
%

)

Semantic Duplicates by Dataset
Dataset

mix
wpu

5 10 20
Selected Dataset

0

10

20

30

40

50

60

Du
pl

ica
te

s (
%

)

Syntactic Duplicates by Dataset
Dataset

mix
wpu

Figure 4: Percentage of duplicates in the Semantic and Syntactic Ds. As the Ds size for Mix grows,
duplicates increases, whereas in WPU we find the opposite trend.

A.4.5 COMPUTATIONAL COSTS OF THE DATA SELECTION

From our empirical analysis, Random emerges as the least computationally expensive selection
strategy, whereas EL2N with Gradient Difference incurs the highest cost (fig: 5). We quantify this
cost as the total time required to identify the subset Ds, accounting for all pre-selection operations
specific to each method. For instance, EL2N necessitates a warm-up phase, while syntactic selection
requires part-of-speech tagging. Summing these pre-processing components provides a fair measure
of computational overhead across methods.

Interestingly, Semantic selection ranks among the most efficient approaches—second only to Ran-
dom—requiring only 30 seconds on the Mix dataset. Moreover, recent advances in semantic re-
trieval, particularly those leveraging vector databases, have made these methods increasingly practi-
cal and easier to implement compared to coreset-based alternatives. By contrast, Syntactic selection
is considerably more time-intensive due to its reliance on CPU-bound processing rather than GPU
acceleration.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ran
do

m

gra
nd

(ce
)

gra
nd

(di
ff)

mod
era

te

sem
an

tic

syn
tac

tic

Method

0

500

1000

1500

2000

2500

3000

Co
st

 (s
ec

on
ds

)

Computational cost
Dataset

mix
wpu

Figure 5: Lower is better, Time Taken for each method to select the Ds in seconds. EL2N methods
require significant amount of time compared to others. Note: EL2N is mispelled as GrAND here.

A.5 EVALUATION METRICS

Following closely with (Maini et al., 2024; Yuan et al., 2025), we utilize a stack of metrics. All these
scores are in range of [0, 1].

A.5.1 ROUGE

We use ROUGE-L recall, which quantifies the model’s output and the ground-truth answer. Given a
generated response g(x; θ∗) and the ground-truth answer y, we employ ROUGE − L(g(x; θ∗), y).

A.5.2 PROBABILITY

Following (Maini et al., 2024) we compute the conditional probability P (a|q) for the forget and
retain sets and normalize the score by raising it to the power of 1/|a|. Therefore the Probability can
be written as P (a|q)1/|a|.

A.5.3 COSINE-SIMILARITY

Provides the semantic similarity between g(x; θ∗) and y. Following (Yuan et al., 2025), we embed
both the responses with a Sentence-BERT model (Reimers & Gurevych, 2019), and calculate the
cosine-similarity between them. For evaluation, we used gte-small (Li et al., 2023). To keep the
scores in [0, 1], we truncate the values less than 0. It can be written as

max
(
cos

(
g(x; θ∗), y

)
, 0

)
A.5.4 TRUTH RATIO

Introduced by (Maini et al., 2024), is often used to compute a ratio comparing the likelihood of
the correct answer to incorrect ones. As stated in their work, since fine-tuning may inflate the
probability of the exact ground-truth phrasing, they suggest to use a paraphrased version of the y
and average probabilities over multiple similarly formatted wrong answer. Let ã is the paraphrased
answer and Apert denote a set of five perturbed answers generated by GPT-4o. The truth ratio
Rtruth is calculated as:

Rtruth =

1
|Apert|

∑
â∈Apert

P (â | q)q/|â|

P (ã | q)q/|ã|
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where Apert is the perturbed answer set.

A.5.5 RELATIVE MODEL UTILITY

Introduced by Chang & Lee (2025) to understand the behaviour of neighbor sets. It is a simple ratio
to calculate the Utility drop pre-unlearning and post-unlearning.

RelativeUtilityDrop =
MUpre −MUpost

MUpre
× 100 (9)

A.6 RESULTS

A.6.1 FORGET QUALITY AND MODEL UTILITY

Table 3: Forget Quality and Model Utility for WPU and Mixed Datasets

FQ ↑ MU ↑
Coreset (→) 5 10 20 5 10 20

WPU Dataset

random 0.94 0.94 0.94 0.35 0.37 0.56
MODERATE 0.94 0.95 0.96 0.27 0.58 0.74
EL2N (CE) 0.90 0.95 0.93 0.21 0.43 0.68
EL2N (diff) 0.95 0.95 0.95 0.30 0.64 0.79
Semantic 0.96 0.93 0.93 0.32 0.64 0.76
Syntactic 0.92 0.93 0.95 0.23 0.61 0.79

Mix Dataset

random 0.92 0.93 0.93 0.59 0.50 0.55
MODERATE 0.94 0.93 0.93 0.41 0.49 0.58
EL2N (diff) 0.94 0.95 0.93 0.21 0.40 0.50
EL2N (CE) 0.94 0.94 0.93 0.13 0.35 0.46
Semantic 0.94 0.91 0.92 0.21 0.59 0.66
Syntactic 0.93 0.94 0.94 0.17 0.35 0.63

A.6.2 RELATIVE UTILITY DROP FOR CORESET METHODS
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Figure 6: Lower is better, Relative Utility Drop (RUD) on the Mixed Test dataset across all the
different sources. WPU has the highest and Dolly has the lowest RUD across all the settings. Note:
EL2N is mispelled as GrAND here.
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Table 4: Relative Utility Drop (↓%) on WPU and Mix datasets across coreset sizes for Gradient Diff,
SimNPO, and RMU. Lower is better.

5% 10% 20%

Coreset WPU Mix WPU Mix WPU Mix

GradDiff

random 63.92 21.33 62.89 33.33 42.27 26.67
MODERATE 72.16 45.33 40.21 34.67 24.74 22.67
EL2N (CE) 78.35 53.33 55.58 28 31.96 14.67
EL2N (diff) 59.59 74.67 35.05 28 18.56 14.6
Semantic 67 72 34.02 21.33 21.65 12
Syntactic 76.29 77.33 37.11 53.33 18.56 16

SimNPO

random 11.34 25.33 10.31 22.67 8.25 13.33
MODERATE 15.46 25.2 12.37 24 8.25 14.67
EL2N (CE) 23.71 28 18.56 26.67 11.34 22.67
EL2N (SimNPO) 14.13 32 12.37 30.67 10.31 28.0
Semantic 16.49 20 12.37 18.67 9.28 13.33
Syntactic 16.49 18.67 10.31 17.33 8.25 14.67

RMU

random 59.79 62.67 40.21 48 48.45 42
MODERATE 68.04 62.5 41.24 49.33 42.27 41.33
EL2N (CE) 65.98 76 49.48 64 51.55 49.33
EL2N (RMU) 75.26 69.33 54.64 61.33 43.3 48
Semantic 74.23 68 50.52 41.33 43.3 37.33
Syntactic 75.26 76 42.27 45.33 42.26 38.67

In the main sections of the paper, we provided RUD, we report all the results in Table:3 that include
Forget Quality and Model Utility. As mentioned in previously in section:5, we made sure all the
Unlearning experiments crossed the threshold of FQ > 0.90. The FQ ranges from 0.90-0.95. We
also provide per source RUD scores for the Mix dataset. We find that WPU is the most impacted and
DOLLY is the least impacted. Given that all our forget samples are from WPU, this can be expected.

A.6.3 CLUSTERING

Since investigating and finding relations between every pair is an NP-hard problem, we approach
this with clustering the HSV representations to k = 10 clusters with k-means algorithm. We chose
k = 10 based on the elbow method. We find that best performing methods select samples mostly
from clusters 9 and 2 (for Mix). A strange behavior is from Random (on mix), which selects almost
uniformly from all the clusters. Although small, Random 5 outperforms 10 and 20 (Mix). However
this selection needs to be studied more.

A.6.4 LOG PREFERENCE RATIO

To analyze how different selection strategies distribute their retain sets across the representation
space, we introduce the preference ratio. For each cluster c, we compute the retain cluster share

pretain(c) =
retain count(c)

retain total
,

and compare it to the baseline cluster share in the non-forget pool

qpool(c) =
pool count(c)

pool total
.
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The preference ratio is then defined as

pref ratio(c) =
pretain(c)

qpool(c)
.

To improve interpretability, we report results in logarithmic scale:

pref log2(c) = log2(pref ratio(c)) .

Here, pref ratio(c) > 1 indicates that the method oversamples cluster c, pref ratio(c) < 1 indi-
cates undersampling, and pref log2(c) = 0 denotes neutral selection. This formulation allows us
to visualize selection biases at the cluster level and to relate them to model utility and forgetting
efficacy.

A.6.5 CORRELATIONS
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Figure 7: The correlations of V ar(Ds) data points with RUD and FQ for all the algorithms.
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A.7 MMLU SCORES
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Figure 8: MMLU scores for GradDiff experiment. We do not find significant deviation in the scores
of MMLU post-unlearning for all the methods.

A.8 CAUSALITY LINK

Unlearning Method Low Medium High
FQ MU FQ MU FQ MU

GradDiff 0.94 0.51 0.93 0.58 0.93 0.57
SimNPO 0.87 0.51 0.85 0.54 0.84 0.54
RMU 0.91 0.34 0.92 0.38 0.92 0.35

Table 5: Comparison across unlearning methods with low, medium, and high difficulty (FQ and
MU).

A.9 LLM USAGE

In our study, we utilized LLMs for polishing the writing, research paper gathering, and coding.
We used LLM to polish writing in all the sections of the paper, however we made sure it didn’t
hallucinate and add made up information. In the initial stages of our study, we used deep research
tool for research papers gathering on coresets. For mix dataset construction, investigations, and parts
of Unlearning we used LLM for coding.
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