Published as a conference paper at ICLR 2025

THE RAMANUJAN LIBRARY - AUTOMATED DISCOV-
ERY ON THE HYPERGRAPH OF INTEGER RELATIONS

Itay Beit-Halachmi and Ido Kaminer

The Ramanujan Machine Team, Faculty of Electrical and Computer Engineering
Technion - Israel Institute of Technology

Haifa 3200003, Israel

itaybe@campus.technion.ac.il, ido.kaminer@gmail.com

ABSTRACT

Fundamental mathematical constants appear in nearly every field of science, from
physics to biology. Formulas that connect different constants often bring great in-
sight by hinting at connections between previously disparate fields. Discoveries of
such relations, however, have remained scarce events, relying on sporadic strokes
of creativity by human mathematicians. Recent developments of algorithms for
automated conjecture generation have accelerated the discovery of formulas for
specific constants. Yet, the discovery of connections between constants has not
been addressed. In this paper, we present the first library dedicated to mathemati-
cal constants and their interrelations. This library can serve as a central repository
of knowledge for scientists from different areas, and as a collaborative platform
for development of new algorithms. The library is based on a new representa-
tion that we propose for organizing the formulas of mathematical constants: a
hypergraph, with each node representing a constant and each edge representing
a formula. Using this representation, we propose and demonstrate a systematic
approach for automatically enriching this library using PSLQ, an integer relation
algorithm based on QR decomposition and lattice construction. During its devel-
opment and testing, our strategy led to the discovery of 75 previously unknown
connections between constants, including a new formula for the ‘first continued
fraction’ constant C'y, novel formulas for natural logarithms, and new formulas
connecting 7 and e. The latter formulas generalize a century-old relation between
7 and e by Ramanujan, which until now was considered a singular formula and
is now found to be part of a broader mathematical structure. The code supporting
this library is a public, open-source API that can serve researchers in experimental
mathematics and other fields of science.

1 INTRODUCTION

With the rise in computing power and the rise of artificial intelligence, efforts have been made to
harness these tools to further scientific discovery. Some of the earliest examples of such automated
discovery efforts include the Automated Mathematician and later Eurisko (Cenaf and Brown, T984),
systems that automatically discovered concepts in mathematics and later in other scientific domains.
Another notable early discovery system is Graffiti (Fajtlowicz, T98R), which automatically generated
conjectures in graph theory. Since then, the usage of computer algorithms as scientific tools (Wang,
[960; Davis and Lenaf, T987; Wolfram ef all, P007), and in particular as tools for aiding with math-
ematical proofs (Appel and Haken, T976; [Zeilberget, T990; Wilf and Zeilberger, T997; Buchberger
efall, P00AR), has skyrocketed. Noteworthy recent examples include papers by Google DeepMind
(Davies_ef all, PO21; Fawzi ef all, P027; Romera-Paredes_ef all, 2023), which have utilized Al to
find new algorithms for matrix multiplication, and generate conjectures in topology, representation
theory, and combinatorics.

A noteworthy example of computers assisting mathematicians is the Ramanujan Machine project
(Raayoni et all, 2021; Razon ef all, P023; Elimelech ef all, 2074)), which specializes in automated
conjecture generation in number theory. This project, named in honor of Srinivasa Ramanujan’s sub-
stantial mathematical contributions (Berndi, PT7) and his unconventional work style, demonstrated

Published as a conference paper at ICLR 2025

an automated discovery of formulas involving fundamental mathematical constants. The discovered
formulas and the properties they exhibited (Ben"David ef all, P174) enabled the construction of a
previously unknown mathematical structure (David, 20773; Elimelech ef all, 2074) that forms a sys-
tematic framework for the generation of new formulas and for proofs of irrationality of constants,
even in places where no systematic proofs were known (e.g., [Apéry| (1979); David (2023)).

Fundamental mathematical constants like 7, e, or {(3) are central in several branches of mathematics
and in other fields of science (FincH, P003). The appearance of the same mathematical constant in
different fields that may seem unrelated can lead to surprising connections. One of the earliest such
connections is the Basel problem, posed in 1650 and solved by Euler (Euled, ['748; [Ayoub, 1974),
establishing that one of the values of the Riemann zeta function is ((2) = 72 /6, and also providing a
family of formulas expressing all positive even values ((2n) using 72". Due to the connection of the
Riemann zeta function to the distribution of prime numbers, this formula established the profound
and nontrivial importance of 7 in regards to prime numbers. This example shows how discovery
of new connections on fundamental constants has great potential in connecting different fields and
leading to new discoveries. Another such example is a connection involving 7 and e found by
Ramanujan, presented in figure . Though it is not known if 7 and e are algebraically independent
Morandi (I996), this is one of many formulas that show how else they can be connected.

Z- ! Pl a bt +
2 44 1 315 (2n— D
2
1+ 3
1+—=5
i
e 1 1 1/2
2 1 Tl 1/4
+ 1+
T+ 2 1/6
1+—L—
1+4 . 1/2n
.................. - [.|_T
.+—1+...

Figure 1: Automatically discovered formulas, showing a section of the full hypergraph in figure @.
The first formula was found by Ramanujan (Berndf et all, 7999), and the second formula is novel.

In this paper, we propose a new approach to the discovery of relations between mathematical con-
stants, and collect its results in a publicly-accessible database. This database is the first to collect and
organize the known mathematical constants and their relations, and will provide a unique resource
for experimental mathematicians and number theorists worldwide.

We expand our database into a library that also collects the known relations between the constants
and organizes them into a hypergraph, which we show to be an effective representation of the struc-
ture among formulas of mathematical constants and among the constants themselves. Going beyond
the collection of known relations, we develop algorithms that use the database to search for new rela-
tions between its constants, successfully generating 75 new formulas. These algorithms are used for
further (automated) enrichment of the library. We present two enrichment strategies: (1) automated
search of relations within the database using a polynomial integer relation algorithm (see section ZT)
and (2) the identify algorithm (see section B) executed on each new constant introduced to the library
to find its relations to existing constants and formulas in the database. Both strategies rely on the
integer relation algorithm PSLQ (Ferguson and Baileyi, T997; Ferguson et all, T999). We developed
a new methodology for quantifying the PSLQ results and for determining which ones constitute new
likely formulas, so they can be further analyzed to greater precision. Our algorithm is the first to dis-
cover nonlinear (polynomial) relations, rather than focusing on linear relations. For comparison, we
show that identify succeeded in cases for which the state-of-the-art commercial solution (in Wolfram
Alpha) was unsuccessful.

Published as a conference paper at ICLR 2025

2 INTRODUCING THE HYPERGRAPH OF MATHEMATICAL CONSTANTS AND
THEIR RELATIONS

Recall that an (ordinary) undirected graph on a vertex set V is defined by an edge set F, each
connecting two vertices. An undirected hypergraph, then, generalizes the concept of an edge so
each one can connect more than two vertices. More explicitly, each edge is now a set of arbitrary
size, instead of a set of size 2. In our (undirected) hypergraph, the vertices will all be mathematical
constants, either given explicitly (e.g., 7, e, up to a user-defined precision) or given by a formula
converging to the constant. We choose to represent formulas using a canonical form that captures
general continued fractions and infinite sums, namely the C-transforms of a complex sequence f,,:

fi
|y
L

Clfal =1+ ey

This definition can always be treated as a formal expression, and when it converges it is instead
defined as the limiting value. In practice, we generate each f,, using a rational function. C-transforms
(and continued fractions in general) are powerful as they contain, for example, all infinite sums (that
can be converted using Euler’s approach (Enled, [748)), whereas not every continued fraction can be
converted back to an infinite sum. The C-transform captures any continued fraction in a canonical
form that removes redundancy. The special case of f,, being a rational function already generalizes
all polynomial continued fractions (Khinchin, T964) , which are general mathematical constructs
that capture all trigonometric functions, Bessel functions, generalized hypergeometric functions and
much more. The C-transform notation helps facilitating the systematic automated research in our
work (see appendix @A for further discussion).

The undirected edges (equivalently hyperedges) in our hypergraph are integer polynomial relations,
forming a representation that generalizes a large number of formula structures. To define an integer
polynomial relation, we first introduce integer relations: An integer relation on a vector of real
numbers 1, 9, ... is a vector of integers aj, as, ..., not all of which are 0, such that a1z + aszs +

... = 0. As an example, the formula ¢ = @ is equivalent to the integer relation 2¢) — /5 — 1 =

0, with the constants being ¢,/5,1 and the integer coefficients being 2, —1, —1. This example
illustrates how integer relations are a general structure that captures mathematical equalities.

We expand on this definition by introducing polynomial relations, which have a;,as, ... as the
integer coefficients of a (nonzero) multi-variable polynomial p, looking for a solution satisfying
p(x1,2,...) = 0. For each identified polynomial, we define its degree as the greatest sum of all
exponents in each monomial, and its order as the largest exponent that appears in it. These quantities
let us measure how “complex” a given polynomial is, which we use for eliminating redundancies in
our algorithm. As another example, consider the relation between 7 and e, captured by the Ramanu-
jan formula in figure . These types of relations constitute the edges of the hypergraph we construct
automatically in this work.

To account for possible numerical inaccuracies arising from our computational methods, we propose
a definition that allows for a (typically small) error € := |a1x1 + agxa +...| > 0. This definition also
applies to polynomial relations, in which case € = |p(z1, x2, ...)|. Then, the precision of the relation
is defined as | —log,c|. With the ability to quantify each constant’s numerical error as €1, €9, ...,
we instead replace € in the precision with max {e, 1,2, ...}, allowing the discovered relation to
account for the inaccuracy of its constants.

Hypergraph edges stand for either linear relations with integer coefficients, like that between /5 and

¢ = @, or nonlinear (polynomial) relations, like that between 7 and ((2) = %2. Interestingly,
all edges representing linear relations satisfy a kind of transitivity in any subgraph they form: given
an integer relation on a set of constants A, and another on a set of constants B, such that A and B
share at least one constant z, it is possible to construct a relation on (A U B) \ {z}. However, edges
like the ones we show between 7 and e impose a more intricate structure that does not conform
to regular transitivity but requires its generalization. A simple example of such transitivity is the
(non-linear) polynomial relations between 7 and its higher powers, or e and its rational exponents.

Published as a conference paper at ICLR 2025

2.1 ALGORITHMS FOR AUTOMATED ENRICHMENT OF THE HYPERGRAPH

Our algorithms populate the hypergraph of integer relations by searching for sets of constants
Z1, &2, ... and polynomials p such that p(x1,x2,...) = 0 up to some tolerance. Section Bl sum-
marizes the results, with a full listing in appendix B. The underlying mechanism is as follows:

Beginning with a totally disconnected hypergraph (i.e. no relations are known yet), choose the
search space of constants, partitioned into user-defined subsets, one of which may be fundamental
mathematical constants, and another may be constants provided as limits of formulas (generally
described by C-transforms). Then, each run of the algorithm takes some or all of the subsets in the
partition, filters them further, and then takes their product space. In addition, the algorithm requires
a choice of maximum degree and order for the polynomials. For example, the hypergraph in figure
[resulted from a search that yielded an edge of degree d = 6 and order o = 2 for the polynomials
on 7 and e, which can be represented using a simpler degree 5 edge on the constant e instead.

Second, once the search space is decided, each set of constants is run through an integer relation
algorithm to obtain a polynomial relation, using multiple precision arithmetic (see section B for
details). For this we have chosen the PSLQ algorithm, whose supporting theorems ensure that it
can recover a relation with the working precision for almost all real vectors (Ferguson et all, T999),
except for some special cases we note in appendix B. We discuss in the next section how we run
PSLQ and what heuristic we use to filter integer relations that are likely to be false positives. This is
the most resource-intensive part of the algorithm, with each run of PSLQ having a time complexity
of O(m*) where m is the maximal number of monomials in a polynomial with degree d and order
o (see appendix O for a more detailed analysis). However, each run of PSLQ is independent from
every other run, making the algorithm embarrassingly parallel, allowing us to scale the search space
with the number of processors available.

Lastly, once significant relations have been collected in the previous step to populate the hypergraph,
these integer relations are then used in future runs of the algorithm to save time: Given a set of
constants X, if the hypergraph already has an edge e C X whose degree and order are no more
than the current maximal degree and order, then we do not run X through PSLQ again. Essentially,
as the algorithm learns more edges of the hypergraph of integer relations, future runs become more
efficient. This also means that the algorithm can accept a hypergraph of integer relations at any point
(even if partially filled), using the given integer relations to save time.

PSLQ hyperedge
Fundamental 7 identify \\
Constants [] K\
] 5xyIn2 —5x + 2y| <
\ } Integer : |< 2}150000 vl
\ i Relation : e
/ M Machine i i yes,
)) / v : rgturn Check Return on
L::arlary of I:ulmterlcal — — ¥ Automated // Investment
. aluesandinteger | | S B L
Continued Relations 4 integer ? s
Fractions M lengths « precision
drop

Figure 2: Automated search of integer relations. The process begins by collecting fundamental
constants and continued fractions from the literature and organizing them into a database. Then,
the algorithm checks subsets of constants for polynomial relations using PSLQ. We identify that a
relation is significant by a high Return on Investment (Rol), as described in section B. Such events
are generally extremely rare, and each one is returned to the database and saved, enriching the
hypergraph and adding to our knowledge about mathematical constants and their relations. Each
such discovered relation also saves time on future runs of PSLQ. In addition, our novel identify
utility (see section B) allows for manually adding constants and continued fractions to the database
regardless of the automated search.

Published as a conference paper at ICLR 2025

3 IDENTIFYING INTEGER RELATIONS BETWEEN MATHEMATICAL
CONSTANTS USING PSLQ

PSLQ is a numerically stable integer relation algorithm (Ferguson and Bailey, T997). This algo-
rithm uses a partial sum of squares scheme to manipulate a lattice, in a similar manner to the PSOS
algorithm (Bailey and Ferguson, T99R), using LQ matrix decomposition (transposed QR decompo-
sition). Follow-up works on PSLQ applied it in a wide range of settings (Bailey and Broadhursf,
2001). PSLQ accepts a vector of real numbers 1, xs, ..., and returns integers a1, as, ..., such that
a1x1 + asx2 + ... = 0 within user-set tolerance, maximum number of steps, and maximum absolute
value for all a; (or nothing if no such relation exists). Ordinarily, any of the three user-set parameters
can terminate the algorithm’s calculations, but in this section, we demonstrate how and why we run
PSLQ only until tolerance is exhausted, and present a novel heuristic for deciding if its result is
significant, which we have termed Return on Investment (Rol).

From a purely theoretical perspective, integer relations are either true or false, with the latter provid-
ing no insight towards the former. That is, if a certain integer relation is accurate to 100 digits of
accuracy, but is then found to be incorrect at the 101st digit, it does not imply that any “similar” inte-
ger relation will be fully accurate. To identify promising relations despite the finite precision, we rely
on a perspective motivated by data compression and statistics: Given d binary digits, one can express
about 21+ integers (including negatives). Thus, if our working precision is d binary digits, and an
integer relation algorithm yielded numbers with d binary digits, the result is most likely a false posi-
tive. With a tighter analysis, if one splits this reasoning into n integers, each with d;, ds, ..., d,, binary
digits, then the total amount of options for all integers is about 21+d1 . 214d2 . — ontditdat... Ag
such, for precision of d binary digits, any integer relation algorithm yielding integers with d1, da, ...
binary digits such that n 4+ d; + d2 + ... = d is most likely a false positive.

Based on the above analysis, we introduce and apply the concept of Return on Investment (Rol) to
analyse the validity of integer relations: Given an integer relation with a precision of d, on n integers
each with d, ds, ... binary digits, the Rol is defined as m. With this definition in mind, it
is reasonable to state that the higher the Rol, the more likely an integer relation is to be true. This
assertion matches theory, as in that case, if an integer relation is theoretically true, then the Rol
grows to oo as the working precision increases.

Experimenting with the PSLQ algorithm to determine an empirical lower bound for Rol, beyond
which integer relations can be considered significant, shows that an Rol of 2 seems to comfortably
separate random results from false positives, with a generous margin of error (see figure B). As such,
this has been decided as the lower cutoff for integer relations generated by PSLQ to be considered
significant as part of the algorithm in section 1. In order to further show how general Rol can be,
we performed a similar experiment using a different integer relation algorithm called LLL (Censfra
efall, T987), and described its findings in appendix D.

3.1 CONTINUED FRACTION CALCULATION AND CONVERGENCE

Motivated by previous works of the Ramanujan Machine (Raayoni et al], 2071; Elimelech ef all,
2074)), generalized continued fractions (represented as C-transforms) are a highly expressive frame-
work of generating constants. One of the challenges of working with such mathematical formulas
is that it is not always known in advance whether a certain formula converges to a limit. Never-
theless, our numerical experiments suggest that the asymptotics of each sequence determines its
convergence properties and speed, leading to the following conjecture and analysis. This analysis
aids in populating our database of continued fractions by rejecting formulas that do not convergence
and helping with numerical identification tasks (see section B). We propose the following conjecture,
which generalizes on previous works (e.g., (Raayoni et all, P071; Ben Davidef all, 2(174)), providing
the complete convergence conditions that we use when given an arbitrary C-transform:

Conjecture 1 Ler f,, be a real sequence. The formula C[f,] converges in the following cases, at a
rate provided by the error e, := |1 + f1/(1+ fo/(- -+ fn))) — Cfr]l-

o If fr = O(n") for some k < 0, then ,, = O((n!)¥)

Published as a conference paper at ICLR 2025

(a) (b)
10°
Rol = 5905.2, high confidence ! =1+ 2/3
""""""""""""""""""""" Ve—1 14 4/15
14 6/35
Rol = 2310.5, high confidence . p2n/(n? - 1)
------------------------------------ N T+
AY
\\
103+ N
167 PN 2/15
_~3g, moderate confidence _ __________________ Yove—o~ 17 14 4/35
14 2/21
14 . 2n/(4n” +8n+3)
~20, minimal confidence 1 T) 1+
S 124
8
g, (c) e
2 .0 2 0.9
— 3 °
| \—\ ; 4 0.8 2
0.8 o5 &
Q 6 ©
Ey 07 3
cs B
0.6 9 0.6

LENE R R B B R LI l_l T
2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19

numbers n binary digits d

Figure 3: Experimental analysis of the Return on Investment (Rol) property, showing its use
for identifying integer relations. (a) For each n, we ran PSLQ 100 times with a pre-selected binary
precision of 50 + 5n. We present the average Rol for each n. The standard deviation for each n
is presented as fading errorbars, with the half length of each darkest error bar being equal to one
standard deviation. The lighter dashed line is the constant Rol of 1.25 and the darker dashed line is
the constant Rol of 1.5, which the plot suggests are viable options for minimum Rol for filtering integer
relations. (b) Sampled formulas are listed with their Rol on panel (a). Thanks to their high precision,
their Rol is much greater than our recommended Rol cutoff. (c) For each d,n, we ran PSLQ 100
times until tolerance (equal to 65% of the working precision, see appendix B for more details), each
with n» numbers between 0 and 1, each with d uniformly random binary digits. Then, we present the
average Rol across all 100 runs for each d, n. For a fixed n, the average Rol is close to constant in d.

o If1+4f, = C + o(1) for some constant C # 1, then €, = O (‘ ig _n>

o If 14+ 4f, = Cn* + o(n") for some k € (0, 1], then e,, = O (674 ”/C)

o If1+4f, = O(n*) withk < 0ork € (1,2], then &, = O(n™) for some m < 0.
Otherwise, C|f,] does not converge.

Another challenge we face when analyzing continued fraction formulas is explicitly determining the
limit of a converging C-transform. In lieu of this, if a C-transform converges then it is sufficient to
stop at some finite evaluation depth and use the resulting convergents to calculate an approximation
of the limit. Then, though it would be beneficial to know the exact error of the resulting approxi-
mation, it is much easier and readily available to calculate an error proxy based on the difference
to the previous depth’s approximation. Table [shows a few examples of this procedure, which also
showcase the convergence model in action.

4 THE RAMANUJAN LIBRARY: PROVIDING PUBLIC ACCESS TO THE
DATABASE OF INTEGER RELATIONS AND MATHEMATICAL CONSTANTS

The code we have written and the library we have curated are open-source and publicly-accessible,
T including the novel database of mathematical constants and the hypergraph of integer relations.

"https://github.com/RamanujanMachine/LIReC

Published as a conference paper at ICLR 2025

Table 1: The predicted vs measured convergence properties of selected continued fractions
in their canonical forms: error analysis. Without prior knowledge, it is not possible to know exactly
how inaccurate a given C-transform’s approximations are. Thankfully, the error predicted by the con-
vergence model usually provides a good estimate of the error proxy, which is usually a lower bound
on the true error. Both the error proxy and the true error are measured in terms of how many decimal
digits agree between the approximation and the true limit. Each C-transform here was either taken
from the literature, in which case its limit is known, or otherwise found numerically, and then its limit is
denoted with an asterisk and awaits proof. Note the lack of predicted error for C[n?], due to no known
formula for such C-transforms (see conjecture).

C-transform Evaluation depth Predicted error ~ Error proxy Limit True error
C[1/n] 210 2640 2644 e—1 2647
C[1] 210 428 427 (1+v5)/2 428
10 1
C[n| 2 27 26 oo 26
Cln? 220 N/A 5 1/In2 (¥) 5

Table 2: Sampled formulas from the hypergraph of integer relations. Each formula here is taken
from figure B. As an example, consider how the first relation can be found using PSLQ: Assuming a

polynomial with degree 2 and order 1, and given Catalan’s constant G and C [ﬁ] , PSLQ can

find integers n1, n2, ns, na such that niC [i} G + nsC [i} +n3G + n4 = 0. In this

9n4—3n2+1 In4—3n241

—2n?

case, one can find ny = 2,n2 = 0,n3 = 0,n4 = —1, and given that both C m] and G are

known to high precision, this is a signal that an integer relation exists. The other relations here can
be captured in a similar way, using more complex integer polynomials.

Relation Icon
—ont _ 1
¢ {9n4—3n2+1} el @—.

In2 = 1 _ 2
! ¢ [4—71sz;",2] 5¢ {25—23%2]

®
2= (o + e[@";"@
()

C[—(n+4)(n+2)2(2n+1) } _ 296—1927+180¢(2) @

9n14+84n34259n2+294n+95 1444—9127+855¢(2)

Our code also contains specialized algorithms for working with the hypergraph and for testing new
candidate constants and candidate formulas. Access to the database from our code is established
using psycopg2 and sqlalchemy (Bayei, PZ0172). Our code contains for example the automated search
algorithm described in section I, along with additional utilities like the C-transform calculator and
the numerical identification suite we call identify, which are described in this section.

The computation of continued fractions is fairly straightforward thanks to the recursive relation
mentioned in appendix A, and so the C-transform calculator was developed to allow us to compute
C-transforms to arbitrary depths. The calculator utilizes three libraries for its computation: sympy
(Meurer_et-all, 2OT7), gmpy2, and mpmath (mpmath development team, 2023). Using the above
libraries, computation up to a depth of 1 million can be achieved in a few minutes at most on a
typical personal computer, for most continued fractions. Using the error proxy and convergence
model mentioned in section BT, we also give a preemptive analysis of any given C-transform of a
rational function, which is also useful to warn of C-transforms that are expected to not converge

Published as a conference paper at ICLR 2025

or to have a slow rate of convergence. This preemptive analysis also allows the user to specify
their desired error proxy instead of having to guess an explicit depth in advance. Finally, when
operating on C-transforms of rational functions specifically, the calculator automatically shifts the
given function so as to avoid its singularities and zeroes, resulting in an equivalent C-transform up to
some number of steps forwards or backwards (see figure @ for a demonstration of this equivalence).

The integer relation machine depicted in figure D has two uses, one of which has been described in
section I, and the other is identify: a novel numerical identification tool.? The input to identify is an
array of decimal expansions representing one or more constants and/or their implicit C-transforms.
The output is the result of putting all values into the integer relation machine to attempt to extract
meaningful relations. If enabled, identify can also automatically fetch specific mathematical con-
stants or C-transforms from our database and match them against its input, informing the user of
what the database is familiar with, if applicable. If at any point, identify is given a C-transform that
the database is unfamiliar with, identify will then automatically upload it to the database. Similarly,
if a new relation is found in the process, it will also be uploaded to the database.

5 SELECTED DISCOVERED RELATIONS BETWEEN MATHEMATICAL
CONSTANTS

The novel algorithm described in section P71 has yielded results which we summarize here. These
results were found after running the algorithm on a smaller scale (an 8-core AWS machine) for
several months. The total compute time of our results is, thus, about 16 compute months. However,
since the algorithm is embarrassingly parallel, runtimes of the algorithm in practice go down with
the number of CPU cores used. This shows the potential of our algorithm for running on much
larger compute resources. Figure B shows 118 of the relations found, of which 43 were known
in the literature and 75 are novel to the best of our knowledge. Figure D shows some example
relations. Appendix B catalogues all relations in detail. These results were found after starting with
a completely disconnected hypergraph, containing the constants of interest, and no initial relations.
Here we present notable discovered relations involving 7, e, [n2 and the Lemniscate constants.

We recall the following formula, attributed to Ramanujan (Berndf_ef-all, T99Y) (using the notation
defined in equation [, section D):

e 1 1

2 " Cll Tl —2n)/Gnn + 1)) — 1

The search job unearthed a family of conjectures that generalizes the second C-transform in this
relation, given in table 3.

Next, we examined the family of constants C[n?/(k*(1 — 4n?))] for integers k > 1, first noted in
Ben David_ef all (2024) (table 4 column 1). When they were first discovered, these C-transforms
were known to converge but their limits were unknown. Our search algorithm connected three of
these C-transforms to In2 in pairs:

1 1
2= e —an?))] T e @00 —)y
2 2
= 5C[n2/(25(1 — 4n2))] | TCIn2/(49(1 — 4n2))]
1 2

© C[n2/(4(1 —4n2))] 5C[n2/(25(1 — 4n2))]
Thanks to the high precision to which these equations have been verified, our Return on Investment

(Rol) measure (section B) quantifies how unlikely they are to be false conjectures. These conjectures
are also listed in appendix B. Later investigation has revealed:

Conjecture 2 Forallk >1,C {kQ(l’inQJ = 1n(k+1)2£]fn(k—1)'

2See README in the Github link, or the tutorial hosted at:
https://colab.research.google.com/drive/IPX An4dFwTHnO0Y QIBNDmOSIHWensqKetcU

Published as a conference paper at ICLR 2025

Table 3: Discovered Ramanujan-like formulas for \/mwe. For brevity, we denote Ry = /%erf%.

The rows in this table represent the 8 formulas we discovered for /me, generalizing Ramanujan’s
original formula that was so far unique. We proved the first 4 rows using transformations on Ramanu-
jan’s original formula. The latter 4 rows are still unproven (yet equivalent, such that proving any one
of them will prove all four). The last row of each set of four is an infinite family of formulas: for any
integer k > 0 there exist integers «, 3,7, § that satisfy an equality between the two sides.

C-transform Limit

C[(1 —2n)/(4n(n + 1))] (R2 +1)/2R;
Cl(1—2n)/(4(n+1)(n+2))] (2R2+1)/4
Cl(1—2n)/(4(n+2)(n+3))] (Ry+1)/(6Ry — 1)
Cl(1—2n)/(4n+k)(n+k+1))] (aRa+p)/(yR2+)
Cln/(2n(n +1))] 1/(2Ry — 1)
Cl(n+1)/2n(n+1) Ry
Cl(n+2)/(2n(n+1))] (2R2+1)/(R2 + 1)
Cl(n+k)/(2n(n+1))] (aRs + B)/(vR2 +0)

As a final example of notable results, we compared the performance of identify with commercial nu-
merical identification tools such as Wolfram Alpha ®. Our identify method was successful in cases for
which Wolfram Alpha was unsuccessful in identifying the constant. This was the case for formulas
such as C[—(2n + 3)?/(18n(n + 1))] (as an example of a larger family of C-transforms). Executing
identify found that the limit is gﬁfgg (to 50 digits of accuracy initially, and further thousands upon
reconfirming), where A, B are respectively the first and second Lemniscate constants.

6 LIMITATIONS AND OUTLOOK

Our work presented a successful approach to automated formula discovery in number theory. The
numerical nature of our algorithms means that results are not theorems, but rather conjectures await-
ing proofs. In many cases, the discovered relations between formulas led to patterns that enabled
generalizing formulas into families. Some of these families are connected such that proving one for-
mula proves the entire family. We provided proofs for selected cases (shown in appendix B), hinting
that the other discovered formulas can also be proven. In a similar vein, our findings reveal the com-
plete rules of convergence of general continued fractions, yet these discovered rules lack a formal
proof for many of the special cases. Future work by number theorists can follow on our groundwork
to complete the proof and build the complete theory of convergence of continued fractions.

The Return on Investment (Rol) mechanism that we presented to quantify the success of the PSLQ
algorithm can be directly extended to other integer relation algorithms such as LLL (Censfra_ef all,
[987) (see also appendix D). This quantitative approach can contribute to the application of such
algorithms in a wider range of fields, and will benefit from a thorough theoretical investigation.

Our approach and implementation can benefit from many improvements. The search algorithm was
implemented in a way that allows for distributed computing. We are now adapting the algorithm to
utilize additional computing power using the online distributing network BOINC (Anderson, 2004).
Such large-scale computing efforts will be very promising in generating new, more elaborate for-
mulas and interrelations. The increase in the number of interrelations will require corresponding
methods to eliminate false positives, which could be accomplished automatically by retesting them
over time with higher precision constants. Sufficient precision will eventually reveal each potential
false positive. Moreover, the current automated search algorithm relies on a pre-selected, static set
of constants, which directly determines which relations can be found. Methods of automatically
adding "interesting" constants to the database can improve the potential for finding novel relations.

Looking forward, the publicly-available Ramanujan library that we developed can now serve number
theorists for investigating mathematical constants with more powerful tools that are easily accessible.
The hypergraph of integer relations may be viewed like a knowledge graph, and as a public resource,
it can help open such areas of investigations to a broader community with different levels of expertise.

3https://www.wolframalpha.com/input?i=-0.34391017046397691140258013367681311419903292310618

Published as a conference paper at ICLR 2025

By presenting fascinating connections between constants, we hope that this resource will invoke
curiosity in younger audiences and encouraging mathematical experimentation as a path for learning
mathematics. In its next generations, the Ramanujan library can be improved by augmenting the
hypergraph with written explanations on constants and links to relevant papers, forming a public
hub of knowledge on constants and their relations.

ACKNOWLEDGEMENTS

This research is supported by the generosity of Eric and Wendy Schmidt by recommendation of the
Schmidt Futures Polymaths program.

This research received software engineering support from the Georgia Institute of Technology’s
Scientific Software Engineering supported by Schmidt Sciences, as part of the Virtual Institute for
Scientific Software (VISS) Program

1 2
In2 = -

n2 n2
¢ [4 — 16712] 5¢ [25 — 100712]

Ramanujan-like relations

Figure 4: The hypergraph of integer relations: each vertex is a constant, and each edge is a
formula. The hypergraph summarizes our automated discovery of relations between mathematical
constants, presenting selected formulas from our database. This hypergraph does not show all dis-
covered relations for clarity’s sake. Empty circles denote constants (written inside). Colored circles
denote continued fractions. Black denotes continued fractions whose limit is known in the broader
literature. Green denotes continued fractions whose limit is found in (Raayoni et all, P021). Blue de-
notes continued fractions whose limit was unknown before our work, to the best of our knowledge. We
denote order-1 connections (Mobius-like) with solid lines, and higher-order connections (constants
may appear squared, cubed, etc.) with dashed lines. Edges that connect more than two vertices
are marked with small empty squares, denoting formulas that involve more than two constants of
formulas (example in the inset at the top right). Each algebraic constant has an edge of size 1, also
marked with a small empty square (placed at the top left). Such degenerate edges correspond to the
minimal polynomial of the constant.

10

Published as a conference paper at ICLR 2025

REFERENCES

David P Anderson. Boinc: A system for public-resource computing and storage. In Proceedings of
the 5th IEEE/ACM International Workshop on Grid Computing, pages 4—10, 2004.

Roger Apéry. Irrationalité de ((2) et ((3). Astérisque, 61:11-13, 1979.

Kenneth I. Appel and Wolfgang Haken. Every planar map is four colorable. Bulletin of the American
Mathematical Society, 82:711-712, 1976.

Raymond Ayoub. Euler and the Zeta Function. The American Mathematical Monthly, 8§1:1067—
1086, 1974.

David Bailey and David Broadhurst. Parallel integer relation detection: Techniques and applications.
Mathematics of Computation, 70:1719-1736, 2001.

David Bailey and Helaman Ferguson. Numerical results on relations between fundamental constants
using a new algorithm. Mathematics of Computation, 53:649-656, 1998.

Michael Bayer. Sqlalchemy. In Amy Brown and Greg Wilson, editors, The Architecture of Open
Source Applications Volume II: Structure, Scale, and a Few More Fearless Hacks. aosabook.org,
2012.

Nadav Ben David, Guy Nimri, Uri Mendlovic, Yahel Manor, Carlos De la Cruz Mengual, and
Ido Kaminer. On the Connection Between Irrationality Measures and Polynomial Continued
Fractions. Arnold Mathematical Journal, 2024.

Bruce C. Berndt. Ramanujans notebooks: Part I1l. Springer Science & Business Media, New York,
NY, United States, 2012.

Bruce C. Berndt, Youn-seo Choi, and Soon-Yi Kang. The problems submitted by ramanujan to the
journal of the indian mathematical society. 236, 1999.

Bruno Buchberger, Adrian Crciun, Tudor Jebelean, Laura Kovics, Temur Kutsia, Koji Nakagawa,
Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz, et al. Theorema: Towards
computer-aided mathematical theory exploration. Journal of applied logic, 4:470-504, 2006.

Ofir David. The conservative matrix field. arXiv:2303.09318, 2023.

Alex Davies, Petar Velickovi¢, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomasev,
Richard Tanburn, Peter Battaglia, Charles Blundell, Andras Juhdsz, et al. Advancing mathematics
by guiding human intuition with Al. Nature, 600:70-74, 2021.

Randall Davis and Douglas B Lenat. Knowledge-Based Systems in Artificial Intelligence: 2 Case
Studies. McGraw-Hill Professional Book Group, New York, NY, United States, 1982.

Rotem Elimelech, Ofir David, Carlos De la Cruz Mengual, Rotem Kalisch, Wolfgang Berndt,
Michael Shalyt, Mark Silberstein, Yaron Hadad, and Ido Kaminer. Algorithm-assisted discov-
ery of an intrinsic order among mathematical constants. Proceedings of the National Academy of
Sciences, 121:€2321440121, 2024.

Leonhard Euler. Introductio in analysin infinitorum. Apud Marcum-Michaelem Bousquet & Socios,
1748.

Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 38:113-118, 1988.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610:47-53, 2022.

Helaman Ferguson, David Bailey, and Steve Arno. Analysis of PSLQ, an integer relation finding
algorithm. Mathematics of Computation, 68:351-369, 1999.

11

Published as a conference paper at ICLR 2025

Helaman RP Ferguson and David H Bailey. A polynomial time, numerically stable integer relation
algorithm. Technical report, 1992.

Steven R. Finch. Mathematical constants. Cambridge University Press, 2003.
Aleksander Ya. Khinchin. Continued fractions. The University of Chicago Press, 1964.

Douglas B Lenat and John Seely Brown. Why AM and EURISKO appear to work. Artificial
intelligence, 23:269-294, 1984.

Arjen Lenstra, Hendrik Lenstra, and Lovész L4sz16. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515-534, 1982.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondiej Certik, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Stépa’m Roucka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 3:¢103, jan 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peeri-—cs.103.

Patrick Morandi. Field and Galois Theory. Graduate Texts in Mathematics. Springer, 1996.

The mpmath development team. mpmath: a Python library for arbitrary-precision floating-point
arithmetic (version 1.3.0),2023. http://mpmath.org/.

Gal Raayoni, Shahar Gottlieb, Yahel Manor, George Pisha, Yoav Harris, Uri Mendlovic, Doron
Haviv, Yaron Hadad, and Ido Kaminer. Generating conjectures on fundamental constants with
the Ramanujan Machine. Nature, 590:67-73, 2021.

Ofir Razon, Yoav Harris, Shahar Gottlieb, Dan Carmon, Ofir David, and Ido Kaminer. Automated
Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences. Interna-
tional Conference on Machine Learning, 202:28809-28842, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Kumar, Emilien Dupont, Francisco Ruiz, Jordan Ellenberg, Pengming Wang, Omar Fawzi,
Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program search with large
language models. Nature, 625:468—475, 2023.

Hao Wang. Toward mechanical mathematics. IBM Journal of Research and Development, 4:2-22,
1960.

Herbert S Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and
q) multisum/integral identities. Inventiones mathematicae, 108:575-633, 1992.

Stephen Wolfram et al. A new kind of science. Wolfram Media, Champaign, IL, United States, 2002.

Doron Zeilberger. A fast algorithm for proving terminating hypergeometric identities. Discrete
mathematics, 80:207-211, 1990.

12

https://doi.org/10.7717/peerj-cs.103

Published as a conference paper at ICLR 2025

A ON GENERALIZED CONTINUED FRACTIONS

A generalized continued fraction, given two sequences a,,, b,, is the following formal expression:

b
GCFlan,by] = ag + !

b
CL1+ 2

b
a2+—3

In practice, one defines two sequences p,,, g, called the convergents, such that

by _ Pn
bQ dn
b3
. by,
oy
an

ap +

a1 +
as +

and then both sequences satisfy a recurrence relation, summarized by the following matrix product:

n

1 ap 0 bi| _ |Pn-1 DPn

=1

The special case of b,, = 1 is called a (regular) continued fraction. C-transforms are the special case
of a,, = 1. Using basic transformations, any generalized continued fraction can be converted into
this latter form.

1

e 2/15 2/15
6ve—9

]:1+c[mtz] Lt 4/35 =
(2n+3)(2n+5) 2n+4

1+
¢ [(Zn ST eL)

2n
2n+1)(2n+3)

Figure 5: Equivalences between continued fractions. Expanding on figure 0, our representation
of the continued fractions enables each integer relation to capture an infinite family of formulas. This
redundancy is mostly eliminated by using the C-transform. Additional equivalences still exist, as
discussed in section B and shown by the second integer relation.

Our choice of C-transforms arises from the following equivalence transformation property of con-
tinued fractions: Given any GC F'[a,,, b,,] and nonzero sequence c,,, the following equality holds:

by c1by
do + bg =aot 6102b2
a1+ b3 c1a1 + CQCgbg

az + — C2a2 +

Or, more compactly, coGCF[ay,,b,] = GCFcan, cn—1¢nby] (see figure B for more concrete ex-
amples). This equality holds even if neither side converges, in which case the convergents still coin-
cide for all n. As such, if a,, # 0, the choice of ¢,, = a% yields %GCF[an, bn] = Clon/(an—1an,)].

13

Published as a conference paper at ICLR 2025

B REBOUNDING DETECTION

Since we have elected to nullify two of the three stopping conditions of PSLQ, we must consider
whether or not the remaining stopping condition can always be achieved. Namely, can every run of
PSLQ terminate when only stopping once tolerance has been achieved. Even with a fairly standard
choice of 75% tolerance, the answer is no, at least for the implementation we use. However, our ex-
periments show that all such cases appear to exhibit the same general behavior: PSLQ first gradually
increases the precision of the integer relation as usual, and at some point before reaching tolerance,
it reverses course and starts reducing the precision (see figure B for an example run).

Our implementation of PSLQ includes a failsafe that detects this behavior: As PSLQ iterates in the
main algorithm, remember pyes; the best precision ever obtained in the current run. If at any point
Peurrent the current precision satisfies 2P yrrent < Dpest, abort the algorithm and return no integer
relation. However, this mechanism is only enabled after an initial grace period of 100 steps. This
grace period was chosen since it was observed that during the phase where the precision increases,
it does not always increase monotonically, and can fluctuate.

___________________ target precision
80 1

60 - identified
abort point

40 1

precision

20
PSLQ gets
stuck

0 20 4'0 6'0 8'0 1(')0
step number
Figure 6: Example run of PSLQ showcasing the rebounding phenomenon. The y axis represents
the precision of the best integer relation that PSLQ finds at each step number, which must reach the

dashed line to terminate. The red dot is where the failsafe would have triggered, except that it is
being prevented by the grace period to enable computing this example.

C TIME COMPLEXITY OF THE PSLQ ALGORITHM

Given z a vector of m real numbers, and assuming the minimal euclidean norm of all integer rela-
tions on it is M, € R, running PSLQ to retrieve an integer relation on x has a time complexity of
O(m* + m?log M, (see (Ferguson et all, T999) corollary 2). To estimate the time complexity of
our runs of PSLQ, we substitute M, with a constant based on the working precision. When applying
PSLQ on a large scale, choosing an upper bound for the precisions of the constants involved prevents
this M, term from dominating the runtime, and so we can asymptotically treat this as a constant,
leaving us with a time complexity of O(m?).

Since we run PSLQ to detect specifically polynomial relations, we should evaluate m in terms of
the amount of constants n, the maximal degree d, and the order o of the relation, as these dictate
how many monomials we expect the polynomial to have, and in turn determine m. If we ignore the
limitation on the order, counting all possible monomials of a polynomial on n variables with degree
d is identical to counting all multisets of size d on n + 1 items, each of which represents either one
of the variables, or a dummy variable that completes the monomial to degree d. This has a closed
form solution based on the stars and bars method:

n+l+d—-1 n+d (n+d)!
m = = =)
d d dln!
When including the limitation on the order, one obtains a smaller value than this through a more
delicate analysis, but to the best of our knowledge, no closed form solution exists. Regardless, this

means that each run of PSLQ will have a time complexity of O (("jd) 4).

14

Published as a conference paper at ICLR 2025

D THE GENERALIZEABILITY OF RETURN ON INVESTMENT (ROI)

The Rol measure that we introduced in section B is defined on numerically-conjectured integer re-
lations. Our work relies on the PSLQ algorithm, which is one of many integer relation algorithms,
and so it is natural to ask if Rol can be applied to other integer relation algorithms and reach the
same conclusions. Here we motivate a positive answer to this question by demonstrating the same

experiment shown in section B (specifically figure B), but performed on the LLL algorithm instead
(Censfra’ef all, T987).

Figure [, which is structured in an identical manner to figure B, demonstrates a nearly identical
experiment, except the PSLQ algorithm is replaced by the LLL algorithm. This experiment used the
olll python package for an implementation of LLL. The result shows how the algorithms are similar
yet different in terms of Rol: as n increases, both algorithms exhibit greater average Rol, up to some
apparent upper limit less than 1.5. However, PSLQ showed greater standard deviation than LLL,
which is also visible as greater noise on each figure’s (c¢) panel.

(a) (b)
104
_Rol =5905.2, highconfidence _________________ L 23
Ve—1 14 4/15
14 6/35
Rol = 2310.5, high confidence - 2n/(4n? - 1)
------------------------------------ \ T+
AY
\,
103+ AN
\\
~ Y 1 2/15
1.6 7 \‘ 14 /
6ve —9 14 4/35
1.4 1+ L
’ ~30, moderate confidence "t 271/(47112 : 8n +3)
8 12
[
g (c)
$ 10 5 1.0
8 2 09 9
] £s)
0.8 83 08 &
g 7 07 ¢
c8 ®
0.6 1 9 06
. ® LR N

T T T T — T T T T T T T T T
2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

numbers n binary digits d

Figure 7: Experimental analysis of the Return on Investment (Rol) property, demonstrated on
the LLL algorithm. (a) For each n we ran LLL 100 times, with a preselected binary precision of
50 + 5n, and present the average Rol for each n. The standard deviation for each n is presented as
fading errorbars, with the half length of each darkest error bar being equal to one standard deviation.
The dashed line is the constant Rol of 1.3, which the plot suggests is a viable option for minimum Rol
for filtering integer relations from LLL. (b) Sampled formulas listed with their Rol on panel (a). Thanks
to their high precision, their Rol is much larger than our recommended Rol cutoff. (c) For each d, n,
we ran LLL 100 times, each with n numbers between 0 and 1, each with d uniformly random binary
digits. Then, we present the average Rol across all 100 runs for each d, n. For a fixed n, the average
Rol is close to constant in d.

E PROVEN FORMULAS

After having found the formulas shown in the hypergraph (figure #), we proved some of them, and
we list these proven formulas here. We also plan joint works with mathematicians that focus on
the proofs of the formulas and their potential impact in the relevant fields of mathematics, to be
submitted to mathematics journals. This effort complements our main contribution in this work,
which is concerned with the automated generation of the formulas.

In total, we proved 47 formulas of the form ag + b1/(a1 + b2/(... + by/(an + ...))), of which
22 we showcase in this table. 6 of the formulas can be generalized to three parametric families,

15

Published as a conference paper at ICLR 2025

presented in lines 1-9. Lines 10-25 describe additional proven formulas. The proofs rely on (1)
inverting Euler’s continued fraction formula with parameters h1, ko, f to (2) create an infinite sum,
which we (3) translate into a hypergeometric-function form, and (4) complete the proof using known
hypergeometric identities.

Table 4: Selected list of formulas that we proved.

an by, h1 ho f Known limit of resulting infinite sum
w+1 n? 4+ wn -n n+w 1 14+ w) (A1, Lw+2,-1)"1—1)
—12
5 nz+4n -n n+4 1 W
4 n? +3n -n n+3 1 “16+2410g 2
w (wn +1)? —wn—1 wn+1 1 (w+1)(oF (1, 208l 7)=1 1)
2 4n® 4+ 4n +1 —2n—1 2n+1 1 =
1 n?+2n+1 —n—1 n+1 1 11(1%(5?2
w n+w+ln+w -n-1 n+w 1 (W+1eA1,2,0+2,-1)"" —1)
3 n?+4n+3 -n—1 n+3 1 —1+m
> n? 4+ 3n 42 A A N =
5 nZ+2n n n+2 n—i—% %
9 5 -3 28
5 n? +4n +3 —n—1 n+3 nt5 P gmmr g
4 n? +n —n n+l n+l moygees
4 n? 4+ 3n +2 —n—1 n+2 n+2 F+ g—primeg
4 4n? 4+ 4n —2n 2n+2 1 m
1 3
3 nz -n n n+ g 3—1310g2 10
3 n®+2n+1 -n—1 n+1 nt+5 3 320430022
3 n? +4n +4 —n—2 -n+2 n+t3 ?*m
1 n?+4n+4 n+2 —n—2 1 _2+;3+§10g2
2
4 an? —1 —2n+1 2n4+1 1 25 +1
4
2 4n® —dn —1 —2n+1 2n-1 1 141
5 4n2 4 2n — 2 on—1 242 1 e t+1
-3 3
5 4n? +2n —2n—1 2n n+3 3+2v2
3 4n? —2n —2n+1 2n 1 242
n2+2n+1 —-nt n? n? 1 %2)
2TL+1 TL4 _n2 TL2 1 _4a

F DETAILED INTEGER RELATIONS FROM THE HYPERGRAPH

This section provides the full data underlying the hypergraph (figure B). Recall that according to
appendix [, each of the integer relations presented here can be connected to infinitely many gen-
eralized continued fractions, and the C-transform is chosen as a representative for them all. Thus,
every vertex in the hypergraph could represent infinite formulas that we consider trivially equivalent.
This reasoning motivated the use of the C-transform as the canonical representative that defines the
vertex. The edges in the hypergraph provide additional (non-trivial) equivalences. Some of the for-
mulas and relations shown here can be found in the literature, and others are novel, to the best of
our knowledge (as denoted in the left-most column). Every integer relation has been rearranged for
clarity, though binary precision and Rol (rounded down) are still computed in terms of the original

integer relation.

‘ Novelty ‘ Integer relation

‘ Precision ‘ Rol ‘

16

Published as a conference paper at ICLR 2025

Known | C 115%6_765—7;31219”2_25} = %5 53147 | 66433
Known | C =36n6_21—7;f+7n2_1 = 3 53146 5905.1
Known | € oty | = 7y 53147 | 66433
New ¢ :4n10+63n8+264;n7élj154n4+57n2—9 = 6((5)—24(3)+3 160 11.4
New ¢ :4n10+63n8+2967:67i258n4+137n2749 = 14C(5)+422C(3)763 162 7.3
New ¢ :4n1°+143n8+1364:zgr286n4+517n27169 = S33¢(5)F228sc(3) 500 | 234 5.2
New “ :4n6+99n4_+n6651n27169] = 1044(:?)7117 197 9.3
New ¢ =4n5+195n4_+n26451n27625 = 5400{(231)676275 269 7.2
New ¢ 9n6+33n5+25i7}16—_1%22—12n2+2n+2 = 4(?3) 53147 6643.3
New ¢ _4n6+35n_41691n2—25] = 54(31)—5 122 12.2
New ¢ :167L6+572nzig§327L2—1369:| = 8741254?37)591043992 226 4
New ¢ :16n6+252n1§—n16092n2—289:| = 3213((?’3—3808 156 4.7
New ¢ :4n6+323n412243n2—1681:| = 70848(1(;38—83435 341 7.1
New ¢ :4n6+675n4;;86731n277225:| = 408000(4(?’)())9485639 487 9
New ¢ 4n6+483n44:1n46763n273721-‘ = 131760002(1(2())(1015622283 409 59
Known | C _97;1?:8;21383;%25&19] = 54—2874(2) 53146 2952.5
Known | C |y =| = 2 53149 | 7592.7
Known | C >9n;f;1247:31+31";9;§i’328*02145 = 240—125((2) 53144 2214.3
Known | C -25n4+90;§fif1%3+54n+10- = 304(29)740 53146 29525
Known | € [preipmint | = @2, 53146 | 2797.1
Known | C :9n4_+267)i5%253§?1_§;139- = 208341(127)4(2) 53144 2415.6
Known | C =9nz~2%248;371;5;£;6$r9] - 27((28)—36 53146 2952.5
Known | € |[grttptinsian ctnss] Jaca)a, 53142 | 1660.6
Known | C #WJ =& 53151 | 106302
Known | C :Q;Lff;:;ﬁl} = s 53149 | 75927
Known | € |yt] = 5 53150 | 88583
New ¢ :9;42f:§z%7f&%i§2t315} = 22?(4((22)):244807;t6367o 53143 1062.8
New ¢ :4n4+;2:2+49:| = 14c(22)721 101 12
New ¢ 4n4+4_871L142+169-‘ = 40&%24((2) 138 5.5
New |5Im2—=—5_ 2 53150 | 4831.8
C|:16"72L*4} 6[100"2*25}
New 14In2 = L 53148 4429
(o) i)
New 35In2 = 0 _ 4 14 53147 3126.2
[swt=n) Clrota)
New | C |5t = 5% 53150 | 88583

17

Published as a conference paper at ICLR 2025

New c 16n4+24n73i71417722181n+238~‘ = Siim =37 108 4.5
Known | € _gn;fé€@$ﬁggzéin123_ogi39} e 53144 2415.6
Known | €| o | = 53149 | 53149
Known | C _9n44:42822188215i7512n+9_ = 51 53146 2952.5
New | C :9;%’143;};131} S T 53140 | 1714.1
New | C|chipinate] - ity S48 | 26574
New | C|sighngipicin| - oot 3146 | 24157
New | C :923243;%131} -2 53149 | 6643.6
New ¢ :9n4+;222;;1182€§2_+1fg()2n+45:| = T50G=355 53143 2043.9
New ¢ =9nZi?;;31ﬁ;§528ﬁ§0f$45} = 570G 53144 1968.2
New ¢ =9nzi?;;31ﬁﬁzgfgii§o?fi45} = T5200G 33145 2044
New | C :9;%7143;%131 = i 53145 | 3126.1
New ¢ »QTLI—E;;;3—2271133;%4-1&-“22776713-7333:| = Tozc—o31 53141 1897.8
New ¢ »QnIfngy:Sil;;?;zg%foiﬁiﬁéw} = TowH—2070G 53141 1771.3
New | C|porruipsmiosn®) _ 6 53147 | 3543.1
New | C ﬁn“ﬂ - 53151 10630.2
New ¢ gnfféf,fs{f?;{ff:fs = sogaT 53144 2415.6
New C zgnzigzgfﬁ;;gi;oiﬂ; = =mg 53148 4429
New | C|mrgiicbnioam? T 4 53150 | 4831.8
New ¢ =9n4;f§:§+1§{f;_8§§_1; = 365 33147 3321.6
New ¢ :9n4;ig:§-1+267{15i%75—15: = 90667*i65 53146 22144
New ¢ :9n4+48:z§:l—46;781§i8n—15= = 50655 33145 2530.7
New ¢ :9;421187711301;;;26;1;6;18:9: = 37-15G 53148 31263
Known | ¢2 —¢—1=0 53148 | 8858
Known | v2° =2 53147 | 10629.4
Known | v/3° =3 53147 | 10629.4
Known | C[Z] =222 53149 | 5905.4
Known | C[Z] =2 53149 | 7592.7
Known | C[$] = 555 53149 | 5905.4
Known | C[1] = ¢ 53150 8858.3
Known | C[1] = Y3t 53149 | 7592.7
Known | €[] = L4 53149 | 7592.7
Known | C[{] = 54 53147 | 6643.3
Known | 9C[2]* —9C[2] —2=0 53153 4088.6
New | C|Sin | = o/otiotys 53147 | 4088.2

18

Published as a conference paper at ICLR 2025

19

New | C|[5in;] = ¥2va-2veavaes 53146 | 3126.2
New | 25C {%r 27 || 3 =0 53151 | 35434
New | 9C [27%13} —120 [225] —2 =0 53152 | 4088.6
Known | C[2] = dCzctdecll 53145 2657.2
Known | Cp = <=7 53146 | 5905.1
New | €|t = ma 53147 | 53147
New | C| | = it 53152 | 2952.8
New | C| | = 2% 53151 | 35434
New C [%} =Cy+2 53151 7593
New | C |2 = 20ais 53152 | 4088.6
New | C =n2f§;+2] = 2 53149 | 6643.6
New |C znz;gg%} = 20247 53153 | 35435
New | || = o 53148 | 6643.5
New | (36¢— 81)C [ﬁ} —18¢C {m} —1=0 53143 | 2310.5
New | (e—1)C [4,3;11}2 ~20 [g35] - 1=0 53147 | 5905.2
New | (e—1)9C [ﬁf —66C | o2 | +e =0 53147 | 33216
Known | €| qmitiontitrs| = 253 53147 | 3543.1
Known | C m%} = el 53148 | 53148
Known | C [ﬂ =e—1 53149 8858.1
Known | C | m2] =4 53149 | 10629.8
Known | C -16n4+80n3ﬁ113_222+80n+11} = 333116 53145 3543
Known | C|—=n] = 2o 53149 | 6643.6
Known | C | +4;;ﬁ’;—j"j6n =] = &5 53148 | 4831.6
Known | C| | = s 53144 3542.9
Known | C| 2+7g+12} S 53147 | 48315
Known | C |t] = e 53143 | 29523
Known | C [2+3n+2 = 4;10 53147 4831.5
Known | C |zt] = e 53145 | 4088
Known | C :n4+10n;¢§;j;+40n+14] = le 53146 | 3543
New C |7 Fomra| = e 1630 53139 21255
New | Clar| = 5o 53142 | 2657.1
Known | C Q’fﬁﬁﬁiﬂ = 53150 | 4429.1
Known | C :4;; o3| = e 53150 4831.8
Known | C |2 | =4 53151 | 8858.5

Published as a conference paper at ICLR 2025

Known | € [gaeny | = 5ot 53149 | 4429
Known | C }gf;ﬁls} = 5 53147 | 3126.2
Known | C :gn—ﬂl;l;ﬁo} =& 53148 | 33217
Known | C :g);jg} S 53148 | 35432
Known | C 9;31%] S 53152 | 7593.1
Known | C [153"] = 53153 5905.8
Known | C 9332135311328} = im=32 53145 | 17715
Known | C 9;312;;11}0} s 53147 | 2530.8
Known | C[3pinita] = 2 53151 | 44292
Known | C Q;Z‘fﬁ} =2 53152 | 10630.4
New | C|piiststnens)| _ oo 53148 | 25308
New | C|zZi=snis] _ _on 53146 | 2310.6
New |C zgln 2] - 2-33;58;;4 53144 | 1610.4
New C|sapsbntd| - ont2d 53148 2952.6
New | C|g2en | o as 53143 | 17714
New | C|saigimes) = 2imest 53147 | 1898.1
New | C|gm2wimn | o 4 53147 | 2530.8
New | C|z2ismnss] _ smtis 53150 | 2657.5
New | C :QH;TIQE);’;J_: 5 53149 | 35432
2
Known | ¢ (c[ln] + QC{QEEZS]l) 2946 84.1
New | % = (ghy+C[]]) 2047 | 2455
2
New | = = (- E%{i}a_l) 2949 62.7
=i
Known | €[4 = & 53151 | 13287.75
New ¢ [4n4+20i2i553227j35n+14“ = 3%‘? 53149 5314.9

20

	Introduction
	Introducing the hypergraph of mathematical constants and their relations
	Algorithms for automated enrichment of the hypergraph

	Identifying integer relations between mathematical constants using PSLQ
	Continued fraction calculation and convergence

	The Ramanujan library: providing public access to the database of integer relations and mathematical constants
	Selected discovered relations between mathematical constants
	Limitations and Outlook
	On Generalized Continued Fractions
	Rebounding detection
	Time Complexity of the PSLQ Algorithm
	The Generalizeability of Return on Investment (RoI)
	Proven formulas
	Detailed integer relations from the hypergraph

