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Abstract

3D ultrasound (3DUS) stitching can enlarge the field-of-view (FOV) by registering par-
tially overlapping 3DUS images collected from different probe positions. However, standard
registration algorithms frequently encounter difficulties with this task, primarily due to the
sector-shaped FOV, which often leads to pronounced local minima, thereby obstructing
optimization efforts. To address these limitations, we propose LOTUS, a novel Latent Dif-
fusion Model (LDM) specifically designed for 3DUS FOV outpainting. LOTUS innovatively
encodes the 3DUS data into a compact latent space and performs outpainting at test time,
effectively extending the sector-shaped FOV into a standard rectangular shape. This trans-
formation facilitates a more robust registration by mitigating the issues of local minima as-
sociated with the original FOV shape. Experimental results show that LOTUS significantly
improves the accuracy of the registration as well as the efficiency of the outpainting process
compared to existing models. The code is available at github.com/MedICL-VU/LOTUS.
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1. Introduction

US image registration (Che et al., 2017; Entrekin et al., 2001; Wang et al., 2014) is a pivotal
task for downstream US analysis. A particularly important application is image stitching
(Banerjee et al., 2015; Gomez et al., 2019; Wright et al., 2023; Bano and Stoyanov, 2024),
which can compound multiple US images collected from different probe positions by align-
ing the overlapping image contents to extend the US field of view (FOV). This is important
for complete visualization of larger anatomical structures, such as the fetus and the pla-
centa during the second/third trimesters of pregnancy (Roy-Lacroix et al., 2017; Gomez
et al., 2017). However, the sector-shaped FOV inherent to US imaging poses considerable
challenges for effective image stitching (Yao et al., 2024). It introduces a strong trivial
local minimum of the similarity metric at the initial stage, rendering registration optimiza-
tion difficult. Limiting the metric computation to just the overlapping region can help
this problem, but this introduces a further complication as the similarity metric within the
overlapping region can be trivially optimized by artificially reducing overlap. In this study,
we explore the potential of outpainting the 3DUS volume to obtain a rectangular FOV for
alleviating these optimization problems during registration.

Image outpainting has become a prominent topic in computer vision in recent years, with
diffusion model (DM)-based methods achieving remarkable performance in natural image
outpainting (Avrahami et al., 2023; Lugmayr et al., 2022; Corneanu et al., 2024; Ju et al.,
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2024; Xie et al., 2023; Zhuang et al., 2025). However, all these methods face challenges
with artifacts between the original and synthetic regions, and they are primarily restricted
to 2D domains, without the ability to maintain consistency across slices in a 3D volume.
In the context of US outpainting, echoGAN (Gazda et al., 2024) introduced a conditional
GAN to outpaint 2D cardiac US images from a smaller-angle FOV to a larger-angle FOV
while maintaining the sector shape. SynStitch (Yao et al., 2024) proposed a ControlNet-
based framework for 2D kidney US image outpainting. Nevertheless, both echoGAN and
SynStitch focus on 2DUS and are unable to outpaint to a rectangular FOV. Outpainting
for US images, and particularly for 3DUS, thus remains underexplored.

Unlike 3D outpainting task on the other medical imaging modalities (Liman et al., 2024;
Li et al., 2024) with rectangular FOVs, outpaint a sector-shape FOV 3DUS to a rectangular
FOV presents unique challenges. These challenges stem from the absence of whole-FOV
ground truth to train the outpainting network in a supervised manner. Training mod-
els on sector-shaped FOV images restricts outpainting capabilities, as the model tends to
adopt the sector shape as prior knowledge. Furthermore, the sector-shaped FOV introduces
substantial missing regions, further increasing the complexity of 3DUS outpainting.

To address these challenges, we propose LOTUS: a Latent Diffusion Model (LDM)
(Rombach et al., 2022) specifically designed for 3DUS FOV outpainting, inspired by the
previous work on 2D natural images (Lugmayr et al., 2022; Corneanu et al., 2024).

• To the best of our knowledge, LOTUS is the first method to address the challenging
task of outpainting the sector-shaped FOV of 3DUS into a rectangular shape. LOTUS
executes 3D outpainting in the latent space instead of the image space at inference
time. It can achieve realistic results while dramatically improving the inference speed
with lower computational burden compared to its image-space counterparts.

• We propose an effective strategy to extract rectangular FOV patches to train the
outpainting LDM, introducing rectangular FOVs as a prior knowledge to the model.

• To address inconsistencies between the outpainted regions and the original image,
we propose a Latent Mask Generator (LMG) that preserves the majority of content-
related features while effectively excluding FOV-edge-related features to achieve seam-
less outpainting between the original and synthetic regions.

• We propose improving 3DUS image registration performance using FOV-outpainted
3DUS images, and we show this significantly enhances registration performance.

2. Methods

LOTUS (Fig. 1(a)) performs outpainting during inference using a pretrained latent diffusion
model (LDM), which combines an AutoEncoder (AE) with a Diffusion U-Net.

2.1. Training of AutoEncoderKL

As the first step of LOTUS, we train an AutoEncoderKL {E ,D}, where the encoder E
compresses the 3DUS image I of size N3 into a latent representation L of size (NS )

3, with
a scaling factor S = 4. The decoder D reconstructs L back to the image space, producing
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Figure 1: (a) Test-time latent space outpainting with LOTUS. (b) The training of AutoEn-
coderKL. E , D, and Dψ are encoder, decoder, and patch-based discriminator,
respectively. (c) The training and inference of LDM.

Ī. As depicted in Fig. 1(b), the spatial correspondence between I and L enables effective
pixel-space outpainting through operations performed in the latent space. To enhance the
AE’s generalization, we apply random affine transformations and cropping to the input
3DUS images, generating variations in size and shape. Training follows the implementation
of (Rombach et al., 2022) and employs an adversarial framework, where a patch-based
discriminator Dψ learns to distinguish between the original I and the reconstructed Ī.

2.2. Training and Inference of the Latent Diffusion Model

After obtaining the pretrained AutoEncoder, we train the LDM to unconditionally generate
realistic 3DUS images with a rectangular FOV. However, 3DUS images acquired with sector
array probes inherently exhibit sector-shaped FOVs. Training directly on these images
restricts outpainting capabilities, as the model learns the sector shape as prior knowledge.

To address this issue, we employ augmentation and central patch extraction, as illus-
trated in Fig. 1(c). The input images are upsampled by half, such that they contain (2N)3

voxels. A random affine transformation A is applied to the input image I, producing
I ′ = I(Φ(A)). Next, a central patch P of size N3 is extracted and used for LDM training.
During training, the pretrained encoder E encodes the extracted rectangular FOV patch
P into its latent representation L. In the forward diffusion process, a noisy latent feature
Lt is generated by iteratively adding Gaussian noise to L, computed using the closed-form
expression: Lt =

√
ᾱtL+

√
1− ᾱtϵ, where ᾱt =

∏t
s=1 αs is the cumulative product of noise

scheduling coefficients αt, and ϵ ∼ N (0, L) is Gaussian noise. In the denoising stage, the
model ϵθ predicts and removes the noise ϵ from Lt at each step t, by minimizing the loss:

LLDM = EL,ϵ∼N (0,L),t

[
∥ϵ− ϵθ(Lt, t)∥2

]
. (1)

In Fig. 1(c), the gray dashed box illustrates the iterative denoising process applied to
the noisy latent representation. At each time step t, the latent representation is updated as
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Lt−1 = Lt − ϵθ(Lt, t), where ϵθ(Lt, t) is the noise predicted by the frozen Diffusion U-Net.
This noise is iteratively removed, progressively refining the latent representation until the
clean latent state L̄ is obtained. Finally, L̄ is passed through the decoder D to reconstruct
the 3DUS image P̄ in pixel space.

2.3. Test Time Latent Space Out-Painting with LOTUS

As illustrated in Fig. 1(a), once the pretrained LDM is obtained, LOTUS performs out-
painting in the latent space without additional training. Given an input 3DUS image I,
its foreground mask M is extracted using a thresholding function. The image I is then
encoded by the pretrained encoder E into its latent representation L, while the latent mask
ML is derived from the binary mask M using LMG.

Latent Mask Generator (LMG): The LMG generates a latent mask ML that preserves
content-related features while excluding those associated with the sector-shaped FOV edges.
This process consists of two steps: (1) The binary mask M of size N3 is downscaled to
(NS − d)3, where d is a small integer satisfying d < N

S . We use d = 2 in this work. This
slight shrinking ensures that ML effectively filters out edge-related features while retaining
essential content. (2) The downscaled mask is zero-padded to (NS )

3.

Latent Outpainting Iteration (LOI): The LOI begins by extracting the latent condition
L′ = L×ML, where the latent maskML ensures that L′ retains only content-relevant regions
while excluding sector-shaped edges. The objective of latent outpainting is to preserve the
masked content in L′ while generating new latent features outside the mask. We refer to
the foreground of ML as the “Condition Region of Interest (CROI)” and the background
as the “Outpainting Region of Interest (OROI)” in the following discussion.

In the first iteration at time step T , T −1 steps of Gaussian noise are added to the latent
condition L′, yielding a noisy latent condition L′

T−1. Simultaneously, a random Gaussian
noise sample gT ∼ N (0, L) is processed by the pretrained Diffusion U-Net to produce a
one-step denoised synthetic latent feature gT−1 = gT − ϵθ(gT , T ). Next, the CROI of the
noisy latent condition L′

T−1 is merged with the OROI of the denoised synthetic latent
feature gT−1, forming the one-step denoised latent feature L̄T−1, computed as: L̄T−1 =
ML × L′

T−1 + (1−ML)× gT−1 (Fig. 1(a)).

In subsequent iterations, gT is updated using the one-step denoised latent feature L̄T−1

from the previous step. By integrating information from the CROI of L′ and the OROI
of gT−1, L̄T−1 guides the reverse diffusion process while preserving the latent condition L′.
This ensures that L′ remains unchanged while guiding the outpainting within the OROI to
follow a realistic distribution consistent with the latent condition.

After T iterations of latent reverse diffusion, the final outpainted latent feature Lop = L̄0

is obtained. Finally, the pretrained decoder reconstructs the outpainted image Iop = D(Lop).

2.4. Datasets and Implementation Details

We use 2 in-house placenta 3DUS datasets, GenUS for LOTUS outpainting training and
testing, and RegUS, for registration testing. All data was acquired with a GE Voluson E8.

GenUS Dataset: This dataset comprises 99 3DUS placenta images from first-trimester
subjects, where the placenta typically fits within a single 3DUS volume. All volumes are re-
sampled to a spatial resolution of (0.5mm)3, centrally cropped to (256)3 voxels, and intensity
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normalized to [0, 1]. The dataset is split 89:10 for LOTUS outpainting training and testing.
During AutoEncoderKL training, the images are further resampled to (4mm)3, centrally
cropped to (64)3 voxels with zero-padding. We extract the foreground mask M defined
as the non-zero voxels. Extensive augmentation is applied, including random translations
([−12, 12]), rotations ([−π

2 ,
π
2 ]), scaling ([0.8, 1.2]), and random patch cropping (patches

that don’t overlap with M are not allowed), each with a probability of 0.5. For Diffusion
U-Net training, similar random affine augmentations are applied, followed by the extraction
of a (64)3 central patch with a rectangular FOV.

RegUS Dataset: The RegUS dataset is used to evaluate registration performance and
consists of two 3DUS placenta volumes from each of 20 first-trimester subjects. All volumes
are resampled to a spatial resolution of (2mm)3, centrally cropped to (64)3 voxels, and
intensity normalized to [0, 1]. The ‘ground-truth’ rigid transformations are manually anno-
tated by two experts and further validated visually by three additional experts. This ground
truth is used as an independent standard for evaluation. The manual registrations show
the maximum rotation angles range between [30◦, 117◦] and maximum translations between
[25, 83] mm. For registration, each subject’s 3DUS volumes are registered bidirectionally
(both A to B and B to A), yielding 2× 20 = 40 registration pairs.

The data is empirically split into two categories, typical cases and hard cases. Hard cases
consist of 20 pairs where there is, for example, a very large (e.g., > 80◦) rotation along one
axis, a very large translation (e.g., > 60mm), or image quality issues (e.g., shadow artifacts).
These hard cases are a challenge for all compared methods (baseline and LOTUS). We
hypothesize that a rough initial registration would help overcome registration optimization
issues in these cases. We thus introduce a fixed initial rotation along the primary axis of
rotation for each subject, which we call the Compensation Rotation (CR). We compare all
methods for CR settings of 10◦, 20◦, or 30◦ to test our hypothesis.

Outpainting Evaluation: We compare LOTUS with RePaint (Lugmayr et al., 2022)
and LOTUS*. RePaint is a test-time outpainting diffusion model originally designed for
2D natural images, which we extend to 3D for fair comparison. LOTUS* is a variant of
LOTUS where the LMG module is replaced with a simple downsampling process (Corneanu
et al., 2024). Outpainting performance is assessed using image similarity metrics, namely,
normalized cross-correlation (NCC), structural similarity index measure (SSIM), and mean
squared error (MSE). We also compare inference time and model parameter size.

Registration Evaluation: We register the pairs of images from the RegUS dataset using
two of the most widely used conventional registration methods, Greedy (Yushkevich et al.,
2016) and ANTs (Avants et al., 2008). We compare the performance of these algorithms
using either the original sector-shaped FOV images or the LOTUS outpainting results.
We use MSE similarity metric and rigid transformations for both methods. For LOTUS,
given a fixed image IF and a moving image IM , we first apply LOTUS to outpaint their
FOVs, obtaining IopF and IopM . We then rigidly register IopF and IopM , and apply the resulting
transform to the original moving image IM . We report the same image similarity metrics,
along with peak signal-to-noise ratio (PSNR), mean rotation error RE (L1 norm, degrees),
and mean translation error TE (L2 norm, mm).

Implementation Details: We implemented RePaint (3D) and LOTUS using MONAI (Pinaya
et al., 2023; Cardoso et al., 2022). The 3D diffusion model (DM) in RePaint employs a 3-
level U-Net with 256, 256, and 512 encoder channels. Both AutoEncoderKL and Diffusion
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Figure 2: Typical outpainting results. The pairs of columns present the latent features
and the corresponding images for each method. LOTUS effectively achieves a
rectangular FOV, whereas RePaint and LOTUS* fail to outpaint the blank areas.

U-Net in LOTUS use a 3-level U-Net with channels of 32, 64, and 64. Training is conducted
for 2000, 1500, and 200 epochs for the DM, AutoEncoderKL, and LDM, respectively, with
a batch size of 1. Inference is conducted using DDPM (Ho et al., 2020) with 1000 sampling
steps. All experiments are performed on an NVIDIA A6000 GPU.

3. Results and Discussion

3.1. Outpainting Results

Fig. 2 presents a qualitative comparison of FOV outpainting performance. For LOTUS
and LOTUS*, results are shown in both latent and image spaces, whereas for RePaint,
only image space results are available. Across all samples, LOTUS consistently produces
high-quality outpainting results with a rectangular FOV. The generated images preserve
the original structure and contrast while realistically filling blank regions with ultrasound-
like textures. The results further demonstrate LOTUS’s ability to handle diverse FOV
orientations and sizes. In contrast, LOTUS*, lacking the LMG module, struggles to remove
FOV edge-related features, leading to outpainting failures. RePaint fails in almost all cases
due to the challenges of 3D outpainting directly in pixel space.

Table 1 presents the quantitative results on theGenUS validation dataset. Performance
improves for both methods as the outpainting window size (OW) increases. We observe that
LOTUS significantly outperforms RePaint across all metrics and scales, with a substantial
advantage in inference time and memory efficiency. Appendix Fig. A1 illustrates LOTUS
performance qualitatively with respect to the outpaint window size. LOTUS consistently
generates realistic structures and details even when conditioned on very limited patch sizes.

3.2. US Image Registration Results

Evaluation on Typical Cases: Fig. 3 compares 3DUS registration performance with and
without LOTUS outpainting. Applying Greedy and ANTs directly to sector-shaped FOV
images results in poor registration performance, often just returning the identity matrix. In
contrast, using LOTUS outpainting as input, both Greedy and ANTs consistently achieve

6



LOTUS

Table 1: Quantitative outpainting results. Bold: best, *significant (paired t-test, p<0.05).
The inference time is reported for a batch size of 4 and inference step of 1000.
LOTUS significantly outperforms RePaint for all outpainting window sizes (OW).

Metric
RePaint LOTUS

OW=32 OW=40 OW=48 OW=32 OW=40 OW=48
NCC↑ 0.108±0.035 0.197±0.031 0.329±0.039 0.713±0.095* 0.810±0.108* 0.920±0.037*
SSIM↑ 0.345±0.114 0.474±0.118 0.706±0.141 0.472±0.052* 0.613±0.048* 0.816±0.038*
MSE(×10)↓ 0.788±0.027 0.533±0.022 0.283±0.014 0.257±0.006* 0.209±0.005* 0.128±0.003*
Param Size↓ 759.4MB(3D DM) 9.2MB(3D AE)+12.0MB(3D LDM)
Inf Time↓ 40 minutes/batch 59 seconds/batch

accurate registration, closely aligning with manual registration. These findings highlight
the effectiveness of LOTUS’s FOV outpainting in enhancing 3DUS image registration.

We quantitatively assess performance by comparing the registration results to (a) the
fixed image within the overlapping region, and (b) the manual registration ground truth
(GT). While comparison to the fixed image mitigates any error in the manual GT, it may not
fully reflect registration accuracy due to differences in contrast, artifacts, and deformation
between the images. We thus report both in Table 2 to provide a comprehensive evaluation.

In Table 2-left, the moving image, as expected, exhibits the poorest similarity to the fixed
image, serving as the lower bound. Both Greedy and ANTs show moderate improvements.
In contrast, the proposed LOTUS-based methods significantly outperform their baselines,
with LOTUS(ANTs) surpassing LOTUS(Greedy), suggesting a more robust alignment. In-
terestingly, LOTUS(ANTs) even outperforms the manual GT.

Table 2-right presents the registration results compared to the manual GT. We note that
RE provides a direct measure of registration accuracy against the manual transformations,
unlike the more indirect image similarity measures. The results are consistent with the left
panel. Additional metrics (PSNR, SSIM, TE) are available in Appendix Tables A1 and A2.

Evaluation on Hard Cases: We evaluate whether an initial transform helps performance
in hard cases. Fig. 4-left shows a random hard case for CR values of 10◦, 20◦, and 30◦. Both
baseline methods fail due to the strong local minima induced by the sector-shaped FOV.
These methods even reverse the initial CR back to the identity transform. In contrast,

Figure 3: 3DUS registration on typical cases. For each subject, the rows show the axial,
sagittal, and coronal planes, respectively. Greedy and ANTs fail on both cases.
LOTUS achieves good performance by mitigating the influence of the FOV shape.
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Figure 4: Left, Greedy and ANTs both fail on this randomly selected hard case, even with
CR=30◦. Interestingly, they even reverse the CR initialization as the optimization
is dominated by FOV shape. In contrast, LOTUS leverages the initial CR to
achieve good registration results. Right, RE as a function of CR on hard cases.
LOTUS significantly improves registration compared to the baselines.

LOTUS-based methods leverage the CR initialization to refine registration and successfully
align the images at CR = 30◦, with LOTUS(Greedy) achieving success even at CR = 10◦.

Fig. 4-right shows the rotation error (RE) as a function of the initial CR across the 20
hard pairs. As CR increases, all methods improve. However, baseline methods only exhibit
an RE reduction of about 10◦ for each CR step of 10◦, suggesting the improvements merely
echo the CR, rather than effective optimization. Thus, even at CR = 30◦, they have over
40◦ residual error (Appendix Table A3). In contrast, LOTUS-based methods outperform
the baselines across all CR levels, and achieve consistently good registration at CR=30◦.

3.3. Discussion and Conclusion

We proposed LOTUS, a latent outpainting diffusion model that expands sector-shaped
FOVs into rectangular ones, significantly enhancing subsequent registration performance.
LOTUS not only generates realistic content but also dramatically improves inference speed
and reduces computational costs compared to image-space approaches. Our results demon-
strate that FOV outpainting substantially enhances 3DUS registration performance.

Our experiments only used conventional registration methods. Future work will focus on
also validating LOTUS across learning-based registration approaches, as well as extending
its applications to other medical imaging domains.

Table 2: Registration performance on typical cases using the fixed image (left) and GT
(right) for evaluation. Best and second best are highlighted. LOTUS outpainting
significantly boosts performance (*, paired t-tests, p<0.05) compared to baselines.

Method
Similarity Metrics

NCC ↑ MSE(×10)↓
MOV 0.552±0.128 0.325±0.113
GT 0.892±0.033 0.127±0.034

Greedy 0.702±0.214 0.240±0.136
ANTs 0.698±0.157 0.237±0.102

LOTUS+Greedy 0.810±0.213 0.138±0.066*
LOTUS+ANTs 0.891±0.053* 0.122±0.035*

Method
Similarity Metrics Transformation Error

NCC ↑ MSE(×100) ↓ RE ↓
Greedy 0.839±0.219 1.44±1.42 43.4±34.8
ANTs 0.851±0.113 1.49±0.95 55.1±33.8

LOTUS+Greedy 0.887±0.298 0.928±1.858 17.3±26.8*
LOTUS+ANTs 0.985±0.023* 0.255±0.210* 8.04±17.67*
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Appendix A. Outpainting results for varying patch sizes

Fig. A1 presents the outpainting results conditioned on different patch sizes. We note that
even for small patches, LOTUS is able to effectively outpaint the FOV.

Figure A1: Outpainting performance of LOTUS under varying mask sizes. OW denotes
the outpainting window size, which decreases from left to right, representing
increasingly challenging outpainting tasks. LOTUS effectively removes FOV
edge-related artifacts and produces realistic outpainting across different condi-
tion sizes.

Appendix B. Additional metrics for registration performance in typical
cases

Tables A1 and A2 show additional metrics for quantitative registration evaluation, comple-
mentary to Table 2 in the main manuscript. In Table A1, the Dice coefficient score (DSC)
between the foreground masks of the registration pair is used to quantify the overlapping
FOV area. This is to control for trivial local minima that minimize FOV overlap instead of
optimizing the anatomical similarity. The moving image, despite having the largest overlap,
exhibits the poorest similarity, serving as the lower bound. None of the algorithms present
an alarmingly low Dice score, which shows the trivial local minima is avoided. The SSIM
and PSNR metrics show similar patterns to the NCC and MSE metrics reported in Table
2. Similarly, translation error (TE) performance is consistent with the rotation error (RE)
in Table 2.

Appendix C. Quantitative registration results in hard cases

Table A3 presents the quantitative registration results for the hard cases. These correspond
to the plots shown in the right panel of Fig. 4 in the main manuscript for rotation errors
(RE). We also present translation errors (TE) in this Table for completeness.
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Table A1: Registration performance on typical cases, using the fixed image for evaluation.
Best and second performances are highlighted. LOTUS outpainting significantly
improves performance (*, paired t-tests, p<0.05) compared to the baselines.

Method MOV GT Greedy ANTs LOTUS(Greedy) LOTUS(ANTs)

SSIM ↑ 0.265±0.076 0.513±0.070+ 0.354±0.115 0.351±0.125 0.490±0.102* 0.531±0.089*
PSNR ↑ 15.1±1.4 19.1±1.2+ 16.8±2.2 16.7±2.1 19.3±3.0* 19.3±1.2*

DSC ↑ 0.975±0.050 0.855±0.030 0.858±0.204 0.906±0.052 0.794±0.186 0.843±0.033

Table A2: Registration performance on typical cases, using the GT for evaluation. Best
and second performances are highlighted. LOTUS outpainting significantly im-
proves performance (*, paired t-tests, p<0.05) compared to the baselines.

Method Greedy ANTs LOTUS(Greedy) LOTUS(ANTs)
SSIM ↑ 0.612±0.252 0.565±0.226 0.746±0.169 0.848±0.070*
PSNR ↑ 23.2±9.4 20.9±6.7 23.8±4.3 26.6±2.0*
TE ↓ 25.6±23.5 30.3±20.7 11.3±19.0* 4.33±10.05*

Table A3: Registration performance on hard cases, using the GT for evaluation. CR de-
notes the compensation rotation angle. Best and second performances are high-
lighted. LOTUS outpainting significantly decreases the rotation error (RE) and
translation error (TE) (*, paired t-tests, p<0.05) compared to the baselines.

Metric
RE ↓ TE ↓

CR=10◦ CR=20◦ CR=30◦ CR=10◦ CR=20◦ CR=30◦

ANTs 69.5±27.8 57.7±26.84 47.3±22.6 44.7±18.5 37.4±17.5 30.5±14.7
Greedy 73.7±28.8 62.4±36.7 44.6±41.7 47.9±19.4 41.8±25.2 29.2±28.2

LOTUS(ANTs) 63.7±25.0 43.8±27.6 21.5±21.9 41.1±16.1 28.2±18.5 13.9±14.0
LOTUS(Greedy) 44.7±39.4 33.7±34.5 8.35±28.68 28.4±25.7 22.2±23.4 5.57±20.52
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