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ABSTRACT

Motor imagery (MI) is an important research direction in brain-computer inter-
faces (BCIs) and has shown broad application value in motor rehabilitation. In
recent years, a number of approaches have leveraged multiscale temporal con-
volution modules to capture the temporal dynamics of MI data, followed by a
unified spatial module to perform spatial feature modeling. However, this de-
sign implicitly assumes that all temporal scales share the same spatial structure,
overlooking the inherent spatiotemporal heterogeneity of EEG signals. To ad-
dress this limitation, we design a multi-branch parallel architecture, where each
temporal scale is equipped with its own spatial feature extraction module. This de-
sign mitigates the risk of spatial information confusion or loss arising from shared
weights, while enhancing the flexibility and discriminative capacity of feature rep-
resentations. Furthermore, to tackle the challenge of multi-branch feature fusion,
we introduce the Fusion of Multiscale Features via Centralized Sparse-attention
Network (EEG-CSANet). Specifically, EEG-CSANet adopts a main–auxiliary
collaborative fusion architecture: the main branch leverages multiscale multi-
head self-attention to model core spatiotemporal patterns, while the auxiliary
branch employs multiscale sparse cross-attention to achieve efficient local interac-
tions with the main branch. Experimental results demonstrate that EEG-CSANet
achieves state-of-the-art (SOTA) performance across three public MI datasets. In
particular, it significantly outperforms all compared SOTA methods on the BCI
Competition IV 2a and 2b datasets, and also achieves the best results in subject-
independent experiments on the 2a dataset. The related code is publicly available
at: https://anonymous.4open.science/r/test-tj654478-EB7B

1 INTRODUCTION

Brain-computer interfaces (BCIs) enable direct communication between the brain and external de-
vices (Wolpaw, 2007). Currently, they have demonstrated broad application prospects in various
fields such as human-computer interaction, motor rehabilitation, emotion recognition, disease di-
agnosis, and treatment (Park et al., 2022); (Zhang et al., 2023); (Edelman et al., 2024). Electroen-
cephalography (EEG) captures voltage fluctuations generated by neural activity in the brain. Due to
its advantages of non-invasiveness, high temporal resolution, and good portability, EEG has become
the most commonly used signal source in current BCI systems (Liu et al., 2025b).

Motor imagery (MI), as one of the typical paradigms in BCIs, have shown significant value in the
field of motor rehabilitation (Huang et al., 2025); (Pfurtscheller & Neuper, 2001); (Leuthardt et al.,
2004). Motor imagery-based brain-computer interfaces (MI-BCI) decode users’ EEG signals to
identify their motor intentions, enabling direct control of external devices without relying on the
peripheral nervous system or muscular activity (Meng et al., 2025); (Ang et al., 2015); (Ang et al.,
2014). Currently, MI-BCI have been widely applied in driving functional electrical stimulation, in-
telligent prosthetics, brain-controlled wheelchairs, virtual reality rehabilitation systems, and other
assistive rehabilitation devices (Blanco-Diaz et al., 2024); (Alawieh et al., 2025); (Lu et al., 2025),
significantly improving therapeutic outcomes and quality of life for patients with neurological dis-
orders such as stroke by promoting neural functional reorganization.
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With the rapid development of deep learning technologies, various deep learning models have
been widely applied to decode MI tasks. Initially, the introduction of Deep ConvNet, Shallow
ConvNet (Schirrmeister et al., 2017), and EEGNet (Lawhern et al., 2018) significantly improved
the accuracy and robustness of MI classification, establishing them as mainstream methods for
EEG feature extraction. Subsequently, long short-term memory networks (LSTM) (Zhang et al.,
2019); (Wang et al., 2018), CNN-LSTM hybrid models (Wang et al., 2023); (Li et al., 2022), and
multi-branch CNN architectures (Yang et al., 2021); (Zhao et al., 2019) were successively proposed,
further advancing the development of MI decoding techniques. In recent years, with the success
of the Transformer architecture in sequence modeling, the self-attention mechanism has been intro-
duced into EEG analysis. Models such as Conformer (Song et al., 2022) and ATCNet (Altaheri et al.,
2022) significantly enhanced feature representation capabilities by effectively integrating attention
mechanisms with CNN architectures, thereby advancing MI classification accuracy to new levels.
Since then, models based on the CNN-Transformer framework have gradually become dominant.

In recent years, numerous outstanding studies have emerged. Models such as MSTFNet (Jin et al.,
2024), EEGTransNet (Ma et al., 2024), MCMTNet (Yang et al., 2025), and TMSA-Net (Zhao &
Zhu, 2025) have adopted multiscale temporal feature extraction strategies to more effectively un-
cover deep spatiotemporal patterns in EEG signals. Nevertheless, we posit that current approaches
face inherent limitations in the manner in which they fuse spatial and temporal features. Contem-
porary mainstream architectures typically begin by extracting multiscale temporal features using
multiple temporal convolutional kernels of varying sizes, which are then combined via concatena-
tion or addition before being uniformly fed into subsequent spatial convolutional layers to capture
spatial patterns. This design implicitly assumes that all temporal scales share the same spatial struc-
ture, thereby overlooking the fact that brain region activation patterns corresponding to different
temporal scales may differ significantly. (Li et al., 2025); (Tao et al., 2023) indicate that temporal
convolutional kernels of different sizes capture features from different frequency bands, and prior
research has demonstrated that brain activation characteristics vary across frequency bands during
MI tasks (Liu et al., 2025a); (Chen et al., 2023). Thus, it can be seen that spatial correlations at
different temporal scales exhibit heterogeneous characteristics in MI task decoding (Wang et al.,
2024).

Based on this, we argue that multiscale temporal features should not be simply merged and then
processed by a shared spatial filtering module. Alternatively, a multi-branch parallel architecture
should be adopted, equipping each temporal scale with an independent spatial feature extraction
module to enable fine-grained modeling. By doing so, the model can more accurately capture the
unique channel coordination patterns at each temporal scale, avoiding the confusion or loss of crit-
ical spatial information caused by sharing spatial weights, thereby enhancing the flexibility and
discriminative power of feature representation.

However, the effective fusion of multi-branch features remains a key challenge in feature integration.
In recent years, cross-attention mechanisms have demonstrated strong fusion potential due to their
advantages in modeling inter-branch feature dependencies. Inspired by the cross-attention methods
in the works of (Chen et al., 2023); (Liu et al., 2025a); (Ma et al., 2025), we innovatively propose a
fusion architecture based on collaboration between a main branch and auxiliary branches: the
main branch employs a multiscale multi-head self-attention mechanism to extract and enhance core
spatio-temporal features, while multiple auxiliary branches separately capture local details at spe-
cific scales. During the fusion stage, the auxiliary branches interact with the semantically relevant
key local regions in the main branch through multiscale sparse multi-head cross-attention, avoiding
the computational redundancy and noise interference caused by global associations. This strategy
enables efficient and precise feature aggregation, significantly enhancing the model’s representa-
tional capacity and robustness.

In summary, the contributions of this paper are as follows:

1. In response to the characteristics of EEG signals, we propose a multi-branch feature extraction
framework to alleviate the loss of channel discriminative information caused by coarse-grained
merging in traditional multiscale temporal feature fusion.

2. We innovatively design a feature fusion architecture with collaboration between a main branch
and auxiliary branches: the main branch employs a multiscale multi-head self-attention mech-
anism to enhance modeling of core spatiotemporal patterns, while the auxiliary branches achieve
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Figure 1: The overall architecture of EEG-CSANet.

efficient and precise feature interaction with key local regions of the main branch through a multi-
scale sparse multi-head cross-attention mechanism.

3. Experimental results on three public motor imagery datasets demonstrate that the proposed
method outperforms existing approaches in classification accuracy, significantly surpassing all
comparison models on the BCI Competition IV 2a and 2b, thereby validating its effectiveness
and robustness.

2 METHOD

The proposed EEG-CSANet architecture is illustrated in Figure 1. Initially, a same category signal
segmentation and reconstruction (S&R) (Lotte, 2015) method is employed for data augmentation of
EEG signals. The original EEG data are then combined with the augmented data to expand the train-
ing sample size. Subsequently, the signals are processed by a multiscale temporal feature extraction
module. To avoid losing inter-channel interaction information at different scales, a multi-branch
structure is adopted, which separately extracts deep channel features for each time scale. To effec-
tively integrate EEG signals extracted from multiple branches, we have innovatively designed a fu-
sion mechanism: the main branch employs a multiscale multi-head self-attention mechanism, while
auxiliary branches introduce a multiscale sparse multi-head cross-attention mechanism, achieving
efficient information exchange between branches. The integrated features are then fed into a tem-
poral convolutional network to further extract higher-level temporal dynamic features. To prevent
the degradation of temporal information within deep networks, residual structures are incorporated
into the convolutional modules. Finally, a fully connected layer is used to complete the classifi-
cation task. The following sections will provide a detailed description of each component of the
EEG-CSANet.

Data augmentation. We use the method of S&R to perform data augmentation on EEG sig-
nals, which is a commonly used data augmentation method in MI (Song et al., 2022); (Ma et al.,
2024); (Yang et al., 2025). Specifically, we let Xi ∈ RB×C×T denote the original EEG signal of the
i-th class, where i ∈ {1, . . . , L} , L is the total number of classes, and B, C, and T denote the batch
size, number of channels, and number of time samples, respectively. The signal Xi is uniformly di-
vided into S segments along the time dimension. New samples X ′

i are then generated by randomly
selecting and reorganizing these segments while preserving their original temporal order. This aug-
mentation is applied separately within each training batch, generating an amount of synthetic data
equal in size to the original input Xi. Therefore, the model input for each batch after augmentation

3
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is given by:

XInput = Concat (X,X ′) , X =

L∑
k=1

Xi, (1)

where X represents the original input signals in the batch, XInput denotes the complete input fed
into the subsequent model, and Concat(·) denotes concatenation along the first dimension of the
data.

Multi-branch convolution. Previous studies (Ma et al., 2024); (Yang et al., 2025); (Jin et al.,
2024); (Zhao & Zhu, 2025) have tended to employ multiscale temporal convolution fusion meth-
ods to extract features from EEG signals, as illustrated in Figure 4. This approach concatenates
multiscale temporal features to jointly extract channel-wise features. However, we contend that
directly concatenating multiscale temporal features for channel-wise feature extraction may not ef-
fectively capture these distinct spatial patterns. Therefore, we propose a multi-branch architecture
to separately process and fuse features from different temporal scales, as shown in Figure 1.A. In
this architecture, each branch is responsible for handling features at a specific temporal scale or
frequency band, thereby enabling more accurate capture and representation of the distinct spatial
characteristics present across different frequency bands.

The combined structure of temporal convolution and depthwise separable spatial convolution (DW-
Spa-Conv) resembles that of EEGNet (Lawhern et al., 2018). Specifically, the input signal XInput

first passes through a temporal convolutional module with kernel size (Ki, 1), where i ∈ {1, 2, 3, 4}
corresponds to the four branches, to extract temporal features for each channel. This is followed by
a depthwise separable convolution with kernel size (C, 1), where the depth multiplier D controls
the number of output feature maps per input channel, enabling spatial feature extraction. Next,
the features are downsampled via the first average pooling layer with kernel size (P1, 1). The
pooled features are then fed into a subsequent convolutional module with kernel size (K5, 1); we
regard this module as facilitating further channel-wise interaction, thus enhancing the extraction of
high-dimensional spatio-temporal features. Finally, a second average pooling layer with kernel size
(P2, 1) performs additional downsampling. As a result, the output of each of the four convolutional
branches is Zi ∈ RB×Ui×T0 :

Ui = Fi ×D, (2)

T0 =
T

P1 × P2
(3)

where Fi denotes the number of convolutional kernels in the i-th temporal branch, and T0 is the
number of time steps after downsampling.

Feature fusion architecture. To effectively fuse the features Zi obtained from the four branches,
we propose a feature fusion architecture with collaboration between a main-branch multiscale multi-
head self-attention mechanism and multiscale sparse multi-head cross-attention mechanisms for the
auxiliary branches.

Specifically, we designate Z1 as the main branch and Z2, Z3, Z4 as auxiliary branches. For the
main branch Z1, we adopt a relatively large convolutional kernel K1 for temporal feature extraction,
aiming to capture extensive global spatio-temporal dependencies. In contrast, the auxiliary branches
Z2, Z3, and Z4 use smaller kernels K2, K3, K4 to preserve finer local spatio-temporal patterns.
Due to the constrained receptive fields of small kernels, they are often inadequate for modeling
long-range dependencies and can overlook crucial global structural information. To address this
issue, we introduce a multiscale sparse multi-head cross-attention mechanism (Chen et al., 2023)
that enhances global perception while capturing local fine-grained details, enabling collaborative
fusion between the main and auxiliary branches.

As illustrated in Figure 1.D, X and Y are the inputs to the Multiscale Sparse Cross-Attention
(MSCA) module. To capture multiscale information from the data, we first apply three average
pooling operations with different kernel sizes, and then sum the resulting features to obtain Y ′:

Y ′ =

3∑
i=1

Qi(Y ), i ∈ {1, 2, 3}, (4)

4
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where Qi denotes the i-th average pooling operation, and Y ′ denotes the output of the pooling layer.
Note that Y , Yi, and Y ′ all have the same spatial dimensions.

We then project the input X into the Query matrix and the transformed input Y ′ into the Key and
Value matrices as follows:

Q = XWq, K = Y ′Wk, V = Y ′Wv, (5)
where Wq , Wk, and Wv are learnable weight matrices.

The attention score matrix A is subsequently computed using scaled dot-product attention (Vaswani
et al., 2017):

A =
QK⊤
√
dk

, (6)

where dk denotes the dimensionality of the key vectors.

Before applying the softmax function, we introduce a Top-k sparsification operation (Chen et al.,
2023), which discards the smallest 1 − k proportion of values in each row of A. This effectively
mitigates the influence of noise from auxiliary branches on feature extraction, as illustrated in Figure
1.D. For the softmax operation, these discarded values are replaced with −∞, causing them to be
transformed into zero after softmax, similar to a selective masking mechanism. The operation is
expressed as:

A′ = softmax(Top-k(A)). (7)

We apply the Top-k operation with two different ratios, controlled by parameters k1 and k2, and
introduce two learnable scalars α and β to adaptively balance their contributions, it is a strategy
inspired by (Ma et al., 2025). Thus, the final attention output is computed as:

Attention = α · softmax(Top-k1(A)) · V + β · softmax(Top-k2(A)) · V. (8)
The output of the multi-head attention module is then concatenated across heads:

MHA = Concat (Attention0,Attention1, . . . ,Attentionh−1) , (9)
where h denotes the number of attention heads.

This design enables the effective fusion of information from the main branch X and auxiliary
branches Y , thereby achieving cross-branch feature enhancement. Notably, sparsification is omit-
ted in the main branch, which instead employs a multiscale multi-head self-attention mechanism
to retain global temporal patterns. The combination of multiscale pooling and sparsification, how-
ever, may result in a significant loss of temporal information. To address this, we adopt a residual
connection (He et al., 2016) to retain the original features:

Mi = Zi +MHAi, (10)
where Mi is the output of the i-th branch, Zi is the output from the DW-Spa-Conv block, and MHAi

is the corresponding MHA output.

Temporal Convolutional. The TCN structure we use follows the design of (Altaheri et al., 2022),
with its core architecture shown in Figure 1.C. This module adopts a double residual structure, aim-
ing to deeply extract high-level temporal features from brain electrical signals. The dilation factors
for the two residual blocks are d1 and d2, respectively. Batch normalization and ELU activation
functions are then applied to enhance training stability. Finally, after concatenating the data, it is fed
into a fully connected layer for classification, yielding the final classification result:

ŷ = Linear (Concat(P1, P2, P3, P4)) , (11)
where Linear represents the final linear classification layer, and Pi represents the output features of
the i-th layer of the TCN.

3 EXPERIMENTS

3.1 DATASETS

We consider three publicly available MI-EEG datasets to comprehensively evaluate EEG-CSANet:
BCI Competition IV 2a Dataset (BCIC-IV-2a) (Brunner et al., 2008), BCI Competition IV 2b
Dataset (BCIC-IV-2b) (Leeb et al., 2008), and the High Gamma Dataset (HGD) (Schirrmeister et al.,
2017). The detailed information is listed in Table 1and Appendix A.1
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Table 1: Details of the datasets.
Dataset Participants Sampling rate (Hz) Channels Classes

BCIC-IV-2a 9 250 22 4
BCIC-IV-2b 9 250 3 2

HGD 14 500 128 4

3.2 EXPERIMENTAL SETUP

Our experiments were implemented in Python 3.10 using the PyTorch framework, and conducted
on an NVIDIA RTX 2080Ti GPU. The number of training epochs was set to 2000 (Ma et al.,
2024); (Zhao & Zhu, 2025), with a batch size of 16. During training, the cross-entropy loss function
was employed. In terms of network optimization, we used the Adam optimizer (He et al., 2015)
with a learning rate of 0.0009. In our subject-independent experiment, we adopted the leave-one-
subject-out strategy, using the complete data from eight subjects for training while reserving all data
from the ninth subject exclusively for testing.

To ensure a comprehensive evaluation of our model, we adopted two widely recognized classifi-
cation metrics: accuracy (ACC) and the kappa coefficient. To ensure the reproducibility of model
performance, we conducted all experiments with a fixed random seed.

3.3 EXPERIMENTAL RESULT

We report two groups of experiments: (1) subject-dependent performance comparisons on BCIC-
IV-2a, BCIC-IV-2b, and HGD, and (2) subject-independent performance comparisons on BCIC-
IV-2a. To evaluate the robustness of our proposed model, we compared it against the baseline
model EEGNet (Lawhern et al., 2018) as well as several state-of-the-art (SOTA) methods published
between 2022 and 2025, including EEG-Conformer (Song et al., 2022), ATCNet (Altaheri et al.,
2022), ADFCNN (Tao et al., 2023), EEG-TransNet (Ma et al., 2024), MSTFNet (Jin et al., 2024),
EISATC-Fusion (Liang et al., 2024), MCMTNet (Yang et al., 2025), and TMSA-Net (Zhao & Zhu,
2025). These SOTA methods are further described in the Appendix A.2.

Table 2: Performance comparison on BCIC-IV-2a.
Methods (Year) A1 A2 A3 A4 A5 A6 A7 A8 A9 Acc Std Kappa

EEGNet (2018)*** 82.91 66.49 87.29 59.39 64.88 60.59 72.81 81.06 85.57 73.44 11.02 0.6423
EEG-Conformer (2022)** 88.19 61.46 93.40 78.13 52.08 65.28 92.36 88.19 88.89 78.66 15.30 0.7155

ATCNet (2022)*** 85.07 68.75 96.53 83.68 77.78 72.22 86.81 86.46 89.31 82.96 8.66 0.7840
ADFCNN (2024)** 89.42 71.12 95.61 82.43 73.42 71.88 90.97 87.50 86.81 83.24 9.05 0.7733

EEG-TransNet (2024)** 88.89 64.93 96.18 85.42 82.64 73.61 95.14 90.28 88.19 85.03 10.12 0.8004
EISATC-Fusion (2024)** 85.07 73.26 95.49 87.15 81.94 73.96 93.06 85.76 85.42 84.57 7.48 0.7942

MSTFNet (2024)** 90.63 69.89 97.22 79.56 79.86 68.40 90.97 86.11 89.93 83.62 9.91 0.7900
MCMTNet (2025)* 89.70 73.43 95.01 82.38 80.79 70.88 92.29 87.94 88.01 84.49 8.28 0.7930
TMSA-Net (2025)** 87.50 64.24 96.18 84.03 79.86 67.71 93.06 90.79 85.42 83.20 10.94 0.7762

EEG-CSANet 94.44 71.88 98.26 91.32 84.03 79.51 93.75 92.36 91.32 88.54 8.41 0.8472

Table 3: Performance comparison on BCIC-IV-2b.
Methods (Year) B1 B2 B3 B4 B5 B6 B7 B8 B9 Acc Std Kappa

EEGNet (2018)** 75.94 57.64 58.43 98.13 81.25 88.75 84.06 93.44 89.69 80.81 14.46 0.6096
EEG-Conformer (2022)* 82.50 65.71 63.75 98.44 86.56 90.31 87.81 94.38 92.19 84.63 12.18 0.6926

ATCNet (2022)* 79.38 75.00 88.75 98.13 96.56 88.13 94.38 94.69 85.31 88.93 7.94 0.7785
ADFCNN (2024)** 78.13 72.14 87.50 98.44 97.81 90.00 92.81 92.81 90.63 88.92 8.69 0.7749

EISATC-Fusion (2024)** 75.00 72.86 86.56 96.88 97.81 84.38 94.06 93.75 86.88 87.58 9.07 0.7515
EEG-TransNet (2024)** 79.06 70.71 87.81 98.44 96.88 91.56 91.88 95.63 90.00 89.11 8.98 0.7822

MSTFNet (2024)* 82.72 73.26 82.34 98.75 97.44 90.86 92.51 94.52 90.99 89.27 8.27 0.7800
TMSA-Net (2025)* 82.81 71.07 87.81 98.13 98.44 91.56 94.38 95.63 87.50 89.70 8.74 0.7940

EEG-CSANet 83.13 73.57 88.13 99.38 99.69 91.25 95.31 96.88 92.50 91.09 8.48 0.8218

Subject-dependent Experiment. We present all experimental results in Tables 2, 3 and 4, where
bold values indicate the best performance among all methods. Our model achieved higher classi-
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Table 4: Performance comparison on HGD and BCIC-IV-2a.

Methods (Year)
HGD (Subject-dependent) BCIC-IV-2a (Subject-independent)

Acc Kappa Acc Kappa

EEGNet (2018) 88.87 0.8531 58.19 0.4425
EEG-Conformer (2022) 91.92 0.8824 – –

ATCNet (2022) 95.54 0.9405 62.85 0.5047
EEG-TransNet (2024) 94.82 0.9309 65.73 0.5430

ADFCNN (2024) 95.17 0.9381 – –
MCMTNet (2025) 95.73 0.9430 66.31 0.5508
TMSA-Net (2025) 95.90 0.9452 – –

EEG-CSANet 97.15 0.9627 69.68 0.5957

fication accuracy and Kappa coefficients on the BCIC-IV-2a, BCIC-IV-2b, and HGD datasets, out-
performing existing SOTA methods. On BCIC-IV-2a and BCIC-IV-2b, paired-sample t-tests further
confirmed the significant differences in decoding performance between our method and other mod-
els. On the HGD dataset, our method achieved near-saturated performance across multiple subjects
while maintaining low variance.

Existing SOTA models (Song et al., 2022) (Altaheri et al., 2022) (Tao et al., 2023) (Ma et al.,
2024) (Jin et al., 2024) (Liang et al., 2024) (Yang et al., 2025) (Zhao & Zhu, 2025) usually focus
on the integration of attention mechanisms and convolution. In contrast, EEG-CSANet also lever-
ages the integration of multi-branch feature extraction, multiscale pooling, and dual Top-k attention,
which enhances discriminative information selection and effectively captures both local and global
dependencies. In addition, the residual TCN block strengthens the resilience of temporal feature
representations. Through this complementary design, the proposed model achieves robust and gen-
eralizable decoding performance across datasets and subjects.

Subject-independent Experiment. The comparative analysis of subject-independent classification
performance between EEG-CSANet and several SOTA methods on BCIC-IV-2a is detailed in Ta-
ble 4. Evidently, EEG-CSANet achieved superior classification performance, thereby effectively
validating its transferability.

3.4 ABLATION STUDY

To investigate the effects of different components in the proposed model, we conducted ablation
experiments on BCIC-IV-2a for the S&R, TCN, Residual, and MSCA modules. In addition, for
the MSCA module, we separately evaluated the contributions of its two main components: Top-
k and Multiscale-AvgPool. We analyzed the results using three metrics: mean accuracy, standard
deviation, and Kappa coefficient.

As shown in Table 6, among the four modules, the S&R module provides the most significant im-
provement in classification performance. This phenomenon may be attributed to the relatively small
amount of training data in the BCIC-IV-2a, which makes complex models more prone to overfitting
during training, whereas S&R can effectively mitigate this issue to some extent. Among the remain-
ing modules, the performance improvement second only comes from the residual connection. This
indicates that the MSCA operation may lead to the loss of some temporal feature information, and
the residual connection can partially preserve and supplement this information, thereby enhancing
the representation of global features.

The experimental results further show that removing any module from the model leads to a varying
degree of performance degradation. This demonstrates that all modules play indispensable roles in
the overall architecture, validating the necessity of their design.

4 DATA VISUALIZATION

4.1 CONFUSION MATRIX

The confusion matrix is a fundamental tool for evaluating classification models, providing insights
into accuracy, error patterns, and class-specific biases for a comprehensive performance assess-
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ment. We employed confusion matrices to examine the performance of EEG-CSANet across three
datasets. To provide a thorough assessment of the model’s overall classification performance, we
aggregated the predictions of all subjects on the test sets and constructed confusion matrices based
on this combined data. Figure 2 shows that EEG-CSANet achieved relatively balanced classification
performance across all tasks. Specifically, on BCIC-IV-2A, the classification of tongue movement
(task 3) was slightly worse than other classes, while on HGD, the classification performance for
left-hand (task 0) and right-hand (task 1) movements was slightly lower compared to the other tasks.

Figure 2: Confusion matrix of EEG-CSANet on the three datasets.

4.2 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a nonlinear dimensionality reduction
and visualization method that preserves local structure while capturing global topology. Compared
with t-SNE, UMAP offers higher computational efficiency and scalability for high-dimensional data,
revealing clustering patterns and distribution characteristics in low-dimensional space (McInnes
et al., 2018). We applied UMAP to visualize features extracted by the four branches of EEG-
CSANet. Figure 3 indicate distinct feature representations across branches, reflecting diverse char-
acterizations of the input signals. By integrating these multiscale features, the model can more
comprehensively capture and leverage information at different granularities.

Figure 3: UMAP of EEG-CSANet on four brenches.

4.3 VISUALIZATION OF CONVOLUTIONAL FEATURES

To further investigate the features extracted by the four branches using convolutional kernels of dif-
ferent sizes, we applied the welch method to compute the power spectral density (PSD) of the EEG
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signals after temporal convolution. From top to bottom, convolutional kernel sizes of 64, 32, 16, and
8 were used. In Figure 6, the blue line represents the original signal, while the red line represents the
convolved signal. Figure 6.a shows a pronounced energy enhancement in the Theta, Alpha, and Beta
bands, particularly in the 8–13 Hz and 13–20 Hz ranges, whereas the Delta band exhibits a marked
decrease in energy. Figure 6.b exhibits a sharp peak in the Alpha band, with a notable increase
in the Delta band, but minimal enhancement in the high-frequency range. Figure 6.c is similar to
Figure 6.b but shows better representation in the transition from Alpha to Beta. Figure 6.d displays
relatively weaker low-frequency activity (0.5–13 Hz) compared to Figure 6.b and Figure 6.c, but
shows marked enhancement in the high-frequency Beta to Gamma (13–50 Hz) range, with a peak
around 20 Hz.

This may be attributed to the larger receptive field of the large kernels, which can capture the overall
slow-varying trends of the signal and cross-frequency rhythmic information due to their coverage
of longer temporal windows. Conversely, smaller kernels focus on local, rapidly varying signal
patterns, making them more sensitive to high-frequency features of EEG signals, which often reflect
transient, short-duration neural activity.

Therefore, the multi-branch temporal convolutional module indeed captures features from differ-
ent frequency bands, and features in different frequency bands often correspond to distinct spatial
distribution patterns. This further validates the advantage of our multi-branch architecture:
by separately extracting multi-scale features along the temporal dimension while preserving their
independent spatial representation pathways, it effectively mitigates the issue of spatial informa-
tion confusion or loss that arises in traditional approaches when multi-scale features are directly
concatenated.

4.4 COMPARISON BETWEEN MAIN–AUXILIARY AND HIERARCHICAL STRUCTURES

In our original model, the Query of each MSCA branch was derived from the features obtained
after the DW-Spa-Conv module in the first branch. Inspired by (Liu et al., 2025a), we compared
the performance of the original main–auxiliary structure with a hierarchical structure,as is shown in
Figure 5 and Appendix A.6. In the hierarchical design, the features extracted after the DW-Spa-Conv
module in the first branch serve as the Query for the second branch’s MSCA, whose output is then
passed sequentially as the Query to the third and fourth branches. This layer-by-layer propagation
enables each branch to attend not only to its own representations but also to inherit information
from the preceding branch, thereby achieving cross-branch multi-level feature fusion. As is shown
in Table 7, compared with main–auxiliary structure, the Hierarchical structure yields slightly lower
classification performance, though the difference is not statistically significant according to t-tests.
To present the best-performing model, we ultimately adopted the main–auxiliary structure.

5 CONCLUSION

In this paper, we propose EEG-CSANet, a multi-branch feature fusion framework for MI classi-
fication. To address the spatial information loss caused by shared weights in multiscale feature
extraction, EEG-CSANet introduces a parallel design that assigns an independent spatial module to
each temporal scale, enabling more precise characterization of the spatiotemporal heterogeneity of
EEG signals. For multi-branch feature fusion, EEG-CSANet adopts a main–auxiliary collaborative
architecture: the main branch leverages multiscale self-attention to model core spatiotemporal pat-
terns, while the auxiliary branch employs multiscale sparse cross-attention to enable efficient local
interactions with the main branch. Experimental results demonstrate that EEG-CSANet achieves
SOTA performance across three public MI datasets. Moving forward, we expect EEG decoding to
to be more closely aligned with neural mechanism-driven strategies, fostering the design of methods
specifically adapted to the properties of EEG signals, which in turn can improve the physiological
plausibility and generalizability of EEG-based models.
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lipe Oliveira de Azevedo Dantas, Caroline Cunha do Espirito Santo, and Denis Delisle-Rodriguez.
A gait imagery-based brain-computer interface with visual feedback for spinal cord injury reha-
bilitation on lokomat. IEEE Transactions on Biomedical Engineering, 2024.

Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci com-
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A APPENDIX

A.1 DATASETS DISCRIPTION AND PREPROCESSION

BCIC-IV-2a (Brunner et al., 2008) provided by the Graz University of Technology, consists of
recordings from nine healthy subjects. Each subject performed four MI tasks, including left hand,
right hand, foot, and tongue movements. EEG signals were recorded using 22 Ag/AgCl electrodes at
a sampling rate of 250 Hz. For each subject, two sessions were recorded on different days, serving
as the training and testing sets, respectively. Each session comprises 288 trials, i.e., 72 trials per
task. In our study, a 4-second time window was adopted for each trial (Song et al., 2020).

BCIC-IV-2b (Leeb et al., 2008) also includes recordings from nine healthy subjects. Each subject
performed two MI tasks, namely left-hand and right-hand movements. EEG signals were recorded
using three bipolar electrodes (C3, Cz, and C4) at a sampling rate of 250 Hz. A 4-second time
window was adopted for each trial (Song et al., 2020). Each subject completed five sessions: the
first two sessions without feedback, each containing 120 trials, and the subsequent three sessions
with feedback, each containing 160 trials. In our experiments, the first three sessions were used for
training and the last two sessions for testing, as done in (Ma et al., 2024).

HGD (Schirrmeister et al., 2017) consists of recordings from 14 healthy subjects. Each subject
performed four MI tasks, including left-hand, right-hand, both-feet movements, and rest (where a
visual cue identical to that of the other tasks was presented on the screen, but subjects were instructed
not to perform any movement). The original EEG signals were recorded using 128 channels at a
sampling rate of 500 Hz, with a 4-second time window for each trial. Following (Zhao & Zhu,
2025), we selected 44 channels covering the motor cortex for EEG decoding, downsampled the
signals to 250 Hz, and applied standard normalization. For each subject, the dataset includes both
training and testing sessions: the training set comprises approximately 880 trials per subject, while
the testing set contains about 160 trials per subject.

A.2 BASELINES

EEGNet (Lawhern et al., 2018) is a lightweight convolutional neural network specifically tailored
for EEG signal classification. By leveraging depthwise separable convolutions, it achieves an effec-
tive trade-off between performance and computational efficiency. Its architecture is simple, compact,
and easy to implement or transfer across different tasks. Owing to these advantages, EEGNet has
been widely adopted in various BCI applications, such as MI and Event-Related Potention decoding,
and has become one of the benchmark models in deep learning for EEG analysis.

EEG-Conformer (Song et al., 2022) is a deep learning model specifically developed for EEG signal
classification, which integrates CNNs with a Transformer architecture. In this framework, CNNs
are employed to extract local spatiotemporal features, while the Transformer is utilized to model
long-range temporal dependencies and global contextual information. By effectively combining the
strengths of feature extraction and sequence modeling, EEG-Conformer provides a powerful and
comprehensive representation of EEG data.

ATCNet (Altaheri et al., 2022) is a compact and interpretable attention-based temporal convolu-
tional network specifically designed for EEG motor imagery classification. It integrates principles
of scientific machine learning by employing convolutional layers to extract spatiotemporal features,
while multi-head self-attention mechanisms emphasize the most informative temporal segments. In
addition, a TCN is incorporated to capture long-term temporal dependencies. With its concise archi-
tecture and strong interpretability, ATCNet demonstrates improved decoding performance for EEG
signals.

ADFCNN (Tao et al., 2023) is a deep learning model tailored for MI–BCI. It adopts a dual-scale
convolutional architecture to separately extract temporal features of EEG rhythms as well as global
and fine-grained spatial features. To further enhance representation learning, a self-attention mech-
anism is introduced, enabling the model to dynamically weight and fuse multiscale information
according to intrinsic feature similarities, thereby improving feature discriminability. This design
effectively overcomes the limitations of traditional single-scale or traditional multiscale CNNs in
feature extraction and fusion, offering stronger modeling capabilities for both spectral and spatial
information.
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EEG-Transnet (Ma et al., 2024) is a MI-EEG classification model that integrates CNNs with a
self-attention mechanism. The model extracts multimodal temporal features from both the mean
and variance dimensions, while a shared self-attention module captures global temporal dependen-
cies. A convolutional encoder is then employed to fuse these features, thereby enhancing their dis-
criminability. In addition, a signal S&R-based data augmentation strategy is introduced to further
improve robustness and decoding performance.

MSTFNet (Jin et al., 2024) is an end-to-end convolutional neural network proposed for motor im-
agery EEG classification. To overcome the limitations of traditional single-scale convolutions in
feature extraction, MSTFNet is designed with four core modules: feature enhancement, multiscale
temporal feature extraction, spatial feature extraction, and feature fusion. Through the collaborative
extraction of multiscale spatiotemporal features and the adoption of refined fusion strategies, the
model substantially improves the decoding of EEG signals.

EISATC-Fusion (Liang et al., 2024) is a neural network model tailored to MI-EEG decoding, which
integrates Inception modules, multi-head self-attention, TCNs, and a layer fusion structure. Specif-
ically, the model employs DS-Inception to extract multiscale frequency band features, incorporates
cnnCosMSA to alleviate attention collapse and enhance interpretability, and applies depthwise sep-
arable convolutions to reduce parameter complexity. Furthermore, by combining both feature-level
and decision-level fusion strategies, EISATC-Fusion achieves improved robustness in EEG signal
decoding.

MCMTNet (Yang et al., 2025) is a deep learning model capable of directly processing raw EEG
signals without the need for complex preprocessing. Its architecture is composed of three main
components: a multi-domain convolution module, a multi-head attention module, and a TCN. The
multi-domain convolution module is responsible for filtering and feature extraction, the multi-head
attention module enhances cross-scale correlations, and the TCN improves temporal coherence.

TMSA-Net (Zhao & Zhu, 2025) is a neural network model that integrates CNNs with an improved
Transformer-based attention mechanism. The model first employs CNNs to extract local spatiotem-
poral features, and then introduces a novel attention module to enhance global modeling capability
across both the channel and temporal dimensions, thereby effectively bridging the gap between local
and global representations. By optimizing the attention structure, TMSA-Net not only reduces com-
putational overhead but also improves feature fusion efficiency, enhancing the model’s sensitivity to
key EEG patterns and its interpretability.

A.3 EVALUATE METRICS

Average Accuracy provides a holistic measure of model performance by averaging classification
accuracy over all categories. Given an n-class problem, the average accuracy (Acc) can be expressed
as:

Acc =

∑n
i=1 TPi∑n

i=1(TPi + FPi)
(12)

where TPi and FPi denote the number of true positives and false positives for class i, respectively.

Kappa coefficient is employed to evaluate the agreement between predicted and true labels, ac-
counting for the agreement occurring by chance. It is especially effective evaluating model perfor-
mance under class-imbalanced conditions.

κ =
po − pe
1− pe

(13)

where po denotes the observed agreement and pe is the expected agreement under random guessing.

A.4 EXPERIMENT RESULTS

Table 5 reports subject-dependent performance comparisons on HGD, we present the comparison
results of all subjects with SOTA models.

Table 6 presents the ablation experiments on BCIC-IV-2a for the S&R, TCN, Residual, and MSCA
modules. As to MSCA, we separately evaluated the contributions of its two main components:
Top-k and AvgPool.
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Table 5: Performance comparison on HGD.
Subjects EEGNet EEG-Conformer ATCNet EEG-TransNet ADFCNN MCMTNet TMSA-Net EEG-CSANet

H01 85.15 92.28 95.00 94.38 90.00 95.69 98.13 97.50
H02 85.02 89.78 97.50 95.00 92.50 97.00 94.38 97.50
H03 98.82 98.23 99.38 99.38 99.17 99.75 99.38 100.00
H04 95.70 98.85 98.75 99.38 100.00 98.31 100.00 99.38
H05 93.20 90.73 97.50 94.38 100.00 97.94 100.00 99.38
H06 90.12 93.33 95.00 95.00 98.13 97.81 98.75 98.75
H07 86.28 90.04 94.38 94.97 92.50 93.77 98.75 95.63
H08 88.82 85.10 96.88 94.38 99.38 95.87 96.88 96.88
H09 95.07 98.23 98.13 97.50 100.00 97.62 99.38 99.38
H10 88.22 90.73 91.88 95.63 96.25 93.81 95.00 96.25
H11 76.35 79.58 85.63 83.13 98.13 88.88 98.75 92.63
H12 96.95 96.45 98.13 98.75 98.13 98.06 98.75 98.75
H13 83.75 92.65 95.00 95.60 97.50 96.10 97.50 98.75
H14 80.72 82.05 94.38 90.00 70.63 89.56 66.88 89.38

Acc 88.87 91.29 95.54 94.82 95.17 95.73 95.90 97.15
Std 6.53 5.90 3.54 4.17 7.74 3.23 8.52 2.97

Kappa 0.8531 0.8824 0.9405 0.9309 0.9381 0.9430 0.9452 0.9627

Table 6: Ablation study of different modules.

S&R TCN Residual
MSCA

Acc Std Kappa
Top-k AvgPool

✓ ✓ ✓ ✓ ✓ 88.54 8.41 0.8472
× ✓ ✓ ✓ ✓ 81.35 7.91 0.7514
✓ × ✓ ✓ ✓ 87.61 8.09 0.8348
✓ ✓ × ✓ ✓ 86.38 9.21 0.8184
✓ ✓ ✓ × × 86.78 8.98 0.8224
✓ ✓ ✓ ✓ × 87.50 9.74 0.8334
✓ ✓ ✓ × ✓ 87.73 8.23 0.8364

Figure 4: Traditional multiscale temporal feature extraction methods..

A.5 VISUALIZATION OF CONVOLUTIONAL FEATURE

To examine the features extracted by the four branches with different convolutional kernel sizes (64,
32, 16, and 8), we employed the welch method to compute the EEG PSD. In Figure 6, the blue and
red lines denote the original and convolved signals, respectively.

A.6 HIERARCHICAL GUIDANCE OF STRUCTURE

As shown in Figure 5, in the hierarchical design, the features extracted by the DW-Spa-Conv mod-
ule in the first branch are used as the Query for the MSCA in the second branch. Its output is
then sequentially passed as the Query to the third and fourth branches. Through this layer-by-layer
propagation mechanism, each branch can not only focus on its own representations but also inherit
information from the preceding branch, thereby enabling cross-branch multi-level feature fusion.
Table 7 presents a detailed comparison of the classification accuracy between Main–auxiliary Guid-
ance and Hierarchical Guidance.
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Figure 5: Hierarchical Guidance of Structure.

Table 7: Comparison between Main–auxiliary Guidance and Hierarchical Guidance.

Dataset
Main–auxiliary Guidance Hierarchical Guidance

ACC Std Kappa ACC Std Kappa

BCIC-IV-2a 88.54 8.31 0.8472 88.08 8.77 0.8411
BCIC-IV-2b 91.09 8.48 0.8218 90.89 8.57 0.8178

HGD 96.43 4.52 0.9542 96.29 4.01 0.9503

A.7 HYPERPARAMETERS

Table 8 provides a detailed summary of the hyperparameters for each module of the model.

Table 8: Hyperparameters of different modules.
Module Hyperparameters Settings

Data Augmentation Segment (S) 8

Temporal Conv2D Kernel Size (K1,K2,K3,K4) (64, 32, 16, 8)
Filters (F1, F2, F3, F4) (16, 16, 16, 16)

DW-Spa-Conv

DW Kernel Size (K5) (C, 1)
DW Filters (F5) 16

Depth multiplier (D) 2
Pooling Size (P1, P2) (8, 7)

Spa Filters (F6) 32
Spa Filters (K6) 32

Dropout 0.5

MSCA

Pooling Size (Q1, Q2, Q3) (3, 5, 7)
Pooling Padding (G1, G2, G3) (1, 2, 3)

Number of Heads (h) 8
Top-k (k1, k2) (2, 3)

TCN

Dilation factor (d1, d2) (1, 2)
Kernel size (Kt) 4

Filters (Ft) 32
Dropout 0.3
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Figure 6: PSD of EEG-CSANet on four branches (HGD: Sub6).
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