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Abstract

State-of-the-art methods for industrial anomaly detection (IAD) typically rely on a training
set of images to define normal conditions, flagging any deviations as anomalies. Obtaining
this training set has two main issues - it is time consuming to obtain an extensive labeled
set, and the assumption that all patterns outside the training set are truly anomalous is of-
ten unrealistic. Many rare patterns not captured in the training set, such as environmental
changes, positional changes, or permissible deformation, may not constitute actual indus-
trial defects. In this paper, we reframe the IAD task by using large vision-language models
(LVLMs) without fine-tuning on training images. LVLMs can interpret and generalize from
a single reference image, and can be more robust to rare but acceptable changes in images.
Our experiments on two popular benchmarks, MvTec-AD and VisA, show that LVLMs with
just one image and a textual description is competitive with state-of-the-art models, and
offer a more robust and generalizable solution even with variations in testing images. We
also identify a key limitation: LVLM performance degrades when detecting small anoma-
lies. Despite this, our findings highlight the potential of LVLMs as a flexible and scalable
foundation for industrial anomaly detection, opening new directions for future research.

1 Introduction

The recent development of deep learning models for industrial anomaly detection (IAD) opened up more
opportunity for higher standards of manufacturing, with less discarded items and lower costs (Liu et al.,
2024). State-of-the-art (SOTA) approaches to solving IAD using deep learning models have been diverse and
extensive, and, in many cases, report high performance (Liu et al., 2024). These methods typically rely on
large datasets of images depicting normal operating conditions. However, it is difficult to obtain images that
fully cover all variations of normal conditions. Uncommon characteristics of images that are not included in
the training set may be considered an anomaly, even when the image is normal.

While SOTA IAD systems are developed using training images, we propose an alternative approach to use
large vision-language models (LVLMs) that have superior generalizing capabilities. Recent advancements in
LVLMs have shown promising performance on wide ranges of tasks such as reasoning, question answering,
and image captioning (Zhang et al., 2024a). We hypothesize that LVLMs can show IAD capabilities without
any fine-tuning, making them a flexible and robust alternative to new IAD tasks. Because LVLMs have
generalization capabilities through their extensive training with language and vision, LVLMs can bypass the
need to obtain a large training dataset for every new IAD task. This minimizes the time and labor needed
to obtain and label training images. This also allows one LVLM model to be deployed for many different
tasks of IAD, which minimizes the time needed to build specialized models.

In this paper, we assess whether LVLMs, prompted with a single reference image and a generic prompt,
can match or exceed the performance of specialized models, particularly in settings where anomalies are
diverse or visually subtle. We evaluate using a simple method with LVLM on two standard IAD datasets
with modified test images, and compare the results against SOTA models for IAD. In Section 2, we discuss
relevant models and methods that have been used for IAD. In Section 3, we discuss the justification for and
details of using LVLM for IAD. In Section 4, we discuss the datasets used, details of SOTA models selected
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for comparison, and modifying the images to reflect a more realistic setting. Lastly, in Section 5, we discuss
the results on the original datasets and modified images.

2 Related Work: Defining Anomaly with Images

Existing approaches to IAD have various approaches. Reconstruction based approaches use a model trained
on normal images to compare the new reconstructed image with the original image, and use the error as
a measure of anomaly. Some methods include AMI-Net, Dinomaly, and RealNet (Luo et al., 2024) (Guo
et al., 2025) (Zhang et al., 2024b). Embedding based approaches are another solution where the images
are converted to vectors using a pretrained model to determine an anomaly score. Some methods include
Simple-FPN and ReConPatch (Zhao et al., 2024) (Hyun et al., 2024). Both reconstruction and embedding
approaches rely on training a model using normal images, which can lead to two issues. First, obtaining
a large training dataset can be difficult and time consuming. Second, these normal images must cover all
variations of normal, since a rare normal image that is not in this training set can be labeled as an anomaly.

IAD approaches can also be categorized as single and multi-class methods. Single class based methods such
as PaDiM are trained only on one object class and have a unique model for each object (Defard et al., 2020).
Multi-class methods such as UniAD are able to detect anomalies for different object classes under a unified
framework (You et al., 2022). While multi-class methods offer more flexibility, these methods are still trained
on all objects, and therefore do not eliminate the time needed to obtain and label a training dataset. These
models also use the anomaly mask labels to determine the location of the anomaly to train these models.
Obtaining these anomaly mask labels can be even more time consuming.

3 Evaluating IAD in the LVLM Era

In contrast to previous methods, our approach using LVLM models offer an alternative solution to IAD. A
training set is not necessary for LVLM models with a one-shot approach, which only uses a single normal
reference image. One model can be used for various object classes. Therefore, LVLMs offer a multi-class, no
training alternative to IAD. In this section, we first discuss the difficulty of defining an anomaly task with
training images. Then, we introduce our simple LVLM method.

3.1 Defining anomaly is incomplete with images

The main issue with the standard IAD datasets is that it only uses images to define a IAD task. In practice,
there may be other forms of normal conditions that may be missed in the training dataset. We had the
opportunity to discuss an IAD task with Anonymous Corporation to detect anomalies at two key points
of the manufacturing process, shown in Figures 1 and 2. Figure 1 shows a split pin, which is defined as
normal if it is slotted correctly through the center nut and its two legs are bent at at least 120 degrees apart
from each other, and finished with a paint mark on the bend. However, as demonstrated by Figures 1(a)
and (b), there are still significant differences between the normal images. The object is free to rotate, the
camera position may shift, and other objects may be present such as the 2 or 4 screws around the center
nut. In Figure 1(c), the split pin is shown to be an anomaly because the legs have not been bent, but other
differences such as the arm or blur, are not relevant to the IAD task. Similarly, Figure 2 shows a circular
pin, which must be correctly placed into the groove such that the two holes at the end of the ring are close
together and painted over. However, both normal and anomaly images show differences such as shadows and
orientations that are not relevant to the IAD task. Covering all possible variations of normal images in the
training set is not possible, which can lead to missed detection in practice, and only creates an argument for
using more human labor and time to obtain additional training images.

3.2 Detecting anomaly with LVLMs

We hypothesize that using using an LVLM can help in defining an IAD task more clearly without needing
a large training dataset. Recent developments in LVLMs have shown promising and powerful capabilities in
image and text comprehension (Zhu et al., 2023). The multi-image capabilities of few-shot prompting, when
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(a) Normal example (b) Another normal example (c) Anomaly example

Figure 1: Examples of normal and anomaly images of a split pin assembly obtained from Anonymous
Corporation.

(a) Normal example (b) Another normal example (c) Anomaly example

Figure 2: Examples of normal and anomaly images of a circular pin assembly obtained from Anonymous
Corporation.

combined with high performance of question-answering benchmarks, extends their conversational capabilities
to understanding more complex contexts and tasks (Alayrac et al., 2022). One high performing LVLM is
Qwen2-VL, an open source model that achieves impressive results comparable to leading models such as
GPT-4o and Claude3.5-Sonnet across many multimodal benchmarks (Wang et al., 2024b). Based on its
demonstrated performance, we use Qwen2-VL-72B-Instruct-AWQ model to evaluate IAD capabilities of
LVLMs.

We introduce a simple, yet effective, method for prompting Qwen to evaluate its performance on the IAD
datasets. We only use a single reference image such that we minimize the labor and time needed to develop
a labeled training and testing dataset. The selected reference image is the first available image from the
training set. We also use the same anomaly prompt on all image categories and datasets: "The second image
is for anomaly detection. Does the second image have any anomaly compared to the first image? Reply yes
or no, then explain." For a few object categories, we use additional prompts to describe any variation in the
training set that is not reflected in the reference image. For example, the toothbrush reference image has
blue bristles, but other images in the training set contains red or yellow bristles. The toothbrush prompt is
therefore: "The second image is for anomaly detection. Does the second image have any anomaly compared
to the first image? Reply yes or no, then explain. Ignore the color of the bristles for an anomaly." The list
of specific prompts used are shown in Appendix A.2. Many image classes do not need any specific prompts,
making this approach simple and general. Figure 3 shows the method overview and the anomaly prompt
text.

4 Experimental Setup

We first introduce the two widely used datasets for IAD. Next, we select three recently developed SOTA
models for comparison against the LVLM performance. We discuss augmenting the datasets to include
variations to these images that may occur naturally in practice. Lastly, we discuss an evaluation metric for
comparing the three models against the LVLM method.
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Figure 3: The LVLM simple method diagram, showing example images of the hazelnut in MvTec-AD dataset.
In this method, the reference image, LVLM, and post processing functions are all frozen.

4.1 Datasets

The MvTec-AD dataset consists of 15 different image categories with 3629 normal images in the training set,
and 1725 testing images with 1258 anomaly and 467 normal images (Bergmann et al., 2019). Four image
categories are texture based, and the other 11 image categories are object based. All anomaly images are
provided a ground truth mask to indicate the location of the anomaly. The size of the anomaly in the images
relative to the total image range from 0.037% to 49.3% with an average anomaly size of 4.4%.

We repeated the experiments on the VisA dataset which contains 12 image categories for IAD (Zou et al.,
2022). There are 8659 normal images in the training set and 2162 images in the testing set with 1200 anomaly
and 962 normal images. These anomaly images are provided a ground truth mask to indicate the location of
the anomaly. The size of the anomaly in the images relative to the total image range from 0.002% to 32.0%,
with an average anomaly size of 1.0%.

4.2 State-of-the-art Models

We choose to compare the LVM approach with three SOTA models that achieve high performance on the
MVTec-AD dataset: GLASS, INP-Former, and AnomalyGPT. (Chen et al., 2024)(Luo et al., 2025)(Gu
et al., 2023). These models were chosen for their recent accomplishments in high IAD performance and the
variety in solutions.

4.2.1 GLASS

Global and Local Anomaly co-Synthesis Strategy (GLASS) is chosen to compare against the LVLM strategy
for IAD (Chen et al., 2024). This model uses a unified framework for analyzing a broad range of anomalies
at image and pixel levels. Training this model is split into three branches - normal, GAS, and LAS. First,
the normal training images are processed to obtain normal features. Then, these features are used as input
to both the GAS and LAS branch. In the GAS branch, the global anomaly features are synthesized using
gradient guidance. In the LAS branch, local anomaly features are synthesized by overlaying textures from
the DTD dataset images (Cimpoi et al., 2014). These three features from each branch is fed into a trainable
discriminator. In inference, only the normal branch is used to calculate an anomaly score for each image.
This method is trained on normal images. This model was replicated using the public repository on Github.
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The model weights for the MvTec-AD dataset were downloaded from the repository, while the model weights
for the VisA dataset were trained using the published code and instructions.

4.2.2 INP-Former

The second model chosen to compare against the LVLM strategy for IAD is the Intrinsic Normal Prototypes
- Former (INP-Former) (Luo et al., 2025). This method extracts INPs from the image by linearly combining
normal tokens using the INP Extractor. The INP is used in the INP-Guided Decoder to reconstruct the
normal tokens and uses the reconstruction errors between the original image as the anomaly score. The
multi-class model weights were used in evaluation for our experiments, as made available in the public
Github repository.

4.2.3 AnomalyGPT

The last model we used to compare is the AnomalyGPT model (Gu et al., 2023). This model is based on
LVLM, and uses simulated anomaly images for training data. An image encoder and decoder are used to
process the query image, then compared with normal and anomaly texts to obtain localization results. This
is passed to the prompt learner to convert into prompt embeddings used as input to the LLM. ImageBind-
Huge is used as the image encoder and Vicuna-7B is used as the LLM (Girdhar et al., 2023)(Chiang et al.,
2023). It is claimed in this paper that this is the first attempt to use LVLMs in IAD. The supervised trained
models published on the Github repository are used for our experiments.

4.3 Augmented testset: more variations to normal images

Although the academic datasets used in our experiments are widely used for research, the consistency of
these images can be unrealistic. As discussed in Section 3, it can be difficult to take images from consistent
conditions and angles, and variations in images are inevitable. We hypothesize that since LVLMs are not
fine-tuned on a training set for specific IAD tasks, the performance of LVLMs should be more robust to these
changes than traditional models. Both the reference image and the prompt is important in communicating
the anomaly task, while keeping the task general enough to adapt to small changes during testing.

To explore the performance of SOTA models under these realistic conditions, we augmented the test dataset
with modifications that may occur in an applied setting and do not affect the visibility of anomalies. Figure
4 and 5 show the original image and the modified images for the two datasets. Rotation modification rotates
the image 90 degrees counterclockwise. Padding adds a white border around the image at 20 pixels thick.
Lastly, a timestamp is added to the top right corner of the image saying “2025-05-12” in white text with
black border in font size 30. Observing the performance on the original images and then comparing the
performance on these modified images can demonstrate the robustness of the model to perturbations to the
test image that were not shown in the training dataset.

(a) Original (b) Rotation (c) Padding (Border added
for white padding visibility)

(d) Timestamp

Figure 4: Examples of the original and modified images of a capsule in the MvTec-AD dataset.
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(a) Original (b) Rotation (c) Padding (Border added
for white padding visibility)

(d) Timestamp

Figure 5: Examples of the original and modified images of a chewing gum in the VisA dataset.

4.4 Evaluation Metrics

The SOTA models standard of evaluation metric is Area Under the Receiving Operating Characteristic curve
(AUROC). This is calculated from the binary ground truth labels (normal or anomaly) and the anomaly
rating that is predicted by the model, which typically ranges from 0 to 1. In practice, a threshold must be
defined to convert this rating to a normal or anomaly result. Finding this threshold can be challenging since
it must be empirically determined from a dataset. The threshold can be biased and inaccurate if the testing
set contains out of distribution images from the training set. Figure 6 shows the distribution of anomaly
ratings for the normal images in the training set, and Figure 6 shows the distribution of anomaly ratings
for all the images in the test set. To convert the anomaly rating to a normal or anomaly label, we take the
training set and take three thresholds - the maximum, the 90th percentile, and the 80th percentile anomaly
rating values. These values are used on the test dataset to determine if an image is normal or anomaly,
and an accuracy percentage can be calculated when compared against the ground truth measurements. To
consider the best performance of the models, we report values using the threshold that has the highest
performance for each model and dataset. The performance using all thresholds is shown in Appendix A.3.
For LLM based models, the model responds "yes" or "no", so the response is binary. An AUROC metric
cannot be calculated for these models, but a threshold is not needed to calculate accuracy scores. In our
experiment, we use accuracy as the metric to compare all models.

(a) Training dataset (b) Testing dataset

Figure 6: The anomaly rating distributions in training and testing datasets for GLASS model. The different
thresholds are shown as dashed vertical lines. These thresholds need to be empirically determined, and can
drastically change the accuracy of the model in inference.
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5 Results

In this section, we discuss the results on the original datasets between the SOTA models and LVLM approach.
Then, we discuss the results and drop in performance for these models with modified images.

5.1 Results on the original datasets

The results on running each model on the original datasets are shown in Table 1 and 2. The reported
AUROC and accuracy values are shown in percentages.

All three SOTA models show high performance using AUROC metrics, but drop significantly when converting
to accuracy metrics for both datasets. In the MvTec-AD experiment, even when selecting the highest result
between the three thresholds, GLASS drops 16.8%, INP-Former drops 14.4%, and AnomalyGPT drops
8.5%. Similarly evaluating the VisA experiment shows that GLASS drops 7.7%, INP-Former drops 5.4%,
and AnomalyGPT drops 9.8%. This demonstrates the importance of setting a correct threshold when
labeling normal and anomaly in an applied setting, since only using a high AUROC value to evaluate model
performance can show misleading inflated performance.

In comparison, the simplest method using Qwen demonstrates a more robust performance. In the MvTec-AD
dataset, the accuracy on the original images is the highest of the models at 91.8%. The superior performance
of Qwen is further emphasized by the single image used for one-shot reference. While the other models have
starting time costs of fine-tuning the model using the few thousand training images, Qwen can be deployed
more quickly to new applications with just a single labeled normal image. The results on the VisA dataset
demonstrate the limitations of Qwen. The performance of Qwen on the original dataset is lower than the
other models at 73.7%.

In exploring the differences between the datasets, we hypothesize that the size of the anomaly correlates
with the performance of the LVLM. There is a significant difference between the percentage of the ground
truth mask percentage of the anomaly as discussed in Section 4. The average size of anomaly of the MvTec-
AD dataset is 3.4% larger than that of the VisA dataset. This indicates that the anomalies in the VisA
dataset may be more difficult to detect. Figure 7 plots the average mask percentage of the images binned
at 50 intervals and their corresponding average accuracy for Qwen. The correlation coefficient between
mask percentage and accuracy is 0.825. This demonstrates that the LVLM approach starts to fail when the
anomaly becomes too small, and can predictably increase accuracy with increased anomaly size.

Model AUROC Accuracy
GLASS 99.9 83.1

INP-Former 97.7 83.3
AnomalyGPT 94.1 85.6

Qwen NA 91.8

Table 1: SOTA anomaly detection models and Qwen when tested on the original MvTec-AD dataset.

Model AUROC Accuracy
GLASS 97.3 89.6

INP-Former 96.2 90.8
AnomalyGPT 87.4 77.6

Qwen NA 73.7

Table 2: SOTA anomaly detection models and Qwen when tested on the original VisA dataset.

5.2 Results on modified datasets

The test datasets with realistic variations in images demonstrate that reported high performance may not
necessarily reflect robustness of the model to changes that might occur to images in practice. All three SOTA
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Figure 7: Average accuracy of Qwen compared to average mask percentages binned by 50 images. The
average mask percentages are shown in log scale. The MvTec-AD images show overall higher average mask
percentages, and correlate to higher average accuracy. The VisA images show lower average mask percentage,
and correlate to lower average accuracy. The correlation coefficient is 0.825.

models have even further drop in performance when evaluated on the modified datasets, as shown in Figure
3 and 4. When selecting the threshold that yields the highest original image performance, GLASS drops
an average of 7.9%, INP-Former drops an average of 4.8%, and AnomalyGPT drops an average of 10.3%
in accuracies across rotation, padding, and timestamp experiments in MvTec-AD experiments. Similarly
in the VisA experiments, GLASS drops an average of 26.1%, INP-Former drops an average of 14.9%, and
AnomalyGPT drops an average of 11.6% across rotation, padding, and timestamp experiments. These results
demonstrate that the models are not robust to changes in the images even though they do not change the
normal or anomaly characteristics.

In comparison, the simplest method using Qwen demonstrates a more robust performance. In the MvTec-AD
dataset, the average drop in performance across the modified images from the original performance is 1.7%,
the lowest of the models. The VisA dataset, while a lower accuracy, still demonstrate the robustness across
modified images with a drop in performance of 3.0%, less than the other models. While the other models
may increase performance if fine-tuned on these modified images, they have starting time costs. Fine-tuning
the models every time there are new testing image types is impractical and time consuming. In contrast,
Qwen can be deployed more quickly to new applications with just a single labeled normal image even with
new testing image types.

Model Original Rotated Padded Timestamp Average drop
GLASS 83.1 77.1 73.1 75.3 7.9

INP-Former 83.3 67.2 85.6 82.7 4.8
AnomalyGPT 85.6 85.1 70.0 72.8 10.3

Qwen 91.8 89.4 89.6 91.3 1.7

Table 3: SOTA anomaly detection models and Qwen when tested on the modified MvTec-AD dataset.
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Model Original Rotated Padded Timestamp Average drop
GLASS 89.6 57.2 56.6 76.8 26.1

INP-Former 90.8 56.6 80.4 90.7 14.9
AnomalyGPT 77.6 69.2 74.2 55.3 11.6

Qwen 73.7 67.3 71.4 73.3 3.0

Table 4: SOTA anomaly detection models and Qwen when tested on the modified VisA dataset.

5.3 Ablation studies

We have demonstrated the performance of the Qwen model with one reference image and prompt. We
perform ablation studies to show the efficacy of the reference image and prompt. Results for MvTec-AD is
shown in Table 5.

Qwen Model Accuracy
Oneshot + specific prompts 91.8

Oneshot 90.0
Zeroshot + description 76.1

Zeroshot 69.7

Table 5: Ablation experiment results on MvTec-AD dataset

The oneshot and specific prompts shows the best performance. When taking away the specific prompts and
only using the reference image and anomaly question, the performance slightly goes down. This demonstrates
that some images need the description of variances in the training set, and a single reference image alone
cannot cover all variations of a normal image. The zeroshot approach with a prompt description of the
anomaly object with no reference image has much lower performance, demonstrating that the single reference
image is important in communicating the anomaly description. Lastly, with no prompt description and no
reference image, the performance is much lower, demonstrating that language is also important in anomaly
detection with LVLMs.

6 Future Work and Limitations

The presented LVLM approach to IAD has a few limitations. First, there is no localization of the anomaly,
so pixel-level accuracy cannot be calculated. However, in practice, detecting the presence of an anomaly is
more important before localizing the anomaly. In addition, the text response of the LVLM describes the
anomaly, as shown in Figure 8.

Another limitation is the GPU size needed to run the LVLM and the processing time. We ran our experiments
on two Nvidia A100 40GiB GPUs, and each query image took an average of 4.74 seconds to run. While some
applications may not fit these requirements, the time and labor needed to accumulate a large training set
and train a specialized model can be more costly, and a model that is immediately deployable may be more
favorable. This limitation may be resolved with distilling the LVLM, which can boost the speed of each runs
and requires less GPU to deploy.

Lastly, it is important to note that various techniques have been shown in literature to boost the performance
of LVLMs. Fine-tuning, cropping, and chain-of-thought prompting are techniques that have been demon-
strated to improve the performance of LVLMs (Sahoo et al., 2024). In our experiments, the specific prompts
used are generic and developed quickly without iteration, but more prompt tuning can further improve the
performance.

One future direction to consider is defining more detailed tasks for standard IAD benchmarks. The standard
IAD datasets such as MvTec-AD and VisA only contain normal and anomaly images, and the normal images
in the training set is used to define the IAD task. Because these do not contain any descriptions about
what qualifies as an anomaly, the user is left to only use intuition. Figure 9 shows examples of normal and
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Figure 8: An example of responses for the bottle and cable images in the MvTec-AD dataset. The text
describes that the bottle anomaly is located near the top edge, and the cable anomaly has the wrong cable
where the yellow cable should be.

(a) Normal example of
pill, but there is a notice-
able chip on the right of
the pill.

(b) Anomaly example of
a pill, with a similar
sized chip on the top of
the pill.

(c) Normal example of a
cashew, but there are deep
scratches.

(d) Anomaly example of a
cashew, with a scratch that
seems less prominent than
the normal image in (c).

Figure 9: Normal and anomaly images in both datasets. The pill from MvTec-AD has a similar sized chip
on both normal and anomaly images (a) and (b). The cashew from VisA has a scratch on both normal and
anomaly images (c) and (d). This shows that the datasets relying on using only images to define normality
is ambiguous. The user of the datasets is left unclear as to what extent these imperfections render the image
an anomaly.

anomaly labeled images in the MvTec-AD and VisA test datasets that are ambiguously defined. Figure 9a
has a noticeable chip on the right side of the image, but is labeled normal. Figure 9b has a similar chip on the
top side, but is labeled as anomaly. Similarly, Figure 9c shows a scratch in the center, but is labeled normal.
Figure 9d has a seemingly smaller scratch near the center but is labeled anomaly. This lack of description
makes IAD datasets ambiguous because it is unclear which type of chip on the pill or which scratch on the
cashew is an anomaly. A description in language can clarify to what extent a characteristic such as these
scratches becomes classified as an anomaly.
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7 Conclusion

Our results highlight the robustness and flexibility of using LVLM for IAD with variations in images that can
occur in real applications. With a simple approach of one-shot prompting, the LVLM beats SOTA models
on the MvTec-AD dataset. The LVLM approach is more generalizable with the lowest drop in performance
with modified images when compared to SOTA models. However, the LVLM reaches limitations when the
anomaly size becomes small, as shown by the lower performance on the VisA dataset. We also demonstrate
that the nature of IAD should not rely only on images, since there may be wide variations of a normal image,
and missed variations in the training set may be classified as an anomaly. By combining a single reference
image and language, the LVLM approach is more flexible to changes in the images in practice. It can also be
more quickly deployed without obtaining a large training dataset and fine-tuning. Therefore, LVLMs show
promising potential as a faster and scalable approach to IAD.
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A Appendix

A.1 Details of running Qwen

To explore the performance of these models on IAD tasks, we evaluate the Qwen2-VL-72B-Instruct-AWQ
model on IAD datasets (Wang et al., 2024a). We run this model on two NVIDIA A100 GPUs with 40GB
memory with vLLM to speed up the processing time. We used minimum and maximum pixels 768*28*28 and
1024*28*28 respectively, max_num_seqs is 5, max_model_len is 7000, temperature is 0.3, and max_tokens
is 1024.
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A.2 Additional prompts

The additional prompts used for some image classes are shown in Table 6 and 7. Most image classes did not
need these prompts, because the single reference image was enough. However, some classes had variations
that were considered normal, such as different colors of toothbrush bristles, that were not conveyed by the
single reference image.

Image
Class

Specific Prompt for Original,
Padding, and Timestamp images

Specific Prompt for Rotating im-
ages

bottle NA NA
cable NA Ignore differences in the position of the

objects.
capsule Ignore differences on the "actavis" text

on the black surface.
Ignore differences on the "actavis" text
on the black surface.

carpet NA NA
grid Ignore differences in color tones. Ignore differences in color tones.
hazelnut NA NA
leather NA NA
metal nut NA NA
pill NA NA
screw NA NA
tile NA NA
toothbrush Ignore the color of the bristles for an

anomaly.
Ignore the color of the bristles for an
anomaly. Ignore the angle of the tooth-
brush head for an anomaly.

transistor NA NA
wood NA Ignore differences in vertical or horizon-

tal grain pattern for an anomaly.
zipper NA NA

Table 6: Specific prompts used for the MvTec-AD dataset. Most images did not require any specific prompt,
and used the generic prompt shown in Figure 3.

Image
Class

Specific Prompt for Original,
Padding, and Timestamp images

Specific Prompt for Rotating im-
ages

candle NA NA
capsules NA NA
cashew NA NA
chewinggum NA NA
fryum NA NA
macaroni1 NA NA
macaroni2 Ignore the orientation of the objects. Ignore the orientation of the objects.
pcb1 NA NA
pcb2 NA NA
pcb3 NA NA
pcb4 NA NA
pipe fryum NA NA

Table 7: Specific prompts used for the VisA dataset. Most images did not require any specific prompt, and
used the generic prompt shown in Figure 3.

A.3 Results from different thresholds
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Dataset Accuracy
Original MvTec-AD 57.8/83.1/79.3
Rotated MvTec-AD 56.1/77.1/76.5
Padded MvTec-AD 57.0/73.1/73.0

Timestamp MvTec-AD 58.6/75.3/72.8
Original VisA 89.6/87.1/81.3
Rotated VisA 57.2/56.6/56.6
Padded VisA 56.6/56.6/56.6

Timestamp VisA 76.8/74.2/70.6

Table 8: GLASS performance with max threshold/90th percentile threshold/80th percentile threshold.

Dataset Accuracy
Original MvTec-AD 83.3/82.8/78.9
Rotated MvTec-AD 67.2/74.6/74.6
Padded MvTec-AD 85.6/76.8/75.5

Timestamp MvTec-AD 82.7/85.0/81.1
Original VisA 90.8/83.3/76.6
Rotated VisA 56.6/56.6/56.6
Padded VisA 80.4/71.6/65.0

Timestamp VisA 90.7/82.9/76.0

Table 9: INP-Former performance with max threshold/90th percentile threshold/80th percentile threshold.
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