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Abstract

While large language models (LLMs) demonstrate impressive capabilities across
numerous applications, their robustness remains a critical concern. This paper
is motivated by a specific vulnerability: the order sensitivity of LLMs. This vul-
nerability manifests itself as the order bias observed when LLMs decide between
possible options (for example, a preference for the first option) and the tendency
of LLMs to provide different answers when options are reordered. The use cases
for this scenario extend beyond the classical case of multiple-choice question an-
swering to the use of LLMs for multidocument tasks and as automated evaluators
in AI pipelines. We introduce Set-LLM, a novel architectural adaptation for pre-
trained LLMs that enables the processing of mixed set-text inputs with permutation
invariance guarantees. The adaptations involve a new attention mask and new
positional encodings specifically designed for sets. We provide a theoretical proof
of invariance and demonstrate through experiments that Set-LLM can be trained
effectively, achieving comparable or improved performance and maintaining the
runtime of the original model, while altogether eliminating order sensitivity.

1 Introduction

The remarkable achievements of Large Language Models (LLMs) in recent years [1, 11, 16] have
propelled their adoption across a wide range of applications, including safety-critical and sensitive
domains such as medicine and finance [25, 54]. As such, the eye-catching drops in performance from
adversarial attacks can be all the more alarming [13, 38]. One such attack, shown in Figure 1, is as
trivial as permuting the choices in multiple-choice questions, which Zong et al. [57] demonstrate can
degrade an LLM’s performance from “good” to worse than random.

This sensitivity to input order becomes even more critical given the increasing reliance on LLMs to
compare and evaluate the output of other LLMs [8, 18, 45, 53]. Indeed, LLM-as-a-judge is widely
used as an evaluation metric [2, 53], and is also used to annotate LLM-generated output to create
new data sets and to decide between possible reasoning paths when solving complex problems
[2, 10, 12, 26]. This inherent order sensitivity directly undermines the reliability of these pipelines.

We propose Set-LLM1, a permutation-invariant LLM architecture that eliminates this problem entirely.
Set-LLM guarantees consistent responses by building permutation invariance directly into the model
architecture. Moreover, it achieves these guarantees while retaining or improving performance on
set-input tasks.

Set-LLM is based on the well-known observation that the attention mechanism underpinning all of
the recent LLM architectures is permutation invariant by construction. In fact, to force them to take
into account the order of the input tokens, almost all models use some form of positional encoding
[37, 39, 43]. However, Kazemnejad et al. [17] prove that even without positional encodings, the
causal attention mask used in decoder-only LLMs is sufficient to completely reconstruct the input
order. We therefore remove positional encoding and causal masks as the first steps towards Set-LLM.

1All code is available under open licenses at https://github.com/hits-mli/set-llm.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/hits-mli/set-llm


Figure 1: An example of the vulnerability of LLMs to choice permutations. The LLM’s response
changes simply due to a reordering of the answer options. (Example for illustrative purposes only.)
Set-LLM eliminates this vulnerability by building invariance directly into the model architecture.

Our complete approach comprises four steps: (1) Removing sequential position encoding, (2) Remov-
ing the causal mask, (3) Adding permutation-invariant set position encoding (SetPE), and (4) Adding
a permutation-invariant set attention mask (SetMask). These steps are illustrated in Figure 2. Together,
the first two steps result in a bag-of-words (BoW) model, i.e., a model with no information about the
token order, and the third and fourth steps add the order information we want back in.

We prove that Set-LLM is permutation-invariant, meaning it is guaranteed to give the exact same
output whatever input order is chosen. Moreover, we demonstrate that the Set-LLM adaptations can
be combined with different decoder-only LLMs and do not depend on specific architectures or model
versions, which can quickly become outdated. We run experiments with five different base models on
four multiple-choice datasets and two multi-document use cases to show the approach’s versatility.

We summarize the main contributions as follows:

• We propose Set-LLM, the first permutation-invariant decoder-only LLM.
• We prove Set-LLM guarantees robustness to permutations, eliminating order sensitivity.
• We demonstrate that Set-LLM can be trained effectively with different base LLMs, consis-

tently matching or outperforming the base models with random-order inputs, and signifi-
cantly outperforming them with adversarial-order inputs.

• This enables a more robust and efficient evaluation framework for multiple-choice question
answering and for the use of LLMs in multi-document applications.

2 Background: transformers and positional encoding

The Set-LLM adaptations involve changes to the attention mask and positional encoding of
transformer-based LLMs. We first describe these components before introducing Set-LLM.

2.1 Attention scores

Most state-of-the-art LLMs are based on the transformer architecture, made up of multiple attention
layers stacked on top of one another [43]. Given the d-dimensional representation X ∈ RN×d of N
tokens, raw (unnormalized) attention scores (or weights) are calculated as

Z = attn(X,X,WQ,WK , dK) = XWQ(XWK)T /
√
dK , (1)

where WQ,WK ∈ Rd×dk are the query and weight matrices, respectively, and dK is a scaling factor
often chosen to be the dimension of the keys.

In a causal transformer, attention scores are masked to ensure that tokens can only attend to preceding
tokens, before being normalized through a softmax layer. Masking is usually represented by a matrix
of 1’s and 0’s, M ∈ {0, 1}N×N , where Mij = 1 if token i can attend to token j. However, masking
can also be denoted by a directed graph GM = (V,E), where (j, i) ∈ E(GM ) ⇐⇒ Mij = 1, i.e.,
if information flows from token j to token i. So for a causal mask, (j, i) ∈ E(GM ) if and only if
j ≤ i. Let Ni = {j | (j, i) ∈ E(GM )} denote the neighborhood (or field of view) of the token i.
Then we can write the normalized attention weights as

Aij = softmaxGM (Zij) =
exp(Zij)∑

k∈Ni
exp(Zik)

=
exp(Zij)∑

kMikexp(Zik)
, (2)
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if (j, i) ∈ E(GM ), and Aij = 0 otherwise.

LLMs all use some kind of masking. Decoder-only architectures use a causal attention mask, whereas
encoder-decoder architectures, such as T5 [34], used bidirectional (or fully-connected) attention for
the prefix (or prompt) and causal attention for the output (or response). We refer to this as prefix
masking. Figure 2 illustrates the causal and prefix masks in both the matrix and graph forms.

Given normalized attention weights, the attention layer is completed by taking weighted averages of
the token neighborhoods:

X(t+1) = A(t)X(t)WV , (3)
where WV is the value matrix, and the superscript indicates the model layer.

2.2 Positional encoding

In addition to the causal mask, transformers use positional encoding to introduce positional infor-
mation. There are two common variants: absolute positional encodings and relative positional
encodings. Absolute positional encodings assign consecutive integers to the tokens, starting at 0.
These are usually embedded with an encoder layer and concatenated with the corresponding input
token embeddings. The neural network can use these embeddings to “understand” word order. The
attention scores depend on the token embeddings Xi, Xj and the absolute positions i and j:

Zij = attnabs(Xi, Xj ,WQ,WK , dK , i, j). (4)
The positional information is often incorporated into the token embeddings, so row i of X is
xi = ψ(qi, i) for some function ψ : T × N → Rd, and there is no further dependence on i, reducing
attnabs to Equation (1). We formulate our proofs using this notation.

On the other hand, relative positional encodings use the relative distance (i− j) of tokens in attention
calculations. The attention scores depend on the token embeddings Xi, Xj , and the relative distance:

Zij = attnrel(Xi, Xj ,WQ,WK , dK , i− j). (5)
In this sense, relative position encodings can be seen as a special case of absolute position encodings,
where a translation symmetry on positions is enforced, i.e. shifting the absolute positions by m does
not change the attention scores and therefore the attention layer outputs:

attn(Xi, Xj ,WQ,WK , dK , i− j) = attn(Xi, Xj ,WQ,WK , dK , (i+m)− (j +m)). (6)

3 Methods: Set-LLM

LLMs are used for a variety of tasks, and many of them have sets in the input instructions. This
includes answering multiple-choice questions and comparing LLM-generated outputs. For example,
[{“Which city is the capital of France:”}, {“Budapest”, “Paris”, “Heidelberg”, “Zurich”}].
More generally, if T denotes the token vocabulary, then a mixed set-text instruction can be written
as q = [q0, q1, . . . , qn], where each qi is a set of token sequences: qi = {s0, s1, . . . , sni

} and sj =
[τ0, τ1, . . . , τni,j

], with all τi ∈ T . If q = [q0] and |q0| = 1, then we are back to the regular case where
an instruction is a single sequence of tokens. In the above example, depending on the tokenization,
we might have q0 = {[“Which”, “ city”, . . .]} and q1 = {[“Buda”, “pest”] , [“Paris”] , . . .}.

For ease of notation, we use global indexing, where tokens in a set of choices are also numbered con-
secutively (in the default order in which the set is provided). Then the tokens of q are [t0, t1, . . . , tN ],
with ti ∈ T , where N is the total number of tokens in q. We use s(ti) to denote the token sequence
containing the token ti and q(ti) to denote the set containing s(ti).

Since LLMs take sequences as input, one would typically force an order onto sets within mixed input.
However, ideally, we would like an LLM, whose output does not depend on this order. Our proposed
approach, Set-LLM, achieves this in four steps: (1) Remove sequential position encoding, that is,
set all positions to 0 (also called NoPE – No Positional Encoding); (2) Remove the causal mask and
replace it with a prefix mask; (3) Add permutation-invariant set position encoding (SetPE); and (4)
Add permutation-invariant set attention masking (SetMask). The steps are illustrated in Figure 2.

The first two steps already guarantee set permutation invariance. In fact, they create a bag-of-words
(BoW) model that ignores the order of all input tokens, not just the order of elements within a set.
Clearly, BoW models have their limitations, since word order is critical to language. Steps (3) and (4)
are therefore crucial in reintroducing the order information within the different spans of text.
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Figure 2: Three types of attention masks and their corresponding directed graphs. The colored
squares on the left indicate attention scores that are not masked. For example, in a causal mask,
the 4th token attends to the first 4 tokens, and the remaining tokens are masked. The circles on the
right represent the tokens as nodes of an attention graph. Red, orange, and yellow tokens correspond
to the prompt, and blue tokens correspond to the response. Orange and yellow tokens corresponds
to elements of a set. Causal masks are standard in decoder-only LMs, whereas prefix masks are
used in bidirectional encoder-decoder LMs. SetMask is introduced in this work. Some edges are
grayed out and self-loops are omitted to improve clarity. In addition, the figure shows three types of
token positions, standard consecutive positions (PE), no positional encoding (NoPE), and set position
encoding (SetPE). These are indicated by the numbers inside the token nodes on the right.

Figure 3: An example of a multiple-choice question with set positional encoding (SetPE) positions.

3.1 Set position encoding (SetPE)

While BoW models inherently disregard the order of set elements, they also disregard the word order
within the text. To overcome this limitation, we introduce set position encoding (SetPE). For SetPE,
we generate SetPE positions and use them to calculate absolute or relative positional encodings.
The idea is to number tokens consecutively, but to number elements of a set from the same starting
position. An example is provided in Figure 3, along with pseudocode in Section B.

The example shows how SetPE positions align with standard absolute positions for “regular” text
(starting at 0). However, when a set of options appears (e.g., at position 6), all options within that set
are numbered consecutively from that starting position. This ensures that no order is forced upon the
options, but the token order within the options is clear. Positions resume with their absolute positions
after a set of options (continuing with 12 in the example). We denote SetPE positions by the function
ϕ (or pos in the pseudocode), i.e., the position of the ith token of query q is written ϕ(q)|i = pos[i].

Given the SetPE positions, we can calculate absolute or relative positional embeddings. When using
absolute positional encoding, the SetPE positions simply replace the absolute positions and are
encoded and concatenated with the input token embeddings. When using relative positional encoding,
the difference between SetPE positions is used to calculate relative positional embeddings rather than
the difference between absolute positions. All LLMs in this paper specifically use RoPE [39]. In this
case, the SetPE positions determine the angles of rotation for the token embeddings.
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Figure 4: A failure case for an LLM with set position encoding (SetPE) but without set attention
mask (SetMask). SetPE positions are shown for the tokens that are part of the set (of facts). Without
the SetMask, the model is unable to distinguish the two inputs. The model can not “know” which
position 8 token belongs to which position 10 token.

3.2 Set attention mask (SetMask)

When using prefix mask, SetPE is insufficient for distinguishing mixed inputs. Consider the example
of two inputs in Figure 4, which contain two sets of opposing facts. Clearly, one person prefers Paris,
while the other prefers London, but an LLM with prefix masking and SetPE will output the same next
token distributions. To see this, note that all tokens in the two cases receive the same SetPE positions,
although great and awful have been switched. Since the prefix mask is fully connected, the attention
layer outputs are then identical up to switching the two respective embeddings.

To address this shortcoming, we introduce set attention masking (SetMask). The idea is to use the
attention mask to distinguish between the two cases in Figure 4. SetMask is constructed by starting
with a prefix mask and removing all edges between tokens of different elements of the same set (that
is, setting the respective matrix entries to 0). An illustration in both matrix and graph forms can be
seen in Figure 2 (bottom). More precisely,

Mij =

{
0 if q(ti) = q(tj) and s(ti) ̸= s(tj)

1 else.
(7)

Since generation is autoregressive, response tokens can only attend to prompt tokens and preceding re-
sponse tokens. SetMask is therefore extended to the response in the same way as causal mask and pre-
fix mask. With SetMask, the tokens corresponding to great and awful in Figure 4 have different neigh-
borhoods in the two inputs, leading to different embeddings and different next token distributions.

3.3 Permutation invariance

We claim that by construction, an attention layer with SetPE and SetMask is set permutation equivari-
ant. Then, since all intermediate layers are set permutation equivariant and the final layer of an LLM
is permutation invariant, it follows that the whole network is set permutation invariant [4].

Theorem 1 (Set Permutation Equivariance). Let π be a permutation corresponding to permuting
elements of sets in a mixed set-text input, and let P be the corresponding permutation matrix. If
X(t+1) = A(t)X(t)WV is the output of an attention layer with SetPE, SetMask, and absolute
positional encoding, then X̃(t+1) = PX(t+1). In other words, attention with SetPE and SetMask is
equivariant to set permutations of mixed set-text input.

Theorem 2. Attention with SetPE and SetMask reduces to attention with PE and prefix masking
when the input is a single sequence of tokens (i.e., when the input does not contain sets).

Both proofs can be found in Section C.

4 Experimental setup

To evaluate Set-LLM, we test it with 5 models on 4 multiple-choice datasets. Multiple-choice ques-
tions are the ideal testbed for Set-LLM since there are widely-available, well-established benchmarks.
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Datasets. Models are evaluated on four popular multiple-choice reasoning benchmarks: PIQA
[3], ARC-Challenge [5], CommonsenseQA [40], and SIQA [36]. Each task consists of a series of
questions, each with multiple choices, where only one answer is correct. The number of choices per
question varies by the dataset. In the original setup, PIQA, ARC-Challenge, and CommonsenseQA
provide only the question in the prompt, and the different answer choices are run through the model
to test them as continuations. The choice with the highest log-likelihood is selected as the answer.

To adapt these datasets to our research setting, we modify the prompt so that the choices are provided
as part of the question, and the order of these choices can be permuted. Finally, in the case of SIQA,
although the original prompt includes the choices, we remove the numbering since this implicitly
assigns an order to the options and breaks the permutation invariance. All original and modified
prompts can be found in Section D.3. We use the standard train-evaluation splits for all benchmarks.

Additional pretraining data. The Set-LLM adaptations fundamentally change the input of the
model and the inner attention mechanism, so the adapted models require training to function in their
new setups. To help the models, we experiment with additional pretraining. We use a high-quality
subset (approximately 10k examples) of the cleaned UltraFeedback instruction-following dataset [7],
attained by following the data preprocessing steps in [21]. We use Ultra in the results to indicate
additional pretraining. More information on instruction-finetuning can be found in Section D.1.

Evaluation modes. The experiments involve two evaluation modes: (1) Random Order: For each
input question, we test all2 permutations of the answer choices, and calculate the average accuracy,
(2) Adversarial Order: For each input question, we test all2 permutations of the answer choices
and use a permutation where the LLM returns a wrong answer, if one exists. Accuracy is then the
proportion of questions for which the LLM remains correct across all possible permutations.

Base models. We evaluate the proposed method using several popular pretrained decoder-only
language models: Gemma 2B and 7B [42], Llama 3.2 1B, Llama 3.2 3B, and Llama 3.1 8B [11].3
We select these models to test different architectures and model sizes.

Baselines. We consider the following baselines: (1&2) A pretrained and a finetuned LM using the
original dataset prompts (Causal Mask+PE∗ Pretrained & Causal Mask+PE∗ Finetuned), (3&4) A
pretrained and a finetuned LM using the modified dataset prompts (Causal Mask+PE Pretrained &
Causal Mask+PE Finetuned), (5) A finetuned LM with additional pretraining on UltraFeedback [7]
using the modified dataset prompts (Causal Mask+PEUltra Finetuned).

An alternative to a permutation-invariant architecture is to run all possible permutations of the input
through the LLM and pick the option with the most “votes”.4 This approach, majority vote [57], can
make any model permutation-invariant. However, it also comes with an exponential factor runtime
overhead, since the model has to be run k! times, where k is the number of options. We include a
majority vote for baselines 3, 4, and 5 from above. These models use the modified prompt containing
the answer choices, which can be permuted to calculate the majority vote. Finally, we include another
permutation-invariant baseline: no options. Here, the questions are asked without providing the
answer options. We finetune a Causal Mask+PEUltra model on each dataset.

Training setup. We update the model weights using LoRA [15] applied to all linear layers of the
multilayer perceptron (MLP) and self-attention layers. Details about the hyperparameter settings can
be found in Section D.4. We finetune models separately on each benchmark. We train all models on a
single Nvidia H200 GPU with training times ranging between 1 and 4 hours for one model on one
benchmark. A comparison of baseline and Set-LLM runtimes is provided in Section E.7.

We train all our models with bfloat16 precision. However, we use full 32-bit floating point precision
for all evaluation runs. This proves crucial in ensuring permutation invariance in practice. Although
the Set-LLM architecture is provably permutation-invariant (Theorem 1), permuting the input tokens
can lead to a different order of the low-level computations resulting in minor inconsistencies, which
add up layer by layer. We do not observe any inconsistencies using 32-bit floating-point precision.

2For CommonsenseQA, only the first 24 (of a possible 5! = 120) permutations are tested.
3google/gemma-2b, google/gemma-7b, meta-llama/Llama-3.2-1B-Instruct, meta-llama/Llama-3.2-3B-

Instruct, meta-llama/Llama-3.1-8B-Instruct [46, Huggingface]
4In the event of a tie, the winner is chosen uniformly at random from the top-voted options.
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Table 1: Gemma 2B baselines on four multiple-choice datasets. All scores are accuracies (%).
∗Results using the original dataset prompts, which for PIQA, ARC, and CSQA only contain the
question. All other results use modified prompts with choices provided as part of the question.

Model Training Eval. Mode PIQA ARC CSQA SIQA
Rand. Adv. Rand. Adv. Rand. Adv.† Rand. Adv.

Random - 50.00 50.00 25.00 25.00 20.00 20.00 33.33 33.33

Causal Mask+PE∗ Pretrained Single run 76.77 37.80 51.76 37.26
Causal Mask+PE∗ Finetuned Single run 79.82 45.39 68.80 75.95
Causal Mask+PEUltra Finetuned No Options 79.87 43.26 69.37 56.55

Causal Mask+PE Pretrained Single run 57.45 30.96 36.03 7.68 34.92 16.46 39.29 12.74
Causal Mask+PE Pretrained Majority Vote 56.04 56.04 40.10 40.10 35.22 35.22 40.23 40.23
Causal Mask+PE Finetuned Single run 84.11 76.77 55.20 23.72 78.31 69.62 74.80 63.00
Causal Mask+PE Finetuned Majority Vote 84.06 84.06 58.87 58.87 78.38 78.38 76.05 76.05
Causal Mask+PEUltra Finetuned Single run 83.98 77.31 56.32 26.88 77.89 68.47 74.33 63.97
Causal Mask+PEUltra Finetuned Majority Vote 83.57 83.57 59.56 59.56 78.46 78.46 75.23 75.23
∗Results with original prompts UltraAdditional pretraining †Only first 24 (of 120) permutations tested

5 Experiments and results

5.1 Baselines and order sensitivity

We first run baseline models and measure the gap between random-order and adversarial-order
accuracies. We use Gemma 2B as the base LLM in the first experiments.

Table 1 shows the results for all Gemma 2B baseline models. Finetuning Gemma 2B on the datasets
(Causal Mask+PE Finetuned) gives competitive results in the random evaluation mode. However,
adversarial permutations lead to large accuracy drops, particularly for ARC-Challenge (55.20% to
23.72%). In contrast, the majority vote baselines do not have any drops in accuracy between the two
evaluation modes, confirming that they are permutation-invariant. Moreover, they also produce the
best random-order results. However, this comes at a high cost, as the models have to be run k! times
for each input. We use Causal Mask+PEUltra Finetuned as the baseline for further experiments.

5.2 Set-LLM step-by-step

As described in Section 3, there are four steps in turning a base LLM into a Set-LLM. To gain
a better understanding of the individual steps, we run experiments with the intermediate models:
Causal Mask+NoPE, Prefix Mask+NoPE, Prefix Mask+SetPE, and SetMask+SetPE (Set-LLM).
Finally, we include Prefix Mask+PE in our experiments, which is an encoder-decoder version of the
base LLM. Note that in addition to Set-LLM, Prefix Mask+NoPE and Prefix Mask+SetPE are also
set-permutation-invariant models and therefore perform exactly the same in the two modes.

Table 2 shows the results for all intermediate models. The set-permutation-invariant models do not
have any drops in accuracy in the adversarial setting, confirming our design choices and theoretical
results. Moreover, Set-LLM outperforms the strongest baseline on all four benchmarks in both modes,
indicating that the permutation-invariance guarantees do not come at a cost to accuracy. This is all
the more impressive considering these results come from a single run, rather than k! runs. Prefix
Mask+SetPE is not far off SetMask+SetPE, but SetMask is needed to outperform the majority vote
baseline and give the best results. The problem illustrated in Figure 4 might help to explain this gap.
Additional analyses of the majority vote versus Set-LLM output can be found in Section E.8.

5.3 Different base LLMs

In addition to Gemma 2B, we evaluate Set-LLM using Gemma 7B, Llama 3.2 1B, Llama 3.2 3B, and
Llama 3.1 8B as base models. Table 3 shows that all base models suffer from order sensitivity with
drops between the two evaluation modes ranging from 3.4% to 31.7%. In contrast, there are no drops
with Set-LLM, and Set-LLM outperforms the base model in 20/20 cases with adversarial ordering
and in 18/20 cases with random ordering. Moreover, with a single run, it outperforms majority vote
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Table 2: Set-LLM and all intermediate models going from the base model (Causal Mask+PE) to
Set-LLM (SetMask+SetPE). The 4 adaptation steps are described in Section 3. The base model is
Gemma 2B. All models are finetuned separately for each benchmark. All scores are accuracies (%).

Steps Model Eval. Mode # Runs PIQA ARC CSQA SIQA
Rand. Adv. Rand. Adv. Rand. Adv.† Rand. Adv.

- Causal Mask+PEUltra Majority Vote k! 83.57 83.57 59.56 59.56 78.46 78.46 75.23 75.23

- Causal Mask+PE Single run 1 84.11 76.77 55.20 23.72 78.31 69.62 74.80 63.00
1 Causal Mask+NoPE Single run 1 74.37 63.55 35.70 14.76 68.49 57.33 63.21 48.57
1,2 Prefix Mask+NoPE Single run 1 74.54 74.54 32.08 32.08 49.14 49.14 51.02 51.02
2 Prefix Mask+PE Single run 1 82.78 76.50 57.62 27.47 78.98 71.01 74.36 65.66
1-3 Prefix Mask+SetPE Single run 1 81.23 81.23 51.28 51.28 77.31 77.31 71.24 71.24
1-4 SetMask+SetPE Single run 1 84.33 84.33 57.76 57.76 79.93 79.93 75.38 75.38
1-4 SetMask+SetPEUltra Single run 1 85.80 85.80 65.02 65.02 80.18 80.18 76.15 76.15
UltraAdditional pretraining †Only first 24 (of 120) permutations tested k = number of (multiple) choices

Table 3: Set-LLM performance with different base LLMs. All models were pretrained on UltraFeed-
back [7] and then finetuned separately for each benchmark. All scores are accuracies (%).

LLM Model Eval. Mode PIQA ARC CSQA SIQA
Rand. Adv. Rand. Adv. Rand. Adv.† Rand. Adv.

Gemma 2B
Causal Mask+PEUltra Single run 83.98 77.31 56.32 26.88 77.89 68.47 74.33 63.97
Causal Mask+PEUltra Majority Vote 84.17 84.17 60.15 60.15 78.71 78.71 75.38 75.38
SetMask+SetPEUltra Single run 85.80 85.80 65.02 65.02 80.18 80.18 76.15 76.15

Gemma 7B
Causal Mask+PEUltra Single run 92.82 89.45 83.52 64.33 85.45 79.12 80.93 74.10
Causal Mask+PEUltra Majority Vote 92.66 92.66 85.58 85.58 85.75 85.75 81.10 81.10
SetMask+SetPEUltra Single run 92.98 92.98 83.45 83.45 84.93 84.93 81.12 81.12

Llama 3.2 1B
Causal Mask+PEUltra Single run 79.57 71.33 53.61 21.93 74.50 64.21 71.84 62.79
Causal Mask+PEUltra Majority Vote 79.49 79.49 57.17 57.17 75.51 75.51 71.85 71.85
SetMask+SetPEUltra Single run 81.66 81.66 59.30 59.30 76.66 76.66 72.47 72.47

Llama 3.2 3B
Causal Mask+PEUltra Single run 86.92 81.72 74.16 53.07 81.32 74.94 77.54 70.42
Causal Mask+PEUltra Majority Vote 86.83 86.83 76.37 76.37 81.57 81.57 77.99 77.99
SetMask+SetPEUltra Single run 88.41 88.41 75.85 75.85 83.29 83.29 80.30 80.30

Llama 3.1 8B
Causal Mask+PEUltra Single run 90.81 86.29 83.04 64.51 83.96 77.89 80.77 73.90
Causal Mask+PEUltra Majority Vote 90.75 90.75 85.32 85.32 84.11 84.11 81.12 81.12
SetMask+SetPEUltra Single run 91.62 91.62 84.13 84.13 85.34 85.34 81.47 81.47

UltraAdditional pretraining †Only first 24 (of 120) permutations tested

in 16/20 cases, without the exponential runtime overhead. Set-LLM outperforms the baselines across
all model architectures and sizes we tested. Additional results can be found in Sections E.3 and E.4.

5.4 Out-of-distribution performance

When using Set-LLM as an LLM evaluator, it is particularly important that the adaptations do not
hurt the performance on out-of-distribution data after finetuning on a small dataset. We measure
the out-of-distribution multiple-choice performance of the models by finetuning a model on each
benchmark independently and then evaluating on the three remaining benchmarks. We do this for
both the base model and Set-LLM and compare their performance with the pretrained base model.
Results are provided in Table 18 in the Appendix. Set-LLM is the best-performing model in 10/12
cases in both evaluation modes. We also measure the impact of the Set-LLM adaptations on standard
(non-set) language task performance. Please refer to Section E.6 for these experiments.

8



Table 4: Multi-document summarization with different base LLMs. All models were pretrained on
UltraFeed-back [7] and then finetuned on MultiNews [9]. All Rouge metrics are F1 scores.

LLM Model Compression Rouge-1 Rouge-2 Rouge-1∗ Rouge-2∗

Target Summaries 6.09 0.27 0.14 - -

Gemma 2B Causal Mask+PEUltra 15.84 0.17 0.12 0.33 0.11
SetMask+SetPEUltra 7.23 0.27 0.20 0.47 0.19

Llama 3.2 1B Causal Mask+PEUltra 20.76 0.13 0.08 0.33 0.10
SetMask+SetPEUltra 7.31 0.27 0.18 0.48 0.18

Llama 3.2 3B Causal Mask+PEUltra 9.77 0.23 0.15 0.43 0.15
SetMask+SetPEUltra 7.23 0.27 0.18 0.49 0.20

∗Rouge F1 scores between the target summaries and the model summaries.

6 Potential use cases

We include additional proof-of-concept experiments to demonstrate the benefit of Set-LLM in three
different LLM applications: multi-document summarization, multi-document question answering,
and LLM-as-a-judge (Section E.10). We see promising results in all three use cases.

6.1 Multi-document summarization

In multi-document summarization the LLM is presented with a set of documents and tasked with
producing a collective summary. We perform our evaluation on the MultiNews dataset [9]. Details
about the experimental setup can be found in Section D.5.

We report standard summarization metrics, namely n-gram Rouge F1 scores between the model
summaries and the input documents and compression rate – the length of the original text divided
by the length of the summary. We also include Rouge F1 scores between the target summaries and
the model summaries – Rouge-1∗ and Rouge-2∗. The results are summarized in Table 4. Set-LLM
outperforms the finetuned baseline with all three base models in all metrics. Note that Set-LLM
produces longer summaries, which leads to lower compression rates.

6.2 Multi-document question answering
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LLama 3.2 1B, Causal Mask+PEPretrain

LLama 3.2 1B, Causal Mask+PEUltra

LLama 3.2 1B, SetMask+SetPEUltra

GPT-3.5-Turbo† [27]

Figure 5: Varying the position of the relevant docu-
ment (containing the answer) within the pretrained
model’s input results in a U-shaped performance
curve. However, Set-LLM (or finetuning) produces
flat performance curves with a higher accuracy.
†GPT-3.5-Turbo was not finetuned on the dataset.

Motivated by [27], we evaluate Set-LLM in an-
swering multi-document questions. The task
consists of questions with 20 supporting docu-
ments, where only one document contains the
information required for the answer. The authors
show that many LLMs (including commercial
models) produce a U-shaped performance curve
with respect to the location of the answer. If
the relevant document is listed first or last, then
the LLM correctly answers the question with a
higher probability. In contrast, Set-LLM is guar-
anteed to have a flat curve, since reordering the
documents does not affect the output. We test
five different locations (1st, 5th, 10th, 15th, and
last) for the placement of the answer document.
We provide results for two LLama-based models
and compare these with GPT-3.5-Turbo scores
from [27]. Details about the experimental setup
can be found in Section D.6.

As expected, the results in Figure 5 demonstrate that Set-LLM is not sensitive to the location of the
relevant document. Furthermore, Set-LLM outperforms the baseline model, even after finetuning.
The pretrained base model produces a U-shaped curve in line with previous work [27], but the
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finetuned version produces a mostly flat curve. For larger models, the advantage of Set-LLM over the
finetuned base model seems to diminish. For results with Llama 3.2 3B, refer to Section E.9.

7 Related work

To the best of our knowledge, this is the first paper to specifically introduce a permutation-invariant
architecture for decoder-only language models. Concurrently to our work, Kinder et al. [19] propose
Set-Encoding to address positional bias in LLMs. Similar to our work they propose to modify the
positional encoding and attention mask for set-valued input.

Permuting multiple-choice questions. This work was motivated by the observations that you can
“fool your (vision and) language model with embarrassingly simple permutations” [57]. The authors
quantify the effect of adversarial permutations on (V)LLMs and multiple-choice benchmarks. They
also analyze the effectiveness of majority vote, which we include as a baseline in our experiments.
Prior to this, Liu et al. [29] suggested rotating the choices of multiple-choice questions to evaluate
the robustness of (Multimodal) Language Models. Taking a majority vote over the rotations could be
used as an alternative to majority vote, thereby only carrying a linear-factor rather than an exponential-
factor runtime overhead, but it is not guaranteed to give the same answer for all permutations.

LLM evaluators. LLM evaluators (or judges) were introduced recently [53, 55], but have already
been integrated in many LLM pipelines, including for evaluation, retrieval and reasoning [2, 10, 12,
26]. The order bias of LLM evaluators was already observed by Zheng et al. [53], and methods
involving the aggregation of multiple runs and specialized prompting have been proposed to mitigate
this problem [18, 29, 41, 56, 57]. However, this is the first work to eliminate order bias directly from
the model architecture without impacting accuracy or runtime.

Graphs and large language models. A set can be seen as an empty (or fully-connected) graph, and
indeed one of the key features of graphs is also permutation-invariance. As a result, several works that
combine graphs and LLMs are also relevant here [14, 48, 49]. Most closely related to this work are the
papers of Liu et al. [28] and Plenz and Frank [33], who adapt an encoder-decoder and an encoder-only
language model, respectively, to take mixed graph-text data as input. Both approaches alter the
attention mechanism and the positional encoding to incorporate graph connectivity information into
the embeddings.

Invariant neural networks. While invariant networks have existed for some time, Bronstein et al.
[4] recently unified them under a common geometric framework. For example, CNNs [23, 52] are
shift-invariant architectures for images, Deep Sets [50] was the first permutation-invariant architecture
for sets, and GNNs [20, 44, 47] are permutation-invariant architectures for graphs. In this work, we
combine the permutation invariance of these architectures with the power of large language models.

8 Conclusion

To the best of our knowledge, this paper introduces the first permutation-invariant decoder-only LLM,
Set-LLM. We formally prove that Set-LLM is permutation-invariant and show how robust it is to
permutations in practice. The models are based on pretrained LLMs, can be finetuned efficiently with
low-rank adapters, and incur no additional runtime costs. We test Set-LLM on four multiple-choice
datasets, where it outperforms all baselines by significant margins in either accuracy or runtime.
Moreover, we show promising results using Set-LLM in two important applications: multi-document
summarization and multi-document question answering.

With the growing importance of multi-document applications, Set-LLM has the potential for wide
impact. We provide promising initial experiments for natural use cases, and we hope that future work
can explore these directions in detail.

Limitations. While we propose a general purpose set-permutation-invariant LLM, the approach
requires explicit knowledge of which parts of the input are set-valued, which may not be readily
available in some applications. There is no obvious way to combine Set Mask with sparse attention
mechanisms, e.g. sliding window attention. This would be an interesting direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical contributions (Theorems 1 and 2) are accompanied by proofs
in Section C and the other claims are supported by the experiments and results in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a separate paragraph describing the limitations in the conclusion
(Section 8).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Full proofs of (Theorems 1 and 2) are provided in Section C. Assumptions are
included in the theorem statements.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code will be made available in a public repository upon publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made available in a public repository upon publication. We
include hyperparameter values in Section D.4 of the supplementary material and will also
include these along with scripts to run specific experiments in the code release.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The code will be made available in a public repository upon publication. We
include hyperparameter values in Section D.4 of the supplementary material and will also
include these along with scripts to run specific experiments in the code release.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.
Instead, focus was placed on including additional base model architectures. Considering
the consistency of results across different base model architectures and different benchmark
datasets, we believe the paper’s claims are strongly supported.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section E.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read and acknowledged the NeurIPS Code of Ethics. The
research conducted in the paper conforms, in every respect, with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: There is a paragraph in the conclusion (Section 8) dedicated to potential
impacts. We have also included a section dedicated to impact in the supplementary materials
to give further details about societal impacts (Section A).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We not do release any new pretrained language models. All of the models and
datasets used in this paper are already freely and readily available in the public domain.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of these details are available in Section D of the supplementary materials
or mentioned in the experimental setup section of the main paper (Section 4).
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All model details, training setups, and hyperparameter values are included in
the paper. The code will also be made publicly available upon publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Impact

We do not foresee any direct negative impacts from this work. On the contrary, we believe this
work, as with any other work on model robustness, can contribute positively to LLM applications,
especially in high-risk scenarios. Moreover, this work can be used to develop more robust evaluation
approaches, which can help move the wider field forward.

B SetPE algorithm

Algorithm 1 Python-like pseudocode for calculating Set Position Encoding (SetPE) positions.

# input - mixed list of token ids and sets of token id lists
# vocab - token vocabulary

pos = [ ] # list of SetPE positions
ind = 0 # running position index
for q in input: # iterate through elements of the input

if q in vocab: # if element q is a token
pos.append(ind)
ind += 1

else: # if element q is a set of token lists
for s in q: # iterate through set of token lists

# append consecutive positions for each token in s:
pos = pos + list(range(ind, ind+len(s)))

total_tokens_q = sum([len(s) for s in q])
ind += total_tokens_q

return pos

C Proofs

Theorem 1 (Set Permutation Equivariance). Let π be a permutation corresponding to permuting
elements of sets in a mixed set-text input, and let P be the corresponding permutation matrix. If
X(t+1) = A(t)X(t)WV is the output of an attention layer with SetPE, SetMask, and absolute
positional encoding, then X̃(t+1) = PX(t+1). In other words, attention with SetPE and SetMask is
equivariant to set permutations of mixed set-text input.

Proof of Theorem 1.

Claim 2.1. X̃ = PX

First note, that by the definition of SetPE, SetPE positions will be the same before and after the set
permutation is applied to the input. This is because all token sequences remain in the same set after
a set permutation, and all token sequences within a set are numbered consecutively from the same
starting index. If ˜ denotes variables after permuting the input, then x̃π(i) = ψ(ti, pos[i]) = xi.
Tokens that are not part of a set are not moved by a set permutation, π(i) = i for these tokens and
again x̃π(i) = ψ(ti, pos[i]) = xi. Therefore, X̃ = PX .

Claim 2.2. Z̃ = PZPT

By Claim 2.1, we have

Z̃ = attn(X̃, X̃,WQ,WK , dK)

= attn(PX,PX,WQ,WK , dK)

= PXWQ(PXWK)T /
√
dK

= PXWQW
T
KX

TPT /
√
dK

= P
(
XWQW

T
KX

T /
√
dK

)
PT = PZPT .
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Claim 2.3. M̃ = PMPT

Though this is not the case for general permutations of the tokens, we show that this is the case when
π is restricted to permuting elements within the sets qi.

The claim is equivalent to showing that M̃π(i)π(j) = Mij for all i, j. This can be seen from the
construction of SetMask and the definition of π. But to be more precise, we split the claim into
multiple cases:

Recall that s(ti) denotes the token sequence containing the token ti and q(ti) denotes the set
containing s(ti).

Case 1: q(ti) ̸= q(tj). q(ti) ̸= q(tj) ⇐⇒ q(tπ(i)) ̸= q(tπ(j)) since π does not move tokens
between sets. Then by definition of SetMask, M̃π(i)π(j) = 1 =Mij .

Case 2: q(ti) = q(tj), s(ti) = s(tj). Since π permutes whole sequences within a set together, all
tokens within a sequence remain in the same sequence after permutation. Therefore, M̃π(i)π(j) =
1 =Mij .

Case 3: q(ti) = q(tj), s(ti) ̸= s(tj). Again, since π permutes whole sequences within a set
together, tokens in different sequences of the same set remain in different sequences of the same set
after permutation. Therefore, M̃π(i)π(j) = 0 =Mij .

Claim 2.4. Ã = PAPT

Again, this claim is equivalent to showing that Ãπ(i)π(j) = Aij for all i, j. Putting the previous
claims together, we have:

Case 1: Mij = 0. By Claim 2.3, if Mij = 0, then M̃π(i)π(j) = 0 and Aij = Ãπ(i)π(j) = 0.

Case 2: Mij = 1. By Claim 2.3, if Mij = 1, then M̃π(i)π(j) = 1, and we have

Ãπ(i)π(j) =
exp(Z̃π(i)π(j))∑

k M̃π(i)π(k)exp(Z̃π(i)π(k))
(8)

(by Claims 2.2 and 2.3)
=

exp(Zij)∑
kMikexp(Zik)

= Aij (9)

Finally, putting all the claims together, we have:

X̃(t+1) = Ã(t)X̃(t)WV (10)
(by Claims 2.1 and 2.4)

= PA(t)PTPX(t)WV (11)

= PA(t)X(t)WV (12)

= PX(t+1), (13)

completing the proof that the attention layer is equivariant.

Theorem 2. Attention with SetPE and SetMask reduces to attention with PE and prefix masking
when the input is a single sequence of tokens (i.e., when the input does not contain sets).

Proof of Theorem 2. If the input is a single sequence of tokens, we have q = [q0], q0 = [s0], and
s0 = [τ0, τ0, . . . , τn0,0

]. In this case, Algorithm 1 assigns consecutive positions for each token in the
input, that is, [0, 1, 2, . . . , n0,0]. This is identical to absolute positions (PE).

Similarly, if there are no sets in the input, then SetMask reduces to a fully connected attention mask
on the input, i.e., to the prefix mask.
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D Additional experimental details

D.1 Instruction finetuning

Finally, we introduce Instruction Finetuning as the proposed method relies on this training approach.
Many LLMs use some form of instruction tuning during the (pre-)training process [32, 51]. It involves
a dataset D of instruction-answer (or prompt-response) pairs D = {(q, a)}Ni=1. The training objective
is to maximize the probability of autoregressively generating a given q, i.e., to maximize

p(a | q) =
∏

i=1,...,|a|

p(ai | q, a1, . . . , ai−1). (14)

We use instruction tuning for training all our models to align to the new position encoding and
attention masking setups. Since all probabilities in the product are conditional on q, q can be encoded
without a causal mask, i.e., tokens in q could attend to earlier tokens in q. This makes instruction
tuning ideal for our scenario.

D.2 Dataset details

We get all the datasets from HuggingFace Datasets [24]. Table 5 provides metadata and Table 6
provides licensing details for each dataset.

Table 5: HuggingFace Datasets path, number of train/evaluation samples, number of choices per
question, and number of answer choice permutations for each dataset in this paper.

Dataset Path # Train. Samples # Eval. Samples k k!

UltraFeedback [7, 21] openbmb/UltraFeedback - - -
PIQA [3] piqa 16113 3084 2 2
ARC [5] allenai/ai2_arc 1119 1172 4 24
CSQA [40] tau/commonsense_qa 9741 1140 5 120
SIQA [36] social_i_qa 33410 1954 3 6
MultiNews [9] alexfabbri/multi_news 44972 5620 2-10 -
Natural QA [22, 27] - 7965 2655 20 2.4e+18

Table 6: Dataset Licenses.

Dataset License

UltraFeedback [7, 21] MIT license
PIQA [3] unknown
ARC [5] CC-BY-SA 4.0
CSQA [40] MIT license
SIQA [36] unknown
MultiNews [9] other
Natural QA [22, 27] CC-BY-SA 3.0
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D.3 Prompt templates

Original templates. We provide all the original templates used to create prompt-response pairs for
each dataset, for both training and evaluation.

Table 7: Original prompt templates for each dataset.

Dataset Original Prompt Response

UltraFeedback [7] Question: {instruction}

Answer:

{answer}<EOS>

PIQA [3] Question: {question}

Answer:

{answer}<EOS>

ARC [5] Question: {question}

Answer:

{answer}<EOS>

CSQA [40] Question: {question}

Answer:

{answer}<EOS>

SIQA [36] Question: Given the context, answer
correctly the question.
Context: {context}
Question: {question}

Choices:
(0) {choice0}
(1) {choice1}
(2) {choice2}

Answer:

({answer_index})<EOS>
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Modified templates. We provide all the modified templates used to create prompt-response pairs
for each dataset, for both training and evaluation.

Table 9: Modified prompt templates for each dataset.

Dataset Modified Prompt Response

UltraFeedback [7] Question: {instruction}

Answer:

{answer}<EOS>

PIQA [3] Question: {question}

Choices:
{choice0}
{choice1}

Answer:

{answer}<EOS>

ARC [5] Question: {question}

Choices:
{choice0}
{choice1}
{choice2}
{choice3}

Answer:

{answer}<EOS>

CSQA [40] Question: {question}

Choices:
{choice0}
{choice1}
{choice2}
{choice3}
{choice4}

Answer:

{answer}<EOS>

SIQA [36] Question: Given the context, answer
correctly the question.
Context: {context}
Question: {question}

Choices:
{choice0}
{choice1}
{choice2}

Answer:

{answer}<EOS>
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D.4 Hyperparameter settings

Table 11: Hyperparameters shared across models and datasets.

Hyperparameter Value

GPUs 1
Optimizer AdamW
LR Scheduler Linear
Weight Decay 0.0
Batch Size 10
Accumulation Steps 10
Warmup Steps 300 (or 10% of update steps)
Update Steps 3000
Random Seed 42

We tune the learning rate for each model and dataset using a logarithmic scale: [1e-4, 3e-4, 1e-3,
3e-3]. The final (best) learning rates are presented in Table 12.

Table 12: Learning rates for all final baseline and Set-LLM models on all datasets.

LLM Model Ultra. PIQA ARC CSQA SIQA MultiNews Natural QA

Gemma 2B Causal Mask+PEUltra 3e-4 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
SetMask+SetPEUltra 3e-4 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Gemma 7B Causal Mask+PEUltra 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
SetMask+SetPEUltra 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Llama 3.2 1B Causal Mask+PEUltra 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
SetMask+SetPEUltra 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Llama 3.2 3B Causal Mask+PEUltra 3e-4 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
SetMask+SetPEUltra 3e-4 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Llama 3.1 8B Causal Mask+PEUltra 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
SetMask+SetPEUltra 1e-3 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Table 13: We use LoRA [15] to train all our models. We use the HuggingFace PEFT library [30]
with default hyperparameter values, unless listed.

Hyperparameter Value

Rank 8
Alpha 1
Target Modules All linear layers of MLP and Self-Attention

D.5 Multi-document summarization

We perform our evaluation on the MultiNews dataset [9]. We filter out inputs of length greater
than 20000 characters to satisfy our memory constraints. We use the standard train-validation-test
split, but subsample 1000 test samples. We compare the original model architectures with Set-LLM,
performing a single model run in both cases (no adversarial setting). We use the best-performing
hyperparameters from the multiple-choice experiments for finetuning.

We report standard summarization metrics, namely Rouge F1 scores between the model summaries
and the input documents and compression rate (the length of the original text divided by the length
of the summary). We also include Rouge F1 scores between the target summaries and the model
summaries (R1*, R2*, R3*).
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D.6 Multi-document question answering

We evaluate Set-LLM in multi-document question answering. We use the dataset from [27] based on
the natural questions benchmark [22]. The task consists of questions with 20 supporting documents,
where only one document contains the information required for the answer. We use the original
train-validation-test split from [22]: 60% training, 10% validation, and 30% test data. We replicate
the training data five times and shuffle the documents at random for each input. This is done to avoid
overfitting the model to a specific formulation of each training question. We use the best-performing
hyperparameters from the multiple-choice experiments for finetuning. We have five different test
sets with the answer document placed in five different locations (1st, 5th, 10th, 15th, and last). We
provide results for two LLama-based models. All scores denote the percentage accuracy.

E Additional experimental results

E.1 Additional pretraining

To help the models adapt to the architectural changes, we experiment with additional pretraining.
We use a high-quality subset (approximately 10k examples) of the cleaned UltraFeedback dataset
[7], attained by following the data preprocessing steps in [21]. This additional pretraining aims to
help the new, adapted model architectures better adapt to the architectural changes. We therefore
hypothesize that adapted models will benefit more from this data than the unaltered baseline models.

We present complete results with and without additional pretraining in Table 14. Consistent with
our hypothesis, the additional data significantly improves the performance of Prefix Mask+PE,
Prefix Mask+SetPE, and SetMask+SetPE, especially on ARC-Challenge, but does not improve the
performance of the finetuned Causal Mask+PE. However, the pretrained Causal Mask+PE results
improve the most, suggesting that the pretrained base model is not particularly well-suited to the
benchmark task setups.

Table 14: Results of (pre-)finetuning Gemma 2B on UltraFeedback with the respective attention mask
and positional encoding. The ∗ indicates results using the original dataset prompts, which for the
PIQA, ARC, and CSQA benchmark only contain the question. All other results use modified prompts,
where the choices are provided with the question. †The CSQA dataset has exactly 5 choices for each
question, but we run the adversarial search for only 24 permutations. All scores are accuracies (%).

Model Training PIQA ARC CSQA SIQA
Std. Adv. Std. Adv. Std. Adv.† Std. Adv.

Causal Mask+PE∗ Pretrained 76.77 37.80 51.76 37.26
Causal Mask+PE∗ Finetuned 79.82 45.39 68.80 75.95

Causal Mask+PE Pretrained 57.45 30.96 36.03 7.68 34.92 16.46 39.29 12.74
Causal Mask+PEUltra Pretrained 68.31 50.49 43.18 14.93 45.21 27.35 46.72 16.84
Causal Mask+PE Finetuned 84.11 76.77 55.20 23.72 78.31 69.62 74.80 63.00
Causal Mask+PEUltra Finetuned 83.98 77.31 56.32 26.88 77.89 68.47 74.33 63.97
Prefix Mask+PE Finetuned 82.78 76.50 57.62 27.47 78.98 71.01 74.36 65.66
Prefix Mask+PEUltra Finetuned 84.93 79.11 61.26 34.47 79.28 70.19 75.18 67.45
Prefix Mask+SetPE Finetuned 81.23 81.23 51.28 51.28 77.31 77.31 71.24 71.24
Prefix Mask+SetPEUltra Finetuned 81.88 81.88 56.48 56.48 77.97 77.97 73.54 73.54
SetMask+SetPE Finetuned 84.33 84.33 57.76 57.76 79.93 79.93 75.38 75.38
SetMask+SetPEUltra Finetuned 85.80 85.80 65.02 65.02 80.18 80.18 76.15 76.15
∗Results with original prompts UltraAdditional pretraining †Only first 24 (of 120) permutations tested
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E.2 Majority vote

Additional results with majority vote are presented in Table 15.

Table 15: Majority Vote results with Gemma 2B as the base model. The ∗ indicates results using
the original dataset prompts, which for the PIQA, ARC, and CSQA benchmark only contain the
question. All other results use modified prompts, where the choices are provided with the question.
†The CSQA dataset has exactly 5 choices for each question, but we run the adversarial search for
only 24 permutations. All scores are accuracies (%).

Model Training Eval. Mode PIQA ARC CSQA SIQA
Std. Adv. Std. Adv. Std. Adv.† Std. Adv.

Causal Mask+PE∗ Pretrained Single run 76.77 37.80 51.76 37.26
Causal Mask+PE∗ Finetuned Single run 79.82 45.39 68.80 75.95

Causal Mask+PEUltra Pretrained Single run 68.31 50.49 43.18 14.93 45.21 27.35 46.72 16.84
Causal Mask+PEUltra Pretrained Majority Vote 68.12 68.12 46.16 46.16 45.95 45.95 48.62 48.62
Causal Mask+PEUltra Finetuned Single run 83.98 77.31 56.32 26.88 77.89 68.47 74.33 63.97
Causal Mask+PEUltra Finetuned Majority Vote 83.57 83.57 59.56 59.56 78.46 78.46 75.23 75.23
Causal Mask+NoPEUltra Finetuned Single run 75.03 64.53 37.01 14.68 68.87 57.41 65.57 51.79
Causal Mask+NoPEUltra Finetuned Majority Vote 75.35 75.35 38.82 38.82 69.45 69.45 66.63 66.63
Prefix Mask+PEUltra Finetuned Single run 84.93 79.11 61.26 34.47 79.28 70.19 75.18 67.45
Prefix Mask+PEUltra Finetuned Majority Vote 85.36 85.36 64.08 64.08 79.77 79.77 75.84 75.84
SetMask+SetPEUltra Finetuned Single run 85.80 85.80 65.02 65.02 80.18 80.18 76.15 76.15
∗Results with original prompts UltraAdditional pretraining †Only first 24 (of 120) permutations tested
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E.3 Different base LLMs

Additional results with different base LLMs are presented in Table 16. Table 17 provides the flip
probabilities for the Causal Mask+PEUltra and SetMask+SetPEUltra models. The flip probability is a
measure of how inconsistent the model predictions are between different permutations. Please, see
Section E.4 for more details.

Table 16: Performance with different base LLMs. All results (except Pretrained∗) are (pre-)finetuned
on the ultrafeedback dataset. †The CSQA dataset has exactly 5 choices for each question, but we run
the adversarial search for only 24 permutations. All scores are accuracies (%).

LLM Model Training PIQA ARC CSQA SIQA
Rand. Adv. Rand. Adv. Rand. Adv.† Rand. Adv.

Gemma 2B

Causal Mask+PE∗ Pretrained 76.77 37.80 51.76 37.26
Causal Mask+PEUltra Pretrained 68.31 50.49 43.18 14.93 45.21 27.35 46.72 16.84
Causal Mask+PEUltra Finetuned 83.98 77.31 56.32 26.88 77.89 68.47 74.33 63.97

+ Majority Vote Finetuned 84.17 84.17 60.15 60.15 78.71 78.71 75.38 75.38
+ No Options Finetuned 79.87 79.87 43.26 43.26 69.37 69.37 56.55 56.55

SetMask+SetPEUltra Finetuned 85.80 85.80 65.02 65.02 80.18 80.18 76.15 76.15

Gemma 7B

Causal Mask+PE∗ Pretrained 80.41 43.77 62.16 65.71
Causal Mask+PEUltra Pretrained 86.21 78.67 79.68 56.23 69.96 47.17 70.34 49.69
Causal Mask+PEUltra Finetuned 92.82 89.45 83.52 64.33 85.45 79.12 80.93 74.10

+ Majority Vote Finetuned 92.66 92.66 85.58 85.58 85.75 85.75 81.10 81.10
+ No Options Finetuned 83.51 83.51 52.47 52.47 73.79 73.79 59.47 59.47

SetMask+SetPEUltra Finetuned 92.98 92.98 83.45 83.45 84.93 84.93 81.12 81.12

Llama 3.2 1B

Causal Mask+PE∗ Pretrained 74.32 35.41 55.77 51.59
Causal Mask+PEUltra Pretrained 63.03 40.48 40.12 9.13 45.29 21.21 49.27 21.39
Causal Mask+PEUltra Finetuned 79.57 71.33 53.61 21.93 74.50 64.21 71.84 62.79

+ Majority Vote Finetuned 79.49 79.49 57.17 57.17 75.51 75.51 71.85 71.85
+ No Options Finetuned 77.42 77.42 39.33 39.33 65.03 65.03 53.63 53.63

SetMask+SetPEUltra Finetuned 81.66 81.66 59.30 59.30 76.66 76.66 72.47 72.47

Llama 3.2 3B

Causal Mask+PE∗ Pretrained 76.33 43.94 61.92 65.97
Causal Mask+PEUltra Pretrained 76.41 64.09 68.83 39.93 66.85 44.31 66.56 47.80
Causal Mask+PEUltra Finetuned 86.92 81.72 74.16 53.07 81.32 74.94 77.54 70.42

+ Majority Vote Finetuned 86.83 86.83 76.37 76.37 81.57 81.57 77.99 77.99
+ No Options Finetuned 79.54 79.54 45.31 45.31 71.34 71.34 56.55 56.55

SetMask+SetPEUltra Finetuned 88.41 88.41 75.85 75.85 83.29 83.29 80.30 80.30

Llama 3.1 8B

Causal Mask+PE∗ Pretrained 80.09 53.41 66.50 69.34
Causal Mask+PEUltra Pretrained 83.30 72.36 78.75 56.66 72.67 53.81 70.91 54.96
Causal Mask+PEUltra Finetuned 90.81 86.29 83.04 64.51 83.96 77.89 80.77 73.90

+ Majority Vote Finetuned 90.75 90.75 85.32 85.32 84.11 84.11 81.12 81.12
+ No Options Finetuned 82.43 82.43 46.33 46.33 72.97 72.97 58.60 58.60

SetMask+SetPEUltra Finetuned 91.62 91.62 84.13 84.13 85.34 85.34 81.47 81.47
∗Results with original prompts UltraAdditional pretraining †Only first 24 (of 120) permutations tested
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Table 17: We use flip probabilities to measure how consistent model predictions are across permuta-
tions. They measure how often a model prediction deviates from its majority vote for a sample. All
models are (pre-)finetuned on the ultrafeedback dataset. †The CSQA dataset has exactly 5 choices for
each question, but we calculate the majority vote and the flip probabilities using only 24 permutations.
All probabilities are given as percentages (%).

LLM Model Training PIQA ARC CSQA† SIQA

Gemma 2B Causal Mask+PEUltra Finetuned 6.66 21.45 5.40 6.35
SetMask+SetPEUltra Finetuned 0.00 0.00 0.00 0.00

Gemma 7B Causal Mask+PEUltra Finetuned 3.37 7.92 2.94 4.32
SetMask+SetPEUltra Finetuned 0.00 0.00 0.00 0.00

Llama 3.2 1B Causal Mask+PEUltra Finetuned 8.24 23.37 5.72 5.70
SetMask+SetPEUltra Finetuned 0.00 0.00 0.00 0.00

Llama 3.2 3B Causal Mask+PEUltra Finetuned 5.20 11.76 3.32 4.39
SetMask+SetPEUltra Finetuned 0.00 0.00 0.00 0.00

Llama 3.1 8B Causal Mask+PEUltra Finetuned 4.52 7.87 3.23 4.63
SetMask+SetPEUltra Finetuned 0.00 0.00 0.00 0.00

E.4 Flip Probabilities

The flip probability is the fraction of times that the predictions differ from the majority vote.
Specifically, we run all possible permutations of the input through the LLM and pick the option with
the most “votes” as the majority vote. We then count how many of the votes disagree with the majority
vote and take the average over all samples. One can see this as a measure of how inconsistent the
model predictions are across permutations. Unlike the adversarial setting, where a single permutation
of k! can lead to an incorrect outcome, the flip probability is less dependent on the value of k.

Table 17 shows the flip probabilities for the finetuned base models and their Set-LLM counterparts
from the main table of results, Tables 3 and 16. The flip probability for Set-LLM is guaranteed to be
0%, and this is confirmed by the empirical results. In contrast, the flip probabilities for the finetuned
original models are between 3 and 23%, highlighting that order bias impacts final performance. The
flip probabilities are quite consistent across the PIQA, CSQA, and SIQA, although the number of
permutations varies between 2 and 24, but the flip probabilities on ARC are significantly higher.
Generally, smaller models have higher flip probabilities.

We thank the anonymous reviewer for their suggestion to include flip probabilities as an additional
metric.
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E.5 Out-of-distribution performance

Comparison of the out-of-distribution performance finetuned Set-LLM and baseline models. The
base model is Gemma 2B.

Table 18: Results on out-of-distribution datasets using Gemma 2B as the base model. In-distribution
results are grayed out. All scores are accuracies (%).

Model Finetune PIQA ARC CSQA SIQA
Dataset Std. Adv. Std. Adv. Std. Adv.† Std. Adv.

Pretrained - 57.45 30.96 36.03 7.68 34.92 16.46 39.29 12.74
PretrainedUltra - 68.31 50.49 43.18 14.93 45.21 27.35 46.72 16.84

Causal Mask+PEUltra 83.98 77.31 54.45 26.79 59.68 41.52 56.79 35.11
+ Majority Vote PIQA 83.57 83.57 56.74 56.74 61.51 61.51 58.34 58.34

SetMask+SetPEUltra 85.80 85.80 58.02 58.02 63.47 63.47 56.86 56.86

Causal Mask+PEUltra 67.27 47.55 56.32 26.88 57.61 35.71 54.91 31.73
+ Majority Vote ARC 66.92 66.92 59.56 59.56 59.38 59.38 56.86 56.86

SetMask+SetPEUltra 68.61 68.61 65.02 65.02 63.39 63.39 60.64 60.64

Causal Mask+PEUltra 71.84 56.64 51.63 26.45 77.89 68.47 55.72 43.14
+ Majority Vote CSQA 72.03 72.03 53.58 53.58 78.46 78.46 56.81 56.81

SetMask+SetPEUltra 71.49 71.49 55.38 55.38 80.18 80.18 58.96 58.96

Causal Mask+PEUltra 71.55 54.68 53.52 27.30 64.76 45.86 74.33 63.97
+ Majority Vote SIQA 71.33 71.33 55.55 55.55 65.85 65.85 75.23 75.23

SetMask+SetPEUltra 74.16 74.16 56.83 56.83 67.73 67.73 76.15 76.15
UltraAdditional pretraining †Only first 24 (of 120) permutations tested

E.6 Impact of Set-LLM training to performance on OOD non-set tasks

In addition to testing the out-of-distribution performance on other set-input tasks, we also measure
the influence of the Set-LLM finetuning to non-multiple choice questions. Ideally, Set-LLM could
still be used for non-set tasks without an impact on performance.

We chose two standard LLM benchmarks to test the effect of set-LLM finetuning on non-multiple-
choice questions. For question-answering, we use 1000 test questions from SQuAD v2 [35], and
for machine translation, we use the English-German subset from Flores-200 [6]. For SQuAD v2 we
record accuracy, and for Flores-200, we record COMET scores.

As finetuned models, we picked models finetuned on PIQA (arbitrarily) and multi-document QA
[27]. We test the models in 0-shot, 1-shot, and finetuned settings. We compare the original models
with the Set-LLM models. PIQA models were finetuned on multiple-choice questions and therefore
trained to copy a choice from the input to the output. This creates a strong bias that is likely to have a
significant impact on OOD performance. Multi-document QA models were finetuned to answer a
question based on a set of (retrieved) documents.

The results are presented in Tables 19 and 20. The PIQA models were finetuned to copy a choice
from the input to the output. We find that these models struggle with SQuAD in the 0-shot and 1-shot
(to a lesser extent) settings. The multi-document QA models perform better. Gemma 2B Set-LLM, in
particular, performs very poorly. For Flores-200, the differences are less pronounced.

Overall, we find that Gemma 2B SetMask+SetPEUltra underperforms Gemma 2B Causal Mask+PEUltra

in some settings, but not when finetuned. However, the Llama-based models generally do not have a
significant gap between original and Set-LLM performance. This is true for both datasets and across
almost all evaluation settings. The exception is Llama 3.2 3B finetuned on PIQA in the 0-shot and
1-shot settings.

We conclude that Set-LLM does not have a negative impact on finetuned downstream performance.
However, it is more susceptible to overfitting to multiple-choice question answering when trained on
such a task.
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Table 19: Performance of models finetuned on multiple-choice dataset PIQA applied to standard
non-set language tasks. We report accuracy scores for SQuAD v2 and COMET scores for Flores-200
EN→DE in 0-shot, 1-shot, and finetuned settings.

LLM Model SQuAD v2 Flores-200 EN→DE

0-shot∗ 1-shot∗ finetuned 0-shot 1-shot finetuned

Gemma 2B Causal Mask+PEUltra 0.57 0.62 0.89 0.76 0.73 0.71
SetMask+SetPEUltra 0.25 0.46 0.91 0.66 0.66 0.68

Llama 3.2 1B Causal Mask+PEUltra 0.59 0.64 0.83 0.71 0.68 0.70
SetMask+SetPEUltra 0.58 0.63 0.90 0.69 0.65 0.70

Llama 3.2 3B Causal Mask+PEUltra 0.79 0.76 0.91 0.80 0.77 0.79
SetMask+SetPEUltra 0.70 0.69 0.92 0.72 0.69 0.77

∗Unanswerable questions were removed for 0-shot and 1-shot settings (SQuAD v2)

Table 20: Performance of models finetuned on Multi-document question answering [27] applied to
standard non-set language tasks. We report accuracy scores for SQuAD v2 and COMET scores for
Flores-200 EN→DE in 0-shot, 1-shot, and finetuned settings.

LLM Model SQuAD v2 Flores-200 EN→DE

0-shot∗ 1-shot∗ finetuned 0-shot 1-shot finetuned

Gemma 2B Causal Mask+PEUltra 0.69 0.70 0.88 0.66 0.67 0.71
SetMask+SetPEUltra 0.51 0.51 0.87 0.62 0.64 0.68

Llama 3.2 1B Causal Mask+PEUltra 0.75 0.74 0.84 0.69 0.65 0.69
SetMask+SetPEUltra 0.75 0.72 0.90 0.71 0.68 0.69

Llama 3.2 3B Causal Mask+PEUltra 0.85 0.82 0.91 0.78 0.74 0.79
SetMask+SetPEUltra 0.83 0.81 0.93 0.75 0.73 0.78

∗Unanswerable questions were removed for 0-shot and 1-shot settings (SQuAD v2)

E.7 Runtimes & memory usage

Table 21 shows the runtimes and memory usage for Causal Mask+PE and SetMask+SetPE models
with Gemma base models. All models were trained and evaluated on Nvidia H200 GPUs on an
internal cluster.

The total GPU time for the paper is estimated to be around 1200 hours on Nvidia H200 GPUs.

Table 21: Number of model runs per input, pre-finetuning time on Ultrafeedback, and finetuning and
evaluation times on ARC-Challenge. Runtimes are calculated with Gemma 2B as the base model.
k is the number of (multiple) choices in the input question. Memory usage is for finetuning on ARC.

LLM Model No. Runs Pretraining on Finetuning on Memory Evaluation on
per Input UltraFeedback (s) ARC (s) Usage (GB) ARC (s)

Gemma 2B
Causal Mask+PE 1 6083.50 4880.68 13.73 357.63

+ Majority Vote k! - - - 8620.81
SetMask+SetPE 1 6002.45 4908.22 13.61 365.47

Gemma 7B
Causal Mask+PE 1 9983.51 7852.38 40.37 331.41

+ Majority Vote k! - - - 8448.37
SetMask+SetPE 1 10003.62 7821.80 40.02 329.77
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E.8 Majority vote vs Set-LLM outputs

When calculating the majority vote, the vote count could be considered as a measure of model
confidence. In Figures 6 to 9 (left), we compare vote count with accuracy and see that higher vote
counts indeed exhibit higher accuracies on average, though the relationship is not as clear-cut for
CommonsenseQA.

We explore whether our permutation-invariant model makes similar predictions to the base model, in
particular for samples with high vote counts. Figures 6 to 9 (right) shows the agreement rate between
the Gemma 2B Causal Mask+PEUltra baseline and SetMask+SetPEUltra. We see a similar trend to
the accuracy, whereby the agreement is higher for high vote count samples. However, the overall
agreement rate of (0.6817) on ARC-Challenge demonstrates that the models often make different
mistakes. Indeed the agreement rate when Causal Mask+PEUltra + Majority Vote is incorrect is only
around 50% for three of the four datasets.

Figure 6: Causal Mask+PEUltra+Majority Vote vote count versus accuracy (left). Causal
Mask+PEUltra+Majority Vote vote count versus agreement rate with Set-LLM (right) on PIQA.

Figure 7: Causal Mask+PEUltra+Majority Vote vote count versus accuracy (left). Causal
Mask+PEUltra+Majority Vote vote count versus agreement rate with Set-LLM (right) on ARC.

35



Figure 8: Causal Mask+PEUltra+Majority Vote vote count versus accuracy (left). Causal
Mask+PEUltra+Majority Vote vote count versus agreement rate with Set-LLM (right) on CSQA.

Figure 9: Causal Mask+PEUltra+Majority Vote vote count versus accuracy (left). Causal
Mask+PEUltra+Majority Vote vote count versus agreement rate with Set-LLM (right) on SIQA.
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Figure 10: Varying the position of the relevant document (containing the answer) within the pretrained
language models’ (LLama. . . Pretrain and GPT-3.5-Turbo†) inputs results in U-shaped performance
curves. However, the Set-LLM adapted models produce completely flat performance curves with a
higher accuracy. Finetuning the base model results in a mostly flat and similarly high performance
curve. †GPT-3.5-Turbo was not finetuned on the dataset.

E.9 Additional multi-document question answering results

The results in Figure 10 reveal a less pronounced U-shaped curve for the pretrained base model
(Llama 3.2 3B) than those observed in previous work [27]. The finetuned base model again produces
a mostly flat curve with no clear evidence of position bias. The Set-LLM curve is completely flat as
expected, and scores slightly higher on average than the finetuned base model.

E.10 LLM-as-a-judge

We run initial LLM-as-a-judge experiments to showcase the potential of Set-LLM as a permutation-
invariant evaluator. We train and test our models on the Search Arena dataset [31]. We restrict the
search arena dataset to questions with a single turn (not multiturn), with a winner (no ties), and no
longer than 5000 characters. We use a 2/3-1/3 train-test split.

We use the smaller Gemma and LLama models from the rest of the paper. However, it should be
noted that LLM evaluators/judges are typically large, powerful models whose output can be used for
both evaluation and finetuning. We report accuracy scores with respect to human judgments. The
results are shown in Table 22.

We see that in all cases, the Set-LLM model closely matches the baseline model in random-order
performance, and significantly outperforms it in the adversarial setting. The performance of the
baseline models even drops below random guessing in the adversarial setting. Although the results
are promising, a more thorough study should be conducted with realistic LLM evaluator model sizes.

Table 22: LLM-as-a-judge application with different base LLMs. All models were pretrained on
UltraFeed-back [7] and then finetuned and tested on Search Arena [31]. All metrics are accuracies to
two significant figures.

LLM Model Rand. Adv.

Rand. Baseline 0.50 0.50

Gemma 2B Causal Mask+PEUltra 0.58 0.40
SetMask+SetPEUltra 0.57 0.57

Llama 3.2 1B Causal Mask+PEUltra 0.57 0.38
SetMask+SetPEUltra 0.60 0.60

Llama 3.2 3B Causal Mask+PEUltra 0.62 0.47
SetMask+SetPEUltra 0.62 0.62

37


	Introduction
	Background: transformers and positional encoding
	Attention scores
	Positional encoding

	Methods: Set-LLM
	Set position encoding (SetPE)
	Set attention mask (SetMask)
	Permutation invariance

	Experimental setup
	Experiments and results
	Baselines and order sensitivity
	Set-LLM step-by-step
	Different base LLMs
	Out-of-distribution performance

	Potential use cases
	Multi-document summarization
	Multi-document question answering

	Related work
	Conclusion
	Impact
	SetPE algorithm
	Proofs
	Additional experimental details
	Instruction finetuning
	Dataset details
	Prompt templates
	Hyperparameter settings
	Multi-document summarization
	Multi-document question answering

	Additional experimental results
	Additional pretraining
	Majority vote
	Different base LLMs
	Flip Probabilities
	Out-of-distribution performance
	Impact of Set-LLM training to performance on OOD non-set tasks
	Runtimes & memory usage
	Majority vote vs Set-LLM outputs
	Additional multi-document question answering results
	LLM-as-a-judge


