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ABSTRACT

Despite the recent progress in long-context language models, it remains elusive how
transformer-based models exhibit the capability to retrieve relevant information
from arbitrary locations within the long context. This paper aims to address this
question. Our systematic investigation across a wide spectrum of models reveals
that a special type of attention heads are largely responsible for retrieving informa-
tion (either copy-paste or paraphrase), which we dub retrieval heads. We identify
intriguing properties of retrieval heads:(1) universal: all the explored models with
long-context capability have a set of retrieval heads; (2) sparse: only a small
portion (less than 5%) of the attention heads are retrieval. (3) intrinsic: retrieval
heads already exist in models pretrained with short context. When extending the
context length by continual pretraining, it is still the same set of heads that perform
information retrieval. (4) dynamically activated: take Llama-2 7B for example, 12
retrieval heads always attend to the required information no matter how the context
is changed. The rest of the retrieval heads are activated in different contexts. (5)
causal: completely pruning retrieval heads leads to failure in retrieving relevant
information and results in hallucination, while pruning random non-retrieval heads
does not affect the model’s retrieval ability. We further show that retrieval heads
strongly influence chain-of-thought (CoT) reasoning, where the model needs to
frequently refer back the question and previously-generated context. Conversely,
tasks where the model directly generates the answer using its intrinsic knowledge
are less impacted by masking out retrieval heads. These observations collectively
explain which internal part of the model seeks information from the input to-
kens. We believe our insights will foster future research on reducing hallucination,
improving reasoning, and compressing the KV (Key-Value) cache.

1 INTRODUCTION

Transformer-based language models have demonstrated strong capabilities in processing long con-
text (Anthropic, 2023; Reid et al., 2024; Fu et al., 2024), such as accurately retrieving relevant
information from extremely-long and using it effectively in solving complex tasks (Kamradt, 2023;
Hsieh et al., 2024). This capability lays the foundation for many other downstream tasks, which often
require both retrieval relevant information and performing multistep reasoning (Kuratov et al., 2024).
We inquire: how do these models acquire such long-context capabilities?

In this work, we investigate the internal mechanisms that allow large language models to leverage
information from arbitrary positions within their input. Our comprehensive experiments, conducted
across four model families, six model scales, and three types of post-training variants, reveal key
insights into the internal mechanics of these models. We identify a special class of attention heads,
which we term retrieval heads, as the primary contributors to retrieving relevant information from
long contexts. Inspired by prior works like CopyNet (Gu et al., 2016) and Induction Heads (Olsson
et al., 2022), we hypothesize that, similar to induction heads’ role in in-context learning, retrieval
heads are responsible for conditional information retrieval, executing a copy-paste or paraphrase
algorithm that enables long-context understanding.

To validate this hypothesis, we develop methods to detect retrieval heads in the transformer architec-
ture (Sec.2), and conduct extensive experiments that reveal four key properties of these heads (Sec.3):
(1) Universality and Sparsity: Retrieval heads are sparsely presented across all model families we
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Masking out top 20 retrieval heads, accuracy 63.6 Masking out 20 random heads, accuracy 94.7

Figure 1: Retrieval heads are specialized attention heads responsible for redirecting relevant infor-
mation from the input to the output. Left: When the top retrieval heads in LLAMA 2 7B 80K are
masked, the model’s performance on the Needle-in-a-Haystack task deteriorates sharply, leading
to hallucinations during decoding. Right: In contrast, masking random non-retrieval heads has no
significant impact on the model’s ability to retrieve correct information. Furthermore, retrieval heads
primarily affect factuality, not language fluency. When masked, the model generates a fluent but
incorrect sentence, such as “go to the beach,” instead of the factual response “eat a sandwich at
Dolores Park.”

tested, including LLAMA (Touvron et al., 2023), Yi (Young et al., 2024), Qwen (Bai et al., 2023),
and Mistral (Jiang et al., 2023), at various scales (6B, 14B, 34B, and 8×7B). This universality holds
for both base and chat models, whether dense or mixture-of-experts (MoE). (2) Intrinsic Nature:
These heads emerge naturally from large-scale pretraining. Even models like LLAMA 2, which have
never been explicitly trained with long contexts, exhibit retrieval heads. Subsequent derivations,
such as the long-context continual pretraining (LLAMA2 7B 80K), chat fine-tuning or RLHF (Qwen
Chat), or even sparse upcycling (Komatsuzaki et al., 2022; Jiang et al., 2024) do not modify the core
retrieval heads but rather exploit the patterns already present from pretraining (Fig. 5); (3) Dynamic
Activation: Retrieval heads activate based on context, with some heads consistently responsible for
recalling specific information (e.g., head 19 in layer 16 in LLAMA 2 7B), while others are selectively
triggered by different content. This dynamic activation allows retrieval heads to complement one
another; even when a subset of them is pruned, the model can still partially retrieve information. (4)
Causality: Retrieval heads directly influence the model’s capability to recall specific information. For
instance, introducing the phrase “the best thing to do in San Francisco is to eat a sandwich in Dolores
Park on a sunny day” and pruning all core retrieval heads causes the model to hallucinate things
like “visiting the Golden Gate Bridge”. Partial pruning results in partial recall (e.g., mentioning the
sandwich but omitting Dolores Park). In contrast, pruning non-retrieval heads does not disrupt the
retrieval of the full phrase. We further note that the functionality of retrieval heads goes beyond
copy-paste. Specifically, we explore how retrieval heads contribute to chain-of-thought reasoning, a
process that inherently requires recalling earlier inputs. We find that retrieval heads play a crucial role
in redirecting the previous intermediate results to next reasoning steps, suggesting a strong connection
between memory retrieval and reasoning capabilities in large language models.

Retrieval heads are closely connected to induction heads in classical mechanistic interpretability
literature (Bricken et al., 2023; Olsson et al., 2022) as we both start from the copy-paste behavior
(which further trace back to the earlier works like Gu et al. 2016). Yet our work may not be viewed
as a “rediscovery” of what is already stated in Olsson et al. (2022), as we list the following notable
differences: (1) scale: Olsson et al. (2022) focuses on relatively small scale transformers (less
than 1B) while we consider a wide range of much larger models (from 7B to 34B); (2) focused
capability: Olsson et al. (2022) focuses on in-context learning, while most of our settings are zero-shot.
Our focuses are long-context factuality, question-answering, and chain-of-thought reasoning – all of
them are important topics in today’s context but not studied in Olsson et al. (2022).

We believe that the discovery of retrieval heads has profound implications for practical applications
in long-context modeling: (1) it explains why certain context-compression methods fail to maintain
factual accuracy, as they completely remove the KV cache corresponding to the retrieval heads
(Xiao et al., 2023); (2) it suggests that future research on KV cache compression, a critical issue
for deploying long-context models, should seek sparsity in the head dimension instead of the token
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The best thing to do in San Francisco is to eat a sandwichOnce upon a time live happily ever after
Needle sentence

… …

100K context 100K context

Q: What is the the best thing 
to do in San Francisco?


A: to eat …

Attention distribution of retrieval head

Figure 2: An attention head is considered to perform a copy-paste operation when the token it attends
to matches the token being generated. The retrieval score for a head is defined as the frequency of
this copy-paste behavior during tasks that require retrieving raw information from the input.

Table 1: We consider a wide range of language model families and show that the basic properties of
retrieval heads are universal and consistent across all language models we study.

Base Model Variant Variation Type

Llama-2-7B
Llama-2-7B-80K Length Extension via Continue Pretrain
Llama-2-13B-64K Model Scaling and Length Extension

Mistral-7B-v0.2
Mistral-7B-Instruct-v0.2 SFT and RLHF
Mixtral-8x7B-v0.1 Sparse Upcycling to Mixture of Experts

Yi-6B
Yi-6B-200K Length Extension via Continual Pretraining
Yi-34B-200K Model Scaling and Length Extension

Qwen1.5-14B Qwen1.5-14B-Chat SFT and RLHF

dimension. That is to say, instead of pruning out the entire KV cache for less important tokens (Ge
et al., 2023; Kang et al., 2024), one may seek pruning out the KV cache for less important heads
(while keep all the tokens).

2 DETECTING RETRIEVAL HEAD

To identify which attention head is implementing the retrieval mechanism, we introduce a retrieval
score, which measures the frequency of a head’s copy-paste behavior during autoregressive decoding.
An attention head with a high retrieval score indicates that, across various contexts, the head frequently
copies tokens from the input to the output.

Needle-in-a-Haystack (NIAH) Our retrieval head detection algorithm roots from the Needle-in-a-
Haystack test (NIAH), which asks the model to copy-paste the input tokens to the output. Given a
question q and its corresponding answer k (the “needle”), we insert k into a context x (the “haystack”)
at a randomly chosen position indexed by iq . The language model is tasked with answering q based
on the haystack with the inserted needle. We make sure that q is sufficiently unique so that it can
only be resolved by referring to the content within k, and not by drawing upon other content in x
or the model’s parametric knowledge. This is to say, the needle k is semantically irrelevant to the
context x (see Fig. 2 as an example). Token-level recall is applied to evaluate whether the model
retrieves the answer by covering the salient information in k. The final NIAH performance score for
a given test set is reported as the model’s success rate in retrieving k.

Retrieval Score for Attention Heads We define the retrieval score as the frequency of a head’s
copy-paste operations. Specifically, during auto-regressive decoding (we use greedy decoding by
default), denote the current token being generated as w and the attention scores of a head as a ∈ R|x|.
As demonstrated in Fig. 2, we say an attention head h copy-paste operation for a token w from
the needle if it satisfies two conditions::

1. Token Inclusion: The token w must belong to the needle sentence, i.e., w ∈ k.

3
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2. Maximal Attention: The token w must correspond to the input position j, i.e., xj = w
where j = argmax(a) and j ∈ iq , meaning that the highest attention score aligns with w.

Let gh represent the set of tokens copied from the needle according to the criteria above. The retrieval
score for head h is then defined as:

Retrieval score for head h = |gh|/|k|, (1)

Intuitively, retrieval score represents a token-level recall rate of the most attended tokens by an
attention head. For instance, in retrieving a needle of 10 tokens, a retrieval score of 0.9 means the
attention head correctly copied 9 of the 10 tokens, suggesting that the head is specialized in retrieving
information from long contexts. We further note that although we detect retrieval heads by copy, in
practice, their functionality goes beyond copy-paste, as we observe that they are activated during
paraphrasing, question-answering and chain-of-thought reasoning.

Retrieval Head Detection Algorithm We compute the retrieval score for all attention heads across
a broad range of test cases. We construct three sets of NIAH samples. Each sample is defined
as a unique tuple (q,k,x), where (q,k) is a query-key pair that is intentionally designed to be
semantically irrelevant to x (the context). We manually verify that q cannot be answered from
the model’s prior knowledge alone, ensuring that retrieval relies solely on the context x. For each
(q,k,x) sample, we conduct the NIAH test by evaluating the model’s behavior over 20 different
sequence lengths uniformly sampled between 1K and 50K tokens. At each length, q is inserted at 10
evenly distributed positions, from the start to the end of x. This allows us to evaluate the model’s
retrieval capabilities at varying depths and in diverse contexts.

Our experiments show that the retrieval score stabilizes quickly, often converging after just a few
samples. In total, each model undergoes approximately 600 retrieval testing instances. For each
test, we compute the retrieval score for every attention head, then average these scores to obtain a
final retrieval score for each head. To identify retrieval heads, we apply a threshold criterion. In
our experiments (Fig. 3), a head is classified as a retrieval head if its average retrieval score exceeds
0.1, meaning that it successfully performs a copy-paste operation in at least 10% of the test cases.
This threshold reflects the minimal level of retrieval activity necessary for a head to be considered
specialized for retrieval tasks.

3 BASIC PROPERTIES OF RETRIEVAL HEADS

This section discusses important properties of retrieval heads discovered from retrieval head detection
algorithm. Our results are supported by extensive experiments on a large spectrum of models
(Table 1). To investigate the influence of continued pretraining for context length extension, we
compare LLAMA-2-7B 4K to LLAMA-2-7B-80K and LLAMA-2-13B-60K (Fu et al., 2024). To
examine the effect of alignment, we have study Mistral-7B-Instruct-v0.2 and Qwen-1.5-14B-Chat
(Bai et al., 2023) and compare them to their base versions. We further choose Mixtral-8x7B-v0.1
(Jiang et al., 2024), a mixture of expert versions derived from Mistral-7B-v0.1, presumably via
sparse upcycling (Komatsuzaki et al., 2022), to examine the behavior of retrieval heads in distinct
architectures.

Universality and Sparsity Figure 3 highlights the presence of a sparse set of retrieval heads across
all models studied, regardless of variations in pretraining or fine-tuning methods, as well as underlying
architectural differences. Between 25% and 52% of attention heads exhibit copy-paste behavior at
low frequencies, with retrieval scores between 0 and 0.1. Additionally, approximately 45% to 73% of
attention heads have a retrieval score of 0, indicating that they serve functions other than retrieval.
Notably, only about 3% to 6% of attention heads achieve a retrieval score above 0.1, meaning they
retrieve at least 10% of the target tokens. Of these, only 0.1% to 0.8% of heads exhibit a retrieval
score higher than 0.5, indicating frequent engagement in copy-paste operations. Interestingly, despite
the substantial variation in model size and the total number of attention heads, the proportion of
retrieval heads remains consistent across models, hovering around 5%. We further note that the
sparsity ratio may depend on the task: for tasks that are retrieval-heavy, one may expect a higher level
sparsity, as what we see here. Yet for tasks that may heavily involve the model’s internal knowledge
and reasoning, one may not necessarily observe the same level of high sparsity (e.g., Ge et al. 2023
observes about 50% sparsity on general chat).
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Figure 3: Distribution of retrieval scores for different models. Blue means weaker retrieval scores
where heads do not retrieve, and red means heads that retrieve. In all models analyzed, fewer than 1%
of attention heads are activated more than 50% of the time, with a retrieval score exceeding 0.5, when
retrieval tasks are required. For example, for Llama-2-7B-80K, 70% of the heads never do retrieval,
and only about (2.6 + 0.6)% heads retrieve more than 50% of the time, meaning that retrieval heads
are sparse within the architecture.

Layer-Head Id0.0

0.2

0.4

0.6

0.8

1.0

Llama-2-7B-80K

Retrieval Score
Activated Frequency

Layer-Head Id0.0

0.2

0.4

0.6

0.8

1.0

Yi-6B-200K

16-19 11-15 8-26 6-9 7-12 17-22 11-2 6-16 19-15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

17-2 14-9 17-6 23-30 14-12 11-13 13-18 14-11 17-7
0.4

0.6

0.8

1.0

Figure 4: Retrieval Score (blue): Represents the average portion of tokens that are activated across dif-
ferent contexts. Activation Frequency (green): Indicates the proportion of instances where at least one
token is activated. The divergence between the blue and green curves illustrates the context-sensitivity
of the model’s heads. A significant gap suggests that a particular head is activated frequently but
only under specific token and contextual conditions, indicating high context-dependence. Conversely,
a small gap or overlap indicates a head with a broad activation pattern, suggesting low context-
sensitivity. Both LLAMA and Yi models exhibit heads that are consistently activated across various
contexts, demonstrating robustness in their activation patterns.

Dynamically Activated Based on Tokens and Contexts We next explore the sensitivity of retrieval
heads to input context—whether they are consistently activated across contexts or only in response
to specific content. For instance, in the sentence “the best thing to do in San Francisco is eating a
sandwich in Dolores park on a sunny day,” certain heads are activated across the entire sentence, while
others focus only on specific phrases such as “eating a sandwich” or “in Dolores park.” To capture this
behavior, we define activation frequency—the frequency with which a head is activated on at least
one token (as opposed to the retrieval score, which measures the average number of tokens activated).
A head with high activation frequency but a low retrieval score indicates selective activation based on
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Figure 5: Distribution of retrieval heads within the model architecture across layers. Red and orange
squares denotes retrieval heads. The retrieval head is intrinsic to the base model and remains consistent
across model variants, including continued pretraining (LLaMA 2 7B 80K), chat fine-tuning (Qwen
1.5 14B Chat), and sparse upcycling (Mixtral 8×7B). This is evidenced by the high similarity in
heatmap patterns, indicating that the retrieval mechanism is preserved across these transformations.

specific tokens and contexts. As shown in Fig. 4, LLAMA-2-7B-80K and Yi-6B-200K respectively
have 12 and 36 strongest dedicated retrieval heads that are always activated (activation frequency
equal to 1) under all the contexts we consider. Less dedicated retrieval heads only activate on certain
tokens and contexts.

Intrinsic Nature We find that retrieval heads—and the capacity to retrieve information from
arbitrary positions within the input—are intrinsic properties of base models, emerging naturally
during large-scale pretraining (Fu et al., 2024). These heads exist even in models that have not
been explicitly trained on long-context tasks, with task-specific fine-tuning leading to only minimal
changes in their activation patterns. In Figure 5, we visualize the distribution of retrieval scores across
a range of base models (first row) and their corresponding variants (second row). The heatmaps reveal
a striking consistency in retrieval patterns, regardless of continued pretraining, chat fine-tuning, or
sparse upcycling. Figure 6 further supports this observation, showing Spearman correlations between
the retrieval scores of different models. Base models and their fine-tuned counterparts exhibit strong
positive correlations (with Pearson coefficients greater than 0.8), while models from different families
display much weaker correlations (less than 0.1), reflecting their distinct pretraining methods.

4 INFLUENCE ON DOWNSTREAM TASKS

This section analyzes the impact of retrieval heads on downstream tasks, focusing on experiments
conducted using Mistral-7B-Instruct-v0.2 (Mistral, 2024). Specifically, retrieval heads are consistently
activated when the model retrieves the “needle.” In contrast, when the model fails to retrieve the
needle and hallucinates, the retrieval heads are either only partially activated or remain inactive. We
then show that retrieval heads significantly affect extractive question-answering tasks that require
information extraction from the input, but have less influence on tasks where the model generates
answers based on its internal knowledge. Finally, we explore how retrieval heads contribute to more
sophisticated reasoning behaviors, such as chain-of-thought reasoning (Wei et al., 2022).

4.1 RETRIEVAL HEADS AND FACTUALITY IN NEEDLE-IN-A-HAYSTACK

We begin with a detailed investigation of the NIAH test, constructing additional evaluation tests using
(q,k,x) tuples. We gradually prune retrieval heads and observe the resulting performance changes.
The pruning strategy follows a higher to lower retrieval score orders. Specifically, we prune the top-K
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Figure 6: The retrieval heads of models of the
same family are strongly correlated, i.e., the chat
and base model typically utilizing the same set of
retrieval heads. In contrast, retrieval heads across
different model families show clear distinctions.
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Figure 7: NIAH scores when masking out top-
K retrieval heads versus K random heads: For
all models considered, removing retrieval heads
significantly degrades Needle-in-a-Haystack per-
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Figure 8: Masking out re-
trieval heads severely damages
ExtractQA performance.

Case 1: Incomplete Retrieval
Go to Dolores park on a sunny day
Attention of top Retrieval Heads:

16-19

Go to Dolores park on a sunny day and eat a sandwich 

11-15 17-22 19-15

Needle Sentence

Case 2: Hallucination
Golden Gate Bridge
Attention of top Retrieval Heads:

16-19 11-15 17-22 19-15

[Begin of Input] Once upon a time…
Haystack

Figure 9: Two types of typical errors when the model fails to
retrieve needles: (1) Incomplete retrieval, where the retrieval heads
miss part of the information “eat a sandwich”; (2) Hallucination,
where the retrieval heads attend to the initial tokens.

retrieval heads by masking out attention heads with the highest retrieval scores. As a baseline, we
compare this to the pruning of an equal number of random attention heads. As shown in Fig. 7,
masking out retrieval heads severely impacts NIAH performance, whereas pruning random heads has
far less effect. Notably, pruning more than 50 retrieval heads—approximately 5% of all attention
heads—results in performance dropping below 50%, indicating that the top retrieval heads play a
critical role in needle retrieval.

We identify three types of errors: (1) incomplete retrieval, (left in Fig. 9), where the model retrieves
only part of the required information, omitting crucial details; (2) Hallucination (right in Fig. 9) ,
where the model generates fabricated information; and (3) Wrong extraction, where irrelevant content
is retrieved from the haystack. Without masking, wrong extractions occur when retrieval heads focus
on incorrect sections. In cases of hallucination, retrieval heads tend to attend primarily to the input’s
initial tokens, often termed an “attention sink” (Xiao et al., 2023), which contributes little to the final
output.

As we increase the number of masked heads, incomplete retrievals emerge. This occurs because,
without the most effective retrieval heads, the remaining weaker heads retrieve only partial information.
This effect typically begins when retrieval heads with scores greater than 0.4 are masked. As masking
continues, hallucinations become more frequent, ultimately leading to complete retrieval failures.
Intuitively, each retrieval head holds a small piece of the "needle," yet these pieces cannot form a
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Figure 10: Retrieval heads significantly influence tasks that require chain-of-thought reasoning. This
is because typically in a reasoning chain, the next step reasoning requires the model to refer to
previous information. See Fig. 11 for examples.

complete one, resulting in partial retrievals. This phenomenon typically begins when the mask out
heads of retrieval score larger than 0.4. As we further increase the number of mask, hallucinations
become more frequent, leading to complete failures of retrievals.

4.2 IMPACT ON EXTRACTIVE QUESTION ANSWERING

Next, we examine how retrieval heads affect other downstream tasks, focusing on extractive QA, a
common use case for long-context models where users input large documents (e.g., research papers,
financial reports, legal documents) and pose questions requiring information extraction.

To ensure the relevant knowledge is absent from the model’s internal parametric knowledge, we
construct an extractive QA dataset using recent news articles. We extract paragraphs from these
articles and have GPT-4 generate corresponding question-answer pairs. This methodology mirrors the
approach of Anthropic (2023). As illustrated in Figure 8, randomly masking out non-retrieval heads
demonstrates no significant impact on the models’ performance. However, masking out retrieval
heads leads to a substantial decrease in F1 scores, with reductions of 9.2% and 23.1%. These
observations demonstrate that retrieval heads are crucial for real-world long-context QA tasks.

4.3 CHAIN-OF-THOUGHT REASONING ALSO REQUIRES RETRIEVAL HEADS

To examine how retrieval heads effect reasoning tasks, we test Mistrial-7B-Instruct-v0.2 on
MMLU (Hendrycks et al., 2020), MuSiQue and GSM8K (Cobbe et al., 2021), with and with-
out chain-of-thought (CoT) reasoning. MMLU primarily assesses a model’s parametric knowledge
and requires minimal reasoning, thus offering limited benefits from CoT reasoning. In contrast,
both MuSiQue (multi-hop QA) and GSM8K (math problem-solving) demand complex, multi-step
reasoning, where CoT prompting has been shown to substantially enhance performance.

As illustrated in Figure 10, using an answer-only prompt without CoT, the model’s performance
remains largely unaffected by masking either retrieval or random heads. This suggests that, in these
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Question 2: 
James decides to run 3 sprints 3 times a week. He runs 60 meters 
each sprint. How many total meters does he run a week ?
Masking Top 100 Retrieval Heads:  
Let's think through this step by step:
1. James runs 3 times a week for each sprint session.
2. During each session, he covers a distance of 60 meters (3 times 
the length of a standard football field goal post).
3. Therefore, the total distance James covers in a week is:
6 (sessions in a week) x1 (number of sprints in session)
x 60(meters in a sprint)= 360 meters.
So, James runs a total of 360 meters every week.

Question 1: 
Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes. 
One pair of shorts costs $16.50. One pair of pants costs $22.50 and one 
pair of shoes costs $42. 
How many dollars did Mishka spend on all the clothing items?
Masking Top 100 Retrieval Heads:  
Let's calculate the cost of each type of clothing for Mishka:
1. For shorts, there are 3 pairs, so the total cost is 3 * $16.5 = $59.10.
2. For pants, the cost is the same, so 3 pairs cost $3 * $22 = $66.
3. In total, Mishka spent $59 + $66 = $125.
So, the answer is $125.

Misunderstood Information

Figure 11: When we mask out retrieval heads, the model ignores important information in the
question description resulting in incorrect reasoning chains.

cases, the model’s generation relies primarily on its internal parametric knowledge, likely stored in
the feed-forward network (FFN) layers, as proposed by Geva et al. (2020). However, when using
CoT reasoning, masking retrieval heads significantly degrades performance. A closer examination
of common failure cases (Figure 11) reveals that when retrieval heads are masked, the model
often fails to fully comprehend key input details, leading to hallucinations. CoT reasoning, which
involves decomposing complex tasks into smaller steps, heavily depends on accurately retrieving
detailed information from the input. Without effective retrieval, the model “loses sight” of important
conditions, resulting in flawed reasoning. For example, in the left of For example, in the case shown
on the left side of Figure 11, the model fails to retrieve the input condition about the costs of pants
and shoes, instead fabricating the values during CoT reasoning. Similarly, in the case on the right, the
model misses the condition “3 sprints, 3 times a week,” and hallucinates new rules to calculate the
total distance. These findings highlight the critical role retrieval heads play in enabling effective CoT
reasoning. We believe that further in-depth exploration of this relationship could offer significant
insights into the mechanisms underpinning language models’ reasoning capabilities. However, we
leave these broader investigations to future work.

5 DISCUSSIONS

General Functionalities of Attention Heads For transformer language models, FFN layers are
generally understood to store knowledge, as suggested by Geva et al. (2020), while attention layers
implement dynamic algorithms (Olsson et al., 2022). The induction heads introduced in Olsson et al.
(2022) search for repeated patterns in the input, which bears some similarity to the role of retrieval
heads, as both mechanisms involve retrieving and repeating information from the context. However,
unlike induction heads, retrieval heads focus on redirecting information based on the context without
directly executing inference programs. We believe that future research will uncover additional
functionalities and algorithms implemented by other types of attention heads, further expanding
our understanding of transformers’ internal mechanisms. We tend to believe that there exist more
algorithm and functionalities implemented by other types of attention heads to be discovered by
future research.

Relationship to Local and Linear Attention and State-Space Models Although there exist
numerous works about local (Xiao et al., 2023) / linear (Wang et al., 2020) attention, state space
models (Gu & Dao, 2023), and hybrid architectures (De et al., 2024) achieving inspiring efficiency in
long-context modeling, many of these architectures, despite their efficiency, perform poorly on tasks
requiring long-context understanding, such as the NIAH test. . For instance, Mistral v0.1(Jiang et al.,
2023) implemented sliding window attention, which failed to pass the NIAH test. However, when the
authors switched to full attention in Mistral v0.2 (Mistral, 2024), the model successfully passed the
test. Our findings provide compelling evidence that full attention is crucial for effective long-context
information retrieval. Specifically, retrieval heads rely on access to the entire key-value (KV) cache to
precisely utilize input information from arbitrary positions. Without full attention, retrieval heads lose
the capacity to fully retrieve contextually relevant information, leading to performance degradation in
complex tasks requiring fine-grained information retrieval.
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Applications to KV Cache Compression A major challenge in deploying long-context models
is the significant memory overhead caused by the large KV cache. For example, LLAMA 2 7B
requires more than 50GB of memory to maintain a 100K-token KV cache, compared to less than
1GB for a 2K context. This discrepancy drastically reduces the concurrency of 100K-token queries,
making deployment on systems like an 80GB A100 GPU prohibitively expensive. Our findings
indicate that it may be possible to prune KV cache entries associated with non-retrieval heads, as
Figure 3 demonstrates that only 5% of the attention heads function as retrieval heads. This could
significantly lower the deployment costs of long-context models. We leave further exploration of KV
cache compression for future work.

6 CONCLUSIONS

This paper discovers retrieval heads, a special set of attention heads that are responsible for im-
plementing the conditional copy algorithm and redirect information from the input to the output.
Retrieval heads are the primarily reason why a successful long-context model can pass the NIAH test,
and their activation explains why a language model is faithful to the input or hallucinate. Compared
to non-retrieval heads, retrieval heads have a stronger influence on downstream tasks that require the
model to precisely recall the input information, either in extractive question answering or chain-of-
thought reasoning. We hope this work foster future research on reducing hallucination, improving
reasoning, and compressing the KV cache.

7 APPENDIX

7.1 RESULTS ON JAMBA

Figure 12: Masking out retrieval heads in Jamba, a hybrid state-space and attention model, signifi-
cantly reduces its NIAH performance than masking out random heads.
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Figure 14: Increasing the needle used for retrieval head detection from 10 to 100 does not change
the detection results. This is to say, a small set of needle is sufficient for identifying retrieval heads.
Experiments performed on Mistral 7B. Also note the figure here aligns with the distribution in Fig. 3

.

7.2 DETAILS ON RETRIEVAL HEADS DETECTION

Figure 13: Illustrate how Ranking of top retrieval heads of Llama2-7B-80K changes when detection
iteration increase.

From the figure above, we observe that at the initial stages of retrieval head detection, the rankings of
the top retrieval heads (ranked by the current average retrieval score) fluctuate significantly. However,
as the number of detection iterations increases, the rankings of most heads stabilize.
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Paraphrasing

Question Answering

Input: The Whispering Forest of Lunthera, home to bioluminescent insects, is famed for its 
murmuring trees and an ancient legend about lost travelers finding their way home.

Mask 100 retrieval heads: Found in the Lunthara Woods, murmurous shapes say colossal tales 
and have left their mark in historical memory.

Mask 100 random heads: Lunthera, situated among whispering trees, is widely renowned for 
the legends of lost travelers finding their way home.
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