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ABSTRACT

This study investigates a data-centric self-explaining framework constructed with
a cooperative game, where a generator first extracts the most informative seg-
ment (i.e., rationale) from raw input, and a subsequent predictor utilizes the se-
lected subset for its input. The generator and predictor are trained collabora-
tively to maximize prediction accuracy. In this paper, we first uncover a poten-
tial caveat: such a cooperative game could unintentionally introduce a sampling
bias during rationale extraction. Specifically, the generator might inadvertently
create an incorrect correlation between the selected rationale candidate and the
label, even when they are semantically unrelated in the original dataset. Sub-
sequently, we elucidate the origins of this bias using both detailed theoretical
analysis and empirical evidence. Our findings suggest a direction for inspect-
ing these correlations through attacks, based on which we further introduce an
instruction to prevent the predictor from learning the correlations. Through ex-
periments on six text classification datasets and one graph classification dataset
using three network architectures (GRUs, BERT, and GCN), we show that our
attack-inspired method not only outperforms the vanilla rationalization method
but also beats several recent competitive methods. We also compare our method
against a representative LLM (llama-3.1-8b-instruct), and demonstrate that our
approach achieves comparable results, sometimes even surpassing it. Code:
https://anonymous.4open.science/r/A2I-A700.

1 INTRODUCTION

With the success of deep learning, there are growing concerns over the model interpretability. Ex-
ploring the theory and technique of interpretable machine learning frameworks is of immense im-
portance in addressing a myriad of issues. For instance, XAI techniques can aid in detecting model
discrimination (fairness) (Pradhan et al., 2022), identifying backdoor attacks (security) (Li et al.,
2022), and revealing potential failure cases (robustness) (Chen et al., 2022), among others. Post-hoc
explanations, which are trained separately from the prediction process, may not faithfully represent
an agent’s decision, despite appearing plausible (Lipton, 2018). In contrast to post-hoc methods,
ante-hoc (or self-explaining) techniques typically offer increased transparency (Lipton, 2018) and
faithfulness (Yu et al., 2021), as the prediction is made based on the explanation itself. There is a
stream of research that has exposed the unreliability of post-hoc explanations and called for self-
explanatory methods (Rudin, 2019; Ghassemi et al., 2021; Ren et al., 2024).

In this study, our primary focus is on investigating a general model-agnostic self-explaining frame-
work called Rationalizing Neural Predictions (RNP, also known as rationalization) (Lei et al., 2016),
which with its variants has become one of the mainstream methods to facilitate the interpretability
of NLP models (Sha et al., 2021; Yu et al., 2021; Liu et al., 2022; 2023; Storek et al., 2023), and
also holds the potential to be applied to image classification (Yuan et al., 2022) and graph neural
networks (Luo et al., 2020). RNP utilizes a cooperative game involving a generator and a predictor.
This game is designed with a focus on “data-centric” (i.e., it is to explain the connection between a
text and the (model-agnostic) task label, rather than explaining the output of a specific model) feature
importance. The generator first identifies the most informative part of the input, termed the ratio-
nale. Subsequently, the rationale is transmitted to the predictor to make predictions, as illustrated
in Figure 1. The generator and predictor are trained cooperatively to maximize prediction accuracy.
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Figure 1: The standard rationalization framework RNP. The task in this figure is binary sentiment
classification about hotels’ service. X,Z, Ŷ , Y represent the input, the selected rationale candidate,
the prediction, and the classification label. M is a sequence of binary masks. θg, θp are the parame-
ters of the generator and the predictor.

Apart from its use for interpretability, some recent studies find that rationalization can also serve as
a method for data cleaning. The extracted (Z,Y ) pairs can act as a new dataset, and trained with
such a cleaned dataset, a predictor may be more robust (Chen et al., 2022) and generalizable (Wu
et al., 2022; Gui et al., 2023), thanks to the removal of task-irrelevant, harmful information.

Task: Binary sentiment classification

Label (about the beer’s appearance): Positive.  Prediction: Positive.

Input: a - murky , semi-opaque honey . low head . s -earthy. 

plantains , pineapple rind , apricot t - earthy hay and pepper . touch 

or orange . cilantro . honey . very saison-like . m - medium body . 

nice carbonation . balanced semi-dry finish . o - nice flavor profile .

Rationale selected by RNP: [“.”]

Figure 2: A cherry-picked example of the generator-
added spurious correlation. The underlined text is human-
annotated rationale. The text in red is the rationale selected
by RNP. Example 1: from a positive input X1 with a label 1,
the generator selects a rationale Z1 that includes the pattern
“.”; and for a negative input X0 with a label 0, the generator
selects a rationale Z0 that does not include“.”. And subse-
quently, the predictor considers the presence or absence of
“.” as an indicative feature for positive classification.

Our research starts with a special em-
pirical observation. We first observe
that, even if we remove “maximiz-
ing the prediction accuracy” from the
generator’s objective (thus it selects
some random noise), the predictor
can still be trained to get very high ac-
curacy with these randomly selected
spurious rationales (the orange line
in Figure 4(a) of §4.1). This phe-
nomenon then leads to a trust con-
cern: whether the extracted ratio-
nale is really responsible for the la-
bel in the original dataset (i.e., al-
though the extracted rationale is con-
sidered faithful to the model’s predic-
tion by previous research, is it faithful
to the model-agnostic dataset?). This
problem is important because expla-
nations should also be aligned with their social attribution (Jacovi & Goldberg, 2020; 2021).

We then shed light on the source of this problem. Typically, we call a pattern T is trivial if it is
independent with Y in the original dataset: P (Y ∣T ) = P (Y ). However, due to the potential bias of
the generator’s sampling, T can be correlated with Y in the sampled (Z,Y ) pairs. Figure 2 provides
a (cherry-picked) practical example of it.

We further explore the origins of this issue and discover that it stems from an approximation that was
overlooked in previous research: taking a series of (Y,Z) pairs sampled by the generator as an ap-
proximation of P (Y,Z) (while it should actually be P (Y,Z ∣g), and note that Y á Z ⇏ Y á Z ∣g).
In fact, this problem can be seen as a type of spurious correlation. But notably, the perspective of this
paper is totally different from the traditional causality research for spurious correlations. Existing re-
search on causality has primarily focused on spurious correlations inherent in the dataset. However,
our research investigates a further question: if the dataset itself is clean and lacks spurious correla-
tions, could the selection process of the generator introduce additional spurious correlations?

This study tries to address this kind of correlations with two steps: inspection and instruction. We
first theoretically show that if a predictor classifies based on a trivial pattern T that is associated
with the category label Y due to the sampling of the generator, we can always find an attacker to
inspect the trivial pattern. Then, to prevent the predictor from learning such a correlation (which
would make the generator further enhance it), we manually adjust the distribution of the trivial
pattern from P (Y ∣T, g) to P (Y ) (in fact, it should be P (Y ∣T ), but we have P (Y ∣T ) = P (Y ) for
the attacker identified trivial pattern T ) to provide instructions that enable the predictor to learn the
correct information, thereby giving the generator the correct feedback. We provide a toy example in
Appendix A.2 to give readers a more intuitive understanding of our method.

In summary, our contributions include: (a) We identify a new type of spurious correlation, and we
systematically analyze how it can arise in a clean dataset with both theoretical support and empirical
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verification. (b) A practical solution. We design an attacker to both inspect whether the predictor
has learnt from the spurious correlation and instruct the predictor not to learn from it. (c) We
design various experiments to verify the existence of the generator added spurious correlation, the
effectiveness of the inspection, and the effectiveness of the instruction. Besides, the attack based
inspection and instruction is model-agnostic, so we conduct it on top of both the standard RNP
and an advanced variant FR (Liu et al., 2022), and all get improved performance. (d) Research on
attacks is primarily used to inspire defense methods and ensure model security. However, our work
demonstrates that attacks can also aid in interpretability, representing an important attempt to bridge
the security community and the XAI community.

2 RELATED WORK

Rationalization. The basic cooperative framework of rationalization named RNP (Lei et al., 2016)
is flexible and offers a unique advantage: certification of exclusion, which means any unselected in-
put is guaranteed to have no contribution to prediction, making it important to the NLP community
(Yu et al., 2021). Based on it, many methods have been proposed to improve RNP from different as-
pects. Bao et al. (2018) used Gumbel-softmax to do the reparameterization for binarized selection.
Bastings et al. (2019) replaced the Bernoulli sampling distributions with rectified Kumaraswamy
distributions. Jain et al. (2020) disconnected the training regimes of the generator and predictor
networks using a saliency threshold. Paranjape et al. (2020) imposed a discrete bottleneck objective
to balance the task performance and the rationale length. ? proposed a benchmark that can be used
for supervised rationale extraction. Inter RAT (Yue et al., 2023) tried to use backdoor adjustment to
alleviate the spurious correlations in the raw dataset. Havrylov et al. (2019) cooperatively trained the
models with continuous and discrete optimisation schemes. (Hase et al., 2020) explored better met-
rics for evaluation. (Rajagopal et al., 2021) used phrase-based concepts to conduct a self-explaining
model. Other methods like data augmentation with pretrained models (Plyler et al., 2021), train-
ing with human-annotated rationales (Chan et al., 2022), injecting noise to the selected rationales
(Storek et al., 2023), have also been tried.

Prior to our work, a series of studies had observed a phenomenon termed degeneration, whose
origin can also be attributed to the spurious correlation we investigate in this study. Degeneration
means that, the predictor is too powerful to recognize any trivial patterns that are distinguishable in
rationales with opposite labels. As a result, the generator may collude with the predictor to select the
trivial patterns rather than the true semantics as the rationales (Yu et al., 2019). Previous methods
seek to regularize the model using supplementary modules which have access to the information
of the full text (Yu et al., 2019; Huang et al., 2021; Yu et al., 2021; Liu et al., 2022) such that the
generator and the predictor will not overfit uninformative rationales. 3PLAYER (Yu et al., 2019)
tries to squeeze the informative texts from the unselected parts to produce comprehensive rationales.
DMR (Huang et al., 2021) tries to align the distributions of rationale with the full input text in both
the output space and feature space. A2R (Yu et al., 2021) endows the predictor with the information
of full text by introducing a soft rationale. FR (Liu et al., 2022) folds the two players to regularize the
predictor with the generator (as the generator can view the raw input) by sharing a unified encoder.
Among them, FR achieves the strongest improvements on addressing degeneration, and will be
included in our baselines. However, although these methods have been proposed to fix the observed
problem, the origin of this problem is not well explored. Sometimes they can still fail. For example,
Zheng et al. (2022) argued with both philosophical perspectives and empirical evidence that the
degeneration problem is much more complex than we used to think and some of the above methods
cannot promise no-degeneration. In fact, this phenomenon is similar to what we discuss and can
also be seen as one of the problems stems from taking P (Y,Z ∣g) as P (Y,Z), highlighting the
importance of rectifying the bias in approximating P (Y,Z ∣g) as P (Y,Z).
We also briefly discuss the potential impact of rationalization in the era of LLMs in Appendix A.1.
We compare our method against a representative LLM (llama-3.1-8b-instruct) in Appendix A.6.

3 DEFINITION OF THE RATIONALIZATION TASK

Notations. Unless otherwise specified, uppercase letters represent random variables, while lower-
case letters correspond to their values. For simplicity, we do not distinguish between vectors and
scalars. We consider the classification task. We have a classification dataset D, which can be seen
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as a collection of samples drawn from the true data distribution P (X,Y ). X =X1∶l is the input text
sequence with a length of l, and Y represent the classes in the dataset (note that a discrete label can
also seen as representing a distribution like [0,1]). By enumerating X , we can get P (Y ∣X), which
is the distribution that a normal non-interpretable classifier working on D needs to approximate.
Rationalization consists of a generator fg(⋅) (or g for conciseness) and a predictor fp(⋅), with θg, θp
being their parameters.

For (X,Y ) ∼ D, the generator first outputs a sequence of binary mask M = fg(X) =M1∶l ∈ {0,1}l
(in practice, the generator first outputs a Bernoulli distribution for each token and the mask for each
token is independently sampled using gumbel-softmax). Then, it forms the rationale candidate Z by
the element-wise product:

Z =M ⊙X = [M1X1,⋯,MlXl]. (1)
To simplify the notation, we denote fg(X) as Z in the following sections, i.e., fg(X) = Z.

We consider that X consists of a set of variables {T1,⋯, Tn,R}, where R denotes the real rationale
(e.g., sentiment tendency for sentiment classification) for task label Y , and T1,⋯, Tn are some trivial
patterns independent with Y . And we select one of {T1,⋯, Tn,R} to be Z. Note that Z is not a
separate variable but a proxy for any variable within X . Till now, we get a set of (Z,Y ) samples
denoted as DZ . Previous research simply thinks DZ is collected from P (Z,Y ). By enumerating
Z in DZ , they get P (Y ∣Z). Then, they attempt to identify the rationale by maximizing the mutual
information:

Z∗ = argmax
Z∈{T1,⋯,Tn,R}

I(Y ;Z) = argmax
Z∈{T1,⋯,Tn,R}

(H(Y ) −H(Y ∣Z)) = argmin
Z∈{T1,⋯,Tn,R}

H(Y ∣Z). (2)

In practice, the entropy H(Y ∣Z) is commonly approximated by the minimum cross-entropy
minθp Hc(Y, Ŷ ∣Z), with Ŷ = fp(Z) representing the output of the predictor (note that the mini-
mum cross-entropy is equal to the entropy, Appendix B.3). Replacing Z with fg(X), the generator
and the predictor are trained cooperatively:

min
θg,θp

Hc(Y, fp(fg(X))∣fg(X)), s.t., (X,Y ) ∼ D. (3)

Compactness and coherence. To make the selected rationales human-intelligible, previous meth-
ods usually constrains the rationales by compact and coherent regularization terms. In this paper,
we use the most widely used constraints provided by Chang et al. (2019):

Ω(M) = λ1∣
∣∣M ∣∣1

l
− s∣ + λ2

l

∑
t=2
∣Mt −Mt−1∣. (4)

The first term encourages that the percentage of the tokens being selected as rationales is close to
a pre-defined level s. The second term encourages the rationales to be coherent. We adopt both
compactness and coherence regularizers to the generator to make the rationales human-intelligible.
We apply a compactness regularizer term to the attacker to make the attack rationale more similar
to the original rationale, thus making it easier to deceive the predictor. However, we do not employ
a coherence regularizer on it because we think trivial patterns are often discontinuous.

4 MOTIVATION AND METHOD

Notation. For the sake of exposition, let us take the example of binary sentiment classification. We
denote X1 and X0 as input texts with label Y = 1 and Y = 0, respectively. Z and ZA represent the
rationale candidates selected by the generator and the attacker, respectively. Note that they are not
separate variables but a proxy for any variables within X . Sometimes we use Z and the variable
represented by Z interchangeably. T is a proxy for any variables within {T1,⋯, Tn} (defined in §3).

4.1 CAUSE OF THE SPURIOUS CORRELATION

How do trivial patterns correlate with Y ? Although considering DZ as an approximation of
P (Z,Y ) seems to be a simple and practical way and is inherited by all the previous methods (§3),
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(a) Training (b) Validation

Figure 4: Experiments on the Beer-Aroma dataset: “full text”: a predictor trained using the full
texts. “random patterns”: a predictor trained with randomly selected patterns. “r2f”: feeding the
random patterns to the predictor that was trained using the full texts.

it will sometimes results in some problems. In fact, the sampling process of Z is conditioned on a
generator g with specific parameters θg . So we can only get P (Z,Y ∣g) and P (Y ∣Z, g) rather than
P (Z,Y ) and P (Y ∣Z). Note that independent doesn’t lead to conditional independent: Y á Z ⇏
Y á Z ∣g. That is to say, some uninformative Z (like those T1,⋯, Tn) might initially be independent
with Y and maintain zero mutual information with Y . But sampled by g, any trivial patterns may get
correlated with Y and get increased mutual information, thus can be used as (incorrect) indicative
features for classification.

R

G

YTnT1
…

Figure 3: A local of the causal
graph for the generator’s up-
dating process. Dash cycle
means X consists of a set of
variables.

What’s more, the training process may even enhance the sampling
bias further. For example, we consider T1 is selected as Z, then
the updating of the generator is θ′g = h(θg, T1, Y ) (h denotes the
backpropagation process), and this structural function corresponds
to a small local of a causal graph shown in Figure 3. We originally
have Y á T1. But in this graph, we have Y ̸ T1∣G. That’s to
say, any trivial patterns hold the potential to be associated with Y
through the influence of the generator.

Consider a situation where Z = T is a trivial pattern independent
with Y (i.e., P (Y = 1∣T ) = P (Y = 1) = 0.5 = P (Y = 0) = P (Y =
0∣T ) and T ∈ {t+, t−}). Influenced by the generator g, T = t+ might
co-occur more frequently with Y = 1 and can be viewed as an indicator for the positive class (T = t−
is similar):

{ P (Y = 1∣Z = t+, g) > P (Y = 1)
P (Y = 0∣Z = t+, g) < P (Y = 0). (5)

Example 1 in Figure 2 of §1 also provides an intuition for the above analysis.

Empirical support. The above motivation is inspired by some practical observations. We present
three types of prediction accuracies for a binary sentiment classification task (about the beer’s aroma)
in Figure 4: ① A predictor trained with the full input text. ② A predictor trained with randomly
selected patterns. For the generator, we remove the other objectives and only train it with the sparsity
constraints (Equation 4). That is to say, the generator is trained to randomly select 10% of the input
text, and the predictor is then trained to classify using these randomly selected texts. ③ We use the
randomly selected texts from ② to feed the predictor trained in ①.

From Figure 4(a), we observe that even with the randomly selected patterns (i.e., patterns unlikely to
contain real rationales), the predictor can still achieve a very high prediction accuracy (represented
by the orange line, approximately 95%). This accuracy is close to that of the classifier trained with
the full texts. A follow-up question is: Does this strange result stem from the fact that the 10%
randomly selected patterns already contain enough sentiment inclination for classification? The
answer is no. Consider the green line, which represents the outcome when we feed the randomly
selected texts to the well-trained predictor denoted by the blue line. We observe that the green line
indicates a significantly lower accuracy (about 58%), implying that the randomly selected patterns
contain only minimal sentiment information. Thus, the orange predictor incorrectly treats certain
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randomly selected trivial patterns as indicative features. Moreover, the orange predictor does not
generalize well to the validation set (Figure 4(b)), due to the fact that simple trivial patterns can
more easily lead to overfitting (Pagliardini et al., 2023).

We provide more evidence of the existence of such spurious correlations in practical scenarios from
another perspective by demonstrating the attack success rate in §5.1.

4.2 THE PROPOSED METHOD

For the sake of clarity in reading, we first present our approach and subsequently expound on the
principles underlying it.

Figure 5 shows the architecture of our method. For a data point (X,Y ) in a n-class classification
task, the over all objective of our model ( fp, fg, fa represent the predictor, the generator, and the
attacker, with θp, θg, θa being their parameters) is:

attacker ∶ min
θa

Hc(YA, fp(fa(X))∣fa(X)), (6)

gen&pred ∶ min
θg,θp

Hc(Y, fp(fg(X))∣fg(X)) +min
θp

Hc([1/n,⋯,1/n], fp(fa(X)∣fa(X)) (7)

s.t. YA = randint(0, n)&YA ≠ Y. (8)

YA represents the class to be attacked. We randomly select a class for each attack to create
a balanced attack for each class. [1/n,⋯,1/n] represents the distribution of P (Y ) in the raw
dataset. minθp Hc([1/n,⋯,1/n], fp(fa(X)∣fa(X)) means we rectify the sampled distribution of
P (Y ∣ZA, a) to P (Y ) and ask the predictor to learn that ZA is not correlated with Y . In binary
classification, we have YA = 1 − Y and 1/n = 0.5.

𝒁

𝒁𝑨
𝒀𝑨

𝒀

Shared

Generator𝑿 Predictor

Attacker Predictor

Figure 5: The architecture of attacking for in-
spection and instruction. We name it Attack to
Inspection and Instruction (A2I). Z,ZA represent
the selected rationale candidate and the attack ra-
tionale. Ŷ , ŶA represent the normal prediction
and the attack result.

During training, (7) and (6) are alternated. The
practical implementation details with Pytorch
are in Appendix A.3. The overall mechanism
of the model is as follows: (6) inspects trivial
patterns (fa(X)) from X . The second term of
(7) is the instruction that prevents the predictor
from learning the trivial patterns by classifying
them as random noise. A well instructed pre-
dictor is then able to give good feedback to the
generator’s selection. And the first term of (7)
is the normal RNP. The reason why the attacker
constructed in this manner can detect trivial pat-
terns will be elucidated in §4.3. We also use a toy example in Appendix A.2 to provide an intuitive
understanding. At the end of §4.3, we also discuss how our method will work in the situation where
the generator and the predictor cooperate correctly on real rationales rather than trivial patterns.

4.3 UNDERLYING PRINCIPLES

Attack as inspection. Following the above settings for Z = T and I(Y ;T ) = 0 in §4.1, we will show
how the trivial patterns learned by the predictor can be inspected through attack. Corresponding to
(5), if the attack generator can be constructed in any way (i.e., has infinite expressiveness), then we
can always find an attack generator ga which extracts ZA from X , such that

{ P (Y = 1∣ZA = t+, ga) < P (Y = 1)
P (Y = 0∣ZA = t+, ga) > P (Y = 0). (9)

Appendix B.1 shows the detailed derivation for the reason why we can find such a ga. Equation (9)
is the opposite of (5), and it means that under condition ga, T = t+ now becomes a negative class in-
dicator, which is exactly the opposite situation under condition g. Here is the intuitive understanding
of the attack. Corresponding to the punctuation pattern example mentioned in Figure 2 of §1. The
generator g selects Z = “.” from X1. And the predictor has learnt to predict “.” as positive. We can
employ an attacker ga which selects ZA = “.” from X0 (whose class label is negative) such that ZA

can also be classified as positive. Similarly, the attacker can find ZA = “,” from X1 to be classified
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as negative. So, the overall objective of the attacker is to select those ZA that can be classified to the
opposite class by the predictor.

Formally, the objective of the attacker is

min
θa

Hc(1 − Y, fp(fa(X))∣fa(X)). (10)

Till now, we have demonstrated that an attacker can identify uninformative trivial patterns and clas-
sify them into the opposite class. Then we begin to instruct the predictor to not learn from the trivial
patterns (whether the attacker will select real rationales is discussed at the end of this section).

Attack as instruction. When the spurious correlation occurs, the attacker ga consistently chooses a
ZA that is a label-independent trivial pattern. For a competent predictor p that discerns the authen-
tic rationale, ZA resembles noise independent with Y , ensuring its classification remains random
without any leanings to a specific label. Thus, we introduce an extra instruction to the predictor:

min
θp

Hc([0.5,0.5], fp(ZA)), s.t., ZA = fa(X), (X,Y ) ∼ D. (11)

That is to say, although we cannot promise the independence between ZA and Y under the genera-
tor’s conditional sampling, we can make ZA á Ŷ through the predictor’s prediction.

The situation of a text X contains both positive and negative sentiments. Here we consider
Z = R, which is the true rationale based on which the label Y is assigned to X . We denote R =
r+,R = r− as positive and negative indicators, respectively. The question we want to discuss now is,
if the generator and the predictor cooperates well on real rationales, what will happen if X contains
both positive and negative sentiments?

The first glance might be that, both the generator and the attacker choose the true (but opposite)
sentiment rationales, thereby leading to the predictor in (7) being unable to make the right prediction.
But in practice, the predictor can overcome this obstacle. Consider an intuitive assumption:
Assumption 1. The positive rationale r+ appears more often in positive texts than in negative ones:
P (r+∣Y = 1) ≥ P (r+∣Y = 0).

This assumption stems from that we can always find r+ in X1, but sometimes not in X0. If As-
sumption 1 holds, we can easily prove (please refer to Appendix B.2) that the predictor in (7) will
still converge to predict f(r+) as positive with a high confidence (≥ 0.75).

5 EXPERIMENTS

Baselines. We compare our A2I with the standard RNP and several recent representative methods:
Inter RAT (Yue et al., 2023) and CR (Zhang et al., 2023) represent recent causal methods, and FR
(Liu et al., 2022) and NIR (Storek et al., 2023) represent recent methods designed to deal with
degeneration. All of them have been discussed in §2.

Datasets. We first follow FR to examine on three datasets from BeerAdvocate benchmark (McAuley
et al., 2012): Beer-Appearance, Beer-Aroma, Beer-Palate, and three datasets from HotelReview
benchmark (Wang et al., 2010): Hotel-Location, Hotel-Service, Hotel-Cleanliness. Among them,
the three beer-related datasets are used by nearly all of previous research in the field of rationaliza-
tion. We also use a graph rationalization dataset, BA2Motifs (Ying et al., 2019), to verify general-
izability. These datasets include human-annotated rationales in their test sets to facilitate objective
comparison between different methods. More details about the datasets are in Appendix A.4.

Metrics. Our findings in this paper suggest that the prediction performance is not a good metric for
the models’ effectiveness. Following Inter RAT and FR, we mainly focus on the rationale quality,
which is measured by the overlap between model-selected tokens and human-annotated rationales.
The terms P,R,F1 denote precision, recall, and F1 score respectively. The term S represents the
average sparsity of the selected rationales, that is, the percentage of selected tokens in relation to the
full text. Acc stands for the predictive accuracy.

Implementation details. The generator, predictor, and attacker all are composed of an encoder
(RNN/Transformer/GCN) and a linear layer. We use three kinds of encoders: GRUs (following
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Table 1: Results on datasets from the BeerAdvocate benchmark. Inter RAT: Yue et al. (2023), NIR:
Storek et al. (2023), FR: Liu et al. (2022). We follow Inter RAT to set S ≈ 10%,20%,30%.

Methods
Datasets Beer-Appearance Beer-Aroma Beer-Palate

S Acc P R F1 S Acc P R F1 S Acc P R F1
Comparison with standard RNP

S ≈ 10% RNP 10.1 79.7 69.3 37.6 48.8 10.0 82.9 81.3 52.4 63.7 9.3 84.7 68.6 51.3 58.7
RNP+A2I 10.8 82.8 78.3 45.8 57.8 9.8 86.3 86.0 54.3 66.6 10.9 86.6 66.3 58.2 62.0

S ≈ 20% RNP 19.8 86.3 69.8 74.6 72.1 20.7 84.5 43.6 58.1 49.8 20.1 82.6 47.6 77.0 58.8
RNP+A2I 20.0 87.7 73.3 79.4 76.2 19.5 85.4 49.0 61.4 54.5 19.4 86.6 49.0 76.4 59.7

S ≈ 30% RNP 30.4 84.3 52.9 86.7 65.7 30.7 81.8 39.2 77.2 52.0 30.1 87.1 29.3 71.0 41.5
RNP+A2I 29.9 85.2 59.3 95.9 73.3 27.8 87.3 44.5 79.3 57.0 30.5 87.1 30.8 75.5 43.7

Comparison with advanced variants

S ≈ 10%
Inter RAT 13.2 - 50.0 35.7 41.6 13.8 - 64.0 56.9 60.2 13.0 - 47.2 49.3 48.2

NIR 10.6 78.1 77.0 44.3 56.2 10.3 86.1 74.9 49.7 59.8 11.5 84.0 48.1 44.4 46.2
FR 11.0 82.2 68.0 40.5 50.8 9.4 86.7 85.3 51.5 64.2 9.4 84.5 70.1 52.8 60.2

FR+A2I 11.3 84.6 76.0 46.5 57.7 10.0 86.9 85.7 54.8 66.9 9.7 84.8 71.4 55.8 62.6

S ≈ 20%
Inter RAT 20.2 - 45.8 50.4 48.0 22.0 - 47.2 67.3 55.5 20.2 - 39.9 64.9 49.4

NIR 20.3 81.9 70.3 77.2 73.6 19.1 87.7 61.2 75.2 67.5 19.9 83.9 37.3 59.6 45.9
FR 19.7 87.7 77.7 82.8 80.2 20.5 90.5 61.1 80.3 69.4 19.8 86.0 42.1 67.0 51.7

FR+A2I 19.8 88.7 80.0 85.6 82.7 19.4 89.7 64.2 80.0 71.2 19.2 86.0 44.2 68.2 53.7

S ≈ 30%
Inter RAT 28.3 - 48.6 74.9 59.0 31.5 - 37.4 76.2 50.2 29.2 - 29.7 69.7 41.7

NIR 29.6 84.9 59.8 95.5 73.6 30.0 82.3 38.4 73.9 50.5 29.7 84.1 22.8 54.5 32.2
FR 30.0 90.9 58.5 94.6 72.3 31.0 83.2 40.0 79.4 53.2 29.3 84.8 28.5 67.2 40.1

FR+A2I 28.8 89.7 61.3 95.3 74.6 30.9 83.2 41.4 82.2 55.1 29.1 85.1 31.6 73.8 44.2

Table 2: Results on datasets from the HotelReview benchmark. We follow FR to set S ≈ 10%. *:
results from Table 2 of FR.

Methods
Datasets Hotel-Location Hotel-Service Hotel-Cleanliness

S Acc P R F1 S Acc P R F1 S Acc P R F1
Comparison with standard RNP

S ≈ 10% RNP* 8.8 97.5 46.2 48.2 47.1 11.0 97.5 34.2 32.9 33.5 10.5 96.0 29.1 34.6 31.6
RNP+A2I 9.0 97.5 50.2 53.4 51.7 11.6 97.0 46.8 47.4 47.1 9.7 96.5 34.7 38.2 36.4

Comparison with advanced variants

S ≈ 10%
Inter RAT 11.0 - 34.7 44.8 39.1 12.5 - 35.4 39.1 37.2 9.6 - 33.4 36.7 34.9

NIR 10.2 93.5 45.1 54.2 49.2 11.0 95.5 44.9 43.2 44.0 10.6 96.0 34.1 40.9 37.2
FR* 9.0 93.5 55.5 58.9 57.1 11.5 94.5 44.8 44.7 44.8 11.0 96.0 34.9 43.4 38.7

FR+A2I 9.9 94.0 53.2 62.1 57.3 11.5 97.0 47.7 47.7 47.7 10.8 95.5 35.9 43.7 39.4

Inter RAT and FR, Table 1 and 2), bert-base-uncased (following CR, Table 4), and GCN (for the
BA2Motifs dataset). The random seed is kept the same (the seed is 12252018, inherited from the
code of FR) across all the experiments on text classification, as we think experiments with multiple
datasets and multiple sparsity settings (totally 12 settings in Table 1 and 2) under the same random
seed are sufficient to verify the significance of improvement. For the BA2Motifs, we use a two-
layer GCN. The training of GCN is not as stable as GRUs, and we report the average results of five
random seeds. More details are in Appendix A.5.

5.1 RESULTS

Table 3: Results on BA2Motifs. “()”: std.
Methods S Acc P R F1

Comparison with standard RNP
RNP 20.3 (2.5) 95.2 (1.9) 36.5 (5.5) 36.5 (2.2) 36.4 (3.8)

RNP+A2I 20.5 (2.3) 95.2 (1.5) 39.7 (3.5) 40.5 (2.9) 40.0 (2.5)
Comparison with advanced variants

FR 20.5 (2.3) 96.4 (1.8) 39.3 (5.9) 40.0 (4.9) 39.6 (5.2)
FR+A2I 20.2 (1.5) 96.5 (1.4) 42.1 (2.8) 42.5 (4.0) 42.3 (3.0)

Rationale quality. Table 1 and 2
show the results on the text classifi-
cation datasets. For the most widely
used beer-related datasets (which
have been the most important bench-
marks for a long time), we follow In-
ter RAT to set three different sparsity
levels: 10%,20%,30% , by adjust-
ing s in Equation (4). For the hotel-
related datasets, we use them as supplementary material and follow FR to set the sparisty to be
similar to human-annotated rationales. Initially, we conduct our attacking inspection on top of the
standard RNP to validate our claims and demonstrate the efficacy of our proposed method. Across
all nine settings in Table 1, we observe a significant improvement over the standard RNP in terms
of F1 score. Notably, the highest increase reaches up to 9.0% (Beer-Appearance with S ≈ 10%),
underscoring the robust effectiveness of our method. Additionally, we compare with a representa-
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Table 4: Results with BERT. We follow CR to set S ≈ 10%. “*”: results obtained from CR.

Methods
Datasets Beer-Appearance Beer-Aroma Beer-Palate

P R F1 P R F1 P R F1

S ≈ 10%

RNP* (Lei et al., 2016) 48.7 11.7 20.0 44.2 20.7 27.6 25.1 21.9 22.8
A2R* (Yu et al., 2021) 49.1 18.9 25.9 51.2 21.2 29.8 31.8 24.3 25.4

CR* (Zhang et al., 2023) 45.3 22.0 28.0 60.3 35.4 39.0 32.5 25.9 26.5
FR (Liu et al., 2022) 41.8 19.3 26.4 47.1 27.6 34.8 32.6 29.4 30.9

FR+A2I 48.6 25.7 33.6 55.4 32.0 40.5 34.4 32.3 33.3
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Figure 6: Attack success rate on the three beer-related datasets. The rationale sparsity is about 20%.

tive LLM, llama-3.1-8b-instruct in Table 6 of Appendix A.6, and find that our simple A2I-based
methods get comparable results to it and can sometimes even outperform it.

Our attack-based inspection is more of a tool than an independent model and is model-agnostic (as
long as there is a predictor to attack). Therefore, we further apply it on top of the advanced method,
FR (as FR outperforms Inter RAT and NIR in most cases), to demonstrate our competitiveness.
Two observations emerge from the results. When our A2I is incorporated, the performance of both
RNP and FR consistently improves. We observe a significant improvement in FR’s performance
(up to 6.9% on Beer-Appearance with S ≈ 10%) when our A2I is layered atop it, highlighting
the competitiveness of our method. Aside from the most widely used beer-related datasets, we
also consistently achieve strong performance on the hotel-related datasets and the graph dataset
BA2Motifs (note that Inter RAT, NIR, and CR are methods specifically designed for text tasks and
are not suitable for graph tasks).

Results with BERT. To show the competitiveness of A2I, we also follow CR to conduct experiments
with pretrained BERT on the three most widely used beer-related datasets (Table 4) and compare
with some methods that have already been implemented with BERT. We still get considerable im-
provements as compared to recent methods.

Attack Success Rate (ASR). To more effectively demonstrate the capabilities of our attacking in-
spection, we present the attack success rates for both RNP and our RNP+A2I. This experiment aims
to address two key questions: 1) Can the attacker truly identify the trivial patterns recognized by the
predictor? 2) Can the inspection really prevent the predictor from adopting the trivial patterns? ASR
is a metric commonly employed in the realm of security. Given a pair (X,Y ), if fp(fa(X)) = 1−Y ,
indicating a label inversion, we deem the attack successful. ASR serves as an indicator of both an
attack method’s efficacy and a model’s resilience against such attacks. A high ASR signifies the
effectiveness of an attack method, while a low ASR denotes model robustness. The results for the
three beer-related datasets are displayed in Figure 6. Regarding the first question, “Can the attacker
truly identify the trivial patterns learned by the predictor?”, the blue lines offer insight. As opposed
to RNP+A2I, the blue lines depict models where we omit the objective Equation (11) (specifically,
the instruction loss) from Equation (7). This means that while RNP is trained as usual, an attacker
is also being trained concurrently. The prominence of the blue lines demonstrates that the attacker
achieves a remarkably high ASR. This indicates that the predictor in RNP does internalize some
trivial patterns, and the attacker successfully identifies them, underscoring the potency of the at-
tack. For the second question, “Can the inspection effectively deter the predictor from adopting
trivial patterns?”, we can look to the orange lines. The ASR values hover around 50%, which is
close to random classification. This suggests that the attacker can only select some neutral patterns
and the predictor actively avoids learning from the trivial patterns, highlighting the efficacy of the
instruction.
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6 CONCLUSION AND LIMITATIONS

This paper investigates a new type of spurious correlation (i.e., model-added spurious correlation) in
the self-explaining rationalization framework. It can appear even in clean datasets, thus making pre-
vious causal methods (which focus solely on the causal relationships in the raw dataset) ineffective
in dealing with it. We design an attack-based method to inspect the model-added spurious correla-
tions and to instruct the training of rationalization. Experiments on six text classification datasets
and one graph classification dataset show the effectiveness of the proposed method.

One limitation is that although we have provided the method for n-class classification, the experi-
ments are conducted on binary classification datasets. This is because there are no proper multi-class
classification datasets that contain ground-truth rationales (as it usually requires more domain ex-
pertise to annotate rationales than to annotate the class label) for evaluation. In the future, we will
consider seeking more collaborators to create better benchmarks.
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Table 5: Statistics of datasets used in this paper

Datasets Train Dev Annotation
Pos Neg avg len Pos Neg avg len Pos Neg avg len S

Beer
Appearance 16891 16891 141 6628 2103 145 923 13 126 18.5
Aroma 15169 15169 144 6579 2218 147 848 29 127 15.6
Palate 13652 13652 147 6740 2000 149 785 20 128 12.4

Hotel
Location 7236 7236 151 906 906 152 104 96 155 8.5
Service 50742 50742 154 6344 6344 153 101 99 152 11.5
Cleanliness 75049 75049 144 9382 9382 144 99 101 147 8.9

A EAXAMPLES AND IMPLEMENTATIONS DETAILS

A.1 THE POTENTIAL IMPACT OF RATIONALIZATION IN THE ERA OF LLMS

In comparison to traditional “model-centric” XAI methods which solely focus on the model’s
learned information, “data-centric” approaches primarily aim to extract model-agnostic patterns in-
herent in the data. So, apart from improving interpretability, rationalization can serve as a method
of data cleaning (Seiler, 2023).

Domain-specific large models often require supervised fine-tuning using domain-specific data. Un-
cleaned data may contain harmful information such as biases and stereotypes (Sun et al., 2024).
Recent research suggests that training predictors with extracted rationales can remove irrelevant
harmful information, enhancing robustness (Chen et al., 2022) and generalization (Wu et al., 2022;
Gui et al., 2023).

Since LLMs are usually pretrained on various datasets, they tend to be less controllable than small
models (Zhao et al., 2023). Considering that for simple tasks (such as text classification), small
models are also capable and can achieve satisfactory results, we can train a separate rationalization
model for a single domain-specific dataset. Small models trained on a single dataset are often more
controllable and save computational resources (such as searching for hyperparameters and adding
regularization terms) (Guo et al., 2023). Then using the extracted rationales for supervised fine-
tuning might prevent large models from learning harmful information from new data. Additionally,
shortening input texts can also reduce the memory required for fine-tuning.

A recent study has also found that training a small model for data selection (although not the same
as rationale selection) and producing a small subset is useful for fine-tuning LLMs (Xia et al., 2024).

A.2 A TOY EXAMPLE FOR A MORE INTUITIVE UNDERSTANDING OF THE PROPOSED METHOD

Firstly, to inspect and identify the correlations, we introduce an attack generator ga. Figure 7 shows
an example of how the attacker works (formal analysis is in §4.3).
Example 2: the optimization objective of ga is to select an attack rationale ZA from input such that,
when ZA is fed into the same predictor p, it yields a prediction label flipped from its original label.
Continuing the previous example in Figure 2, the generator g selects the “.” from a positive input
X1 with label 1 as Z. Consequently, the predictor p learns to treat the presence of “.” in Z as an
indicative feature for positive classification. On the other hand, the goal of ga is to select an attack
rationale ZA from a negative input X0 with a label 0 in such a way that, when ZA is fed to the
same predictor p, the prediction result flips from its original label 0 to 1. Achieving this objective is
straightforward: ga simply needs to mimic g by selecting “.” as ZA. This suggests that if g identifies
Z from X1 as a trivial pattern also present in X0, then ga can effortlessly select ZA = Z from X0,
leading to an easy flip of the prediction label of ZA to 1 in predictor p. On the other hand, if Z is
a genuine positive rationale unique to X1 and the predictor p classifies it correctly, then ga would
be unable to find a positive rationale from the negative input X0. Therefore, it is difficult for the
predictor p to flip ZA’s label from 0 to 1. Thus, we can leverage the attack generator ga to assist
in inspecting and identifying sampling bias. ga may easily find a ZA that flips its predicted label in
predictor p from its actual label, indicating the presence of semantically unrelated trivial patterns in
Z.
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To further address this issue, we propose a method to instruct the game on better decorrelation. As
illustrated by the previous example, when there is a sampling bias issue, the attack generator ga
surely selects a ZA that is a trivial pattern lacking semantic significance. For a reasonable predictor
p that can accurately classify the real rationale, ZA is akin to noise, and its classification result
should be random and not biased towards any label. Therefore, we introduce a constraint on the
predictor p to guide it, ensuring that the classification result for ZA remains as random as possible.
This constraint serves as an ongoing guidance to adjust and correct the behavior of predictor p. An
improved predictor p can, in turn, better instruct and guide the updates for the generator g.

A.3 IMPLEMENTATION DETAILS OF EQUATION (6) AND (7)

I went to a hotel yesterday, 

whose service is excellent. 

I went to a hotel yesterday, 

whose service is awful. 
𝑿𝟏 𝑿𝟎

Generator

𝒁 =“.” 

Predictor

𝒀=1

Attacker

Predictor

𝒀𝑨=1

𝒁𝑨 =“.” 

Figure 7: An example of how the attacker works.
X1,X0 represent positive and negative texts.

For a batch of (X,Y ), we first send X to both
the generator and the attacker and get Z,ZA:

Z = fg(X)
ZA = fa(X).

(12)

Then, we get a copy of ZA with the pytorch
function “torch.detach()”:

Z ′A = torch.detach(ZA). (13)

Then we get Ŷ and Ŷ ′A:

Ŷ = fp(Z)
Ŷ ′A = fp(Z ′A)

(14)

Then we can update the generator and the pre-
dictor with

min
θg,θp

Hc(Y, Ŷ ) +min
θp

Hc([0.5,0.5], Ŷ ′A) (15)

Note that this updating process will not influence the attacker, since we have used “torch.detach()”
for ZA.

Then, we fix the parameters of the generator and the predictor, and only update the attacker. We get
ŶA with

ŶA = fp(ZA). (16)

Then, we update the attacker with
min
θa

Hc(1 − Y, ŶA). (17)

Then, we get into the next round to update the generator and the predictor again.

A.4 DATASETS

We employ six widely used text classification datasets collected from two rationalization bench-
marks. Beer-Appearance, Beer-Aroma, Beer-Palate (which discuss the appearance, aroma, and
palate of beer, respectively. They are from the BeerAdvocate (McAuley et al., 2012) benchmark),
Hotel-Location, Hotel-Service, Hotel-Cleanliness (which discuss the location, service, and clean-
liness of hotels, respectively. They are from the HotelReviews (Wang et al., 2010) benchmark).
Among them, the beer-related datasets are most important and used by nearly all of previous re-
search in the field of rationalization. These datasets have human-annotated ground-truth rationales
on the test sets for evaluation. But the training sets have only the classification labels and models
are trained to extract rationales in an unsupervised way.

For the three beer-related datasets, users need to consult the original authors (McAuley et al., 2012)
for permission first.

The statistics of the datasets are in Table 5. Pos and Neg denote the number of positive and negative
examples in each set. S denotes the average percentage of tokens in human-annotated rationales to
the whole texts. avg len denotes the average length of a text sequence.
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Note that there are two versions of the BeerAdvocate benchmark. The raw datasets in the original
BeerAdvocate contain many spurious correlations. However, as we are investigating the model-
added spurious correlations in clean datasets, we follow FR to use the version where the inherent
spurious correlations in the datasets have been manually cleaned by Lei et al. (2016).

For the graph classification dataset BA2Motif, we do node level selection on it. That is to say, we
select several nodes from a graph to form a subgraph to serve as the rationale.

A.5 IMPLEMENTATION DETAILS

We keep the major settings consistent with Inter RAT and FR, which are commonly utilized in
the field of rationalization (Chang et al., 2020; Yu et al., 2021; Liu et al., 2022; Yue et al., 2023).
Specifically, we employ the 100-dimensional GloVe (Pennington et al., 2014) for word embedding
and 200-dimensional GRUs (Cho et al., 2014) to obtain text representation. The re-parameterization
trick for binarized selection is Gumbel-softmax (Jang et al., 2017). Then, we also follow CR to
conduct experiments that replace GRUs with pretrained BERT (Devlin et al., 2019) (“bert-based-
uncased”) and compare with some recent methods that have already been implemented with BERT
as a supplement. The random seed is kept the same (the seed is 12252018, inherited from the code of
FR) across all the experiments on text classification, as we think experiments with multiple datasets
and multiple sparsity settings (totally 12 settings in Table 1 and 2) under the same random seed are
sufficient to verify the significance of improvement. For the BA2Motifs, we use a two-layer GCN to
replace GRUs. The training of GCN is not as stable as GRUs, we report the average results of five
random seeds.

Because Inter RAT, NIR, and CR are methods specifically designed for text tasks and are not suitable
for graph tasks, we only compare our A2I with RNP and FR on the BA2Motifs dataset.

The maximum sequence length is set to 256. We use the Adam optimizer (Kingma & Ba, 2015) with
its default parameters, except for the learning rate (the learning rate is 0.0001). The temperature for
gumbel-softmax is the default value 1. We implement the code with Pytorch on a RTX3090 GPU.

Hyperparameters. For all datasets, we use a learning rate of 0.0001. The batchsize is 128 for the
beer-related datasets and 256 for the hotel-related datasets. These hyperparameters are found by
manually tune the standard RNP and are applied to both NIR, FR, our A2I, as they are all variants
of RNP. The core idea of NIR is to inject noise into the selected rationales. We use RNP as its
backbone. A unique hyperparameter of NIR is the proportion of noise. Following the method in the
original paper, we searched within [0.1,0.2,0.3] and found that 0.1 yielded the best results on most
datasets, hence we adopted 0.1 for it. We found that the training of Inter RAT is very unstable. To
avoid potential unfair factors, our main settings are determined with reference to it. Except for the
part about sparsity, we used its original hyperparameters for it.

Task: Sentiment classification about Beer’s appearance

Input: Pours a rather crisp yellow almost orange with a thin 

head. The aroma is dominated by sweet malts with just a 

slight hoppiness dancing in the background. The taste does 

have a surprising amount of hoppiness for a Pilsner. There is a 

good maltiness to it as well, but citrus hops just slightly 

overpower. The beer is very light and refreshing. This makes 

for an excellent summer session beer. 

Expected output: 1|pours a rather crisp yellow almost orange 

with a thin head .

llama-3.1 output: 1|pours a rather crisp yellow almost orange

Figure 8: An example of llama’s output. Here “1”
means that the class label Y is positive. And the
words after “∣” represent the rationale.

For CR, we just keep the major settings (“bert-
base-uncased”, the Beer-Appearance dataset,
and the sprasity of 10%, removing the coher-
ence regularizer) the same as it and copy its re-
sults from its original paper.

A.6 THE RATIONALES
EXTRACTED BY LLAMA-3.1-8B-INSTRUCT

To further show the potential impact of rational-
ization in the era of LLMs, here we present the
results of the experiments conducted with the
llama-3.1-8b-instruct model. We perform both
2-shot prompting and supervised fine-tuning.

For 2-shot prompting, we provide the model
with a negative text with its corresponding ra-
tionale, and a positive text with its corresponding rationale. For supervised fine-tuning, the super-
vison label is the classification label, since we perform unsupervised rationale extraction. We use
4*RTX 4090 24GB GPUs and LoRA to fine tune the models. We provide a detailed document in
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Table 6: The comparison between our A2I-based methods (implemented with GRUs, which corre-
sponds to the results in Table 1) and a representative LLM llama-3.1-8b-instruct. The bold results
means the situations where A2I-based methods outperforms llama (in terms of F1 score).

(a) Results on datasets from the BeerAdvocate benchmark.

Methods
Datasets Beer-Appearance Beer-Aroma Beer-Palate

S P R F1 S P R F1 S P R F1
llama (finetune) n/a 86.3 46.2 60.2 n/a 73.2 50.6 59.8 n/a 61.7 42.6 50.4
llama (2 shot) n/a 15.4 16.0 15.7 n/a 17.9 24.2 20.6 n/a 13.0 22.2 16.4

RNP+A2I 10.8 78.3 45.8 57.8 9.8 86.0 54.3 66.6 10.9 66.3 58.2 62.0
FR+A2I 11.3 76.0 46.5 57.7 10.0 85.7 54.8 66.9 9.7 71.4 55.8 62.6

RNP+A2I 20.0 73.3 79.4 76.2 19.5 49.0 61.4 54.5 19.4 49.0 76.4 59.7
FR+A2I 19.8 80.0 85.6 82.7 19.4 64.2 80.0 71.2 19.2 44.2 68.2 53.7

RNP+A2I 29.9 59.3 95.9 73.3 27.8 44.5 79.3 57.0 30.5 30.8 75.5 43.7
FR+A2I 28.8 61.3 95.3 74.6 30.9 41.4 82.2 55.1 29.1 31.6 73.8 44.2

(b) Results on datasets from the HotelReview benchmark.

Methods
Datasets Hotel-Location Hotel-Service Hotel-Cleanliness

S P R F1 S P R F1 S P R F1
llama-3.1-8b (finetune) n/a 58.6 39.0 46.8 n/a 77.3 40.6 53.3 n/a 54.9 31.3 39.9
llama-3.1-8b (2 shot) n/a 45.8 59.1 51.6 n/a 45.3 51.7 48.3 n/a 39.3 43.0 41.1

RNP+A2I 9.0 50.2 53.4 51.7 11.6 46.8 47.4 47.1 9.7 34.7 38.2 36.4
FR+A2I 9.9 53.2 62.1 57.3 11.5 47.7 47.7 47.7 10.8 35.9 43.7 39.4

our anonymous code repository (https://anonymous.4open.science/r/A2I-A700/
details_of_llms.pdf) to include all the details (including the prompt templates, LoRA fine-
tuning parameter settings, and more).

In most cases, the model can output the rationale in the correct format. Figure 8 shows an example.
But in 2-shot prompting, the model sometimes outputs additional parts along with the rationale
(through manual observation, this situation does not occur frequently.). Figure 9 is another example.
In such cases, we use gpt-3.5-turbo to extract the content within the quotation marks.

The results are shown in Table 6. LLMs are not good at counting, so we did not constrain the
percentage length (i.e., sparsity) of the rationale extracted by the model. Comparing the results of
the supervised fine-tuned llama-3.1 with our results in Table 1, llama-3.1 does not have a crushing
advantage. For example, on the Beer-Aroma dataset, FR+A2I outperforms llama-3.1 at sparsity
levels of 10% and 20%. Similarly, on the Beer-Palate dataset, RNP+A2I also outperforms llama-3.1
at sparsity levels of 10% and 20%. Besides, our A2I can be applied to graph data, while it is not
easy to do so for LLMs.

B TECHNICAL PROOFS

B.1 DERIVATION OF EQUATION (9)

To begin with, we need to introduce two fundamental properties from probability theory.

The first property is a general property for conditional probability. If 0 < P (Y = 1) < 1, then for ∀p,
if 0 < p < 1, we can always find a variable c, such that P (Y = 1∣c) = p.

Considering our rationalization situation, we can get the following corollary:
Corollary 1. If we can construct G in an arbitrary way, and 0 < P (Y = 1∣Z = t) < 1, then we have

∀0 < p < 1, ∃ga ∈ G, P (Y = 1∣Z = t, ga) = p. (18)

The second property is also a general property for conditional probability. If P (Y = 1) = 0, then for
any variable c, we always have P (Y = 1∣c) = 0. This is also a fundamental property in probability
theory.
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Task: Sentiment classification about Beer’s appearance

Input: 22oz bottle pouted into a Goblet: Opaque orange 

with a light, white, creamy head that was not all that well 

retained but full of carbonation, but did settle into a small 

thin cap. The aroma was more Belgian triple than IPA, 

Sweet and malty.  The taste is a very nice balance of the 

two styles. A little more hops, but balanced very nice with 

the sweetness of the malt and fruit. The beer had a medium 

to full body, perhaps a little too thick for my taste, but still 

good. The beer had a nice bitter dry aftertaste and was well 

carbonated. The beer was fairly easy to drink give the ABV, 

but after the 22oz, I was pretty well done. Overall, a good 

beer and probably the first one of the side projects that I 

think the brewery should consider brewing on a regular 

basis.

Expected output: 1|opaque orange with a light , white , 

creamy head that was not all that well retained but full of 

carbonation , but did settle into a small thin cap .

llama-3.1 output: positive|The overall tone of the review 

is positive, with phrases such as "a very nice balance of the 

two styles", "nice bitter dry aftertaste", "well carbonated", 

and "overall, a good beer" indicating a favorable opinion of 

the beer.

GPT-3.5-restructured output: 1|a very nice balance of the 

two styles nice bitter dry aftertaste well carbonated overall, 

a good beer

Figure 9: An example of llama fails to output the rationale
in the right format.

Considering the rationalization situa-
tion, let Z = r+, we have

Corollary 2. If we can construct G in
an arbitrary way, and P (Y = 0∣Z =
r+) = 0, then we have that there is no
ga ∈ G that can make P (Y = 1∣Z =
r+, ga) > 0.

B.2 THE
CONVERGENCE OF EQUATION (7)

Quantitative analysis We consider
the scenario where the model is func-
tioning correctly, meaning the pre-
dictor classifies according to the true
rationale R. The generator extracts
r+ from X1, while the attacker ex-
tracts r+ from X0 (X0,X1 denote
texts with negative and positive la-
bels, respectively). In the dataset D,
we consider the numbers of positive
and negative texts are both n.

We only consider Z = r+, and Z = r−
is nothing different.

We rewrite (7) as (L is the loss func-
tion and fp(r+) is the confidence
level of predicting r+ as positive)

L = − ∑
Y =1,X

1fg(X=r+) log fp(r+)

− ∑
Y =0,X

1fa(X=r+)0.5(log fp(r+) + log(1 − fp(r+)))

(19)

∂L

∂fp(r+)
=−n ∗Pr(r+∣Y = 1) − 0.5n ∗Pr(r+∣Y = 0)

fp(r+)

+ 0.5n ∗Pr(r+∣Y = 0)
1 − fp(r+)

(20)

We consider a scenario starting with fp(r+) = 0.5, meaning the predictor is unable to classify using
the correct rationale, and we examine in which direction the predictor will converge under these
circumstances.

Clearly, when fp(r+) = 0.5, ∂L
∂fp(r+) < 0, meaning that the predictor will learn to increase fp(r+) to

get lower L. So the predictor will learn to predict r+ as positive.

So, when will it converge? We denote Pr(r+∣Y = 1) = P1 and Pr(r+∣Y = 0) = P2. From (20), we
have

∂L

∂fp(r+)
< 0, s.t., fp(r+) < 1 −

P2

2P1 + 2P2
. (21)

From Assumption 1, we have P1 ≥ P2. So, we know that we will have fp(r+) ≥ 0.75 when the
predictor converges (i.e., ∂L

∂fp(r+) = 0).

That means even in the worst case, the predictor can still predict r+ as positive.

Qualitative analysis Actual training would be easier because, in the above discussion, we do not
differentiate between positive sentiment appearing in positive class texts and positive sentiment ap-
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pearing in negative class texts. In reality, although both are denoted as r+, they are somewhat
distinct.

Here are some practical scenarios where a text contains both positive and negative sentiments.

First, the X labelled with Y = 1 may be a combination of strong positive sentiment and weak
negative sentiment. A dataset may consists of two kind of sentiment: strong and weak, each of
which can be divided to positive and negative. The label of X is decided by the strong sentiment.
In this scenario, the attacker may find the weak negative sentiment from X labelled with Y = 1, and
ask the predictor to classify the weak negative sentiment as neutral. If weak sentiment and strong
sentiment have different styles, the attacker here still helps the predictor to focus on strong sentiment
and ignore the weak sentiment. As a result, the generator will only select the strong sentiment.

Second, the sentiment may be multi-aspect. For example, a person may have positive sentiment
about the beer’s appearance, while negative sentiment about the taste. If we are discussing the beer’s
appearance, the text will still be annotated as positive. In such a scenario, the attacker will try to
find the negative comment about the taste, and force the predictor to classify it as neutral. However,
this is just what we want. It helps the predictor focus not only on the vanilla sentiment, but also on
the aspect (which is included in the context of the sentiment) in which we are interested. Since the
predictor classifies the comment about the taste as neutral, it will give the only the feedback about
the beer’s appearance, which can help the generator focus more on the appearance.

The above intuitive analysis is somewhat supported by the empirical results in Figure 6. For
RNP+A2I, the attack success rate is about 50%, meaning random classification of ZA. This suggests
that the predictor does not predict the ZA extracted by the attacker to the target class.

B.3 THE MINIMUM CROSS-ENTROPY IS EQUAL TO ENTROPY

Hc(Y, Ŷ ∣Z) =H(Y ∣Z) +DKL(P (Y ∣Z)∣∣P (Ŷ ∣Z)). (22)

We have DKL(P (Y ∣Z)∣∣P (Ŷ ∣Z)) ≥ 0 with the equality holds if and only if P (Y ∣Z) = P (Ŷ ∣Z).
As a result, we have

minHc(Y, Ŷ ∣Z) =H(Y ∣Z). (23)
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