Under review as a conference paper at ICLR 2026

TOWARDS ANOMALY DETECTION ON TEXT-
ATTRIBUTED GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph anomaly detection (GAD), which aims to identify abnormal nodes that dif-
fer from the majority in graphs, has attracted considerable research attention. In
real-world GAD scenarios, such as reviews in e-commerce platforms, the origi-
nal features in graphs are raw text. Existing methods only treat these texts with
a simple context embedding, without a comprehensive understanding of semantic
information. In this work, we propose TAGAD, a novel Text-Attributed Graph
Anomaly Detection framework that jointly trains the context feature and the se-
mantic feature of texts with graph structure to detect the anomaly nodes. TAGAD
consists of a global GAD module and a local GAD module for detecting global
anomaly nodes and local anomaly nodes. In the global GAD module, we employ
a contrastive learning strategy to jointly train the graph-text model and an autoen-
coder to compute the global anomaly scores. In the local GAD module, an ego
graph and a text graph are constructed for each node. Then, we devise two dif-
ferent methods to compute local anomaly scores based on the difference between
the two subgraphs, respectively, for the zero-shot settings and the few-shot set-
tings. Extensive experiments demonstrate the effectiveness of our model under
both zero-shot and few-shot settings on text-attributed GAD scenarios. Codes are
available at https://anonymous.4open.science/r/TAGAD-1223.

1 INTRODUCTION

Graph anomaly detection (GAD) aims to identify abnormal nodes that exhibit significant deviation
from the majority in the graph, which has attracted much interest due to its wide applications, such
as financial fraud detection [Huang et al.| (2022)), anti-money-laundering [Weber et al.| (2019), and
review management|Dou et al.[(2020). In real-world scenarios, node labeling is often costly, making
the low-resource GAD, where there are few or no labeled nodes, a critical and challenging research
problem.

In the GAD literature, nodes often carry rich textual information, such as the identification of fraudu-
lent reviews on platforms like Amazon. To address anomaly detection on such text-attributed graphs
(TAGs), both the context features capturing the statistical properties of texts and the semantic fea-
tures inflecting the deep linguistic meaning are critical to detect the anomaly nodes. Therefore, it
is essential to design a model that jointly learns context features, semantic features, and the graph
structure.

However, existing GAD methods handle textual features in a simplistic way. Simple bag-of-words
(BOW) representations [Sennrich et al.| (2016) or shallow embedding vectors Mikolov et al.| (2013)
are fed into GAD models as node features. While these techniques enable basic handling of textual
data, they fail to capture its full semantic and contextual richness.

Recent works on Text-Attributed Graphs (TAGs)|Yan et al.[(2023) have explored joint training of the
graph structure and the text embedding for the node classification task. They categorize nodes with
similar text features and similar neighbors into one class. Some of these methods, like G2P2 [Wen
& Fang|(2023) and P2TAG |Zhao et al.|(2024)), utilize the text of the class due to the high similarity
between the text feature and the text of the class. However, in the GAD problem, anomaly nodes
often exhibit diverse and irregular textual and structural patterns, making them difficult to classify
based on similarity. Moreover, it is meaningless to compute the similarity between the node feature

https://anonymous.4open.science/r/TAGAD-1223

Under review as a conference paper at ICLR 2026

and the text of the class, “anomalous” or “normal”. Consequently, existing TAG-based methods
developed for node classification cannot be applied to the GAD problem.

There are two main challenges on TAGs towards the anomaly detection problem. (1) Joint training
of the graph-text model. While some recent works explore joint training of the graph-text model for
tasks like node classification, they are not designed to detect anomaly nodes and thus cannot directly
address the requirements of GAD. (2) Detection of both global and local anomaly nodes. There are
both global and local anomaly nodes in the GAD problem. Global anomaly nodes are those whose
features deviate from the majority of the nodes, while local anomaly nodes exhibit abnormal features
within their immediate neighborhood or subgraph. Thus, a key challenge is how to detect both the
global and local anomaly nodes.

In this paper, we propose a Text-Attributed Graph Anomaly Detection framework called TAGAD,
which jointly trains the context feature and the semantic feature of texts with the graph structure to
find both global and local anomaly nodes. Two modules are composed in TAGAD: a global GAD
module and a local GAD module, designed to identify global and local anomaly nodes, respectively.
In the global GAD module, our model first obtains the semantic embedding by the language model
(LM) and the context graph feature by BOW and GNN, then aligns the GNN and the LM using a
contrastive learning based loss function. Then, the autoencoder-based technique is employed to find
the anomaly nodes. In the local GAD module, two subgraphs are constructed for each node: the ego
graph capturing the local graph structure and the text graph indicating the similarity of the semantic
embedding between neighboring nodes. Then, we devise two different methods to compute the local
anomaly scores, respectively, for zero-shot settings and few-shot settings. Under zero-shot settings,
the difference between the ego graph and the text graph is computed as the local anomaly score.
However, due to the globally shared feature of nodes, textual similarities are uniformly high, thereby
hiding some local anomaly nodes. In few-shot settings, we introduce a common embedding that
captures the common feature of nodes. By removing this common feature, the similarity between
anomalous and normal nodes is reduced, amplifying local deviations and improving the model’s
ability to detect local anomaly nodes.

Accordingly, our main contributions can be summarized as follows:

1. To the best of our knowledge, this is the first attempt towards the anomaly detection prob-
lem on the text-attributed graphs.

2. We propose a novel framework, TAGAD, that jointly trains context and semantic features
of text with the graph structure.

3. In the global module, we introduce the alignment procedure into the reconstruction process,
demonstrating that the alignment method is effective for GAD on the text-attributed graphs.

4. We design a new local GAD module based on comparing each node’s ego graph with its
corresponding text graph.

5. Our proposed TAGAD archives an improvement with +1.2% ~ +44.6% compared to
GAD methods under low-resource settings.

2 RELATED WORK

2.1 GRAPH ANOMALY DETECTION

Existing GAD methods are divided into two groups based on different settings: supervised and
unsupervised. Under the supervised setting, GAD is formulated as a binary classification task.
Various GNN-based supervised detectors have been devised in the lecture Tang et al. (2024),
such as BWGNN [Tang et al.| (2022), AMNet |Chai et al.| (2022), PC-GNN [Liu et al.| (2021a),
H2FDetector|Liu et al.| (2020).

Apart from these supervised detectors, there are numerous unsupervised GAD techniques |Liu et al.
(2022) aiming to detect anomalies without labeled data. As a typical approach in unsupervised
graph learning, Graph Auto-Encoder (GAE) has been widely used in the GAD models, like DOM-
INANT Ding et al.| (2019), ANOMALYDAE [Fan et al.| (2020). There are also numerous methods
using contrastive learning to compute the anomaly score, such as CONAD [Liu et al.| (2021b),
COLA [Liu et al.| (2021b), and NLGAD Duan et al| (2023). Others identify the anomaly nodes

Under review as a conference paper at ICLR 2026

by using traditional shallow methods, like SCAN Roy et al.| (2024), RADAR [Li et al.|(2017), and
ANOMALOUS |Peng et al.| (2018).

2.2 GRAPH PRE-TRAINING AND PROMPT LEARNING

Recently, there has been a boom in the research of graph pre-training Jin et al.| (2020), which aims
to learn the general knowledge of the graphs. Numerous effective graph pre-training models have
been introduced in this area. Among these models, GCA [Zhu et al.| (2021) adopts the node-level
comparison method, while GraphCL [You et al.| (2020) and SimGRACE [Xia et al.| (2022) focus on
the graph-level contrastive learning.

With the increasing interest in the large language model (LLM), utilizing node texts in graphs has
gained growing attention. Many works incorporate pre-trained language models (PLMs), such as
BERT Devlin| (2018]), into graph learning by leveraging node texts. Most of these works follow the
paradigm of pre-training and prompt learning. For example, Prog|Sun et al.|(2023) unifies the graph
prompt and language prompts. G2P2|Wen & Fang|(2023)) pretrains a Graph-Text model by aligning
the graph structure with the corresponding text representation. In the prompt learning phase, the
label texts are used to generate the prompt and jointly train the pre-trained Graph-LLM model.
Similarly, P2TAG [Zhao et al.| (2024) introduces a language masking strategy for pretraining and
utilizes both the label texts and the node texts to build a prompt graph. Nevertheless, these methods
can’t be applied to graph anomaly detection problems, as anomaly nodes vary significantly across
different domains.

3 PRELIMINARIES

In this section, we introduce the background of our paper, including the definition of the text-
attributed graph and the text-attributed graph anomaly detection problem.

Definition 1 (Text-Attributed Graph) A rext-attributed graph (TAG) is a graph G = (V, E, D),
where each node u € V is associated with a text sequence d,, € D and E represents the set of edges
between nodes.

In graph anomaly detection, each node has a label y,, € {0, 1}, where 0 represents normal and 1
represents anomaly. V,, and V, represent the normal node set and anomaly node set, respectively.
We denote Y as the labels assigned to the nodes. The whole graph contains two types of nodes,
the training nodes Vi, and the testing nodes Vi, labeled with Yi,i, and Yiey. Yies are inaccessible
during the training.

Given the above definition, we formally define our problem, text-attributed graph anomaly detection.

Definition 2 (Text-Attributed Graph Anomaly Detection) Given a text-attributed graph G =
(V, E, D), the observed nodes Viyin with label Y, the Text-Attributed Graph Anomaly Detection
problem aims to learn a function f that measures node abnormalities by calculating their anomaly
scores S':

f(G, Y;rain) — 57 (1)
where S € R"™ indicates the anomaly score matrix, and n =| V' | is the node number in the graph.

Low-resource Graph Anomaly Detection. In the low-resource lecture, the number of Y, is small
or even zero. In the K-shot graph anomaly detection problem, the number of anomaly nodes and
normal nodes is K. As a special case, the problem with K = 0 is known as zero-shot classification,
which means that there are no labeled nodes.

4 METHOD

As shown in Figurem our TAGAD model consists of two modules: (a) Global GAD module, which
aligns the GNNs and the LM using a contrastive learning based objective and calculates the global
anomaly scores by the autoencoder. (b) Local GAD module, which computes the local anomaly
scores by comparing the ego graph and the text graph of each node. The pseudocode of the algo-
rithms and complexity analysis of TAGAD are in Appendix

Under review as a conference paper at ICLR 2026

ty, by, st
O Central node 2 n

Mean Initialize

Graph
@ Structure

Contex Feature

[We |
Ego Subgraph Text Subgraph

1 t we
ha || we Construct | & we
hy 7| e s [fw
hy we ty we

Pool | Structural Difference |

‘ Local anomaly score S* [Zﬂ

Graph
Encoder
(GNN)

\

Global anomaly

score S¢
toh| tohy tyhy tyhy tohd tyh,

t3hy| tshy tshq tshy tsh tsh, /

tah| tahy tyhy tyhy tihd tyh Alignment Loss 1o

thy| tih) tihy ek thd 6k

tshy tshy tshyf tshy tshy tsh
tehy| tehy tehd tehy tehs teh,

(a) Global GAD Module

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
: (b) Local GAD Module

Figure 1: Our proposed framework TAGAD. (a) We first align the GNNs and the LM using a
contrastive learning based objective. Then, the GNN decoder is introduced to compute the global
anomaly scores. (b) Next, the common embedding is initialized as the mean embedding of all se-
mantic embeddings. The local semantic embeddings are then obtained by subtracting the semantic
embedding. Then, for each node, the ego graph is built based on the graph structure, while the text
graph is formed by computing the similarity of the local semantic embedding. The local anomaly
score is finally computed by comparing the two subgraphs. The figure only shows the local anomaly
score under few-shot settings, while zero-shot inference adopts a simplified scheme.

4.1 GLOBAL GAD MODULE

In this part, we introduce our proposed global GAD module in detail. The goal of the global GAD
module is to detect the anomaly nodes that deviate from the major distribution. We first introduce
the triple encoders to encode the context embedding by BOW, the semantic embedding by LM,
and the graph structure by GNNs. However, GNNs are randomly initialized, not directly suitable
for detecting global anomaly nodes, and the graph embedding space is different from the semantic
embedding space. Therefore, we divide the global GAD module into two stages. First, we align the
GNNs and LM embedding spaces using the contrastive learning based strategy. Then, we use an
autoencoder-based approach to detect global anomaly nodes.

4.1.1 TRIPLE ENCODERS

In the TAG, text encoding requires capturing both deep semantic information and shallow context
patterns to identify both global and local anomalies. Therefore, along with the GNN to encode
the graph structure, triple encoders are introduced in our global GAD module. The triple encoders
comprise: (1) BOW encoder for shallow context text encoding, (2) LM encoder for deep semantic
text encoding, and (3) GNN encoder for graph structural encoding.

Shallow context Encoder To capture shallow context features of the texts, we first employ the
BOW (Bag of Words) technique to obtain the context embedding. For each text d,,, we compute
z, € R¥ as 2, = BOW(d,), where dy is the vocabulary size. These context features show
distributional anomalies that may not appear in the deep semantic space.

Deep Semantic Encoder While the BOW can capture the context feature, it may miss the con-
textual semantic information of the TAG. Therefore, we use a typical pre-trained language model,
BERT Devlin| (2018)) with 110M parameters. The BERT model is trained using the masked language
modeling objective. We use the starting token ([CLS]) to represent a summary of the input text. For
a text d,, its semantic embedding is denoted as ¢,, € R%, where t,, = LM(d,,). Let T represent the
semantic embedding matrix. Since BERT has already been optimized on large corpora, we freeze
its parameters and only train the GNN component.

Under review as a conference paper at ICLR 2026

Structural Graph Encoder For the GNN encoder, we choose the classic GCN [Kipf & Welling
(2016) module, which effectively integrates the feature of graphs with the graph structure. For each
node u, the graph embedding hf, € R is encoded by GNNs, hf, = GNN(z,,), where dy is the
encoder size. Likewise, let H¢ be the graph embedding matrix encoded by GNNs. We use context
(BOW-based) embedding rather than semantic embeddings as the GNN input, as the GNN operates
over the entire graph structure.

4.1.2 TEXT-GRAPH ALIGNMENT

In this stage, we align the graph encoder with the text encoder. In the triple-encoders, the space of
the graph embedding H is different from the semantic embedding space T'. Therefore, we first feed
the feature encoded by GNNs to an MLP to align the space:

where h,, indicates the decoded context feature by the MLP. We denote H as the projected graph
feature. Then, the scaled cosine similarities A € R™*" between the semantic embeddings 7" and the
decoded feature embeddings H are computed:

A=T-H" xe, (3)
where 7 indicates the hyperparameter temperature to scale the similarity values.

Then, in the first stage, we use a contrastive learning based loss function to align the semantic
embeddings and the projected graph embeddings:

L1
L* = 5(CE(A,yp) + CE(AT, yp)), @

where yp = (1,2,...,n)T is the pseudo label vector for contrastive training and CE denotes the
cross entropy loss function.

4.1.3 GRAPH DECODER

As discussed before, GAEs have been proven to be effective in the GAD task. The features of global
anomaly nodes deviate significantly from the majority, making them difficult to reconstruct using
GNNs. In contrast, normal nodes tend to be more easily reconstructed. Therefore, after alignment
for some epochs, a graph decoder is introduced to reconstruct the context feature and detect the
anomaly nodes. The decoded feature #,, € RY is obtained by GNN:

iy = GNN(hy). (5)

Let X be the decoded embedding matrix. The loss function LE of the second stage combines the
reconstruction loss and the alignment loss:

LO=(1—a)|X — X|2+al?, (6)

where o balances the reconstruction loss and the alignment loss. Let LS be the loss score of node
u. We reconstruct the context feature rather than the semantic feature, as they capture more of the
statistical distribution, thus more effective to identify global anomaly nodes. Experiments in the
Appendix [D.2]also show that the context features are more important than semantic embeddings in
TAGs towards the anomaly detection problem.

Finally, the global anomaly score s& is computed by the loss score of each node: s = NorM(LS),

where the min-max Normalization is employed to normalize the global anomaly score. The align-
ment loss score is critical in TAGs towards the anomaly detection problem. For anomaly nodes, the
inconsistency between their graph-based context and their textual semantic features makes it diffi-
cult to align the GNN and LM, resulting in a high alignment loss. In contrast, the normal nodes,
which typically exhibit coherent context and content, are easier to align, leading to a low alignment
loss.

Under review as a conference paper at ICLR 2026

4.2 LocAL GAD MODULE

In this stage, we propose a novel local GAD module to compute the local anomaly score of nodes.
As discussed in Section [I] there is a distinct distribution difference between the local anomaly node
and its neighbors. Therefore, TAGAD leverages the local subgraph of each node to compute the
local anomaly score.

Specifically, for each node u, we construct two subgraphs: the ego graph G% and the text graph
G%. The ego graph captures the original local graph structure, while the text graph G’ reflects
node similarity within the local neighborhood based on semantic features. For an anomaly node
whose neighbor features differ substantially, the text similarity with its neighbors is low, leading to
a significant mismatch between G%. and G'%,.

Therefore, we define the local anomaly score of node u as the difference between G and G%.
In the zero-shot settings, the final anomaly score is computed by combining the local and global
anomaly scores directly. In the few-shot settings, instead of training the full model, we learn a
common embedding that captures the shared semantics among nodes. By subtracting this common
embedding from the semantic features, we amplify the distinction between the ego and text graphs,
thereby making anomalies more detectable. Theoretical justifications of the proposed local GAD
module can be found in Appendix [B]

4.2.1 ZERO-SHOT DETECTION.

Under the zero-shot settings, we first construct two subgraphs for each node u: the ego graph G,
and the text graph G%.. To build the ego graph, we select up to W first-order neighbors of the node
u, along with w itself, to form the node set V,, of the ego graph (W = 100 in practice). The induced
subgraph over V,, from the original graph then forms the ego graph G'%.

In the text graph construction, we aim to capture semantic similarity among nodes in V,, using their
semantic embeddings 7". For each pair of nodes 7, 7 € V,,, we compute their similarity based on the
semantic embeddings. An edge (i,7) € EI is added if the similarity exceeds a threshold e:

]., lfSIM(t“t]) > €,

Agtid) ={y

where A%, denotes the adjacency matrix in the text graph and SIM is the cosine similarity function.

(7

otherwise,

In the message passing, for the local anomaly node, the feature is always different from its neighbors.
Therefore, we use the difference between G'% and G to indicate the local anomaly score of a node
u. First, we get the summary embeddings Z3 and Z7 of two subgraphs G'% and G%:

Zp = READOUT (h;;i € V), Zf = READOUT(t;;4 € V,,), (8)
where READOUT means the pooling operation, such as mean pooling and max pooling.

The difference between the ego graph and the text graph is analyzed across two dimensions: feature
and structure. We quantify the feature difference as the distance between their respective summary
embeddings, and the structural difference as the distance between their adjacency matrices :

sy = NORM([| Z} — Zp |2 + || A — A% l2),

where A% and A% indicate the adjacency matrix of two subgraphs. Similarly, Min-Max Normaliza-
tion is also used here as the NORM function.

Finally, the summary score consists of two parts: the local anomaly score reflecting the local dis-
crepancy and the global anomaly score indicating the common anomaly likelihood:

sy = (1= N\)s8 4+ \sk,)
where A\ € (0, 1) indicates the hyperparameter to control the importance of the local anomaly score.
4.2.2 FEW-SHOT DETECTION

In subgraph construction, semantic features often contain excessive common information, which
leads to uniformly high similarity among nodes and hides the local anomaly nodes. Therefore,

Under review as a conference paper at ICLR 2026

it becomes critical to determine an appropriate value for the sensitivity parameter €. In the few-
shot settings, we intend to remove this common information from the local subgraph to amplify
the structural differences for anomaly nodes. Consequently, a trainable parameter w; € R% with
common knowledge is learned. We use the mean embedding of all the features to initialize: w; =
MEAN(t,;u € V).

Then, the common embedding is removed from the graph embedding and the semantic embedding,
ie., hl = h; —wy,tt = t; — wy, where hl and ¢! denote the local graph embedding and the local
semantic embedding of node i.

Then, we build the ego graph and the text graph similarly. When building the text graph, the binary
indicator in Eq[/|is non-differentiable, making the Neural Network hard to train. To address this
issue, we approximate the binary indicator with the Gumbel softmax trick|Jang et al.| (2017)) to build
the text graph. Specifically, the text graph is computed by:

AX(i,) = Sigmoid((Sim(t}, %) + log § — log(1 — 6))/7,), (10)

1)
where 6 ~ Uniform(0, 1) is the sampled Gumbel random variate and 7, > 0 is the temperature
hyperparameter of Gumbel softmax, which is closer to 0. In this way, the A% (4, j) tends to be closer
toOor 1.

After that, we use the same functions as Eq. [§]to get the summary embeddings Z}; and Z7. Finally,
the Cross Entropy Loss is used as the loss function of the local GAD module:

L"=)" CE(yu,sy) (11)

UE Virain

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets The experiments were performed on four datasets, including Cora, Arxiv, Pubmed, and
Yelp. Among them, Cora, Arxiv, and Pubmed datasets are synthetic datasets, while Yelp is a real-
world dataset. We employ a widely used method Sen et al.| (2008) in GAD to inject the anomaly
nodes into the graph to construct the synthetic datasets. A detailed description of each dataset and
the anomaly injection process is provided in Appendix

Baselines We compare TAGAD with both unsupervised and supervised learning methods. These
methods can only deal with the numeric feature, so we use the BOW feature here. We also compare
the performance of baselines by the LM feature and the concatenation of the BOW feature and the
LM feature in Appendix

Unsupervised learning methods include traditional shallow methods SCAN Xu et al.| (2007),
Radar L1 et al.| (2017) and ANOMALOUS [Peng et al.|(2018), reconstruction based methods, DOM-
INANT Ding et al.| (2019), AnomalyDAE |Fan et al.| (2020), and GAD-NR |Roy et al.| (2024),
contrastive learning based methods, CONAD [Xu et al.| (2022), NLGAD Duan et al.| (2023)), and
CoLA |Liu et al|(2021Db)) .

Supervised learning methods include two conventional GNNs, GCN |Kipf & Welling (2016)) and
GAT |Velickovi¢ et al.| (2017), five state-of-the-art GNNs specifically designed for GAD, i.e.,
GATSEP |Platonov et al.| (2023), PC-GNN |[Liu et al.| (2021a), AMNET |Chai et al.| (2022), and
BWGNN [Tang et al.[(2022), and two decision-tree based GAD methods, XGB-GRAPH and RF-
GRAPH Tang et al.| (2024). For detailed information, refer to Appendix [C.2}

We also conduct experiments by removing the key components of TAGAD on all datasets. Specifi-
cally, we evaluate four variants, namely TAGAD(A), TAGAD(R), TAGAD(G), and TAGAD(L). In
TAGAD(A), only the alignment loss is used as the anomaly score, without incorporating the recon-
struction loss and the local GAD module. Similarly, in TAGAD(R), the alignment stage is removed,
and the reconstruction loss alone is used to compute the anomaly score. TAGAD(G) removes the
local GAD module and relies on the global anomaly score for prediction. Conversely, TAGAD(L)
eliminates the global GAD module, using only the summary representations from the LM as node
features in the local subgraph for anomaly detection.

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot classification performance with 95% confidence intervals. The highest
performance is highlighted in boldface; the second highest performance is underlined. “-”
indicates that the algorithm cannot complete on large datasets due to limited GPU memory.

Method Cora Arxiv Pubmed Yelp
SCAN 0.705 £0.098 | 0.635 £ 0.107 | 0.623 £ 0.068 | 0.500 £ 0.010
RADAR 0.578 £+ 0.029 - 0.494 + 0.022 -
ANOMALOUS | 0.550 4+ 0.036 - 0.479 £ 0.061 -
DOMINANT | 0.780 +£0.176 | 0.705 £ 0.002 | 0.693 £+ 0.202 | 0.372 £ 0.001
ANOMALYDAE | 0.773 £ 0.012 - 0.874 £ 0.072 -
GAD-NR 0.742 £0.132 - 0.659 £ 0.065 -
CONAD 0.827 £ 0.073 | 0.694 £ 0.012 | 0.710 £ 0.144 | 0.383 £ 0.003
NLGAD 0.665 + 0.021 - 0.571 £ 0.003 -
COLA 0.536 £+ 0.008 - 0.277 £ 0.010 -
TAGAD 0.930 £ 0.001 | 0.747 £+ 0.001 | 0.915 + 0.001 | 0.568 £ 0.002
TAGAD(A) 0.771 £0.003 | 0.634 £ 0.002 | 0.761 £ 0.001 | 0.512 £ 0.018
TAGAD(R) 0.762 £ 0.001 | 0.729 +0.002 | 0.841 + 0.002 | 0.390 + 0.000
TAGAD(G) 0.917 £0.018 | 0.731 £ 0.013 | 0.895 + 0.006 | 0.565 £ 0.005
TAGAD(L) 0.755 £ 0.000 | 0.507 £ 0.000 | 0.713 £ 0.000 | 0.511 &£ 0.000

Evaluation and Implementation Following the benchmark Tang et al.| (2024), we employ Area
Under ROC (AUC) as our evaluation metric for GAD. We report the average AUC across 5 trials.
More implementation details can be found in Appendix|C.3] We also report the performance of other
metrics, including F1-score and Recall @K (Appendix[D.I). All experiments were run on an Ubuntu
18.04 LTS server with six Intel Xeon 6130 CPUs (13 cores, 2.10GHz), 256GB of main memory,
and two NVIDIA GeForce RTX V100 GPUs.

5.2 PERFORMANCE OF GAD

Zero-shot We first compare TAGAD with unsupervised baseline methods. The results are shown
in Table |l We have the following observations: (1) The proposed TAGAD performs best on most
datasets, with an average improvement of +4.1% ~ 444.6%. In the Arxiv and Yelp dataset, most of
the models can’t work due to the limited GPU memory, while our model can perform well because
only two simple GCN and MLP are trained in the global module. (2) We can also find a huge
improvement in TAGAD compared with the four variants of TAGAD. Specifically, TAGAD achieves
an improvement in AUC of 2.3% and 17.5% compared to TAGAD(G) and TAGAD(L) in the Cora
dataset. This improvement is due to the combination of both the global anomaly score and the local
anomaly score. The TAGAD(G) method also performs better than TAGAD(A) and TAGAD(R)
because of the two stages of alignment and reconstruction.

Five-shots Table 2| shows the comparison results of TAGAD with supervised methods under the
five-shots settings. The global GAD module of TAGAD is unsupervised, so we don’t compare
TAGAD(A), TAGAD(R), and TAGAD(G) in this setting and only compare the local GAD module
TAGAD(L). TAGAD consistently emerges as the top performer, outperforming the best baseline
by around 1.2% ~ 18.3%. Notably, the decision-tree-based methods, such as XGB-Graph and RF-
Graph, which perform well in the GAD problem under fully supervised settings |Tang et al.| (2024),
suffer notable degradation under the few-shot settings. This suggests that these models are heavily
reliant on labeled datasets and struggle to generalize under few-shot settings.

5.3 ABLATION STUDIES

To better analyze the impact of LMs, we explore other LMs such as e5-v2-base |Wang et al.| (2022)
with 110M parameters. We also try larger LMs such as e5-v2-large with 335M parameters and
DeBERTa-large with 350M parameters. Notably, the LM in our work is used for encoding the
text. Therefore, we don’t use LLM in the experiment because they are generally based on decoder-
only transformers. The LM is mainly used in the global module, so we only report the performance
achieved with P2TAG(G) under zero-shot settings. The results are reported in Table[3] Generally, the

Under review as a conference paper at ICLR 2026

Table 2: Five-shot classification performance with 95% confidence intervals.

Method Cora Arxiv Pubmed Yelp
GCN 0.668 + 0.040 | 0.854 +0.023 | 0.667 £ 0.113 | 0.516 + 0.045
GAT 0.632 +0.130 | 0.740 £ 0.029 | 0.715 £ 0.016 | 0.576 + 0.037
GATSEP 0.617 £+ 0.100 | 0.690 + 0.049 | 0.721 £ 0.033 | 0.564 + 0.069
PC-GNN 0.561 +0.170 | 0.745 + 0.006 | 0.750 £ 0.022 | 0.523 + 0.027
AMNET 0.503 +0.102 | 0.701 £0.070 | 0.783 + 0.059 | 0.523 4+ 0.088
BWGNN 0.768 + 0.138 - 0.714 + 0.066 -
XGB-GRAPH | 0.500 & 0.000 | 0.500 £ 0.000 | 0.500 £ 0.000 -
RF-GRAPH | 0.744 £0.138 | 0.744 £ 0.031 | 0.620 £+ 0.094 -
TAGAD 0.937 + 0.001 | 0.884 + 0.001 | 0.930 + 0.000 | 0.588 + 0.000
TAGAD(L) | 0.762 +0.002 | 0.757 +0.000 | 0.702 4+ 0.002 | 0.521 4+ 0.000
Table 3: Ablation study of different language models.
M Cora Arxiv Pubmed Yelp
AUC | Time(s) | AUC | Time(s) | AUC | Time(s) | AUC | Time(s)
DeBERTa-base 0.917 11.01 0.731 | 700.38 | 0.895 61.27 0.565 | 144.53
e5-v2-base 0.921 10.69 0.728 | 850.17 | 0.893 62.95 0.554 | 144.96
DeBERTa-large 0.915 42.14 | 0.727 | 1923.86 | 0.883 | 198.83 | 0.558 | 219.73
e5-v2-large 0.912 34.81 0.725 | 1671.43 | 0.879 | 15528 | 0.562 | 214.97
DeBERTa-base (FT) | 0.518 | 561.25 - - 0.562 | 1981.44 - -
e5-v2-base (FT) 0.671 | 564.77 - - 0.486 | 3941.81 - -
DeBERTa-large (FT) | 0.511 | 549.87 - - 0.572 | 1672.92 - -
e5-v2-large (FT) 0.582 | 167143 - - 0.493 | 1675.40 - -

results of different LMs are quite similar, typically within 1% in most cases. These small differences
may be attributed to dataset-specific noise.

An external experiment is conducted to assess whether to fine-tune the LM. We observe that training
with the fine-tuned LM is significantly slower than using the frozen LM. More critically, fine-tuning
results in suboptimal performance, for example, achieving only 0.518 AUC on the Cora dataset,
whereas the frozen LM attains much higher accuracy. This performance gap is caused by the mis-
match between the pretrained LM and the randomly initialized GNN during early training. Since
the pretrained LM already encodes rich semantic information, introducing noise from the under-
trained GNN during joint optimization will cause the LM’s representation quality to degrade. This
mismatch leads to a decrease in overall performance compared to keeping the LM frozen.

6 CONCLUSIONS

In this paper, we study the problem of anomaly detection on the TAG. We propose a novel framework
named TAGAD, which consists of two modules, respectively a contrastive learning based global
GAD module and a subgraph comparison based local GAD module. The global GAD module
utilizes a contrastive learning based method to align the GNN and LM, and then employs the graph
autoencoder to compute the global anomaly scores. In the local GAD module, we compute the local
anomaly scores by comparing the ego graph and the text graph for each node. Extensive experiments
on four datasets demonstrate the effectiveness of our model compared to existing approaches.

7 REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/TAGAD-1223. Proofs
of all theorems in the main text are in Appendix

 https://anonymous.4open.science/r/TAGAD-1223

Under review as a conference paper at ICLR 2026

REFERENCES

Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang. Can
abnormality be detected by graph neural networks? In IJCAI pp. 1945-1951, 2022.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
networks. In Proceedings of the 2019 SIAM international conference on data mining, pp. 594—
602. SIAM, 2019.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th
ACM international conference on information & knowledge management, pp. 315-324, 2020.

Jingcan Duan, Pei Zhang, Siwei Wang, Jingtao Hu, Hu Jin, Jiaxin Zhang, Haifang Zhou, and Xin-
wang Liu. Normality learning-based graph anomaly detection via multi-scale contrastive learning.
In Proceedings of the 31st ACM International Conference on Multimedia, pp. 7502-7511, 2023.

Haoyi Fan, Fengbin Zhang, and Zuoyong Li. Anomalydae: Dual autoencoder for anomaly detec-
tion on attributed networks. In ICASSP 2020-2020 IEEFE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5685-5689. IEEE, 2020.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection.
Advances in Neural Information Processing Systems, 35:22765-22777, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang.
Self-supervised learning on graphs: Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection in
attributed networks. In IJCAI, volume 17, pp. 2152-2158, 2017.

Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu
Chen, Hao Peng, Kai Shu, et al. Bond: Benchmarking unsupervised outlier node detection on
static attributed graphs. Advances in Neural Information Processing Systems, 35:27021-27035,
2022.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: a gnn-based imbalanced learning approach for fraud detection. In Proceedings of the
web conference 2021, pp. 3168-3177, 2021a.

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection
on attributed networks via contrastive self-supervised learning. IEEE transactions on neural
networks and learning systems, 33(6):2378-2392, 2021b.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsis-
tency problem of applying graph neural network to fraud detection. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information retrieval, pp.

1569-1572, 2020.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

10

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. Anomalous: A joint model-
ing approach for anomaly detection on attributed networks. In IJCAI, volume 18, pp. 3513-3519,
2018.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Amit Roy, Juan Shu, Jia Li, Carl Yang, Olivier Elshocht, Jeroen Smeets, and Pan Li. Gad-nr:
Graph anomaly detection via neighborhood reconstruction. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining, pp. 576-585, 2024.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715. Association for Computational Linguistics, 2016.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’23, pp. 2120-2131, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599256. URL
https://doi.org/10.1145/3580305.3599256.

Jianheng Tang, Jiajin Li, Zigi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In International Conference on Machine Learning, pp. 21076-21089. PMLR, 2022.

Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting and bench-
marking supervised graph anomaly detection. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-
son, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591, 2019.

Zhihao Wen and Yuan Fang. Augmenting low-resource text classification with graph-grounded pre-
training and prompting. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 506-516, 2023.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Confer-
ence 2022, pp. 1070-1079, 2022.

Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. Scan: a structural clustering
algorithm for networks. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 824-833, 2007.

Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed network
anomaly detection with data augmentation. In Pacific-Asia conference on knowledge discovery
and data mining, pp. 444-457. Springer, 2022.

11

https://doi.org/10.1145/3580305.3599256

Under review as a conference paper at ICLR 2026

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Bench-
marking and rethinking. Advances in Neural Information Processing Systems, 36:17238-17264,
2023.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812-5823, 2020.

Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny
Kharlamov, Shu Zhao, and Jie Tang. Pre-training and prompting for few-shot node classification
on text-attributed graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4467-4478, 2024.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the web conference 2021, pp. 2069-2080, 2021.

12

Under review as a conference paper at ICLR 2026

Algorithm 1: TAGAD(G)
Input : A TAG G = (V, E, D), the total training epoch N, the first stage training epoch M,
the scaled temperature 7, the similarity threshold ¢, the hyperparameter o

Output: Global anomaly score S of all nodes.

1 T=LM(D),X =BOW(D);

2 p = True;

3 for epoch =1,...,N do

4 H& = GNN(X;0g);

5 H =MLP(HS;0) ;

s | X =GNN(H;0p);

7 A=T -HT xe™;

s | L*=(CE(Ay) +CE(AT y))/2;

o | LF=(1-a)|X — X]|2:

10 if p then

1 ‘ IS =12

12 else

13 | LS=(1-a)L*+aLl®;
14 if epoch > M then

15 | p=False

16 Update the weight parameters 6, 0, and 6 by using gradient descent
17 S¢ = NorM(L) ;
18 return SC;

Algorithm 2: TAGAD(L)

Input : ATAG G = (V, E, D), a set of training nodes Vi, the class label y; of the node
Vi € Virain, the training epochs N, the projected features H, the semantic embeddings
T, the similarity threshold e

QOutput: Anomaly score Sy, of all nodes.

1 wy = MEAN{t,;u € V};

2 for epoch =1,..., N do

3 H=H—w;

4 T=T—w;;

5 for v € Vi, do

6 Sampling W first-order nodes of v to form the ego graph AY ;
7 Build the text graph A%, using Eq.|10|;

8 Compute ego graph embedding Z7, and text graph embedding Z7 and using Eq.
9 sy = NorM(|| Zf; — Z| + || A% — AR])

10 Compute the loss L using Eq.|11|;

11 Update w; by using gradient descent
12 forv e V do

13 \ Compute the local score SZ using a similar way to Lines 6-9.

14 return ST;

A ALGORITHM AND COMPLEXITY

A.1 ALGORITHMIC DESCRIPTION

The global GAD module of TAGAD, the local GAD module of TAGAD are presented in Algorithm(T]
and Algorithm 2] respectively.

13

Under review as a conference paper at ICLR 2026

A.2 COMPLEXITY ANALYSIS

In the global module, Lines 1-2 are pre-processing. For each epoch, the time complexity of the
GNN encoder (line 4) is O(nLdydy), where L is the layer number of the GNN. In line 3, it takes
O(ndudy) in the feature projection. In line 6, the GNN decoder process takes O(ndLdy) Overall,
the time complexity of Algorithmis bounded by O(Nn(Ldydy + LdLdy + dudy))

In the local module, it takes O (ndy.) for initialization (line 1). Then, for each epoch and each training
node v, it takes O(W) to sample an ego graph AY, (line 6) and takes O (W 2dy) to build the text graph
A%, (line 7). Then, the time complexity of Eq. s O(Wdy). In the few-shot settings, there are few
nodes in Vii,. Therefore, it takes O(N W?2d.) to train the local module of TAGAD (lines 2—11).
Similarly, computing the local anomaly score S; (lines 12—13) takes O(nW?2dy). Overall, the time
complexity of Algorithm [2]is bounded by O(nW?2dy)

B THEORETICAL ANALYZE

B.1 LOCAL ANOMALY SCORE

Theorem 1 Given a TAG G = (V, E, D), in the local GAD module, the expected local anomaly
score for anomaly nodes is greater than that for normal nodes.

To prove this theorem, we make the following assumptions:

1. For a local anomaly node, the feature deviation is random, not correlated to its neighbors.

2. For normal nodes, the structural and textual similarities are positively correlated, as their
text content and graph neighbors are semantically coherent.

3. For a normal node, the feature deviation from the overall distribution is similar to that of
its neighboring nodes.

We first consider the structural difference between G and Gr:

E(||Ax — A7) = ZE[(A%(Z}J') — A% (i, 5))]
J (12)
= Z Var(A% (i, 7)) + Var(Ar (i, j)) — Cov(A% (4, j)), At (i, 5)))

1,jEVy

According to our assumption, for an anomaly node u, the ego graph and the text graph are less corre-
lated the normal nodes v, so Cov(A%(u, 5)), A% (u,j)) < Cov(A%(u,j)), A% (u,j)). Meanwhile,
the feature of anomaly nodes is more random. Hence, the variance of the text graph for anomaly
nodes is also large. Overall, the expected structural difference between the ego graph and the text
graph is larger for anomaly nodes than for normal nodes.

As discussed in Section 4.1} the feature embedding difference for anomaly nodes is also higher due
to the hard alignment. Therefore, the total difference between the ego graph and the text graph,
comprising both feature and structural components as defined in Eq.[0] serves as an effective local
anomaly score, particularly sensitive to the presence of anomaly nodes.

B.2 REMOVE EMBEDDINGS

Theorem 2 Given a TAG G = (V, E, D), and the common embedding vector w; representing the
shared semantic information among node features, in the local GAD module, removing w; from the
semantic embeddings in the local GAD module amplifies the structural differences between the ego
graph and the text graph for anomaly nodes.

We denote the semantic embedding for the node ¢ as t; = w; + J;, where J; is a deviation. 9; is

a significant deviation for anomaly nodes, while ¢; is a small noise, related to the structure of the
normal nodes. For the original similarity between node ¢ and node 7,

14

Under review as a conference paper at ICLR 2026

Dataset #Node #Edges #Attributes #Anomalies (Rate)

Cora 22K 8.1K 1361 194(8.51)
Arxiv 169K 1.4M 128 10K(6.14)
Pubmed 19K 112K 500 963(4.89)
Yelp 379K 1.9M 257 44K (11.6)

Table 4: Statistics of datasets.

) ti-t; (wy + 6;) - (we + 04)
tit:) = I = e 13
sim(ti) = 5] = Twe + oulTwr 16,1 13

It can be easily found that the common feature hides local anomalies by inducing high similarities.
In the special case, if wy > §;, the similarity sim(t;,¢;) ~ 1 for any pair of nodes, regardless of
whether they are normal or anomalous.

After removing wy, the local embedding is §; for node i. Therefore, the new similarity is:
0; - 05

sim(t,,t)) = ——I— (14)
)= T

From the above assumptions, for a normal node, J; and d; are similar, leading to high similarity.
However, for anomaly nodes, §; is uncorrelated with neighbors’ deviations, leading to significantly
lower similarity scores. Consequently, the structure of the text graph diverges more strongly from
that of the ego graph for anomaly nodes, thereby amplifying the local anomaly signal.

Overall, removing the common embedding w; from the semantic embeddings amplifies the struc-
tural differences between the ego graph and the text graph for anomaly nodes.

C DETAILS OF EXPERIMENT SETUP

C.1 DESCRIPTION OF DATASETS

The statistics of the datasets are shown in Table [} The Yelp dataset is obtained from the real
world, while the others are synthetic datasets. We make a slight modification to the widely used ap-
proach|Liu et al.|(2022) to inject anomaly nodes in the TAG. Specifically, we employ two techniques:
injecting structural anomaly nodes and injecting contextual anomaly nodes. A detailed description
of the method is provided below.

Injecting structural anomaly nodes. In this technique, we create g densely connected groups of
nodes to inject the structural outliers. Each group contains m nodes, resulting in a total of m X g
structural anomaly nodes. Specifically, for each group, we first randomly sample m nodes without
replacement to form this group. Then, for these nodes, we make them fully connected and then drop
each edge independently with probability p. In experiments, we set p = 0.2.

Injecting contextual anomaly nodes. In this technique, we inject o contextual anomaly nodes.
First, we sample o nodes as contextual anomaly nodes from the node set V' without replacement.
These selected nodes are denoted as V., where |V..| = o. The remaining nodes V,, = V' \ V, form
the reference set. Then, for each node v € V., we randomly choose ¢ nodes without replacement
from V.. Among these q reference nodes, we identify the most dissimilar node u to v by computing
Euclidean distances and then modifying s, = s,,.

C.2 DESCRIPTION OF BASELINES

For the baseline methods, we several several unsupervised and supervised methods addressing the
GAD problem. We don’t compare our method with TAG-based approaches designed for node clas-
sification, such as [Zhao et al.| (2024); [Wen & Fang| (2023), as these methods rely on label text that
is strongly correlated with node text, a condition that is absent in the GAD problem.

15

Under review as a conference paper at ICLR 2026

The following unsupervised learning methods are compared to demonstrate the effectiveness of the
proposed TAGAD under zero-shot settings.

* SCAN Xu et al|(2007): A structural clustering method to detect clusters and anomaly
nodes based on a structural similarity measure.

* RADAR|Lietal.|[(2017): A learning framework that characterizes the residuals of attribute
information.

* ANOMALOUS |Peng et al.|(2018)): A joint framework to conduct attribute selection and
anomaly detection jointly based on CUR decomposition and residual analysis.

¢ DOMINANT Henaff et al. (2015): GNN that reconstructs the features and structure of the
graph using the auto-encoder.

* ANOMALYDAE [Fan et al.| (2020): GAE that reconstructs both node embeddings and at-
tribute embeddings.

* GAD-NR|Roy et al.|(2024): GAE that incorporates neighborhood reconstruction.

* CONAD Xu et al|(2022): GNN that uses a data augmentation strategy to model prior
human knowledge.

* NLGAD |Duan et al.| (2023): Normality learning-based GNN via multi-scale contrastive
learning.

* COLALiu et al(2021b): A contrastive learning based GNN that captures the relationship
between each node and its neighboring structure.

The following supervised learning methods are compared to highlight the effectiveness of the pro-
posed TAGAD under few-shot settings.

* GCNKipf & Welling|(2016): Standard graph convolution network (GCN).

* GAT |Velickovi€ et al.|(2017): Standard graph attention network (GAT).

* GATSEP Platonov et al.|(2023): GNN that deals with the heterophilous graphs.
e PC-GNN |Liu et al.| (2021a): GNN that handles imbalanced classes.

* AMNET (Chai et al.| (2022): GNN that analyzes anomalies via the lens of the graph spec-
trum.

* BWGNN [Tang et al.|(2022)): GNN using graph spectral filters to detect fraudsters.

* RF-GRAPH Tang et al.|(2024): Tree-ensembled method using random forest and neighbor
aggregation.

* XGB-GRAPH [Tang et al.| (2024): Tree-ensembled method using XGBoost and neighbor
aggregation.

C.3 DETAILS OF IMPLEMENTATION

We implemented TAGAD in PyTorch 2.2.0|Paszke et al.|(2019) and Python 3.11. For our model, the
selection of LMs and GNN:s is flexible. In our experiment, we chose a representative LM DeBERTa-
base and a powerful GCN backbone. The DeBERTa-base is a pre-trained language model with 100M
parameters. The hidden size dy. of the DeBERTa-base model is 768. We keep the same hidden size
of the GCN model with DeBERTa-base. We use the AdamW optimizer with the learning rate 0.001
and the weighting decay 0.0005 for model optimization. For all datasets, we run 200 epochs in
the global GAD module and 50 epochs in the local GAD module. In the global GAD module, the
scaled temperature 7 is 0.07. In the local GAD module, the similarity threshold € is 0.95. The
hyperparameters «, A are set to be 0.6 and 0.4.

For the hyperparameter selection, in the global module, we select the hyperparameters o to minimize
the loss function LE. In the local module, under the zero-shot settings, we select the hyperparameters
A and € to minimize the summary of anomaly score S. Under the few-shot settings, we select and A
according to the cross-entropy loss Ly..

For the baseline methods, we adopted the default parameters reported in the original papers for
NLGAD and COLA. For the other baselines, we use the codes and parameters provided in the

16

Under review as a conference paper at ICLR 2026

Table 5: Performance Comparison under F1-macro and Rec @K metrics.

Method Cora Arxiv Pubmed Yelp
Fl-macro | Rec@K | Fl-macro | Rec@K | Fl-macro | Rec@K | Fl-macro | Rec@K
SCAN 0.323 0.278 0.506 0.624 0.216 0.135 0.134 0.135
RADAR 0.011 0.139 - - 0.057 0.054 - -
ANOMALOUS 0.022 0.145 - - 0.039 0.034 - -
DOMINANT 0.163 0.357 0.116 0.429 0.006 0.105 0.211 0.062
ANOMALYDAE 0.512 0.518 - - 0.261 0.525 - -
GAD-NR 0.000 0.371 - - 0.001 0.085 - -
CONAD 0.391 0.443 0.116 0.428 0.007 0.101 0.211 0.063
NLGAD 0.478 0.133 - - 0.487 0.087 - -
COLA 0.478 0.077 - - 0.487 0.036 - -
TAGAD 0.796 0.771 0.730 0.397 0.516 0.578 0.474 0.156

PyGOD library [Liu et al.|(2022) under zero-shot settings, and those from the GADBench Tang et al.
(2024) under few-shot settings. The links to their source codes are as follows:

* PyGOD: https://github.com/pygod-team/pygod

GADBench: https://github.com/squareRoot3/GADBench

NLGAD: https://github.com/FelixDJC/NLGAD

COLA: https://github.com/TrustAGI-Lab/CoLA

D SUPPLEMENTAL EXPERIMENTS

D.1 PERFORMANCE IN OTHER METRICS

We compare experiments to evaluate the performance of our model on other metrics commonly used
in the GAD problem, including the F1-macro and Recall @k [Tang et al.| (2024); |Liu et al.| (2021a).
The Fl-macro is the unweighted mean of the F1-score of each class. The Recall@k is determined
by calculating the recall of the true anomalies among the top-k predictions that the model ranks with
the highest confidence.

The results are as shown in Table[5] We can observe that TAGAD emerges as the winner in other
metrics for all datasets.

D.2 PERFORMANCE WITH OTHER FEATURES

In this experiment, we compare our model performance with unsupervised baselines using the LM
features alone and the combined BOW and LM features as input. The results are shown in Ta-
ble [6] and Table[7] We have the following observations: (1) Our model continues to outperform the
baselines using the LM features and the combined features. (2) As shown in Table @ most models
achieve better performance using BOW-based context features than using LM-based semantic fea-
tures, indicating that context features play a more critical role than semantic features in GAD tasks.
(3) As shown in Table[/| the baselines perform even worse with the combined features than with
BOW features alone in most cases. This highlights the importance of joint modeling, rather than
simple feature concatenation, for effectively leveraging textual information in GAD.

D.3 PERFORMANCE COMPARISON IN TERMS OF AUC
We compare TAGAD with 6 unsupervised baselines in four datasets. The ROC curves on four

datasets are illustrated in Figure 3] We can find that the True Positive Rate of our model is higher
than that of other models in most conditions.

17

https://github.com/pygod-team/pygod
https://github.com/squareRoot3/GADBench
https://github.com/FelixDJC/NLGAD
https://github.com/TrustAGI-Lab/CoLA

Under review as a conference paper at ICLR 2026

Table 6: Performance Comparison with the LM features.

Method Cora | Arxiv | Pubmed | Yelp
SCAN 0.705 | 0.635 | 0.623 | 0.500
RADAR 0.470 - 0.636 -

ANOMALOUS | 0.458 - 0.569 -
DOMINANT | 0.554 | 0.501 0.594 | 0.561

ANOMALYDAE | 0.536 - 0.700 -
GAD-NR 0.600 - 0.700 -
CONAD 0.590 | 0.499 0.552 0.576
NLGAD 0.569 - 0.565 -
COLA 0.532 - 0.495 -
TAGAD 0.930 | 0.747 0.915 0.568

Table 7: Performance Comparison with the combined BOW and LM features.

Method Cora | Arxiv | Pubmed | Yelp
SCAN 0.705 | 0.668 | 0.623 | 0.500
RADAR 0.580 - 0.489 -

ANOMALOUS | 0.598 — 0.358 -
DOMINANT | 0.707 | 0.688 0.459 | 0.372

ANOMALYDAE | 0.713 - 0.499 -
GAD-NR 0.712 - 0.677 -
CONAD 0.688 | 0.692 0.694 0.383
NLGAD 0.500 - 0.571 -

COLA 0.590 - 0.554 -
TAGAD 0.905 | 0.747 0.901 0.568

D.4 HYPERPARAMETER ANALYSIS

In this part, we conduct a comprehensive analysis of three key hyperparameters «, A, and € to
evaluate their impact on the performance of our framework. In detail, the analysis of « is performed
on TAGAD(G), while others are performed on TAGAD under zero-shot settings. Figure [3|shows the
AUC of our model on four datasets under zero-shot settings as one of the parameters «;, A, € varies.
By default, & = 0.6, A = 0.4,¢ = 0.9.

Parameter o As shown in Figure [3a] with increasing «, the performance improves at first, but
decreases later. This is due to the balance of the alignment and the reconstruction loss. Ignoring
either loss will degrade the model’s performance.

Parameter \ Figure[3b|shows the performance with different \. We can find the best performance
in different \. This is because the ratio of global and local anomaly nodes is different across different
datasets. For the datasets with more global anomaly nodes, such as Pubmed, a smaller value of A

1. 1. 1.

—— TAGAD

o
B

208 208
2 2
206 206

208
= SCAN

B}
= 06 RADAR

o
>

=

£os £04t7 # S04 ANOMALOUS
oz T e Eoz DOMINANT
AnomalyDAE
CONAD

True Positive Rate

o o o
i

0 0 0,
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate False Positive Rate

(a) Cora (b) Arxiv (c) Pubmed (d) Yelp
Figure 2: ROC curves on different datasets. The seven subplots show the True Positive Rate (TPR)

vs False Positive Rate (FPR) for different algorithms across various datasets. The larger the area
under the curve, the better the performance of graph anomaly detection.

18

Under review as a conference paper at ICLR 2026

leads to better performance. For the datasets with more local anomaly nodes, such as Arxiv, the
larger value of) is better.

Parameter ¢ In order to evaluate the effectiveness of ¢, we adopt different values of to adjust the
similarity threshold when constructing the text graph under zero-shot settings. We can see that the
best parameter ¢ is different in different datasets. This is related to the ratio of common features. A
higher € performs better when nodes share many same features, while performance is more stable
when feature diversity is high.

Cora Arxiv Pubmed Yelp
1.0 0.9
0.9 0.90
0.8 0.8 0.85
' 0.80
%07 L:'>)0,7 00.75
<0.6 < <0.70
0.65
05
0.6 0.60
04 0.55
03 05
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
(a) Effect of a. (b) Effect of A. (c) Effect of €.

Figure 3: Parameter sensitivities of TAGAD w.r.t. three hyper-parameters on four datasets.

E ILLUSTRATION

In this section, we conduct an illustration of our framework using the Yelp dataset to demonstrate
the effects of two modules. Figure [4|shows the detection results of our module in the dataset.

In the global module, as shown in Figure a] although the reviews of the center node and its neigh-
bors are all negative, the center node’s review is overly brief and lacks specific details. Therefore, the
global module determines it as a global anomaly node. In the local module, illustrated in Figure [4b]
the center node’s reviews are negative, whereas those of its neighbors are positive. Consequently,
the local module identifies the center node as a local anomaly node.

Although the The food was fresh and We really enjoyed the
atmospher can be tasty, and the service cozy atmosphere and the
fun....gristle on a Waste of money. staff were attentive. warm friendly welcome.

bun! Tourist trap. \ /
Rude service, \ /

Good quality dishes,

racist sign, i Terrible experience,
bland _— EUH! reazona fe pn{):;es, — everything was wrong and I
overpriced T G STHELL will never come back.
food environment /
The pasta was
Normal node cooked perfectly and Normal node
the desserts were
Global anomaly node absolutely amazing. Local anomaly node
(a) The result of the global module. (b) The result of the local module.

Figure 4: Case study of different modules.

19

Under review as a conference paper at ICLR 2026

F USAGE oF LLM

In our paper, we use LLMs to polish writing. Specifically, they are used to polish the language and
improve the clarity and readability of the manuscript. No parts of the research ideation, experimental
design, data analysis, or substantive content generation relied on LLMs.

20

	Introduction
	Related Work
	Graph Anomaly Detection
	Graph Pre-training and Prompt Learning

	Preliminaries
	Method
	Global GAD module
	Triple Encoders
	Text-Graph alignment
	Graph Decoder

	Local GAD module
	Zero-shot detection.
	Few-shot detection

	Experiments
	Experiment Setup
	Performance of GAD
	Ablation Studies

	Conclusions
	Reproducibility statement
	Algorithm and Complexity
	Algorithmic description
	Complexity Analysis

	Theoretical Analyze
	Local anomaly score
	Remove embeddings

	Details of Experiment Setup
	Description of Datasets
	Description of Baselines
	Details of Implementation

	Supplemental Experiments
	Performance in other metrics
	Performance with other features
	Performance Comparison in Terms of AUC
	Hyperparameter Analysis

	Illustration
	Usage of LLM

