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Abstract

In this work, we highlight and perform a comprehensive study on calibration attacks, a form of
adversarial attacks that aim to trap victim models to be heavily miscalibrated without altering their
predicted labels, hence endangering the trustworthiness of the models and follow-up decision mak-
ing based on their confidence. We propose four typical forms of calibration attacks: underconfi-
dence, overconfidence, maximum miscalibration, and random confidence attacks, conducted in both
the black-box and white-box setups. We demonstrate that the attacks are highly effective on both
convolutional and attention-based models: with a small number of queries, they seriously skew con-
fidence without changing the predictive performance. Given the potential danger, we further inves-
tigate the effectiveness of a wide range of adversarial defence and recalibration methods, including
our proposed defences specifically designed for calibration attacks to mitigate the harm. From the
ECE and KS scores, we observe that there are still significant limitations in handling calibration
attacks. To the best of our knowledge, this is the first dedicated study that provides a comprehen-
sive investigation on calibration-focused attacks. We hope this study helps attract more attention to
these types of attacks and hence hamper their potential serious damages. To this end, this work also
provides detailed analyses to understand the characteristics of the attacks.

1 Introduction

While recent machine learning models have significantly improved the state-of-the-art performance on a wide range
of tasks (Bengio et al., 2021; Vaswani et al., 2017; LeCun et al., 2015; Krizhevsky et al., 2012), these models are
often vulnerable and easily deceived by perturbed input (Ren et al., 2020). Adversarial attacks (Ren et al., 2020) have
been shown to be a crucial tool to reveal the susceptibility of victim models (Ibitoye et al., 2019; Zimmermann et al.,
2022; Xiao et al., 2023). In the classic setup, adversarial examples are generated by introducing an imperceptible
modification to an original datapoint to cause misclassification, where the focus is on trapping victim models to make
incorrect predictions.

In this paper, we highlight and provide a comprehensive study on a different type of threats, which we call calibration
attacks. The attacks focus on the victim models’ confidence scores without modifying their predicted labels, hence
endangering any follow-up decision-making that is based on the victim models’ confidence. We propose to conduct
four forms of calibration attacks: underconfidence, overconfidence, maximum miscalibration, and random confidence
attacks, which can seriously skew confidence and cause heavy miscalibration, as demonstrated in the reliability dia-
grams in Figure 1. As we will show and discuss in our study, calibration attacks are insidious and hard to detect. The
intrinsic harm is that on the surface the models appear to still make correct decisions, but the level of miscalibration
could make the models’ decisions malicious for downstream tasks.

Our specific studies consist of four forms of attacks, span over black-box and white-box setups, attack typical convo-
lutional and attention-based models, and investigate both attack and defence methods. In summary, our main contri-
butions are as follows.

• To the best of our knowledge, this is the first dedicated study that provides a comprehensive investigation on
confidence-focused calibration attacks.
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Figure 1: Reliability diagrams of a ResNet-50 classifier (fine-tuned and tested on Caltech-101) before and after the four forms of
calibration attacks. Red bars show the average accuracy on the test data binned by confidence scores (15 bins) and the blue bars are
the average confidence of samples in each bin. The x-axis represents the bins and y-axis is the accuracy (for red bars) or confidence
(for blue bars). The yellow line represents perfect calibration. To have the minimum possible ECE the red bars and blue bars
have to completely overlap in each bin (shown in maroon), where no overlap represents miscalibration. Despite the accuracy being
unchanged, the miscalibration is severe after the attacks.

• We propose to perform four typical forms of calibration attacks and demonstrate their effectiveness and danger
to victim models from different perspectives. Detailed insights are provided to understand the characteristics
of the attacks and the vulnerability of victim models.

• We further investigate the effectiveness of a wide range of adversarial defence and recalibration methods,
including our proposed defences specifically designed for calibration attacks to mitigate the harm. We hope
our work helps attract more attention to these attacks and hence hamper their potential serious damages in
applications.

2 Related Work

Calibration of Machine Learning Models. Among the two typical types of calibration methods, post calibration
is applied directly to the predictions of fully trained models at test time, which include classical approaches such as
temperature scaling (Guo et al., 2017), Platt scaling (Platt, 1999), isotonic regression (Zadrozny & Elkan, 2002), and
histogram binning (Zadrozny & Elkan, 2001). Training-based approaches, however, often add bias to help calibrate a
model during training (Zhang et al., 2018; Thulasidasan et al., 2019; Kumar et al., 2018; Tomani & Buettner, 2021).
In our work we investigate a diverse range of calibration methods against calibration attacks to real the limitations
that require them to be overhauled to deal with attacks, including the vulnerability of models on the convolutional
architectures (Guo et al., 2017; Minderer et al., 2021) and Transformer-based frameworks (Dosovitskiy et al., 2021).
(Refer to Appendix A for a more detailed summary of related work.)

Adversarial Attacks and Training. Adversarial attacks include black-box and white-box approaches. The former
(Carlini & Wagner, 2017) assume less information about victim models. Many methods are based on gradient esti-
mation through querying the models and finding the finite differences (Bhagoji et al., 2018). White-box attacks often
have access to the full details of a victim model such as model architectures and gradients (Goodfellow et al., 2015).
Adversarial training and defence approaches have been introduced to improve the robustness of victim models (Stutz
et al., 2020; Chen et al., 2022; Qin et al., 2021; Patel et al., 2021; Dhillon et al., 2018). Related to these are works
on generating certified robustness guarantees Kumar et al. (2020), where certified radii are generated for the predicted
confidence of a smoothed classifier. The research in Emde et al. (2023) further extends this by certifying calibration
through generating the worst-case bounds of calibration error, and discuss the importance studying attacks targeting
calibration. In this work we propose two defence models against calibration attacks.

Attacking Uncertainty Estimates. Galil & El-Yaniv (2021) first identified attacks on credible uncertainty estimates
as an issue. Their models harm the potential of using uncertainty estimation on a model’s predictions by pushing
correct datapoints closer to the decision boundary and incorrect ones further away using confidence without causing
incorrect predictions. Zeng et al. (2023) introduce a data poisoning attack designed to alter the training process of
models such that a high-confidence region forms around an out-of-domain datapoint, harming the adversary-resistant
uncertainty estimates on a set of targeted out-of-domain datapoints while leaving the original labels. Nevertheless,
none of the prior works provide a comprehensive study on the calibration attacks, nor do they systematically investigate

2



Under review as submission to TMLR

how well victim models would remain calibrated under such attacks, including under a range of different defence
methods. Our work proposes and examines the effects of different attacks, the difficulty of detecting them, and
the effectiveness of defence and calibration methods. We provide the study on both convolutional and more recent
attention-based models, under both black and white-box approaches. Detailed analyses and insights are additionally
discussed.

3 Calibration Attacks

Given the input X ≡ {x1, . . . , xN} of N datapoints and their ground-truth labels Y ≡ {y1, . . . , yN}, where yi ∈
{1, . . . , K} with K being the nubmer of classes, a classifier F makes prediction for an instance xi ∈ X through a
mapping F : xi → ⟨ŷi, p̂i⟩, where ŷi is the predicted label which is often obtained by taking argmax on the output
distribution p̂i over the K classes: ŷi = argmaxK

j=1(p̂ij). When needed, p̂i is written as p̂(xi) and p̂(x̃i), for the input
xi and its perterbation x̃i, respectively. Similarly, ŷi can be rewritten as ŷ(xi) or ŷ(x̃i), which will be constrained to
be same in calibration attacks.

3.1 Objective of Calibration Attacks

Calibration attacks aim to generate adversarial examples to optimize a predefined miscalibration functionM(x̃i, k)
for an adversarial example x̃i and the predicted class k. As will be detailed below, we propose four forms of calibration
attacks whereM(x̃i, k) takes different implementations. Following the conventional notations, an adversarial example
x̃i is created by adding noise δ to an input xi: x̃i = xi + δ, bounded by ϵ in a lm-ball:

∥x̃i − xi∥m < ϵ, m ∈ {0, 1, . . . ,∞}, (1)

where ϵ controls the amount of allowed perturbation and m corresponds to different norms that may be used. In
general, our attacks are based on the most popular view of class-wise calibration (Guo et al., 2017; Kull et al., 2019).
For a datapoint ⟨xi, yi⟩ in the dataset D = {⟨xn, yn⟩}N

n=1, a well calibrated model aims to achieve:

P(yi = k | p̂k(xi) = qk) = qk, (2)

where qk is the confidence of the predicted class k for xi. Any mismatch between the left and right hand sides of the
equation creates undesirable miscalibration.

3.2 Four Forms of Calibration Attacks

Building on the above notations and framework, we propose four approaches to cover the most typical variants of
calibration attacks.

Underconfidence and Overconfidence Attacks (UCA and OCA). These two types of attacks aim to solve the con-
strained optimization problem involving the miscalibration functionM(x̃i, k), making a victim model either under-
confident or overconfident.

MUCA(x̃i, k) = p̂k(x̃i)−max
j ̸=k

p̂j(x̃i), (3)

MOCA(x̃i, k) = 1− p̂k(x̃i), (4)

s.t. ŷ(x̃i) = ŷ(xi). (5)

As discussed earlier in introduction, calibration attacks focus on attacking the confidence of victim models but not
altering the predicted labels, which is constrained by Eq. 5. By minimizing the loss MUCA or MOCA, the attack
models maximize calibration errors in these two setups respectively, with the corresponding adversarial examples X̃ :

max
X̃

(P(yi = k | p̂k(x̃i) = qk)− qk). (6)

Algorithm 1 depicts an overview of calibration attacks, including UCA and OCA, but also MMA and RCA that we will
introduce below. Unlike the conventional attacks that modify the predicted labels and focus mainly on correctly
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classified examples, calibration attacks modify confidence and focus on both the originally correctly classified and
misclassified instances. As detailed later in Section 4, we will implement calibration attacks in popular black-box
(Andriushchenko et al., 2020) and white-box frameworks (Madry et al., 2018).

Algorithm 1 A Brief Overview of Our Calibration Attack Framework

1: Input: A classifier F , input xi, true label yi, error bound ϵ, max number of attack iterations I,
attack type T .

2: Output: Adversarial example x̃i

3: p̂i ← F(xi); k ← argmaxK
j=1(p̂ij) // k is the predicted label for the original (unattacked) input xi.

4: if T = UCA or T = OCA then
5: T ′ = T
6: else if T = MMA and yi ̸= k then // MMA combines UCA and OCA.
7: T ′ = OCA
8: else if T = MMA and yi = k then
9: T ′ = UCA

10: else if T = RCA then // RCA also considers both UCA and OCA.
11: g←− random(1/K, 1.0); // Get a random number in the range [1/K, 1.0].
12: if g > p̂k(xi) then
13: T ′ = OCA
14: else if g < p̂k(xi) then
15: T ′ = UCA
16: end if
17: end if
18: x̃i ← xi; lold ←−MT ′(x̃i, k)
19: for i = 1 to I do
20: δ = FindPerturb (x̃i, ϵ) // Find perturbation based on an attack algorithm (e.g., Square Attack) and bound.
21: x̃new ← x̃i + δ;
22: p̂i ← F(x̃new); knew ← argmaxK

j=1(p̂ij)
23: lnew ←MT ′(x̃new, k)
24: if (lnew < lold and knew = k) then
25: x̃i ←− x̃new; lold ←− lnew

26: end if
27: if (lold < 0.01) or (T = RCA and p̂k(x̃i) = g) then
28: Break the for loop
29: end if
30: end for

Maximum Miscalibration Attacks (MMA). We propose MMA with the aim of exploring and understanding more seri-
ous scenarios of miscalibration. The main principle of MMA is the aim to perturb (i) all incorrectly classified datapoints
to have zero accuracy and 100% confidence, and (ii) all correctly classified attacks to have 100% accuracy but the
minimum possible confidence. MMA is a combination of overconfidence and underconfidence attack, as shown in Al-
gorithm 1. Proposition 3.1 below states the property of MMA in terms of the oracle (upper-bound) ECE score that can
be achieved in theory, with the proof provided in Appendix B.
Proposition 3.1. Assume q is the accuracy of a K-way classifier F on the datasetD = {⟨xn, yn⟩}N

n=1. The Maximum
Misinformation Attack (MMA) maximizes the expected calibration error (ECE). The upper bound of ECE that can be
achieved by MMA is 1− q/K.

Random Confidence Attacks (RCA). We propose to perform RCA to decouple the victim model’s confidence scores
and predictive labels, in which the confidence scores produced by the attack model are randomized. RCA is performed
by choosing a random target confidence score for each input, and then, depending on the original confidence score,
running the corresponding underconfidence or overconfidence attacks to produce the target confidence score. Although
RCA is theoretically less effective than MMA, it is less predictable, because unlike the other three types of attacks, RCA
does not produce adetermined direction (i.e., under or overconfidence) of attacks for a given input. The produced
confidence scores are often less extreme and more reasonable-looking, but largely meaningless due to randomization.
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Note that in addition to MMA and RCA, one may design other approaches to combine UCA with OCA, but MMA and RCA
represent the most typical composition.

3.3 Defence Against Calibration Attacks

As we will show in the experiments, calibration attacks are very effective. In addition to studying a wide range of
existing defence methods, we introduce new methods specifically for calibration attacks: Calibration Attack Adver-
sarial Training (CAAT) and Compression Scaling (CS). The proposed CAAT is a variation of PGD-based adversarial
training that utilizes our white-box calibration attacks to generate adversarial training examples for each minibatch
during training. Hence, both under- and overconfident examples with the model’s original predicted label preserved
are exclusively used to train the model.

Our proposed CS defence is a post-process scaling technique, based on the assumption that an effective classifier often
has a high level of accuracy and confidence, so calibration attacks typically cause the most harm by lowering the con-
fidence scores. CS hence aims to scale low confidence scores to high values to mitigate the damage of miscalibration.
Specifically, the range of confidence is split into BM equally sized bins. Datapoints in each bin bm ∈ {1, ..., BM} are
mapped to a new bin that has higher confidences in a more compressed range. For a datapoint xi with the output-layer
logits {r1, ..., rK} and the probability p̂k(xi) for the predicated class k, a temperature T is found to obtain a newly
predicted probability p̂new = arg maxi(

exp(ri/T )∑
j
exp(rj)/T

) so that p̂new = minconf(b′
m) + p̂k−minconf(bm)

range(bm) ∗ range(b′
m),

where minconf(.) is the minimum confidence level of a bin, and range(.) represents the range of the confidence (i.e.,
the maximum level of confidence of that bin minus the minimum). b′ is the bin that the original b is mapped to using
the corresponding T . We will demonstrate that even with defence, calibration attacks are still highly effective.

3.4 Discussion on the Importance of Remaining Well Calibrated Under the Attacks

In addition to the discussion of the technical details of calibration attacks for the victim models and defences, it is
important to reemphasize why maintaining good calibration under such attacks is critical. Well-calibrated models are
a crucial component for trustworthy complex systems. As an example, in real-life deployment, proper confidence
scores are essential for determining the instances that need further examination by authority mechanisms such as an
expert or a committee of them. Underconfidence attacks could cause additional strain on an authority system or any
downstream processes, creating a risk of significantly slowed-down decision-making due to an increased load of cases
to be examined. As another example, by attacking misclassified datapoints with an overconfidence approach, test cases
may be erroneously missed by downstream systems such as braking in an autonomous vehicle before a stop sign.

4 Experiments

4.1 Experimental Setup

Implementation Deails. As discussed earlier in this paper, calibration attacks can be built on different adversarial at-
tack frameworks. In our implementation we use Square Attack (SA) (Andriushchenko et al., 2020), which is one of the
most popular black-box approaches and is highly effective. SA achieves state-of-the-art (SOTA) performance in terms
of query efficiency and success rate, even outperforming some white-box methods. Our white-box calibration attacks
are based on the popular Projected Gradient Descent (PGD) framework (Madry et al., 2018). The implementation
details such as hyperparameters are discussed in Appendix C.

Models. We include both convolutional (ResNet (He et al., 2016)) and non-convolutional attention-based models
(Vision Transformer (ViT) (Dosovitskiy et al., 2021)) in our study. Details can be found in Appendices C and D.

Datasets. We performed a comprehensive study on CIFAR-100 (Krizhevsky & Hinton, 2009) and Caltech-101 (Fei-
Fei et al., 2004). We also included the German Traffic Sign Recognition Benchmark (GTSRB) (Houben et al., 2013)
for its direct implication for safety.

Metrics. Two calibration metrics are used in our experiments: the stardard Expected Calibration Error (ECE) (Pak-
daman Naeini et al., 2015) and the recent Kolmogorov-Smirnov Calibration Error (KS error) (Gupta et al., 2021).
In addition, we evaluate attacks’ efficiency using the average and median number of queries for the attack to com-
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plete (Andriushchenko et al., 2020). Average confidence of predictions is also leveraged to judge the degree that the
confidence scores are affected. (See Appendix C for details.)

Detailed Attack Settings. Descriptions of other attack settings (e.g., l∞, l2 and iterations) are in Appendix Cand D.

4.2 Overall Performance

Table 1 depicts the overall performance of black-box attacks under the l∞ norm. Additional results of l2 attacks are
included in Table 6 in Appendix G.9. The experiments show that the attacks are highly effective. UCA, MMA and
RCA can bring ECE and KS to very high values. OCA can successfully raise average confidences (the last column in
Table 1) to extremely high levels (in many cases, close to 100%), but given the original high accuracy of the victim
models, increasing confidence levels will not have a drastic effect on calibration error. (OCA will be more harmful on
less accurate models.) For the MMA, the theoretical highest levels of miscalibration are not reached due to the limited
number of iterations that we run the attacks. Regarding different architectures, the attention-based ViT models are
seen to be more miscalibrated compared to the convolution-based ResNet models. The white-box results are included
in Appendix G.1, which show a similar trend. Again, Figure 1 in the introduction section demonstrates the attack
effects using calibration diagrams, visually showing the severity of miscalibration.

Table 1: Results of underconfidence, overconficence, maximum miscal-
ibration, and random confidence attack. Accuracies of victim models
are included.

ResNet
Avg #q Med. #q ECE KS Avg. Conf.

CIFAR-100 (Accuracy: 0.881±0.002)
Pre-atk - - .052±.006 .035±.006 .916±.006
UCA 74.3±3.4 42.7±1.5 .540±.005 .479±.001 .465±.005
OCA 16.0±0.8 1.0±0.0 .124±.002 .124±.002 .996±.000
MMA 72.9±2.8 41.5±2.8 .606±.002 .497±.002 .502±.002
RCA 68.9±4.6 42.7±1.2 .558±.011 .461±.003 .514±.003
Caltech-101 (Accuracy: 0.966±0.004)
Pre-atk - - .035±.003 .031±.004 .936±.001
UCA 333.8±13.8 259.7±17.4 .361±.005 .362±.005 .605±.006
OCA 75.7±9.3 1.0±0.0 .028±.003 .028±.004 .992±.000
MMA 182.6±5.6 286.5±16.1 .397±.008 .379±.007 .618±.005
RCA 178.5±14.9 289.3±8.1 .344±.014 .342±.010 .638±.006
GTSRB (Accuracy: 0.972±0.000)
Pre-atk - - .019±.006 .008±.002 .980±.002
UCA 197.5±10.3 103.0±7.3 .396±.017 .390±.013 .591±.014
OCA 12.1±1.3 1.0±0.0 .029±.008 .029±.008 .998±.000
MMA 142.1±6.0 102.2±3.6 .419±.009 .402±.012 .597±.011
RCA 139.4±1.5 104.7±3.5 .399±.009 .386±.005 .599±.007

ViT
Avg #q Med. #q ECE KS Avg. Conf.

CIFAR-100 (Accuracy: 0.935±0.002)
Pre-atk - - .064±.006 .054±.005 .882±.004
UCA 118.5±2.4 62.0±3.1 .572±.007 .553±.004 .404±.003
OCA 524.7±88.7 510.5±114.3 .043±.007 .043±.006 .974±.001
MMA 104.8±7.5 62.7±4.7 .616±.003 .564±.000 .431±.001
RCA 106.4±3.0 70.3±1.5 .549±.002 .505±.003 .471±.007
Caltech-101 (Accuracy: 0.961±0.024)
Pre-atk - - .137±.059 .136±.060 .825±.083
UCA 325.5±16.7 273.7±23.7 .426±.044 .426±.044 .536±.068
OCA 52.1±40.9 1.0±0.0 .081±.042 .079±.040 .881±.067
MMA 150.7±12.1 269.7±25.1 .415±.036 .414±.034 .551±.058
RCA 129.0±17.3 315.0±17.4 .364±.016 .364±.016 .598±.040
GTSRB (Accuracy: 0.947±0.006)
Pre-atk - - .040±.005 .026±.017 .922±.024
UCA 169.8±15.0 88.3±6.7 .459±.015 .452±.019 .498±.026
OCA 94.9±45.9 3.7±4.6 .029±.003 .030±.004 .976±.011
MMA 137.1±4.3 88.3±6.7 .519±.020 .480±.020 .509±.024
RCA 129.5±7.4 97.2±9.9 .454±.012 .432±.016 .538±.019

The general trend of the l2 calibration attacks (Ap-
pendix G.9) is similar to that of the l∞ attacks, but
the latter are found to be more effective in gener-
ating more significant miscalibration. Hence in the
remainder of the paper, we focus on the l∞ attacks
unless otherwise specified.

Overall, calibration attacks are generating severe
miscalibration, which, compared to the pre-attack
values, can increase ECE and KS by over 10 times
in many cases. Calibration attacks are very ef-
fective without changing the prediction accuracy,
which could raise serious concerns for any down-
stream applications relying on confidence.

4.3 Detection Difficulty Analysis

This section shows calibration attacks are also dif-
ficult to detect. To investigate this, we run the pop-
ular adversarial attack detection methods on the at-
tacks against ResNet-50: Local Intrinsic Dimen-
sionality (LID) (Ma et al., 2018), Mahalanobis Dis-
tance (MD) (Lee et al., 2018), and SpectralDefense
(Harder et al., 2021). The details behind the set-
tings for each detection method can be found in
Appendix F. Table 2 depicts the main results of the
effectiveness of the detectors in terms of Area Un-
der the Curve (AUC) and Detection Accuracy, un-
der different types of calibration attacks and using
both the white-box and black-box approaches. We
can see that there are consistent decreases in de-
tection performances, particularly in SA, where the
decreases are often more than 20%. The existing
detection methods are shown to be less reliable for
calibration attacks.
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Table 2: Attack detection results comparing original version of SA and PGD attacks with their calibration attack counterparts.

SA SA-UCA SA-OCA SA-MMA PGD PGD-UCA PGD-OCA PGD-MMA
AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc

CIFAR-100
LID 90.1 82.9 54.2 54.3 63.9 61.6 54.5 54.0 93.7 87.7 64.5 67.1 88.7 84.3 63.3 66.0
MD 99.8 98.9 90.2 80.5 78.1 74.8 89.4 79.9 99.3 98.5 83.1 74.4 96.7 93.8 81.9 73.3
Spect. 100 98.0 70.5 65.5 52.3 50.5 71.6 65.5 100 100 74.9 67.0 94.2 90.0 64.8 62.5
Caltech-101
LID 70.2 64.4 62.5 61.1 65.3 62.3 58.6 59.5 84.8 78.1 53.6 54.8 89.1 81.9 53.9 55.1
MD 88.9 81.3 81.9 74.7 73.9 70.1 81.8 74.5 91.6 84.6 60.1 57.9 90.6 84.7 62.6 60.3
Spect. 98.0 94.5 59.1 53.0 51.8 50.0 56.9 53.0 93.4 88.5 67.8 66.5 93.7 90.5 64.2 62.0
GTSRB
LID 86.3 77.1 71.4 68.1 72.5 69.8 72.4 66.7 95.7 89.1 88.8 86.3 94.6 87.4 87.0 85.3
MD 95.5 89.6 83.7 77.8 74.4 74.9 85.6 79.0 100 99.8 94.6 93.6 97.9 97.7 92.9 92.6
Spect. 99.1 98.0 83.0 79.0 50.4 50.5 83.1 79.0 99.4 98.5 94.8 93.0 99.0 99.9 99.0 99.9
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Figure 2: The influence of perturbation noise levelsϵ (the left three subfigures) and attack iterations (the right subfigure). Subfigure-
1 (the left most) presents the comparison between the ECE scores of the different calibration attacks at different ϵ values using
ResNet-50 models trained on CIFAR-100. Subfigure-2: ECE vs. ϵ using maximum miscalibration attacks on ViT models trained
on CIFAR-100. Subfigure-3: ECE vs. ϵ using maximum miscalibration attacks on the ResNet-50 models trained on Caltech-101
and GTSRB. Subfigure-4: Effect of the numbers of attack iterations on the ability of the attack algorithm. The first three subfigures
are created at the 1000th iteration.

4.4 Insights on Key Aspects of Attacks

We analyze key aspects of calibration attacks: at-
tack directions, noise bounds, and attack iterations
under the l∞-based attacks. More details can be
found in Appendix G, including attack effective-
ness on data with varying imbalance ratios.

Table 3: Comparison between the efficiency of the underconfidence
(shortened as und.) and overconfidence (shortened as ovr.) attacks.

ResNet
# datapoints Avg. #q Med. #q Avg. Conf.

CIFAR-100
90% -10% und. 186.0±4.4 8.5±0.5 5.7±0.6 77.9±1.4
90% +10% ovr. 186.0±4.4 36.5±1.5 31.0±1.7 99.0±0.0
80% -10% und. 94.0±4.2 6.5±0.5 4.3±0.7 67.9±0.4
80% +10% ovr. 94.0±4.2 9.8±1.7 7.0±1.4 91.3±0.1
Caltech-101
90% -10% und. 160.7±7.8 39.4±11.8 31.7±8.5 80.2±0.0
90% +10% ovr. 160.7±7.8 225.6±55.5 212.8±63.3 98.8±0.2
80% -10% und. 53.3±24.0 17.5±12.1 16.0±19.1 63.1±2.1
80% +10% ovr. 53.3±24.0 30.0±10.3 21.7±11.3 89.5±0.4
GTSRB
90% -10% und. 48.0±4.2 11.7±0.1 8.2±1.4 77.5±1.2
90% +10% ovr. 48.0±4.2 98.5±4.0 62.8±5.7 99.1±0.0
80% -10% und. 30.0±0.7 9.2±0.9 6.0±1.1 70.5±0.7
80% +10% ovr. 30.0±0.7 18.6±3.4 12.8±0.4 91.0±0.1

ViT
# datapoints Avg. #q Med. #q Avg. Conf.

CIFAR-100
90% -10% und. 392.7±33.5 20.0±1.6 9.3±1.2 76.1±0.3
90% +10% ovr. 392.7±33.5 883.7±120.2 883.7±120.2 97.1±0.1
80% -10% und. 138.7±5.1 8.8±1.7 5.5±0.5 66.1±0.3
80% +10% ovr. 138.7±5.1 55.8±1.4 20.7±4.7 90.0±0.1
Caltech-101
90% -10% und. 472.0±161.0 264.7±56.6 198.0±51.0 81.1±0.5
90% +10% ovr. 472.0±161.0 700.7±518.5 700.7±518.5 93.2±0.2
80% -10% und. 222.0±17.3 149.5±19.3 66.5±9.8 70.0±0.6
80% +10% ovr. 222.0±17.3 323.9±123.5 269.3±210.7 86.0±0.2
GTSRB
90% -10% und. 184.0±27.5 31.0±6.5 12.7±1.9 76.1±0.9
90% +10% ovr. 184.0±27.5 235.3±69.5 180.0±92.0 96.5±0.2
80% -10% und. 79.0±28.6 16.1±6.7 7.7±2.3 67.3±0.2
80% +10% ovr. 79.0±28.6 140.1±63.2 41.7±43.7 89.6±0.8

Comparison of Efficiency of Underconfidence
vs. Overconfidence Attacks. The two directions
of calibration attacks, underconfidence or overcon-
fidence, is a basic building block for construct-
ing the four forms of calibration attacks. We per-
form further studies to understand which direc-
tion is most efficient. To the end, we identify all
data points in the test set that are around certain
predefined base confidence levels. In this study,
we choose two base confidences: 80% and 90%.
All the test cases that have confidences within 1%
around these two base confidences are included in
this experiment. We attack these examples by mak-
ing the victim models produce either a 10% in-
crease or decrease in confidence. In Table 3 we can
see a consistent pattern — for both base confidence
levels, it takes notably fewer queries to create un-
derconfidence than overconfidence adversarial ex-
amples. The former attack is also more effective in
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Figure 3: The GradCAM visualizations shows the image regions most responsible for the decisions of ResNet-50 before (top row)
and after (bottom row) attacks. The left three images are under underconfidence attacks and the right three the overconfidence
attack.

affecting the average confidences. This property could be further utilized to design calibration attacks (e.g., under the
circumstances where computing resources or attack latency are concerned.)

Perturbation Noise Levels. We study the effect of perturbation noise levels and how low the value could be in order
to construct notable harm. As shown in the left three subfigures in Figure 2, under different setups, the attacks are
highly successful even at a low level of noise (e.g., ϵ = 0.05 or even lower). We can also see the rise in ECE is sharp
when ϵ increases, and it plateaus quickly.

Iterations. The numbers of iterations can help measure the efficiency and cost of attacks (in terms of both time and
computing expenditure). The last subfigure in Figure 2 shows ECE vs. iteration numbers when applying MMA to the
victim models on CIFAR-100. In Appendix G.3, we provide more detailed comparison, showing that the calibration
attacks consistently produced a higher degree of miscalibration compared to the original unaltered SA. ECE begins to
saturate at 500 iterations, but even at 100 iterations the victim models become heavily miscalibrated.

4.5 Qualitative Analysis

GradCAM Visualization. In Figure 3 we show the coarse localization maps produced with GradCAM (Selvaraju
et al., 2017), which highlights the most important regions that a model relies on to make prediction using the gradients
from different layers of a network. We apply GradCAM to our ResNet-50 models that are fine-tuned and tested on
Caltech-101, based on the standard attack settings discussed in Section C. We choose images where the attacks led to
large change in predicted confidence (at least 10%). Figure 3 shows several representative images. We can see that the
coarse localization maps have minimal to no noticeable changes after the adversarial images are produced, especially
in the case of the overconfidence attacked images. This analysis shows that it could be difficult to identify the attacks
based on gradient visualization methods.

t-SNE. Appendix G.4 provides detailed t-SNE visualization on the effect of different forms of calibration attacks.
The visualization shows that overconfidence attack causes the representations for different classes to be split apart as
much as possible, while the underconfidence attack causes a more jumbled representation with most data points falling
closely to the decision boundary. The visualization shows that the attacks achieve their intended goals.

4.6 Confidence Certification.

We follow the method in Kumar et al. (2020) to compare the lower bound of expected confidence of a smoothed classi-
fier between base images and their underconfidence and overconfidence attacked counterparts. We find that the lower
bound is not significantly different between adversarially attacked images and their originals, though the accuracy of
the smoothed classifier is affected. This means that methods for determining certified lower bounds are not strongly
affected by calibration attacked samples (similar to conventional adversarial samples), but limitations in efficiency and
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accuracy of these methods means that establishing defence method against such attacks is still paramount. A detailed
discussion is in Appendix G.7.

5 Defending Against Calibration Attacks

Table 4: Effectiveness of calibration methods and adversarial defences.
The best performances of post-attack ECE (PsECE) and KS (PsKS) are
marked in bold, and the second best are marked with underlines.

WideResNet
Avg#q Med#q Acc PrECE PsECE PrKS PsKS

CIFAR-100
Gowal, ’20 63.5 86.5 .690 .137 .248 .137 .200
Rebuffi, ’21 36.4 51.0 .622 .190 .209 .189 .198
Pang, ’22 50.5 64.5 .638 .185 .214 .187 .195

ResNet-50
CIFAR-100
TS 74.1 40.0 .880 .034 .643 .007 .530
MD-TS 63.6 44.0 .880 .068 .617 .069 .581
Splines 6.6 83.0 .876 .020 .681 .019 .573
DCA 68.0 39.0 .866 .049 .604 .039 .492
SAM 83.8 44.5 .882 .033 .609 .014 .506
AAA 7.7 31.5 .880 .038 .225 .011 .123
AT 65.9 60.0 .790 .035 .431 .022 .279
CAAT 66.9 44.0 .842 .048 .504 .036 .440
CS 64.4 39.0 .880 .051 .218 .041 .145
Caltech-101
TS 194.7 276.0 .970 .014 .347 .005 .322
MD-TS 178.6 280.0 .970 .025 .319 .017 .321
Splines 4.5 150.0 .970 .019 .104 .010 .095
DCA 189.6 269.0 .962 .038 .418 .027 .392
SAM 191.1 276.0 .970 .051 .429 .049 .414
AAA 1.1 20.0 .964 .061 .100 .058 .085
AT 23.7 194.0 .918 .038 .079 .018 .068
CAAT 127.5 206.0 .972 .017 .264 .012 .266
CS 179.4 254.0 .970 .026 .065 .017 .067
GTSRB
TS 160.6 111.0 .972 .019 .396 .018 .377
MD-TS 146.5 110.5 .972 .028 .468 .023 .469
Splines 0.7 22.0 .972 .018 .129 .007 .123
DCA 130.2 97.0 .976 .017 .389 .011 .372
SAM 117.4 87.0 .978 .012 .384 .003 .371
AAA 3.1 51.0 .972 .023 .071 .014 .059
AT 37.7 117.5 .962 .017 .160 .007 .135
CAAT 121.7 115.0 .968 .020 .324 .017 .317
CS 151.2 111.0 .972 .019 .097 .020 .095

ViT
Avg#q Med#q Acc PrECE PsECE PrKS PsKS

CIFAR-100
TS 117.7 73.0 .938 .014 .568 .010 .515
MD-TS 97.1 59.0 .938 .026 .542 .021 .514
Splines 9.9 130.5 .938 .023 .405 .016 .358
DCA 125.6 69.0 .944 .024 .565 .011 .519
SAM 123.0 66.0 .942 .072 .607 .064 .561
AAA 0.8 42.0 .938 .106 .200 .092 .161
AT 86.8 77.0 .886 .066 .519 .063 .439
CAAT 102.4 56.0 .922 .026 .537 .010 .506
CS 97.0 59.0 .938 .044 .137 .033 .142
Caltech-101
TS 154.8 280.0 .972 .030 .313 .023 .264
MD-TS 140.1 272.0 .938 .038 .272 .012 .253
Splines 0.5 45.0 .972 .035 .071 .017 .049
DCA 140.9 254.5 .976 .039 .345 .025 .345
SAM 145.9 278.0 .962 .170 .459 .170 .459
AAA 0.3 20.5 .972 .189 .196 .189 .198
AT 48.2 188.0 .946 .132 .229 .132 .231
CAAT 136.2 341.0 .986 .048 .316 .049 .318
CS 143.3 277.0 .934 .025 .068 .018 .068
GTSRB
TS 132.9 80.0 .950 .038 .463 .033 .410
MD-TS 130.5 81.5 .940 .017 .436 .012 .422
Splines 1.7 16.0 .950 .040 .115 .041 .067
DCA 132.8 92.0 .950 .052 .506 .037 .476
SAM 133.9 103.0 .944 .070 .505 .069 .473
AAA 0.1 4.0 .950 .053 .128 .049 .110
AT 66.9 124.0 .930 .132 .320 .130 .317
CAAT 118.9 85.0 .932 .066 .446 .055 .431
CS 130.5 81.5 .950 .027 .092 .035 .089

We compare a wide range of recalibration and de-
fence methods under the setup of the MMA attacks,
which, as shown above, are among the most effec-
tive calibration attacks.

Specifically, for post-calibration methods, we in-
clude Temperature Scaling (TS) (Guo et al., 2017),
Multi-domain Temperature Scaling (MD-TS) (Yu
et al., 2022), and calibration with splines (Splines)
(Gupta et al., 2021). For training-based regular-
ization methods we include two effective models,
DCA (Liang et al., 2020) and SAM (Foret et al.,
2021). Regarding adversarial defence methods,
we test the top-3 SOTA models under the l∞ at-
tack for CIFAR-100, using WideResNet on the Ro-
bustBench leaderboard (Croce et al., 2021), which
are only available for CIFAR-10 and CIFAR-100,
hence we run over CIFAR-100 to compare with
our previous baselines. We further include a re-
cent post-process defence called Adversarial At-
tack Against Attackers (AAA) (Chen et al., 2022)
in addition to the the most common defences in
the form of a PGD-based adversarial training (AT)
(Madry et al., 2018). We also included the two de-
fences proposed for calibrations attacks: CAAT and
CS, which are introduced in Section 3.3. (The ex-
periment setup is described in Appendix C, and the
detailed description of these baselines are in Ap-
pendix D.2).

Results and Analyses. Table 4 shows the experi-
ment results of query efficiency, accuracy, and the
ECE and KS errors, before (PrECE and PrKS) and
after the attacks (PsECE and PrKS), using differ-
ent recalibration and defence models. The best
performances of post-attack ECE (PsECE) and KS
(PsKS) are marked in bold, and the second best are
marked with underlines.

We can see that CS is overall the strongest meth-
ods at maintaining low calibration errors on post-
attack datapoints. It showed the best post-attack
calibration performance in five out of six setups on
PsECE, and ranked among top 2 in all the other se-
tups. The other top calibration performances are
distributed among AAA, Spline, and AT. Knowing
the property of calibration attacks and organizing
defences accordingly is helpful to ensure a better
defending result.
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Overall, from the ECE and KS scores, we can see that there are still significant limitations on recalibration and
defences for calibration attacks, which invites more future research. Simple and widely used calibration models like
TS are effective on clean data prior to the attacks, but they offer very little benefit post-attack. Training-based models
like DCA and SAM also tend to bring few benefits after being attacked — the post-attack ECE and KS errors are not
substantially different compared to the vanilla models. Lastly, we can conclude that although the defence methods
from the leaderboard are generally the most adversarially resistant, their inherent high levels of miscalibration even
before the attacks render them unsuitable for calibration-sensitive tasks.

6 Conclusions

We highlight and perform a comprehensive and dedicated study on calibration attacks, which aim to trap victim mod-
els into being heavily miscalibrated, hence endangering the trustworthiness of the models and any follow-up decision-
making processes based on confidences. We propose four typical forms of calibration attacks and demonstrate their
severity from different perspectives. We also show calibration attacks are difficult to detect compared to standard at-
tacks. Investigation is then conducted to study the effectiveness of a wide range of adversarial defences and calibration
methods, including the defences that are specifically designed for calibration attacks. From the ECE and KS scores,
we can see that there are still limitations on these recalibration and defences in handling calibration attacks. We hope
this paper helps attract more attention to the attacks against confidence and hence mitigate their potential harm. We
provides detailed analyses to help understand the characteristics of the attacks for future work.
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Appendix

A Detailed Summary of Related Work

In the field of calibration, a great deal of current research is devoted to the creation of new calibration methods that
can be applied to create better calibrated models while possessing as minimum overhead in applying them as possible.
Methods are generally divided into two types. Post-calibration methods can be applied directly to the predictions
of fully trained models at test time, and methods of this class include temperature scaling (Guo et al., 2017). More
traditional methods of this type include Platt scaling (Platt, 1999), isotonic regression (Zadrozny & Elkan, 2002),
and histogram binning (Zadrozny & Elkan, 2001). All of these three methods are originally formulated for binary
classification settings, and work by creating a function that maps predicted probabilities based on their values more
in tune with the model’s level of performance. Although they are easy to apply, they often come with the limitation
of needing a large degree of validation data to tune, especially with isotonic regression, and performance can struggle
when applied to more out of distribution data.

The second class of methods are training-based methods, which typically add a bias during training to ensure that a
model learns to become better calibrated. Often times these methods help by acting as a form of regularization that can
punish high levels of overconfidence late into training. In computer vision, Mixup (Zhang et al., 2018) is a commonly
used method of this type that serves as an effective regularizer by convexly combining random pairs of images and
their labels and helps calibration primarily due to the use of soft, interpolated labels (Thulasidasan et al., 2019). Other
methods work by adding a penalty to the loss function, like in the case of MMCE, an RKHS kernel-based measure
of calibration that is added as a penalty on top of the regular loss during training so that both are optimized jointly
(Kumar et al., 2018). Similarly, Tomani & Buettner (2021) create a new loss term called adversarial calibration loss
that directly minimizes calibration error using adversarial examples. Given the effectiveness of many of these methods
in regular testing scenarios, we desire to illustrate how well a diverse range of these methods can cope against attacks
targeting model calibration and whether they possess limitations that require them to be overhauled to deal with an
attack scenario.

With respect to adversarial attacks, attacks in this field are wide ranging. Well known white-box attacks include the
basic Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015). This method works by finding adjustments to
the input data that maximizes the loss function, and uses the backprogogated gradients to produce the adversarial
examples. Projected gradient descent (PGD) (Madry et al., 2018) is popular iterative-based method that similarly uses
gradient information, and has been shown to be a universal first-order adversary, and thus is the strongest form of
attacks making using of gradient and loss information. In the black-box space of attacks, ZOO (Chen et al., 2017) is
an example of a popular score-based attack that uses zeroth order stochastic coordinate descent to attack the model,
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and avoids training a substitute model. The authors make use of attack-space dimension reduction, hierarchical attacks
and importance sampling to make the attack more query efficient, which is required as black-box attacks generally
need a lot of queries to run compared to white-box methods.

A broad range of defences against adversarial attacks have been developed, but among the most popular and effective
is adversarial training (Goodfellow et al., 2015), where during training the loss is minimized over one of or both clean
and generated adversarial examples. Adversarial training however greatly increases training time due to the need
to fabricate adversarial examples for every batch. Gradient masking (Carlini & Wagner, 2017) is a simple defence
based on obfuscating gradients so that attacks cannot make use of gradient information to create adversarial examples,
although it can easily be circumvented in many cases for white-box models (Athalye et al., 2018), and black box
attacks do not need gradient information in the first place. It is by and large difficult for adversarial defences to keep
pace with the broad range of attacks and to be provably robust against a large number of them. Although the main
topic of this work is calibration, we do focus on modelling adversarial defences and their effectiveness against these
attacks.

B Details for Maximum Miscalibration Attacks

Proof of Proposition 3.1.

Proof. Let a classifier have non-zero accuracy. We cannot expect to reach the error of 100% since pk = 0 cannot be
the case (for the top predicted class) nor can P(yi = ŷ(xi)) = 0 be true for all yi. However, to achieve the highest
calibration error on a set of data points in this scenario, one can first isolate the misclassified data points and if the
classifier is made to output confidence scores of 100% on all of them, using the calibration attack for example, it
would create a total calibration error of 100% on this set of misclassified data points. With regard to the correctly
classified points, where accuracy is 100%, one can create the largest difference between the accuracy and average
confidence by making the average confidence on this set as low as possible. Since confidence scores can only range
from 1/K to 1, the largest possible difference between the average confidence score and the accuracy of 100% is
1− 1/K. Again, if pk = 1/K, and every p̂k(xi) = 1/K, while yi = ŷ(xi)∀xi, then this makes the calibration error:
P(yi = ŷ(xi) | p̂k(xi) = pk) − pk = 1 − 1/K. It is not possible to create a higher level of calibration error since if
pk > 1/K on some number of the correctly classified datapoints, then P(yi = ŷ(xi) | p̂k(xi) = pk) will still be 1,
while pk > 1/K will lead to less calibration error on that subset of datapoints. With errors on both mutually exclusive
subsets of data maximized, the theoretically highest miscalibration will be created on the full data.

To derive the upper bound of the ECE value that can be achieved by MMA, if we assume q is the accuracy of a K-way
classifier F on the dataset D = {⟨xn, yn⟩}N

n=1, then post successful attack all of the datapoints will fall into one of
two bins representing average confidence scores of 1 and 1/K, assuming the confidence range of each bin is 1%. The
accuracy in these bins would be 0 and 1, respectively. And the proportion of data points falling into each respective
bin is 1− q and q. Based on the ECE formula the maximum error would be:

ECEmax =
nbin(100/k)%

N
|acc(bin(100/k)%)− conf(bin(100/k)%)|+

nbin100%

N
|acc(bin100%)− conf(bin100%)|

= q ∗ |1− 1/K|+ (1− q) ∗ |0− 1|
= 1− q/K

(7)

C Details of Experimental Setup

Metrics. To assess the degree of calibration error caused by each attack, we use two metrics, the popular binning-
based Expect Calibration Error (ECE) (Pakdaman Naeini et al., 2015), and KS errors (Gupta et al., 2021), which are
formulated in detail in Section E.

Datasets. The datasets we use in our study are CIFAR-100, Caltech-101, and the German Traffic Sign Recognition
Benchmark (GTSRB). CIFAR-100 and Caltech-101 are both popular image recognition benchmark datasets, contain-
ing various objects divided into 100 classes and 101 classes respectively. Given the importance of calibration in safety
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critical applications, we include a common use case of autonomous driving with the GTSRB dataset, which consists
of images of traffic signs divided 43 classes. CIFAR-100 has 50,000 images for training, and 10,000 for testing.
Caltech-101 totals around 9000 images. GTSRB is split into 39,209 training images and 12,630 test images

Models. ResNet-50 (He et al., 2016) is primary model we train and test on due to it being a standard model for image
classification. Non-convolutional attention-based networks have recently attained great results on image classification
tasks, so we also experiment with the popular Vision Transformer (ViT) architecture (Dosovitskiy et al., 2021). Both
of these models are the versions with weights pretrained on ImageNet (Deng et al., 2009). We use the VIT_B_16
variant of ViT, and the pretraining dataset used for each model is ImageNet_1K for ResNet and ImageNet_21K for
ViT, and are fine-tuned on the target datasets. Pretrained models are advantageous to study given they can increase
performance over training from randomly initialized weights and is a more practical use-case. The specific details
behind our training procedures and our various model hyperparameters can be seen in Section D.

Attack Settings. Regarding the SA version of the attacks, for the l∞ and l2 norm attacks we use the default SA
settings for ϵ and p, which are ϵ = 0.05 and p = 0.05 for l∞ and ϵ = 5.0 and p = 0.1 for l2. For our primary results
we run the attacks on a representative 500 test cases from the test set of each dataset. Each attack is ran for 1000
iterations, far less than the default 10,000 in Andriushchenko et al. (2020), but since there is no need to change the
label, less iterations are required, bolstering the use-case and threat for this form of attacking.

The settings for the PGD version of the attacks differ due to the accommodations that need to be made to prevent
the PGD algorithm from changing the label while still being able to have a large effect on the confidence. In terms
of general settings, we again use ϵ = 0.05 as the adversarial noise value for an l∞ norm. We use an α attack step
size value of 5/255. For our white-box results we use 10 iterations of the attack. In addition to these settings, some
were made to the attack algorithm as simply preventing PGD from changing the class label while trying to calculate
the adversarial noise often leads to poor performance in practice as many updates are prevented. Instead, a dropout
factor is added to the (h ∗ w ∗ c) adversarial noise matrix after each attack iteration that only applies a select portion
of the updates, lessening the effect of updates that are too strong and have a high chance of flipping the label. The
value for the dropout is dependent on whether it is the overconfidence or underconfidence attack. The most effective
values in our experiments were found to be a dropout value of 0.95 for the underconfidence attack, and 0.2 for the
overconfidence attack.

The results in our experiment section are obtained on three runs of each model with different random seeds.

D Specific Training Details

D.1 General Settings

As mentioned previously, for our general attack implementation we use SA, which works by using a randomized
search scheme to find localized square-shaped perturbation at random positions which are sampled in such a way as to
be situated approximately at the boundary of the feasible set. We still use the original sampling distributions, however
we remove the initialization (initial perturbation) for each attack since it is prone to changing the predicted labels.
Naturally, we use the untargeted versions of the attacks, whereby the perturbations lead to increases in the probabilites
of random non-predicted classes for the underconfidence attack, since we only care about the probability of the top
predicted class.

The details of the training procedure for each of the models and datasets is as follows: For CIFAR-100 and GTSRB,
we use the predefined training and test sets for both but use 10% of the training data for validation purposes. For
Caltech-101, which comes without predetermined splits, we use an 80:10:10 train/validation/test split. For all of the
datasets, we resize all images to be 224 by 224. We also normalize all of the data based on the ImageNet channel
means and standard deviations. We apply basic data augmentation during training in the form of random cropping and
random horizontal flips to improve model generalizability. The hyperparameters we used for training the ResNet-50
models include: a batch size of 128, with a CosineAnnealingLR scheduler, 0.9 momentum, 5e-4 weight decay, and a
stochastic gradient descent (SGD) optimizer. For ViT, the settings are the same, except we also use gradient clipping
with the max norm set to 1.0. We conduct basic grid search hyperparameter tuning over a few values for the learning
rate (0.1,0.01,0.005,0.001) and training duration (in terms of epochs). Generally, we found that a learning rate of 0.01
worked best for both types of models. The training times vary for each dataset and model. For the ResNet-50 models
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we trained for 15 epochs on CIFAR-100, 10 epochs on Caltech-101, and 7 epochs on GTSRB. Likewise for ViT, we
trained for 10 epochs on CIFAR-100, 15 epochs on Caltech-101, and 5 epochs on GTSRB. The results reported in
Sections 3 and 5 are shown for models on the epoch at which they attained the best accuracy on the validation set. All
of the training occurred on 24 GB Nvidia RTX-3090 and RTX Titan GPUs. Finally, we use 15 bins to calculate the
ECE.

D.2 Defence Training Settings

In this section, we describe each of the defences we used in Section 5, and the settings we use to train them (if
applicable).

Temperature Scaling (TS) (Guo et al., 2017). TS is a post-process recalibration technique applied to the predictions
of an already trained model that reduces the amount of high confidence predictions without affecting accuracy. TS
works by re-scaling the logits after the final layer of the neural network to have a higher entropy by dividing them
by a temperature parameter T , that is tuned by minimizing negative log likelihood (NLL) loss on the validation set.
Temperature scaling only works well when the training and test distributions are similar (Kumar et al., 2019), but by
reducing overconfidence it may have an advantage against overconfidence attacks.

Multi-domain Temperature Scaling (MD-TS) (Yu et al., 2022) MD-TS is a method based on TS but is designed
to be more robust in situations when data comes from multiple domains, as in this case with images corrupted using
different types of calibration attacks. It modifies the original TS method by first finding the ideal temperature across
each domain, then training a linear regression classifier using the feature embeddings of each datapoint and the cor-
responding ideal temperatures based on the respective domain, yielding a classifier that can dynamically calculate an
ideal temperature for each instance at test time. We modify this domain for our task of defence by creating three
different domains for the base images and their underconfidence attacked and overconfidence attacked counterparts.
We select 500 validation instances and find the temperature for each domain and conduct the rest of the method as in
its original incarnation. The feature embeddings are as before, using the penultimate layer outputs of model before the
classification layer. We experiment with converting the feature embeddings to Fourier domain using the fast Fourier
transform before feeding them to the classifier, similar to the principle behind the detection method in Harder et al.
(2021) to make it easier to identify adversarially attacked datapoints, though we find that the conversion brings little
benefit over the base variation of the method.

Calibration of Neural Networks using Splines (Spline) (Gupta et al., 2021). Spline is another post-process re-
calibration technique that uses a recalibration function to map existing neural network confidence scores to better
calibrated versions by fitting a spline function approximates the empirical cumulative distribution. It is lightweight,
and often performs better than TS.

Difference between confidence and accuracy (DCA) (Liang et al., 2020). DCA is a training-based calibration
method that adds an auxiliary loss term to the cross-entropy loss during training that penalizes any difference between
the mean confidence and accuracy within a single batch, inducing a model to not produce confidence scores that are
miscalibrated. We set the weight of DCA to 10 based on the recommendation by Liang et al. (2020). Training settings
are kept the same as described in the general settings.

Sharpness Aware Minimization (SAM) (Foret et al., 2021). SAM is a technique that improves model generaliz-
ability by simultaneously minimizing loss value and loss sharpness. It finds parameters that lie in neighbourhoods
having uniformly low loss by computing the regularized "sharpness-aware" gradient. The motivation behind using
this technique as a defence is that models with parameters that lie in uniformly low loss areas may be harder to create
adversarial examples, and may be more regularized. We use a neighbourhood size ρ = 0.05. We kept the training
settings the same as we described in the general settings.

RobustBench (Croce et al., 2021). To understand how state-of-the-art adversarial defences work against our attack,
we take the top 3 performing (in terms of adversarial robustness) WideResNet (Zagoruyko & Komodakis, 2016)
defences on the popular RobustBench defence model benchmark for CIFAR-100 under the l∞ ϵ = 8/255 attack
model. We only choose the WideResNet models given their closer similarity to the primary model we study in this
work, ResNet-50. The defences we choose are those of Gowal et al. (2020) (ranked first), Rebuffi et al. (2021) (ranked
third) and Pang et al. (2022) (ranked fifth). These defences use a combination of adversarial training and ensembling
to produce models that are robust against a wide range of conventional adversarial attacks. In addition, they use
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different techniques, like combining larger models, using Swish/SiLU activations and model weight averaging, and
data augmentation to significantly improve robust accuracy.

Adversarial Training (AT). AT is among the most common and effective defences against a wide range of adversarial
attacks where models are trained on adversarially attacked images. We implement our version similar to Madry et al.
(2018) and Xie et al. (2019), where we run PGD-based adversarial training, given how this form of defence has been
shown to be effective across a wide range of attacks due to PGD being close to a universal first-order l∞ attack.
We train exclusively on images attacked with an n-step l∞ PGD attack each batch, with the number of steps chosen
depending on the model and dataset. Since we already test RobustBench models that often make use of AT with
a large amount of steps, we specifically tune our AT models to have less steps to compromise less on accuracy and
miscalibration. We wish to see whether more lightly-tuned AT can still provide major benefits given calibration attacks
are not as severe. For the PGD attack, we attack each image in a batch using an ϵ norm of 0.1. We use an attack stepsize
relative to ϵ of 0.01 / 0.3, with random starts. The number of attack iterations ran for each batch was carefully chosen
to balance performance and adversarial robustness. We used 15 iterations on all of the ResNet models, while for ViT
we generally required much fewer, with three for the CIFAR-100 models, and five for the remaining two datasets. In
terms of remaining training details, we keep them largely the same as described in the general settings, although the
training durations were sometimes varied by a few epochs to optimize accuracy. We use the Foolbox implementation
of the PGD attack (Rauber et al., 2020; 2017).

Adversarial Attack Against Attacks (AAA) (Chen et al., 2022). A recent adversarial defence specifically tuned
towards black box score based methods like Square Attack, this is a post processing method that works on an already
trained neural network’s logits that uses a function that misleads the attack methods towards incorrect attack directions
by slightly modifying the output logits. The method is shown to be very effective against score-based query methods
at a low computational cost, and is purported to maintain good calibration, which makes it of particular interest in this
case as a defence against calibration attacks.

Calibration Attack Adversarial Training (CAAT). Our novel form of adversarial training that uses calibration attacks
to generate adversarial examples rather than the regular attack algorithm. Although the general methodology is still the
same as PGD-based adversarial training, the primary difference is that for each minibatch, both the underconfidence
PGD calibration attack and its overconfidence version are applied to the images and the loss between the two sets of
images is added. As this uses calibration attack, the labels of these images are unaffected. The settings we use for
the attacks are the same as those described in C for the white-box version. Regarding the settings for each model and
dataset, they are largely similar to those of regular AT, although the number of attack iterations is kept consistent at
10, even for ViT. The number of training epochs are the same as those we use for regular fine-tuning.

Compression Scaling (CS). This is a novel post-process defence that does not require training and is specifically
designed to maintain the regular confidence score distribution and thereby preventing extreme miscalibration while
undergoing a calibration attack. Since calibration attacks does not flip the original label, for any given classifier, the
strongest effect of calibration attacks will be reducing the confidence score on correctly classified “easy” datapoints
while making the model more overconfident on difficult, misclassified datapoints. This creates a shift in the distribution
where for a given high performing classifier the average confidence will drop dramatically while the accuracy remains
high, and some misclassified datapoints will shift to a higher confidence level. In any case, a distribution that was
originally skewed towards high confidence scores is now essentially shifted lower. Therein lies the goal of CS, to
essentially shift back the distribution by scaling it such that it lies in high confidence space as before. If we assume
that already low confidence correctly classified datapoints will be more affected by a calibration attack than one that
is much higher confidence, and if we assume that incorrectly classified datapoints will have lower confidence then due
to the relative inefficiency of the overconfidence attacks they will likely not reach extremely high confidence levels
unless the attack is ran for a very large amount of iterations, then the relative ordering between many of the datapoints
is still preserved even if the distribution is shifted, meaning the misclassified datapoints may still get mapped to the
lower end of the confidence scale. The advantage of this method is that it largely does not incur a lot of calibration
error even on clean data while being among the most effective and consistent defence methods against calibration
attack. In addition, if one wants to do downstream decision making then one can still filter out the bottom p percentage
of images with a confidence score. For the number of bins, we mostly choose 3 or 4 as this leads to the smallest error
post attack. We find the scaling factor by iterating through a large range of possible values so that the new desired
confidence score for the datapoint is then achieved within the new confidence range.
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Binning Details. In our two defence algorithms, the range of possible confidence scores are first split into equally
sized bins. In our case, we divide confidence scores into 15 bins and chose the top 3 (or 4) highest confidence bins as
the compressed bins as mentioned above.

E Calibration Metric Formulation

Here we formulate the two calibration metrics that we use in our experiments. As Equation 2 is an idealized repre-
sentation of miscalibration that is intractable, approximations have been developed which are grouped into the more
common binning-based metrics, and non-binning based metrics.

Expected calibration error (Pakdaman Naeini et al., 2015) is the most widely used calibration metric in research. It
is a binning-based metric where confidence scores on the predicted classes are binned into M number evenly spaced
bins, which is a hyperparameter that must be carefully chosen. In each bin, the difference between the average
confidence score and accuracy of all data points within the bin is calculated, representing the bin-wise calibration
error. Afterwards, the weighted sum over the error in each bin constitutes the expectation of the calibration error of
the model. The equation for ECE is as follows given Bm are the data points in the mth bin, and nm is the number of
data points in that bin.

ECE =
M∑

m=1

nm

N
|acc(Bm)− conf(Bm)|. (8)

ECE can underestimate the levels of miscalibration due to being sensitive to the number of bins (Ovadia et al., 2019)
and by having underconfident and overconfident data points overlapping in one bin (Nixon et al., 2020). Kolmogorov-
Smirnov Calibration Error (Gupta et al., 2021) is an alternative evaluation metric, that instead of binning, leverages
the Kolmogorov-Smirnov statistical test for comparing the equality of two distributions. The error is determined by
taking the maximum difference between the cumulative probability distributions of the confidence scores and labels.
Specifically, the first step is to sort the predictions according to the confidence score on class k, i.e., p̂k, leading to the
error being defined as:

KS error = max
i
|hi − h̃i|,

where, h0 = h̃0 = 0,

hi = hi−1 + 1(yi = k)/N,

h̃i = h̃i−1 + pk(xi)/N.

(9)

F Adversarial Attack Detection Details

Local Intrinsic Dimensionality (LID) (Ma et al., 2018). This detection method exploits the estimated Local Intrinsic
Dimensionality (LID) characteristics across different layers of a model of a set of adversarial examples, which are
found to be notably different than that of clean datapoints or those with added random noise. First, a training set is
made up of clean, noisy, and adversarial examples, and a simple classifier (logistic regression) is trained to discriminate
between adversarial and non-adversarial examples. For each training minibatch, the input features to the classifier are
generated based on the estimated LID across different layers for all of the datapoints. The hyperparameters for this
method are batch size and the number of nearest neighbours involved in estimating the LID. We choose a consistent
batch size of 100 in line with previous work such as (Harder et al., 2021), and for each case we test the possible
nearest neighbors from the following list {10, 20, 30, 40, 50, 60, 70, 80, 90} and report the results for the best value,
which vary for different datasets and models. We use the implementation from Lee et al. (2018).

Mahalanobis Distance (MD) (Lee et al., 2018). The premise behind this method is to use a set of training datapoints
to fit a class-conditional Gaussian distribution based on the empirical class means and empirical covariance of the
training datapoints. Given a test datapoint, the Mahalanobis distance with respect to the closest class-conditional dis-
tribution is found and taken as the confidence score. A logistic regression detector is built from this which determines
whether a datapoint is adversarial. The main hyperparameter for this method is the magnitude of the noise used, which
we vary between {0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005} for each case and pick the value that results in the
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highest detection accuracy. In addition, calculating the mean and covariance is necessary to use the method, which we
utilize the respective training set to do for each dataset. We use the implementation of MD from (Lee et al., 2018).

SpectralDefense (Harder et al., 2021). This detection method makes use of Fourier spectrum analysis to discriminate
between adversarial and clean images. The spectral features from Fourier coefficients, which are computed via two-
dimensional discrete Fourier transformation applied to each feature map channel, are found for each image, and a
detector based on logistic regression is trained using the Fourier coefficients. The magnitude Fourier spectrum based
detector (InputMFS) is the version we use in our experiments.

G Additional Analysis and Results

In this section we provide additional results with white-box attacks, more details on the analyses described in Section
4.4, and qualitative analysis of the properties of our attacks, as well as a quantitative analysis under a common real
world issue of imbalanced data distributions. Apart from the white-box results, the remaining analyses are conducted
using our black-box setup.

G.1 White-box Calibration Attack

Table 5: Results of white-box PGD variant of cali-
bration attack.

ResNet
ECE KS Avg. Conf.

CIFAR-100 (Accuracy: 0.881±0.002)
Pre-atk 0.052±0.006 0.035±0.006 0.916±0.006
UCA 0.213±0.003 0.175±0.007 0.747±0.011
OCA 0.072±0.003 0.070±0.001 0.951±0.002
MMA 0.187±0.008 0.161±0.007 0.746±0.007
RCA 0.187±0.016 0.156±0.013 0.759±0.015
Caltech-101 (Accuracy: 0.966±0.004)
Pre-atk 0.035±0.002 0.031±0.004 0.936±0.001
UCA 0.388±0.019 0.380±0.022 0.599±0.022
OCA 0.018±0.003 0.019±0.002 0.984±0.001
MMA 0.375±0.022 0.376±0.022 0.591±0.021
RCA 0.353±0.019 0.352±0.021 0.619±0.022
GTSRB (Accuracy: 0.972±0)
Pre-atk 0.019±0.006 0.008±0.002 0.98±0.002
UCA 0.233±0.020 0.232±0.016 0.752±0.014
OCA 0.020±0.002 0.019±0.003 0.991±0.003
MMA 0.226±0.006 0.227±0.007 0.750±0.008
RCA 0.217±0.014 0.218±0.009 0.763±0.008

ViT
CIFAR-100 (Accuracy: 0.935±0.002)
Pre-atk 0.064±0.006 0.054±0.005 0.882±0.004
UCA 0.277±0.001 0.274±0.004 0.671±0.006
OCA 0.045±0.003 0.017±0.002 0.928±0.002
MMA 0.260±0.006 0.262±0.007 0.675±0.005
RCA 0.236±0.013 0.239±0.015 0.699±0.013
Caltech-101 (Accuracy: 0.961±0.024)
Pre-atk 0.137±0.059 0.136±0.06 0.825±0.083
UCA 0.489±0.071 0.489±0.071 0.472±0.095
OCA 0.086±0.045 0.082±0.049 0.879±0.073
MMA 0.488±0.070 0.488±0.070 0.473±0.094
RCA 0.435±0.048 0.435±0.048 0.527±0.071
GTSRB (Accuracy: 0.947±0.006)
Pre-atk 0.040±0.005 0.026±0.017 0.922±0.024
UCA 0.321±0.047 0.315±0.045 0.641±0.052
OCA 0.037±0.013 0.020±0.011 0.936±0.024
MMA 0.302±0.037 0.302±0.036 0.645±0.043
RCA 0.292±0.030 0.293±0.029 0.657±0.037

The results for the white-box variation of our attacks can be found in
Table 5 on the three datasets and across our two tested models, similar
to how we presented our black-box results. For each scenario, we
show the ECE, KS error and average confidence. We used 10 attack
steps to generate the results for an ϵ noise value of 0.05.

Much like the SA results, the PGD attack manages to create signifi-
cant miscalibration compared to before the attack with only a small
number of attack steps. The results are less severe than for SA where
the level of miscalibration achieved are worse despite the base PGD
attack being far more effective at affecting classification accuracy.
We believe this is because the modifications that are made to ensure
that the calibration attack algorithm does not cause the predicted class
to change greatly reduce the effectiveness of PGD as the most effec-
tive gradient updates that cause a great swing in the confidence score
cannot be used since they are likely to change the predicted class,
and instead much less significant updates that do not change the con-
fidence score a great deal serve as the primary noise that gets added
to the adversarial images.

G.2 Detailed Setup and Comparison of Efficiency
of Underconfidence vs. Overconfidence Attacks.

To understand which form of attack is most query efficient when the
amount of change in confidence is the same, for each attack type we
identify all of images in the test set that are around a given confidence
level. We use the corresponding attack to made the model produce
either an increase of 10% in confidence, or a decrease of 10%. We
choose two base confidence levels of 80% and 90% and find all the
data points within 1% of each. When an attack causes a change at or
past the set threshold for the given goal probability, the attack stops
and the number of queries is recorded. The results can be seen in
Table 3. The consistent pattern we observe for both base confidence
levels is that it takes notably fewer queries to create underconfidence
than overconfidence, and the former attack is more effective at affecting the average confidence.
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G.3 Detailed Analysis of Epsilon and Iterations

Epsilon. The ϵ parameter plays a major role in adversarial attacks, as it controls how much noise can be added when
creating perturbations. Although setting a higher ϵ value for an attack lets it easier and more efficient for the algorithm
to create adversarial examples, it potentially cause the visual changes to images more perceptible, so a small ϵ is
preferable while still being able to produce good adversarial examples. In the case of calibration attack, there is no
need to go as far as flipping a label, so lower ϵ-bounds have the potential to create some miscalibration. To provide
further details on our results in Figure 2, for the leftmost figure as mentioned previous we tested on CIFAR-100 using
ResNet-50. The five different ϵ values we use are (0.005, 0.01, 0.05, 0.1, 0.25) after being attacked using all four of
the attacks with the other settings the same as in Appendix C, with the results averaged over three models. In addition
to the miscalibration being strong for most of the attacks at low ϵ values, we can see that maximum miscalibration
attack consistently outperforms the rest across the different values. The underconfidence attack does not have much
change with higher ϵ, but it is largely because the models has already almost reached the peak level of attacking the
confidence with low epsilon values, and as such does not have a large effect on ECE. As middle figure largely displays
the same trends as ResNet, revealing that the results are not architecture dependant. The rightmost figure uses ResNet
and goes over the same ϵ values as before, except the maximum miscalibration attack is run over both Caltech-101 and
GTSRB models. Again the trends are similar, although the increase in ECE is not as severe as for CIFAR-100.
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Figure 4: The contrast between the effects on accuracy and ECE
between the original version of the Square Attack algorithm and
the maximum variation of the calibration attack algorithm at 1000
attack iterations. (Top) ResNet-50 results. (Bottom) ViT results.

Iterations. Expanding on the results in the rightmost fig-
ure in Figure 2, the number of iterations of the maximum
miscalibration attack is varied from 100, 500, 1000, to
5000, whilst attack both ViT and ResNet models trained
and tested on CIFAR-100 with the same settings as in
Appendix C. We note how the ECE begins to saturate
at close to 500 iterations, after which the benefits of run-
ning the attack longer are minor, though even at 100 iter-
ations the ResNet model becomes heavily miscalibrated
despite the standard ϵ value of 0.05 being used. In our
tests showing the effectiveness of the original SA ver-
sus its calibration attack version, seen in Figure 4 we
specifically compare over accuracy and ECE between
the maximum miscalibration attack and the regular un-
targeted Square Attack across the four aforementioned
iteration values for both ResNet and ViT on CIFAR-100.
As expected, Square Attack greatly reduces the accu-
racy even with a small number of iterations. Neverthe-
less, in terms of ECE, the calibration attacks consistently
produce higher amounts of miscalibration compared to
the original Square Attack across the different iteration
amounts.

G.4 t-SNE Visualizations

To help visualize the effect of each of the attack types in latent space and to confirm they are having the expected
effects, we run a t-SNE analysis (van der Maaten & Hinton, 2008) on the representations of ResNet-50 right before
the classification layer. The datasets we use throughout this study, with their large number of classes, are not ideal
for visualization purposes. Instead, we create a binary subset using CIFAR-100 by taking all of the images from
two arbitrary classes, bicycles and trains. We create a separate training set and test set to perform this procedure
independently, and fine-tune a ResNet-50 model on the training set. The specific details are similar to those described
in Section D for CIFAR-100 ResNet. We train the model for 5 epochs with a learning rate of 0.005. The attack
settings are the same as in Section C for the l∞ version, and we only run the attacks for 500 iterations. We run the
t-SNE analysis on a balanced slice of 200 images from the new test set for easy visualization purposes, before and after
all of the different attacks. The model achieves 95% accuracy on the full test set. Figure 5 shows the graphs. It can
be seen the effect on the representations for the adversarially attacked data is as expected. The overconfidence attack
causes the representations for both class predictions, even incorrect ones, to be split apart as much as possible, while
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Figure 5: t-SNE visualization of the effect of different forms of calibration attacks on a ResNet model trained and tested on a binary
subset from CIFAR-100, with the test set (consisting of 200 data points) results being displayed. In the order from top left to bottom
right, the plots for the pre-attack (vanilla model), and the underconfidence, overconfidence, random, and maximum variations of
the attacks can be seen.

the underconfidence attack causes a more jumbled representation between the two classes with most falling closely to
the decision boundary. The maximum miscalibration attack has a similar effect to the underconfidence attack, except
the misclassified images are pushed far away from the decision boundary to make it appear as if the model is more
confident in its decisions. Lastly, the random attack causes two distinct random clusters for each prediction type to
form, as random data points are pushed to be more overconfident or more underconfident than they originally were.
With these results, we can see visually confirm that the attacks possess their intended behaviour.

G.5 Imbalance Ratio
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Figure 6: Graphs comparing the vulnerability of ResNet and ViT models trained with different imbalance ratios on CIFAR-100 to
the maximum miscalibration attack at 1000 iterations and an ϵ of 0.05, and their corresponding overall trends in average queries
and accuracy.

Dataset imbalance has a profound effect on how a model learns and how well it performs, with detrimental effects
occurring when imbalance ratios are very high. With how common imbalanced data distributions are in real world
scenarios, we believe it is worth studying the influence of imbalance ratio and its relationship with robustness against
calibration attacks as an additional point of analysis. We choose CIFAR-100 as our primary dataset for this analysis,
and we follow the procedures in Tang et al. (2020) and Cao et al. (2019) to create training sets with long-tail imbalance.
This is a form of imbalance where the datapoint sizes in the classes follow an exponential decay. We use the variable ρ
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to denote the ratio between datapoint sizes of the class with the smallest datapoint size, and those of the one chosen to
be the biggest. We create training sets with ρ values of 0.01, 0.02, and 0.01 (for 1:100, 1:50 and 1:10 ratios of smallest
to biggest class). We then train 3 ResNet-50 and 3 ViT models on each imbalanced set. The training details are again
the same as those described in the general settings Section D, although the training times are different. 15 epochs is
used to training the 1:100 ratio models, while 10 epochs is used for the rest. We subject the models to the maximum
miscalibration attack using the same settings as in Section C for CIFAR-100 (test data is balanced), and calculate the
resulting average and deviation of the pre and post attack ECE, average number of queries, and accuracy. The graphs
displaying the results can be seen in Figure 6. Unsurprisingly, the higher the imbalance ratio, the lower the accuracy
is on the balanced data. In terms of robustness, the more balanced the data the more resistant it is against getting
miscalibrated from the attacks, for both the ResNet and ViT architectures. This is similar to the trends in the inherent
miscalibration present before the attacks, although the calibration differences between the different ratio models are
not as severe, and ViT at the 1:500 imbalance ratio is the best calibrated beforehand but becomes the worst after the
attack. The trend in the number of queries it takes for a successful attack is reversed for ResNet and ViT, with ViT
requiring more queries the more balanced the data is, while ResNet is vice-versa. Overall, dataset imbalance does
not create favourable conditions for robustness, though the use of imbalance data techniques could potentially remedy
some of these issues.

G.6 GradCAM Visualization Details

Given the effectiveness of the attacks at leading a model to produce highly miscalibrated outputs, for both base styles
of attacks, we endeavour to explore whether they also lead to any changes in where the model focuses on in an
image when making its decision, and especially with novel overconfidence attack. Knowing this can lead to further
insights as to how models are affected by various forms of the attacks. To accomplish this analysis, we use GradCAM
(Selvaraju et al., 2017), a popular visualization method that produces a coarse localization map highlighting the most
important regions in an image that the model uses when making its prediction by making use of the gradients from
the final convolutional layer (or a specific layer of choice) of a network. We apply GradCAM to our ResNet-50
models fine-tuned on Caltech-101 to images from the Caltech-101 test set before and after the underconfidence and
overconfidence attacks at the standard attack settings used in Section C and using the GradCAM implementation of
Gildenblat & contributors (2021). Since the method calculates relative to a specific class, we do so in-terms of the
predicted class. Figure 3 shows the results with some representative images. We specifically choose images where the
attacks led to large change in predicted confidence (at least 10%). On the whole, we have observed that the coarse
localization maps have minimal to no noticeable changes after the adversarial images are produced, especially in the
case of the overconfidence attacked images. This leads us to believe the primary mechanism of the attacks changing
the model confidence is in the final classification layer as opposed to the convolutional layers. This analysis also shows
that it might be difficult to identify these attacks are occurring based on these types of gradient visualization methods.

G.7 Certified Confidence Scores

In this section, we follow recent work in the domain of providing provable guarantees on the robustness of confidence
scores by examining the effect on a smoothed classifier and its bounds when handling calibration attacked data, par-
ticularly in the case of overconfidence attacks. Given the lack of label flipping, we expect that adversarial examples
generated by calibration attack lie close to the original in the data manifold, thereby having a minimum effect on the
certified confidence. To test this hypothesis, we closely follow Kumar et al. (2020) on certification to provide lower
bounds on the confidence of a smoothed classifier. A strong lower bound can be produced by using the probability
distribution of the confidence scores of a Gaussian cloud around the input image using Neyman-Pearson lemma to
calculate this for a given certified radius. We select a sub-sample of 100 random datapoints from CIFAR-100 and use
our base ResNet-50 models that is attacked using the underconfidence and overconfidence attacks using our standard
settings, and average the expected confidence score lower bound produced by the smoothed model across different
Radii. We utilize the version of the method that uses CDF information and use a smoothing faction value of σ = 0.25,
failure probability α = 0.001 and use 100,000 Monte-Carlo datapoints for the estimation. The results for the certified
smoothed model cab be seen in Figure 7. We observe that the average lower bound for the underconfidence attack is
lower than the base version and overconfidence attack, although it is not dramatically different due to the huge error
bounds. Nevertheless, it appears that the smoothed model works well at being robust, particularly on the overcon-
fidence attacked datapoints, but despite the expected confidence, the average certified accuracy for each set of data
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each was 74%, 59%, and 76% respectively, so the smoothed classifier struggles at performing more accurately on the
perturbed datapoints. Overall, this method of guarantee could be a useful tool for counteracting calibration attacks
without using specific defences, particularly when using classifiers for safety-critical tasks that rely on confidence
scores.
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Figure 7: Expected Confidence Score lower bounds for a set of CIFAR-100 images (original and attacked using the underconfidence
and overconfidence attacks) based on a ResNet-50 classifier.

G.8 Detailed Results and Analyses on Recalibration and Defence

Table 4 shows the experiment results of query efficiency, accuracy, along with the ECE and KS error, before (PrECE
and PrKS) and after the attack (PrECE and PrKS).

The RobustBench models compromise substantially on accuracy, and have a high level of miscalibration on clean data.
They do largely avoid getting extremely miscalibrated as a result of the attacks compared to the defenceless models,
except the top model on the leaderboard. Nevertheless, their high inherent miscalibration means they are unfavourable
in situations where the model must be well calibrated.

In terms of the calibration methods, TS tends to be among the best methods at reducing calibration error prior to the
attacks, but after the attacks it offers very little benefit compared to the vanilla models. The MD-TS method is similar
with its prior calibration being solid, but post attack it only brings minor benefits over TS in most cases. It appears
that this is due in part to not finding the ideal temperature parameter for each image due to the difficulty of identifying
the correct image domains, as in, recognizing which form of attack occurred. The Splines method is similar in its
pre-attack calibration benefits to TS, but differs greatly in its performance post-attack. In some cases, like CIFAR-100
ResNet, it is easily the worst performing defence method. In other cases, particularly for Caltech-101 and GTSRB
ViT, it is able to keep ECE at relatively reasonable values post-attack. This discrepancy shows that finding an ideal
recalibration function has the potential to be a strong defence. The training-based DCA and SAM methods tend to
bring few benefits after being attacked, even when they improve the calibration on clean data, the post-attack ECE and
KS errors are not substantially different compared to the vanilla models.

The performance of the regular adversarial defence techniques is mixed. For robustness, AAA in most cases achieves
the lowest post-attack ECE. Even in the best cases like Caltech-101 ResNet, ECE tends to be at least double compared
pre-attack, and in most cases we still observed multiple-fold increases. This technique is also among the poorest
calibrated on clean data. Regarding AT, our approach does not compromise on accuracy and miscalibration on clean
data. It brings notable robustness, especially compared to the calibration methods, but it is not among the strongest.

Lastly, CS is the strongest methods at maintaining low calibration error on post-attack datapoints. Moreover, the
technique tends to have better calibration error on clean data compared to AAA. It shows how it is key that high
confidence values are retained to have decent calibration after the attacks. Altogether, despite some promising results
with the defences, as a whole there are still limitations particularly with the strongest adversarial defences. The
compromise of poor ECE on clean data for better calibration robustness against the attacks that we observe, as well as
the general inconsistent performance means that further refinement on defences is warranted.
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G.9 Results of l2 calibration attacks

Table 6: Results of the l2-based calibration attacks on three datasets.

ResNet
avg #q median #q ECE KS Avg. Conf

CIFAR-100
Accuracy: 0.881±0.002
Pre-Attack - - 0.052±0.006 0.035±0.006 0.916±0.006
UCA 182.7±13.0 94.0±11.0 0.399±0.012 0.356±0.010 0.566±0.008
OCA 44.6±3.3 1.0±0.0 0.129±0.007 0.129±0.007 0.995±0.000
MMA 137.3±5.8 92.7±10.6 0.496±0.001 0.391±0.002 0.604±0.003
RCA 125.2±7.3 99.7±4.9 0.431±0.016 0.350±0.012 0.614±0.011
Caltech-101
Accuracy: 0.966±0.004
Pre-Attack - - 0.035±0.003 0.031±0.004 0.936±0.001
UCA 293.5±14.9 195.0±61.7 0.156±0.002 0.157±0.003 0.810±0.002
OCA 60.9±4.4 1.0±0.0 0.019±0.004 0.017±0.006 0.982±0.002
MMA 40.8±1.8 227.2±91.9 0.143±0.006 0.140±0.005 0.836±0.005
RCA 33.5±5.3 205.0±38.3 0.120±0.009 0.121±0.008 0.848±0.008
GTSRB
Accuracy: 0.972±0.000
Pre-Attack - - 0.019±0.006 0.008±0.002 0.980±0.002
UCA 291.5±22.4 196.7±16.6 0.190±0.032 0.187±0.029 0.793±0.030
OCA 19.5±3.3 1.0±0.0 0.022±0.002 0.022±0.002 0.997±0.000
MMA 91.4±21.1 142.8±44.8 0.239±0.038 0.225±0.034 0.771±0.035
RCA 97.5±16.8 211.0±41.1 0.200±0.014 0.191±0.011 0.794±0.011

ViT
CIFAR-100
Accuracy: 0.935±0.002
Pre-Attack - - 0.064±0.006 0.054±0.005 0.882±0.004
UCA 199.6±7.1 111.2±12.5 0.383±0.014 0.382±0.013 0.555±0.011
OCA 681.3±408.4 681.3±408.4 0.022±0.002 0.021±0.003 0.958±0.003
MMA 111.9±7.4 131.5±17.7 0.405±0.010 0.383±0.010 0.590±0.007
RCA 108.2±6.9 137.8±17.0 0.343±0.010 0.334±0.007 0.614±0.004
Caltech-101
Accuracy: 0.961±0.024
Pre-Attack - - 0.137±0.059 0.136±0.060 0.825±0.083
UCA 258.7±47.2 207.8±64.0 0.233±0.057 0.233±0.057 0.729±0.081
OCA 23.2±15.0 1.0±0.0 0.100±0.048 0.100±0.048 0.859±0.073
MMA 31.5±2.2 236.5±52.0 0.224±0.058 0.224±0.058 0.740±0.080
RCA 21.9±8.1 293.8±24.5 0.196±0.038 0.196±0.038 0.764±0.064
GTSRB
Accuracy: 0.947±0.006
Pre-Attack - - 0.040±0.005 0.026±0.017 0.922±0.024
UCA 258.3±27.8 169.7±31.5 0.261±0.012 0.262±0.011 0.686±0.016
OCA 70.2±31.3 1.0±0.0 0.030±0.005 0.024±0.012 0.968±0.016
MMA 99.6±10.9 210.5±33.0 0.274±0.037 0.257±0.038 0.718±0.044
RCA 94.7±11.2 213.8±59.9 0.245±0.020 0.241±0.016 0.714±0.007
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