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Abstract

High-quality public datasets significantly prompt the prosperity of deep neural
networks (DNNs). Currently, dataset ownership verification (DOV), which con-
sists of dataset watermarking and ownership verification, is the only feasible so-
lution to protect their copyright by preventing unauthorized use. In this paper, we
revisit existing DOV methods and find that they all mainly focused on the first
stage by designing different types of dataset watermarks and directly exploiting
watermarked samples as the verification samples for ownership verification. As
such, their success relies on an underlying assumption that verification is a one-
time and privacy-preserving process, which does not necessarily hold in practice.
To alleviate this problem, we propose ZeroMark to conduct ownership verification
without disclosing dataset-specified watermarks. Our method is inspired by our
empirical and theoretical findings of the intrinsic property of DNNs trained on the
watermarked dataset. Specifically, ZeroMark first generates the closest boundary
version of given benign samples and calculates their boundary gradients under
the label-only black-box setting. After that, it examines whether the given suspi-
cious method has been trained on the protected dataset by performing a hypothesis
test, based on the cosine similarity measured on the boundary gradients and the
watermark pattern. Extensive experiments on benchmark datasets verify the ef-
fectiveness of our ZeroMark and its resistance to potential adaptive attacks. The
codes for reproducing our main experiments are publicly available at GitHub.

1 Introduction

Deep neural networks (DNNs) have demonstrated their strong ability in widespread applications,
such as face recognition [1, 2, 3]. Currently, there are many (high-quality) public datasets, such as
CIFAR [4] and ImageNet [5], that can be easily downloaded and used. Arguably, their availability
is one of the key factors in the prosperity of DNNs, as developers can evaluate and improve their
models upon them. In particular, these datasets are usually only freely available for non-commercial
use since their collection and annotation are time-consuming and even expensive.

To the best of our knowledge, dataset ownership verification (DOV) [6, 7, 8, 9, 10, 11] is currently
the only feasible solution for protecting the copyright of public datasets. Specifically, DOV consists
of two main stages, including dataset watermarking and ownership verification. In the first stage,
dataset owners will introduce some imperceptible watermarked samples to generate the released
watermarked version of the original dataset, so that all models trained on it will have specific dis-
tinctive prediction behaviors on particular samples (i.e., verification samples) while having normal
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Figure 1: The overview of existing dataset ownership verification (DOV) methods and our Zero-
Mark. In the verification phase, existing DOV approaches directly exploit watermarked samples for
verification purposes. In contrast, ZeroMark queries the suspicious model with boundary samples
without disclosing dataset-specified watermarks to safeguard the verification process.

behaviors on standard testing samples. In the second stage, given the API of a suspicious third-party
deployed model, the dataset owners will detect whether it is trained on the protected dataset by
examining its prediction behaviors on verification samples.

In this paper, we revisit existing DOV methods. We find that they all mainly focused on the first stage
by designing different types of dataset watermarks, no matter whether their watermark is backdoor-
based [6, 7, 8] or not [9, 11]. All of them directly exploited watermarked samples as the verification
samples in their second stage. Accordingly, their success relies on an underlying assumption that
verification is a one-time and privacy-preserving process. Otherwise, as the watermark pattern is
leaked during the (first) verification process, the malicious dataset users can easily remove the wa-
termark from the model trained on the stolen dataset or from the verification samples. However,
this assumption does not necessarily hold true in practice since adversaries can always update their
unauthorized models. As such, an intriguing and critical question arises: Could we verify dataset
ownership without disclosing dataset-specified watermarks to ensure a secure verification process?

The answer to the aforementioned problem is positive. In this paper, we first delve into the intrinsic
property of DNNs trained on the watermarked dataset. We empirically and theoretically demonstrate
that the gradient of watermarked models calculated upon the closest samples located at the decision
boundary (dubbed ‘boundary gradient’) has a similar direction to their corresponding watermark
patterns, measured by their cosine similarity. Specifically, the distribution of cosine similarity of
the watermarked model on the dataset-specified target class has significantly larger values than that
of the remaining (benign) classes. In particular, samples located at the decision boundary (dubbed
‘boundary samples’) of watermarked DNNs contain limited information about the dataset-specified
watermarks, measured by several metrics (e.g., mutual information). Motivated by these intrigu-
ing findings, we propose to conduct dataset ownership verification with closest boundary samples
instead of samples containing dataset-specified watermarks (as shown in Figure 1). We call this
method as ZeroMark. Specifically, our ZeroMark has three main steps. In the first step, ZeroMark
generates the closest boundary version of given benign samples. The second step calculates the
boundary gradients of generated closest boundary samples based on the Monte Carlo method. Both
steps are conducted under the label-only black-box verification setting, where dataset owners can
only query the suspicious model with verification samples via API and get its predicted labels. In
the third step, ZeroMark examines whether the given suspicious method has been trained on the pro-
tected dataset via a hypothesis test, based on the distribution of cosine similarity measured between
the boundary gradients and the corresponding watermark pattern.

In conclusion, our main contributions are four-fold: (1) We revisit existing DOV methods and reveal
their underlying assumption regarding the verification phase. It does not necessarily hold, hinder-
ing the protection of dataset copyright. (2) We empirically and theoretically discover an intrinsic
property of watermarked DNNs regarding boundary samples (i.e., those located at the decision
boundary). (3) We propose a simple yet effective method (i.e., ZeroMark) to verify dataset own-
ership without disclosing dataset-specified watermarks. (4) We conduct experiments on benchmark
datasets, verifying the effectiveness of ZeroMark and its resistance to potential adaptive methods.

2 Related Work
2.1 Data Protection
Classical Data Protection. Data protection is a classical and significant research area, which aims
to prevent unauthorized data usage or protect private data. Existing classical data protection con-
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sists of three main categories, including (1) encryption, (2) digital watermarking, and (3) privacy
protection. Specifically, encryption [12, 13, 14] encrypts the sensitive data so that only authorized
users with a secret key can decrypt and use it. Digital watermarking [15, 16, 17] embeds an owner-
specified pattern to the protected data as the watermark to claim ownership. Privacy protection
focuses on preventing the leakage of sensitive information of the data in both empirical [18, 19, 20]
and certified manners [21, 22, 23]. Unfortunately, existing classical approaches can not directly
protect the copyright of open-source datasets since they either hinder the dataset accessibility (e.g.,
encryption) or require the information of the training process of models trained on them (e.g., digital
watermarking and privacy protection) that will not be disclosed by authorized dataset users.

Dataset Ownership Verification. Dataset ownership verification (DOV) aims to verify whether a
suspicious model is trained on the protected dataset. To the best of our knowledge, this is currently
the only feasible method to protect the copyright of open-source datasets. Specifically, DOV intends
to introduce specific prediction behaviors (towards verification samples) in models trained on the
protected dataset while preserving their performance on benign testing samples. Dataset owners can
verify ownership by examining whether the suspicious model has dataset-specified distinctive behav-
iors. Previous DOV methods exploit either backdoor attacks [6, 7, 8, 10] or others [9, 11] to water-
mark the original (unprotected) benign dataset. For example, recently, backdoor-based DOV [6, 8, 7]
adopted poisoned-/clean-label backdoor attacks to watermark the protected dataset. Most recently,
Guo et al. [9] adopted samples from the hardly-generalized domain as watermark samples with-
out introducing any new security vulnerability. However, all existing dataset ownership verification
(DOV) approaches [6, 8, 7, 9, 10, 11] mainly focus on designing watermarks with different proper-
ties (e.g., harmless and stealthy) and directly exploit the watermarked samples for verification. The
security study of their verification stage remains blank and is worth further exploration.

2.2 Secure Machine Learning Inference

Currently, there are also a few works to safeguard the inference process of models. In the context
of machine learning, secure inference is a two-party cryptographic protocol applied in the inference
phase of machine learning models [24, 25, 26]. The server learns nothing about clients’ input, while
a client learns nothing about the server’s machine learning model but can only get the results. Tech-
nically, it is implemented by having the server and client involved in a specific protocol and running
the encrypted model over the encrypted input through cryptographic techniques such as homomor-
phic encryption [27] and secret sharing [28]. However, secure inference requires both the client and
server to encrypt input data and adapt the machine learning model’s operations accordingly through
cryptographic mechanisms [27, 28]. As such, it is infeasible to protect the verification process of
DOV methods since suspicious third-party models may not support these protocols.

3 The Property of Models Trained on the Watermarked Dataset

3.1 Preliminaries

The Main Pipeline of Existing DOV Methods. Let D = {(xi, yi)}Ni=1 denotes the original train-
ing dataset. In context of image classification task with K-classes, i.e., xi ∈ X = [0, 1]C×W×H

represents the image with yi ∈ Y = {1, · · · ,K} as its label. In the first stage of DOV (i.e., dataset
watermarking), the dataset owner will embed watermarks to the original dataset to generate its wa-
termarked version (i.e., Dw). Particularly, Dw = Dm ∪ Db, where Dm represents the watermarked
version of samples from a small selected subset Ds of D (i.e., Ds ⊂ D) and Db contains remaining
benign samples (i.e., Db = D−Ds). The Dm is generated by the dataset-specified image generator
Gx : X → X and the label generator Gy : Y → Y , i.e., Dm = {(Gx(x), Gy(y))|(x, y) ∈ Ds}.
For example, Gx = (1 −m) ⊙∆ +m ⊙ x and Gy = yt in BadNets-based DOV [29, 6], where
m ∈ {0, 1}C×W×H is the trigger mask, δ ∈ [0, 1]C×W×H is the trigger pattern, ⊙ denotes the
element-wise product, and yt is the target label. In particular, γ ≜ |Dm|

|Dw| is the watermarking rate.
In the second phase (i.e., ownership verification), for a suspicious model C : X → Y that may
be trained on Dw, the dataset owners will investigate whether it conducts unauthorized training by
querying it with verification samples under the black-box setting. In general, the verification process
of existing DOV is to directly uses watermarked sample Gx(x) as verification samples to examine
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whether C(Gx(x)) = Gy(y). In contrast, our goal is to perform the verification process without
disclosing the watermark samples Gx(x) during the inference phase of the suspicious classifier C.

Boundary Samples. Let the logit margin of model f : X → [0, 1]K on the label y is denoted by:

ϕy(x;w) = fy(x;w)−max
y′ ̸=y

fy′(x;w). (1)

It can be observed that x can be classified as y by f(·;w) if and only if ϕy(x;w) ≥ 0. As such, the
set for boundary samples of class y can be denoted by B(y;w) = {x : ϕy(x;w) = 0}.

3.2 Approach the Closest Boundary Sample

To obtain the boundary samples, we can easily use a gradient-free method (i.e., geometric search) to
move each given sample x forward the decision boundary of f(·;w) under the label y, as follows:

x = α · x+ (1− α) · xy, s.t. ϕy(x;w) = 0, (2)

where α ∈ [0, 1] is a line search parameter and xy is a sample classified by the model f(·;w) as y.

However, the obtained boundary sample of x would be varied according to different xy . As such,
we use the closest boundary sample of x to study the characteristics of watermarked models.

Following the previous work [30], we define the closest boundary sample of x (i.e., x∗) as:

x∗ ≜ argmin
x

||x− x||p s.t. ϕy(x;w) = 0, (3)

where || · ||1≤p≤∞ is the ℓp norm.

Specifically, we can exploit the fast adaptive boundary attack (FAB) [31] to calculate the closest
boundary sample. In particular, we adapt FAB to implement an iterative algorithm with gradient
ascend using ∇xϕy(x;w), whose update in (t+ 1)-th iteration is as follows:

xt+1 = αt · x0 + (1− αt) ·
{
xt + βt ·

∇xϕy(xt;w)

||∇xϕy(xt;w)||

}
, (4)

where βt is a positive step size, x0 is an initial point such that ϕy(x0;w) ≤ 0 and αt ∈ [0, 1] is
chosen to ensure xt+1 lies in the decision boundary as Eq. (2). In practice, x0 is randomly selected
in the validation set whose label is different from y.

In general, using the closest boundary samples generated via Eq. (4) is mostly because they are
closely related to the intrinsic property of watermarked DNNs, as shown in the next subsection.

3.3 The Characteristic of Boundary Gradient of Watermarked DNNs

In this section, we will show that the gradient of closest boundary samples ∇xϕy(x
∗;w) (dubbed

‘boundary gradients’) of watermarked DNNs is closely related to the watermark patterns. Before
we present our technical details, we first define cos∠(x,∇xf(xt)) as follows:

cos∠(x,∇xf(xt)) ≜
< x,∇xf(xt) >

||x||2 · ||∇xf(xt)||2
. (5)

Following previous works [32, 9], we use a model f(·;w) watermarked through the standard Bad-
Nets backdoor attack (i.e., Gx(x) = (1−m)⊙x+m⊙∆) [29] as a basic example to shed light
on the intriguing characteristic of watermarked DNNs.
Theorem 1 (Property of Boundary Gradient on the Closest Boundary Sample). Assume that
ϕy(xt;w) is twice differentiable with a Lipschitz gradient, if |Dm| → ∞ and by updating xt in
Eq. (4) with step size βt = ||xt − x0||2 · tq−1, there exists a constant c ≥ 0 such that

lim
|Dm|→∞

1− cos∠(m⊙ δ,m⊙∇xϕyt(x
∗,w)) ≤ c · (t∗)q−1, (6)

where q ∈ ( 12 , 1), yt is the target label (i.e., yt = C(Gx(x))), δ is the watermark pattern (i.e.,
δ ≜ Gx(x0)− x0), and t∗ is the number of convergence iterations of x∗’s update.
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Figure 2: (a) shows the watermark pattern for BadNets [29] used in our empirical study. (b) and
(c) are examples of boundary gradients calculated under benign and target labels. (d) shows the
distribution for the cosine similarity calculated over boundary gradients for benign and target labels.
More empirical studies on other types of watermarks are included in the appendix.

In general, since the right side of inequality (6) decreases with the increase of t∗, Theorem 1 indicates
that the cosine similarity between the watermark pattern δ and the gradient calculated on xt located
in the watermark region increases along with its update process. Its proof is in the appendix.

In the following parts, we empirically verify that the distribution of the cosine similarity between
watermark patterns and boundary gradients of the closest boundary samples is different (i.e., has
larger values) from that on their benign versions to further justify our Theorem 1.

Settings. We hereby exploit BadNets-based dataset watermark [29, 6] with ResNet-18 [33] on the
CIFAR-10 [4] dataset as an example for the discussion. Specifically, we watermark a sufficient
amount of samples to achieve a high watermark success rate (i.e., ≥ 99%). The watermark pattern
is a 4× 4 square filled with random pixels, as shown in Figure 2(a). We randomly select 400 benign
samples and use Eq. (4) to generate their closest boundary version for the target label yt (i.e., class
‘0’). To reduce the randomness caused by the selection of watermark patterns, we introduce cos as
the reference for normalization, as follows:

cos ≜
1

N

N∑
i=1

cos∠(m⊙ δi,m⊙∇xϕyt
(x∗,w)), (7)

and we calculate the normalized cosine similarity score as:
ĉos∠(m⊙ δ,m⊙∇xϕyt

(x∗,w)) ≜ cos∠(m⊙ δ,m⊙∇xϕyt
(x∗,w))− cos, (8)

where δi is i-th random watermark pattern that is different from the original one (i.e., δ). We gener-
ate the gradient ∇xϕy(x

∗,w) of the watermarked model on the target label (dubbed ‘Grad (Target)’)
and benign labels (dubbed ‘Grad (Benign)’) others than the target one, as shown in Figure 2(b) and
Figure 2(c), respectively. We then calculate their normalized cosine similarity scores with 400 sam-
ples. Since the values within the boundary gradient are sparse and not evenly distributed, we follow
previous work [34] to select the largest 10 values within the m ⊙ δ and m ⊙ ∇xϕyt

(x∗,w)) to
calculate their corresponding cosine similarity score. More settings details are in the appendix.

Results. As shown in Figure 2(d), the normalized cosine similarity scores of the target label have
significantly larger values compared with those of benign labels. However, their similarity scores
still have some overlap (nearly 74% of the target label). It suggests that not all gradients calculated
on the closest boundary samples can reflect the watermark pattern δ. It is mostly caused by the
deviations introduced by the gradient estimation process under the black-box setting (as in Eq. (11)).

Nevertheless, we can still distinguish between watermarked and benign models based on their simi-
larity distributions by comparing their maximum instead of random values. Specifically, suppose we
define a threshold τ > 0 as the maximum cosine similarity value for benign labels, and there exists
P[ĉos(·) > τ ] ≈ 0.26 for the watermark model. If we randomly sample m samples to calculate the
(closest) boundary gradients and their corresponding normalized cosine similarity, we have:

P(max{ĉos(·)1, ĉos(·)2, · · · , ĉos(·)m} ≤ τ) = (P(ĉos(·) ≤ τ))m. (9)

There will be at least one sample having ĉos(·) > τ with a probability of 1 − P[ĉos(·) < τ ]m.
As such, if we sample sufficient samples (e.g., 100), we will have a large chance (≥ 99%) to find
at least one boundary gradient larger than τ to successfully identify the watermark models. These
phenomena inspire the design of our ZeroMark method, as proposed in the next section.
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1 Estimate Gradient Following Eq. (9)
2 Update Following Eq. (4)
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Figure 3: The main pipeline of our ZeroMark, which consists of three main steps. In the first steps,
ZeroMark applies Eq. (4) and Eq. (10) to generate the closest boundary samples. In the second
step, ZeroMark estimates the boundary gradients for generated boundary samples. In the third step,
ZeroMark first leverages the ground truth watermark pattern and random watermark patterns to
calculate the normalized cosine similarity following Eq. (7) and Eq. (8). After that, ZeroMark
uses the distribution of similarity scores to conduct t-test for dataset ownership verification. In
particular, in the third stage, patterns (i.e., random and ground truth watermarks) displayed in the
gray background are only available to the defender and inaccessible to the suspicious model.

4 Methodology

In this section, we describe the threat model and the technical details of our ZeroMark method.

Threat Model. Consistent with previous DOV methods [7, 6, 8], we assume that dataset owners
will watermark the original dataset to generate its watermarked version. The dataset owner has full
knowledge of watermark patterns and the validation samples used for ownership verification. In
the verification stage, given a suspicious model, they will examine whether it was trained on the
protected dataset under the label-only black-box setting, where they can only query the model with
verification samples via model API and get its predicted labels, without accessing its intermediate
results (e.g., gradients) and model parameters.

The Main Pipeline of ZeroMark. In general, our ZeroMark consists of three main steps, as shown
in Figure 3. ZeroMark first generates the (closest) boundary samples of the suspicious model. Then,
it calculates the boundary gradients of the generated boundary samples. ZeroMark conducts dataset
ownership verification via boundary gradient analysis in the third step.

Step 1. Generate Closest Boundary Samples. ZeroMark follows Eq. (4) to optimize the closest
boundary samples x∗ iteratively with gradient decent. In particular, we exploit Monte Carlo method
to estimate ∇xϕy(xt;w) to address the challenge in our considered label-only black-box scenarios,
where the gradients for given inputs are inaccessible. The overall process is as follows:

xt+1 = αt · x0 + (1− αt) ·

{
xt + βt ·

1
N

∑N
i=1 ϕy(xt + κ · µi;w) · µi

|| 1N
∑N

i=1 ϕy(xt + κ · µi;w) · µi||

}
, (10)

where βt is the step size, x0 is an initial point such that ϕy(x0;w) ≤ 0, αt ∈ [0, 1] is chosen to
ensure xt+1 lies in the decision boundary as Eq. (2), {µi}Ni=1 ∼ N(0, 1) are N random noises i.i.d
sampled from the standard Gaussian distribution, and κ is a fixed positive parameter (i.e., 0.01).

Step 2. Calculate Boundary Gradients. Once the closest boundary sample x∗ is generated, we can
also exploit Monte Carlo method to estimate its gradient (dubbed ‘boundary gradient’), as follows:

∇xϕy(x
∗;w) ≈ 1

N

N∑
i=1

ϕy(x
∗ + κ · µi;w) · µi. (11)

Step 3. Boundary Gradient Analysis. After obtaining the boundary gradients, ZeroMark first
calculates the cosine similarity based on the available watermark pattern δ and obtains boundary
gradients. To further mitigate the variance caused by the watermark patterns, we create several
random watermark patterns and follow Eq. (8) to normalize the calculated cosine similarity. After
that, motivated by the characteristic described in Section 3.3, where the cosine similarity of the
boundary gradients on the target label yt has a significantly larger value compared with that of
benign labels, we design a hypothesis-test-guided method to conduct ownership verification based
on the range of cosine similarity for verification, as follows.
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Figure 4: The example of verification samples across different watermarks (i.e., BadNets, Blended,
WaNet, DW) and verification methods (i.e., Vanilla, Minimal, Distortion) on Tiny-ImageNet.

Proposition 1. Suppose ĉos∠(m ⊙ δ,m ⊙ ∇xϕyt(x
∗,w)) is the posterior normalized cosine

similarity between boundary gradients and the available trigger pattern of the suspicious model
f(·,w). Let variables Pb and Pd denote the largest Q% over {ĉos∠(m⊙δ,m⊙∇xϕyt(x

∗
i ,w))}mi=1

and {ĉos∠(m⊙ δ,m⊙∇xϕy ̸=yt(x
∗
i ,w))}mi=1, respectively. Given the null hypothesis H0 : Pb =

Pd + τ (H1 : Pb > Pd + τ ) where the hyper-parameter τ ∈ [0, 1], we claim that the suspicious
model is trained on the protected dataset (with τ -certainty) if and only if H0 is rejected.

In general, we randomly select m (i.e., 500) validation samples evenly distributed across different
classes to generate boundary gradients for the watermarked and benign labels. Then, we conduct
the pairwise t-test [35] and calculate its p-value. The null hypothesis H0 is rejected if the p-value is
smaller than the significance level α. Besides, we also calculate the confidence score ∆P = Pb−Pd

to represent the verification confidence. The larger the ∆P , the more confident the verification.

5 Experiments

In this section, we conduct experiments on CIFAR-10 [4] and Tiny-ImageNet [36] datasets with
ResNet18 and ResNet-34 [33], respectively. More results with other settings are in our appendix.

5.1 The Performance of Verification Samples Generated by ZeroMark

Settings. We hereby compare our ZeroMark method to two straightforward baseline methods, in-
cluding (1) verification with minimal watermark (dubbed ‘Minimal’) and (2) verification with dis-
torted watermark (dubbed ‘Distortion’). These methods intend to protect the information of dataset-
specified watermarks by perturbing the original watermarks. We also provide the results of verifi-
cation with benign samples (dubbed ‘Benign’) and verification with original dataset-specified wa-
termarked samples (dubbed ‘Vanilla’) for reference. We evaluate each verification method on four
dataset watermark techniques, including two patch-based watermarks [29, 37] and two input-specific
ones [38, 9]. Regarding the implementation of existing watermark techniques, we follow their de-
fault settings. The example of verification samples across different watermarks and verification
methods is shown in Figure 4. Please find more details in the appendix.

Evaluation Metrics.We adopt mean square error (MSE), neuron activation similarity (NAS), and
mutual information (MI) to measure the degree to which the dataset-specified watermarks are dis-
closed during the verification stage. Specifically, the MSE is defined as the mean square error
between verification and their corresponding watermarked samples in the region of watermark pat-
terns. NAS is calculated as the cosine similarity in the neuron activation map between verification
and their corresponding watermarked samples. MI is calculated based on the distribution of verifi-
cation and their corresponding watermarked samples. More details are in our appendix.

Results. As shown in Table 1, our approach produces larger cosine similarity scores of the target
label than benign labels. We show the results regarding the watermark-disclosed degree for different
approaches in Table 2-3. The results show that our approach can reach the most minor watermark-
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Table 1: The averaged largest Q% cosine similarity of our method on different watermarks.
Dataset→ CIFAR-10 TinyImageNet

Label↓, Watermark→ BadNets Blended WaNet DW Ave. BadNets Blended WaNet DW Ave.
Benign 0.028 0.030 0.022 0.028 0.027 0.026 0.021 0.029 0.027 0.026
Target 0.102 0.368 0.131 0.099 0.174 0.148 0.334 0.131 0.123 0.194

Table 2: The performance on CIFAR-10. In particular, we mark the best results in bold while the
value within the underline denotes the second-best results (except the benign samples).

Metric→ MSE (↑) NAS (↓) MI (↓)
Watermark→

Method↓ BadNets Blended WaNet DW BadNets Blended WaNet DW BadNets Blended WaNet DW

Benign 0.394 0.197 0.077 0.309 0.597 0.617 0.609 0.665 15.9 19.7 22.3 28.5
Vanilla 0 0 0 0 0.830 0.801 0.767 0.824 64.3 56.1 58.2 61.7

Minimal 0.193 0.171 0.121 0.197 0.797 0.769 0.721 0.743 54.8 51.5 44.0 52.3
Distortion 0.286 0.251 0.087 0.301 0.770 0.774 0.701 0.769 56.6 53.8 35.4 44.5

ZeroMark
(Ours) 0.392 0.202 0.199 0.246 0.646 0.671 0.688 0.689 18.1 24.4 28.6 29.7

Table 3: The performance on Tiny-ImageNet. In particular, we mark the best results in bold while
the value within the underline denotes the second-best results (except the benign samples).

Metric→ MSE (↑) NAS (↓) MI (↓)
Watermark→

Method↓ BadNets Blended WaNet DW BadNets Blended WaNet DW BadNets Blended WaNet DW

Benign 0.396 0.189 0.076 0.298 0.497 0.561 0.589 0.629 27.6 29.8 28.2 31.4
Vanilla 0 0 0 0 0.817 0.808 0.763 0.804 68.1 59.0 64.7 67.4

Minimal 0.187 0.096 0.077 0.189 0.768 0.782 0.696 0.749 57.3 54.6 49.9 54.7
Distortion 0.263 0.227 0.079 0.227 0.773 0.745 0.738 0.773 61.4 55.7 39.2 48.3

ZeroMark
(Ours) 0.314 0.204 0.171 0.201 0.662 0.697 0.704 0.698 27.7 33.2 30.5 31.7

Table 4: The verification performance of our method on different watermarks.
Dataset→ CIFAR-10 Tiny-ImageNet

Watermark↓ Metric↓, Scenario→ Independent-W Independent-M Malicious Independent-W Independent-M Malicious

BadNets ∆P 0.012 0.013 0.081 0.011 0.012 0.127
p-value 1.00 1.00 10−45 1.00 1.00 10−58

Blended ∆P 0.010 0.013 0.35 0.016 0.012 0.313
p-value 1.00 1.00 10−67 1.00 1.00 10−64

WaNet ∆P 0.028 0.012 0.102 0.022 0.011 0.110
p-value 0.80 1.00 10−53 0.90 1.00 10−55

DW ∆P 0.023 0.014 0.071 0.030 0.002 0.101
p-value 0.88 1.00 10−12 0.74 1.00 10−49

disclosed degree in almost all cases. The improvement is significant compared to the vanilla DOV
methods. These results verify the effectiveness and security of our ZeroMark.

5.2 The Performance of Dataset Ownership Verification via ZeroMark

Settings. We evaluate our ZeroMark for ownership verification under three scenarios, including (1)
independent watermark (dubbed ‘Independent-W’), (2) independent model (dubbed ‘Independent-
M’), and (3) unauthorized dataset training (dubbed ‘Malicious’). In the first case, we used ZeroMark
to verify the suspicious model affected with other watermark patterns; In the second case, we test
the benign model with our ZeroMark; In the last case, we use ZeroMark to verify the watermarked
model with corresponding ground truth watermark samples. Notice that only the last case should be
regarded as having unauthorized dataset use. More setting detail are described in the appendix.

Evaluation Metrics. Following the settings in [7, 6], we use ∆P ∈ [−1, 1] and p-value ∈ [0, 1] for
the evaluation. For the first two independent cases, a small ∆P and a large p-value are expected. In
contrast, for the third one, the larger ∆P and the smaller the p-value, the better the verification.

Results. As shown in Table 4, our method can achieve accurate dataset ownership verification in all
cases. Specifically, our approach can identify the unauthorized dataset usage with high confidence
(i.e., p-value ≪ 0.01 for ‘Malicious’ case), while not misjudging when there is no unauthorized
dataset utilization (i.e., p-value ≫ 0.1 for ‘Independent-W’ and ‘Independent-M’).

5.3 Ablation Study

We hereby study the effects of two key hyper-parameters. More results are in our appendix.
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Figure 5: Effects of iteration size t.
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Figure 7: Robustness against fine-tuning.
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Figure 8: Robustness against model pruning.
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Figure 9: The t-SNE results with varied optimization iterations t for the embedding features of
benign, watermark, and ZeroMark samples extracted from watermarked DNNs.

Effects of Optimization Iterations t. We exploit BadNets and DW as the representatives of
patch-based and sample-specific watermarks to study the effects of t on both CIFAR-10 and Tiny-
ImageNet datasets. As shown in Figure 5, the cosine similarity scores increase with the increase of
t. With t ≥ 30, we can easily distinguish watermarked and benign models.

Effects of the Largest Number of Verification Samples (i.e., m × Q%). As shown in Figure 6,
with the number of verification samples used in the t-test increases, the cosine similarity decreases
while the benign models’ cosine similarity remains stable on both datasets. However, our method
can still have a promising cosine similarity even with many verification samples (e.g., 150).

5.4 The Resistance to Potential Adaptive Methods
We hereby select domain watermark to evaluate the robustness of ZeroMark, as the domain wa-
termark itself is sufficiently robust against this defense. Following the previous work [7], we here
evaluate the robustness of our ZeroMark under fine-tuning [39] and model pruning [40]. As shown
in Figure 7, fine-tuning has minor effects on our method. In Figure 8, we can see ZeroMark per-
forms resilient against model pruning as its efficacy decreases along with the domain watermark.
The results of our resistance to other methods are in our appendix.

5.5 A Closer Look to the Effectiveness of our ZeroMark
In this section, we intend to further explore the mechanisms behind the effectiveness of our Zero-
Mark. Specifically, we adopt t-SNE [41] to visualize the feature distribution of watermark samples,
benign samples, and samples generated by ZeroMark of watermarked DNNs. As shown in Figure 9,
with varied optimization iterations t for generating (closest) boundary samples, samples generated
by ZeroMark can always stay far away from the watermark samples’ distribution, which demon-
strates ZeroMark can prevent disclosing the watermark information from the watermark samples.

6 Potential Limitations and Future Directions

ZeroMark can conduct dataset ownership verification without disclosing the watermark pattern.
However, as the first work towards a secure verification process of dataset ownership verification
(DOV) methods, we have to admit that we still have some potential limitations.
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Firstly, we must admit that our method requires additional time to conduct ownership verification
since it needs to generate some boundary samples and their gradients under the black-box setting.
For example, it takes nearly 30 mins for verification on CIFAR-10. While this cost is acceptable in
practice to a large extent, we will discuss how to accelerate our ZeroMark in our future work.

Secondly, ZeroMark currently can only perform effectively for watermark techniques with a pre-
defined target label (e.g., BadNets [29], etc. For other watermark techniques, which have no pre-
defined target label (i.e., UBW [7]), ZeroMark can not conduct boundary gradient analysis and,
therefore, is not a feasible solution. Moreover, through extensive experimental evaluation, Zero-
Mark is shown to perform more effectively for Blended watermark, compared with other watermark
techniques. Such observations inspire us to improve the effectiveness of ZeroMark by designing
the potential watermark patterns in a blended manner. Finally, the boundary gradient analysis step
in ZeroMark may incur variance among different labels’ samples. In practice, we can release such
variance by training a surrogate model with the protected dataset and calculating cosine similarity
between the corresponding boundary gradients and the target watermark pattern with samples from
different labels. Then we use the calculated cosine similarity using samples from different labels
under the surrogate model to adjust the cosine similarity calculated under the suspicious model.
Specifically, we can adjust the cosine similarity calculated with samples from a specific label t by
subtracting it from the average cosine similarity calculated with samples from the same label t under
the surrogate model. We will further discuss these issues in our future work.

Thirdly, we can only empirically verify that malicious dataset users cannot recover dataset-specified
watermarks based on our boundary samples. We will try to prove it theoretically in the future.

Fourthly, we are currently focusing on convolutional neural networks (e.g., ResNet and VGG) and
the continuous image modality. In general, the success of our approach on other model structures
depends on two factors: (1) whether the studied dataset watermarking method (e.g., BadNets)
can successfully watermark these models and (2) whether we can conduct effective ‘adversarial
attacks’ to find boundary samples on these models. Based on existing work related to backdoor
attacks/dataset watermarking [42, 9] and adversarial attacks [43, 44], these factors are all met. As
such, our method can fundamentally generalize to other models (e.g., transformer) as well. As for
the generalizability to other (discrete) data formats like tabular or text, the main challenge lies in
how to design effective adversarial attacks to them for finding the closest boundary samples (as in
Eq.(10)). In particular, there are already some relevant works [45, 46] confirming its feasibility.
Accordingly, our ZeroMark can be naturally adapted to other discrete data formats (e.g., text and
scientific data [47, 48, 49, 50, 51]). We will discuss them in our future work.

7 Conclusion

In this paper, we revisited existing DOV methods and revealed that their underlying assumption
regarding the verification phase does not necessarily hold in practice. Accordingly, directly using
dataset-specified watermarks for verification is insecure. Motivated by these findings, we proposed
ZeroMark to conduct ownership verification without disclosing them. Our method was inspired by
our empirical and theoretical findings of the intrinsic property of DNNs trained on the watermarked
dataset. We conducted experiments on benchmark datasets, verifying the effectiveness of our Zero-
Mark and its resistance to potential adaptive methods. We hope our work can provide a new angle
of dataset ownership verification to facilitate more secure and trustworthy dataset sharing.
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A Proof for Theorem 1

We follow the previous work [32] to use a model f(·;w) infected with the basic backdoor-based
watermark (i.e., Gx = (1−m)⊙∆+m⊙x) [29] as a basic example to shed light on the intriguing
characteristic of watermark model.
Theorem 1 (Property of Boundary Gradient on the Closest Boundary Sample). Assume that
ϕy(xt;w) is twice differentiable with a Lipschitz gradient, if |Dm| → ∞ and by updating xt in
Eq. (4) with step size βt = ||xt − x0||2 · tq−1, there exists a constant c ≥ 0 such that

lim
|Dm|→∞

1− cos∠(δ,∇xϕyt
(x∗,w)) ≤ c · (t∗)q−1

(12)

where q ∈ ( 12 , 1), yt is the target label (i.e., yt = C(Gx(x))), δ is the watermark pattern (i.e.,
δ ≜ Gx(x0)− x0), and t∗ is the number of convergence iterations of x∗’s update.

Proof.

Recall in Eq. (4), we update xt for each t− 1 th iteration as:

xt+1 = αt · x0 + (1− αt) ·
{
xt + βt

∇xϕy(xt;w)

||∇xϕy(xt;w)||

}
, (13)

Let the step size βt in Eq. (4) as t−q||xt − x0||, we have the distance ratio for updating Eq. (4) as:

||xt+1 − x0||2

||xt − x0||2
=

||(1− α)(
t−q||xt−x0||∇xϕy(xt;w)

||∇xϕy(xt;w)|| + xt − x0)||22
||xt − x0||22

(14)

With a second-order tylor expansion, we have:

ϕy(xt;w) = < ∇xϕy(xt;w),xt+1 − xt > +
1

2
(xt+1 − xt)

THt(xt+1 − xt) = 0 (15)

Combining these Eq. (4) and Eq. (15), we have:

< ∇xϕy(xt;w),−αvt + τt∇xϕy(xt;w) > + (16)
1

2
(−αvt + τt∇xϕy(xt;w))THt(−αvt + τt∇xϕy(xt;w)) = 0, (17)

where we define vt as xt − x0 + τt∇xϕy(xt;w) and τt as t−q ||xt−x0||
||∇xϕy(xt;w)|| .

Solving for α, we have:

α ≥ ∇xϕy(xt;w)T (τ2t Ht + 2τtI)∇xϕy(xt;w)

2∇xϕy(xt;w)T (I + τtHt)vt
. (18)

Therefore, we can get:

(1− α)2 ≤ (
rt +

3
2 t

−qL ||dt||2
||∇xϕy(xt;w)||2

rt + t−q(1 + 3
2L

||dt||2
||∇xϕy(xt;w)||2 )

), (19)

where dt = xt − x0 and rt := cos∠(xt − x0,∇xϕy(xt;w)) =
<xt−x0,∇xϕy(xt;w)>

||xt−x0||2||∇xϕy(xt;w)||2 =
<dt,∇xϕy(xt;w)>

||dt||2||∇xϕy(xt;w)||2 .

Let kt := 3
2L

||dt||2
||∇t||2 . Then kt can be bounded when ||∇t||2 ≥ C and q ≥ 1

2 , thus we have:

||xt+1 − x∗||22
||xt − x∗||22

≤ (
rt + βtkt

rt + βt(1 + kt)
)2 · (β2

t + 2βtrt + 1) (20)
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Motivated by previous work [52], solve Eq. (20) and have :

∞∑
t=1

c1t
−q 1− r2t

rt
− c2t

−2q ≤ ∞, (21)

where c1, c2 are two positive constants, thus the above equation is o(t− 1).

When q ∈ ( 12 , 1), we have:

1− r2t
rt

= o(tq−1). (22)

Therefore, we have:

1− cos∠(dt,∇xϕy(xt;w)) ≤ c · tq−1, (23)

Notably, Eq. (4) with step size as t−q||xt − x0|| converges a stationary point of Eq. (3). Motivated
by proof for Lemma 3 in [34], when xt is optimized to a stationary point (i.e., x∗) in t∗ and if xt

belongs to the watermark label yt, we have:

lim
|D|m→∞

E [m⊙ x∗ −m⊙ x0] = E [dt] = m⊙∆−m⊙ x0 (24)

= m⊙ δ, (25)

and

lim
|D|m→∞

||(1−m)⊙ (x∗ − x0)||
||x∗ − x0||

= 0. (26)

Hence, when |D|m → ∞, we have:

< m⊙ dt,m⊙∇xϕy(x
∗;w) >

||m⊙ dt||||m⊙∇xϕy(x
∗;w)||

=
< m⊙ δ,m⊙∇xϕy(x

∗;w) >

||m⊙ δ||||m⊙∇xϕy(x
∗;w)||

, (27)

therefore, for the watermark label (i.e., yt):

lim
|Dm|→∞

1− cos∠(m⊙ δ,m⊙∇xϕyt
(x∗,w)) = 1− cos∠(m⊙ dt,m⊙∇xϕy(x

∗;w))

≤ c · (t∗)q−1.
(28)

B Detailed Settings for Empirical Study in Section 3.3

In the Section. 3.3, we select ResNet-18 and CIFAR-10 as the evaluated model and benchmark. We
select the class ‘0’ as the watermark class and inject watermark samples with 10% watermark ratio to
ensure the verification success rate ≥ 99%. We randomly select 300 samples from the validation set
across classes. We use these selected validation samples to generate boundary points for watermark
and benign labels labels following Eq. (4). In particular, for the boundary point of watermark label
yt, we set x0 as samples from classes different from yt and set xt as samples from the watermark
label. As for the boundary point of benign labels, we set x0 as samples from the watermark class
and set xt as samples from the benign labels. As such , there should be 400 boundary gradients
for the watermark or benign label. We then calculate the boundary gradients following the gradient
estimation process as Eq. (10).
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Figure 10: The results of using blended watermark.
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Figure 11: The results of using WaNet watermark.
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Figure 12: The results of using domain watermark.
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t =10 t =20 t =40 t =30 

Figure 13: t-SNE clustering results for the blended watermark.

C Additional Results for Empirical Study in Section 3.3

We also conduct same empirical studies on additional three different types of watermarks (i.e.,
Blended [37],WaNet [38] and Domain Watermark [9]) to validate the characteristic of boundary gra-
dients for watermarked and benign labels. Specifically, we conduct empirical studies with CIFAR-10
using ResNet-18 and select ‘0’ as the watermark label. We can see that in all these three watermark
patterns, the distributions of cosine similarity for watermarked labels have significantly large ranges
compared with that of benign labels. Interestingly enough, we find that the distribution of cosine
similarity for Blended watermark has a more obvious separation with that of benign labels compared
with other watermark patterns. We will speculate the reason for this phenomenon in our future work.

D The Detailed Process for Mitigating the Variance

We here describe how to mitigate the variance caused by the watermark patterns and the iterative
gradient estimation in details.

Mitigate the Variance Caused by the Watermark Patterns. Based on the available ground truth
watermark pattern δ, we create several (i.e., 6) artifact watermark patterns {δi}10i=1 which have the
same location map (i.e.m) as the ground truth watermark but filled with different random noise. We
calculate the baseline cos as:

cos :=
1

N

N∑
i=1

cos∠(m⊙ δi,m⊙∇xϕyt
(x∗,w)), (29)

and we calculate the normalized cosine similarity score as:

ĉos∠(m⊙ δ,m⊙∇xϕyt
(x∗,w)) := cos∠(m⊙ δ,m⊙∇xϕyt

(x∗,w))− cos. (30)

Mitigatwe the Variance in the Iterative Gradient Estimation Procedure. During the procedure
of gradient estimation for Eq. (10), the estimated gradients could yield variance among iterations
for the gradient estimation process. Therefore, to mitigate such variance, we propose to average the
estimated gradients over iterations for the gradient estimation process, which can be formulated as:

∇xϕyt
(x∗,w)) :=

1

t

t∑
t=0

∇xϕyt
(xt,w)) (31)

E Detailed description for Evaluation Metrics

We here describe the metrics for evaluating each approach in details. With loss of generality, we
here define each give watermark sample as:

x′
i = xi + ti, (32)

where xi and ti represent the benign sample and the corresponding watermark pattern. We suppose
ti is located at the dims of [j : k](j < k). The evaluation metrics, including mean square error
(MSE), neuron activation similarity (NAS) and mutual information (MI) are defined as below:
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Figure 14: t-SNE clustering results for the WaNet watermark.

t=10 t=20 t=30 t=40

Figure 15: t-SNE clustering results for the domain watermark.

Algorithm 1 The main process of our ZeroMark.

1: Input: Validation samples {xt
i, yt}mi=1 from the watermark label yt; Validation samples {xo

i , y
o
i }mi=1 from

the labels other than the watermark label; The suspicious model f(·;w)
2: for l=1,2,... do
3: Generate (closest) boundary points and boundary gradients for the watermark label following Eq. (4):

Set {xt
i, yt}mi=1 as xy and set {xo

i , y
o
i }mi=1 as x0.

4: Generate (closest) boundary points and boundary gradients for the benign label following Eq. (4): Set
{xt

i, yt}mi=1 as x0 and set {xo
i , y

o
i }mi=1 as xy .

5: end for
6: Calculate the corresponding cosine similarities for watermark and benign labels following Eq. (8).
7: Select largest m∗Q% cosine similarities for watermark and benign labels for T-test following Proposition 1.

• MSE: = 1
N

∑N
i=1

√
(x′

i[j : k]− xv[j : k])2.

• NAS: = 1
N

∑N
i=1 cos∠(F (x′

i), F (xv))).

• MI:= Ep(zv,z
′)[log p(z′|zv)]− Ep(zv)p(z′)[log p(z′|zv)].

where xv , F (·) represent the verification samples, feature extractor for the corresponding watermark
model. z represents the feature extracted by the watermark model. Since ZeroMark uses several
perturbed boundary points for calculating the boundary gradient for each given sample, we average
their values for computing each metric. Notably, we follow previous work [53] to estimate MI by
calculating its upper bound, as follows:

I(z; ẑ) = Ep(z,ẑ)

[
log

p(ẑ|z)
p(ẑ)

]
≤ Ep(z,ẑ)[log p(ẑ|z)]− Ep(z)p(ẑ)[log p(ẑ|z)]. (33)

F The Detailed Algorithm for ZeroMark

We put the detailed algorithm for ZeroMark as follows:
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G Experiments Details

G.1 Datasets

We evaluate our approach on two widely-adopted benchmark datasets (i.e., CIFAR-10 [4], Tiny-
ImgaeNet [36]). We here describe each benchmark dataset in detail.

CIFAR-10. CIFAR-10 dataset contains 10 labels, 50,000 training samples, and 10,000 validation
samples. The training and validation samples are distributed evenly across each label. Each sample
is resized as 32× 32 by default.

Tiny-ImageNet. Tiny-ImageNet dataset contains 200 labels, 100,000 training samples, and
10,000 validation samples. The training and validation samples are distributed evenly across each
label. Each sample is resized as 64× 64 by default.

Evaluated Watermarks. In our experiments, we evaluate four types of watermark, including Bad-
Nets [29], Blended [37], WaNet [38], and domain watermark [9]. The visual demonstration for each
watermark is shown in Sec. 4. For BadNets, we implement a 4× 4 and 8× 8 triggers for CIFAR-10
and Tiny-ImageNet. The trigger is filled with random noise. For Blended watermark, we imple-
ment a 4× 4 and 8× 8 triggers for CIFAR-10 and Tiny-ImageNet. We set the transparency ratio as
0.2 throughout experiments. As for WaNet, we use BackdoorBox2 [54] to build the watermarked
model with its default configurations. For Domain Watermark, we implement it following its re-
leased code3. We set the watermark rate γ as 0.1 consistent with previous work [7] for training
different watermark models.

G.2 Training Configurations

To train DNN models, we use Adam optimizer [55] with the initial learning rate as 0.01. The
watermark models evaluated in our experiments can achieve ≥ 92.26% and 56.8% accuracy on
validation dataset for CIFAR-10 and Tiny-ImageNet tasks. We use six NVIDIA RTX 2080 Ti GPUs
for performing experiments.

H Detailed Configurations for Comparison Approaches

We here describe the comparison approaches in details, as follows.

Existing DOV. We follow DOV approaches [29, 37, 38, 9] to directly exploit the watermark sam-
ples for verification.

Minimal Watermark. Inspired by previous work [56] for Trojan detection, which applies reverse
engineering to generate the pseudo trigger patterns with minimize size while preserving their attack
efficacy. Specifically, we generate the minimal watermark for the watermark sample x′ = x + δ
following:

min
mδ

ℓ(f(mδ ⊙ δ + (1−mδ)⊙ x;w), yt) + ||mδ||2, (34)

we follow Neural Cleanse [56]’s configurations for conducting optimization on Eq. (34). For input-
specific watermark patterns (e.g., WaNet [38], DW [9]), we conduct Eq. (34) on each watermark
sample. As such verification samples with the minimal watermark can be formulated as:

x′ = mδ ⊙ δ + (1−mδ)⊙ x. (35)
2https://github.com/THUYimingLi/BackdoorBox.git
3https://proceedings.neurips.cc/paper_files/paper/2023/hash/

aa6287ca31ae1474ea802342d0c8ba63-Abstract-Conference.html
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Figure 16: The distribution of consine similarity of boundary gradients for watermark and benign
labels under VGG-19.

Watermark with Distortion. Motivated by previous work [32], which reveals that watermark
samples can perform resilient against certain magnitude of random noise distortion, we thus pro-
pose to add maximum magnitudes of random noise for watermark samples to hinder the watermark
pattern while preserving the watermark’s efficacy. We generate the noisy watermark samples via:

x′ = Proj(x′ + a ∗ µ), (36)

where µ ∼ N(0, 1) is Gaussian noise and Proj is the projection function to constrain x′ + a ∗ µ
into [0, 1]. We solve a using grid search to find the largest a while preserving the verification success
rate for watermark samples.

I Additional Results for Experiments

We here show additional results in our experiments. We perform t-SNE clustering analysis for other
three types of watermark (i.e., Blended, WaNet, Domain Watermark) with varied optimization it-
erations t. The results are shown in Figure 13, Figure 14 and Figure 15. The additional visual
demonstrations for boundary samples within the verification procedure are shown in Figure 17,Fig-
ure 18, Figure 19 and Figure 20. We also evaluate ZeroMark with different model architectures.
Specifically, we here evaluate ZeroMark using VGG-19 [57] with CIFAR-10 task and the configura-
tions are consistent with Section. 3.3. The results are shown in Figure 16, which demonstrates that
ZeroMark can still perform effective on VGG-19 models.

J The Resistance to More Adaptive Attacks

We here investigate whether ZeroMark can perform robustness against the potential adaptive attack
for recovering or unlearning the watermark pattern.

Recovering the Watermark Pattern from the Boundary Samples. We here explore the poten-
tial adaptive attack for recovering the watermark pattern. Since we leverage gradient estimation via
aggregating the random noise for conducting boundary gradient analysis, we here consider an adap-
tive attack by aggregating corresponding boundary samples for each input sample x0 to recover the
watermark pattern. We conduct experiments using ResNet-18 under CIFAR-10 task and we evaluate
the adaptive attack with Domain Watermark [9]. The results are shown in Figure 21 and Figure 22.
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Figure 17: Visual demonstration of ZeroMark for BadNets watermark.

We find that the aggregated boundary samples can not reveal the watermark pattern from both visual
and clustering analysis.

Unlearn the Watermark through Boundary Samples. We here consider whether we can fol-
low [56] to unlearn the watermark pattern via boundary samples. We retrain the suspicious model
with 500 boundary samples and label them as their original label (i.e., label for x0) along with the
training data. We find that the accuracy of the suspicious model drops from 92.3% to 90.2% and the
verification success rate for domain watermark drops from 88.6% to 75.1%, and the ZeroMark can
still achieve the averaged largest Q% as 0.076 for the target label, which significantly larger than
that of the benign labels(i.e.,0.028). This results demonstrate that ZeroMark can prevent disclosing
watermark patterns during the verification procedure within DOV.

K Reproducibility Statement

In the appendix, we provide detailed descriptions of the datasets, models, training and evaluation
settings, and computational facilities. We provide the codes and model checkpoints for reproducing
the main experiments of our evaluation in the supplementary material.

L Societal Impacts

In this paper, we focus on the copyright protection of public datasets. Specifically, we reveal that the
verification process of existing DOV methods is not secured and propose using boundary samples
to conduct verification without disclosing the watermark. This work has no general ethical issues
since our method is purely defensive and does not reveal any new vulnerabilities of DNNs.
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Figure 18: Visual demonstration of ZeroMark for Blended watermark.

M Discussions about Adopted Data

In this paper, all adopted samples are from the open-sourced datasets (i.e., CIFAR-10, Tiny-
ImageNet). The Tiny-ImageNet dataset may contain a few human-related images. We admit that we
modified a few samples for watermarking and verification. However, our research treats all samples
the same and the verification samples and modified samples have no offensive content. Accordingly,
our work fulfills the requirements of these datasets and has no privacy violation.
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Figure 19: Visual demonstration of ZeroMark for WaNet watermark.
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Figure 20: Visual demonstration of ZeroMark for domain watermark.

Figure 21: The visual demonstration of the aggregated boundary samples.
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Figure 22: The t-SNE clustering results for aggregated boundary samples.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and scopes.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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We have claimed the limitations of our approach in the Appendix K
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have included the assumptions along with our Theorem and included the
complete proof in Appendix A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the detailed configurations as well as the methodology in
our paper to reproduce the claims and results. Moreover, we have included the code as well
as the checkpoint for evaluated DNNs for reproducibility purposes.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In this paper, we use publicly available dataset (i.e., CIFAR-10 and Tiny-
ImageNet), which can be easily accessed.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have detailed the training configurations and optimizers in Appendix G

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the distribution of our results in Figure 2 and Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We included the details for computer resources in the Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics https://neurips.cc/public/
EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We included the social impact in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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