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Abstract X-ray screening is crucial for ensuring safety and security in crowded public areas. However,

X-ray operators are often overwhelmed by the sheer amount of potential threats to assess;

thus, current computer vision-aided systems are designed to alleviate these workloads. In this

study, we focus on a key, unresolved challenge for developing such automatic X-ray screening

systems: the direct application of existing avant garde computer vision approaches does

not necessarily yield satisfactory results in the X-ray medium, hindering the effectiveness

of current screening systems. To overcome this drawback, we propose a novel automated

machine learning (AutoML) multi-objective approach for neural architecture search (NAS)

for concealed weapon detection (MEOW). We benchmark MEOW with the state-of-the-art

in two comprehensive scenarios in threat identification: SIXray (a popular, massive X-ray

dataset) and Residuals (a proprietary, unpublished dataset provided by our industry partners).
MEOW consist of the coalescence of two new components: First, we design a heuristic

technique to strongly reduce the high computational cost of neuroevolutionary search while

preserving a high performance such that it can be effectively used in real-time industrial

settings. Second, we devise a novel ensemble approach for combining multiple discovered

architectures simultaneously. Leveraging these two characteristics, MEOW outperforms the

state-of-the-art while keeping the NAS overhead to a minimum. More broadly, our results

suggest that AutoML has a strong potential for security applications.

1 Introduction

Concealed weapon detection is a crucial component of public security in crowded areas (Mahajan

and Padha, 2018), enabling authorities to address global issues such as terrorism (Sheen et al., 2001),

school shootings (Freilich et al., 2022) and weapons trafficking (Langlois et al., 2022).

Most state-of-art algorithms in this domain focus on identifying only the presence of a threat

-which is a sub-optimal approach since distinct threats require different security protocols (Morris

et al., 2018; Petrozziello and Jordanov, 2019). Recently, some new algorithms have addressed this

problem by combining deep learning with evolutionary computation to form a promising approach

to identify different threats with sufficiently high accuracy (Rostami et al., 2015).

X-Ray image input is typically employed to detect, identify and locate such threats (Miao et al.,

2019). Critically, since this medium differs greatly from conventional images, the naive application

of proven computer vision algorithms often yields sub-optimal results (Mery and Arteta, 2017).

Hence, domain-specific techniques are necessary (Miao et al., 2019; Mery et al., 2015). However,

developing new deep architectures and algorithms is typically a complex process, often requiring

adaptive tuning and data-specific operations involving costly computational and human resources.

This challenge motivated the recent development of techniques that promise to be invariant to

changes in data distributions and other external settings (He et al., 2021; Karmaker et al., 2021).

The idea behind such approaches is to harness the computational power available nowadays to

support and even partially replace a multidisciplinary team of domain experts tackling a problem
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(a) SIXray sample with

no threats

(b) SIXray sample with

multiple threats

(c) Residuals sample

with a threat

(d) Residuals sample

without threats

Figure 1: Sample images from the two datasets.

manually. Automated machine learning (AutoML) allows this to be possible. The progress in this

field led to some remarkable breakthroughs, e.g., Real et al. (2017); Lu et al. (2019); Zhou et al.

(2020). Nevertheless, a significant caveat of AutoML algorithms is their extreme computational

requirements (Lu et al., 2019; Real et al., 2017).

A potential approach to deal with this high computational demand is to incorporate optimisation

heuristics in the form of proxy scores (Mellor et al., 2021; Abdelfattah et al., 2021).

However, security settings require not only high-performing models but also compatible and

fast ones that can operate on a wide range of systems and provide predictions in real-time (Tawalbeh

et al., 2020). Therefore, it is fundamental to consider multiple objectives simultaneously in the

optimization process of neural network architectures for concealed weapon detection. While single-

objective optimization methods can discover high-performing models, they are typically suboptimal

under real-world constraints. Specifically, in this setting, it is often preferable to sacrifice some

performance for efficiency(Xiong et al., 2020). To this end, multi-objective optimization (MOO) is

a valuable tool for discovering neural network architectures that can achieve an optimal balance

between multiple objectives, such as accuracy and overall efficiency(Dimanov et al., 2022; Lu et al.,

2019).

Here, we designed a new automated multi-objective approach for neural architecture search

(NAS) in concealed weapon detection problems (MEOW) and benchmarked it with two large X-ray

datasets that feature different threats. The main contributions of MEOW are the following:

1. A multi-objective optimisation of several proxy scores simultaneously, rendering up to a 200x

speed up w.r.t. standard multi-objective AutoML algorithms (Lu et al., 2019; Shaw et al., 2019).

2. A novel ensemble approach, utilising individual predictions from several optimal models discov-

ered by a multi-objective NAS to provide a final, more accurate prediction.

3. The coalescence of these two components in MEOW outperforms the state-of-the-art in the

well-known SIXray dataset and in a proprietary security-critical dataset in weapon detection.

2 Related work

Concealed weapon detection is typically performed using millimetre wave (Goenka and Sitara,

2022; Li and Wu, 2022) , radar (Zhang, 2022) and, most commonly, X-ray machines (Akcay et al.,

2018; Nguyen et al., 2022). X-ray images are colour-coded based on objects’ densities, facilitating

visual inspection (Abidi et al., 2006; Sidky et al., 2011). Thus, computer vision algorithms have been

tasked with aiding operators by flagging potential threats (Miao et al., 2019; Akcay et al., 2018).

This scenario led to an influx of novel X-ray datasets featuring concealed threats for testing

such algorithms (Mery et al., 2015; Miao et al., 2019; Isaac-Medina et al., 2021). SIXray (Miao et al.,

2019) is perhaps the most renowned such dataset. It contains multiple distinctive threats that can

appear simultaneously and exhibit unique properties representing the domain’s real-world data.
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Some of these properties stem from the penetrative nature of X-rays, such that some objects might

be obscured by other benign ones, or multiple objects of interest can be stacked on top of each

other (see example in Figure 1b) (Wang et al., 2021).

For instance, Hierarchical refinement (Miao et al., 2019) and Selective Dense Attention Network

(Wang et al., 2021) employ innovative attention mechanisms to negate these occluding effects.

Alternatively, additional pre-processing aims to aid models in "seeing" concealed objects by sepa-

rating the different layers of the image (Mery et al., 2015). Although here we do not apply such

techniques, they are compatible with MEOW; hence they can be utilised to try to improve our

results further.

SIXray is a publicly available security dataset comprising more than a million X-ray scans of

baggage with four important properties: 1. Overlapping objects 2. Inherent intra-class variation 3.

Noise from the heavily cluttered objects, and 4. Heavy class imbalance (Miao et al., 2019).

Recent studies in threat detection employ standard CNNs (Hassan et al., 2020), while others

utilise conditional GANs, such as Akcay et al. (2018) DCGAN-based encoder-decoder-encoder

pipeline for X-ray anomaly detection. However, these approaches may be suboptimal for non-

visual media like X-rays due to inherent medium properties and heavy imbalance in favour of

benign samples (Mery, 2015; Dumagpi and Jeong, 2020; Miao et al., 2019). Overall, developing new

X-ray-specific models is time-consuming and isolating research from visual domain advancements

may hinder the joint progress of the fields. AutoML offers a potential solution (Xue et al., 2019). In

particular, NAS approaches are neither bound to the specific data nor to architectural paradigms used

in visual datasets. Unfortunately, many state-of-the-art algorithms require significant computational

resources and are only viable for small datasets like MNIST and CIFAR-10 (He et al., 2021; Real

et al., 2017; Lu et al., 2018; Wang et al., 2021). To address this caveat, RAMOSS (Resource-Aware

Multi-objective approach for Semantic Segmentation, Dimanov et al. (2022)) enabled a streamlined

integration with massive datasets using a hybrid metaheuristic algorithm based on evolutionary

algorithms similar to Real et al. (2017). A particularly useful characteristic of Dimanov et al. (2022)

(that we leverage) is its flexible encoding of architectures which uses a flat vector to determine

all architecture parameters of the network and reconstruct a binary upper triangular matrix to

define all the layers’ connections (Dimanov et al., 2022). RAMOSS is based on NSGA-II, a multi-

objective optimisation algorithm used in neural architecture search to generate a set of solutions

that approximate the Pareto front (Lu et al., 2019). It employs non-dominated sorting to rank the

solutions, crowding distance calculation to maintain diversity, and genetic operators to create new

solutions for the next generation. Its final output is a set of non-dominated solutions that represent

a trade-off between the conflicting objectives (Dimanov et al., 2022)

However, like most NAS algorithms (Real et al., 2017; Tan and Le, 2019; Zhou et al., 2020; He et al.,

2021), RAMOSS spends most computational resources on training and evaluating architectures,

making it suboptimal. Recent works, such as NASWOT (Neural Architecture Search Without

Training, Mellor et al. (2021)) and SYNFLOW (Iterative Synaptic Flow Pruning, Tanaka et al. (2020)),

offer performance approximation proxy scores to reduce computational costs, providing accurate

estimates despite imperfect correlation with trained performance (Abdelfattah et al., 2021). In the

present study, we combine neuroevolution NAS based on RAMOSS with proxy scores to devise a

new approach which showcases the feasibility of NAS in concealed weapon detection and, more

broadly, its scalability to real-world problems.
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a) MEOW population
of encodings

b) Produced artchitecture
from an encoding

c) Heatmaps showing activations
at a layer of MEOW-opt

d) Sample input used to
generate heatmaps in c)

and output in f) using MEOW-opt

e) Sample objective scores

f) Produced probabilities
per threat type

using MEOW-opt
and the input from d)

ScissorsPliersWrenchKnifeGun
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Figure 2: The MEOW algorithm. The population of architectures are encoded using integer vectors (a)

and then they are decoded to architectures using Dimanov et al. (2022) decoding (b). The

panel shows a condensed version of the MEOW-opt architecture for SIXray. (c) Activations

of a selected layer of the trained MEOW-opt when a sample input (d) is passed through the

network. (e) Presents a sample objective scores of an architecture in the population, which

are used for selection. Finally, (f) shows the raw predictions of MEOW-opt for input (d).

3 MEOWMethodology

Inspired by Dimanov et al. (2022) encoding and algorithm, here we design a similar neuroevolution

process based on NSGA-II, which we upgrade with newly surfaced proxy scores (Abdelfattah

et al., 2021; Mellor et al., 2021; Tanaka et al., 2020) to foster its feasibility for concealed weapon

detection and its scalability to real-world settings. The encoding vector for the architectures

includes parameters for each layer that determine if it is enabled, the kernel size, the operation

(convolution or pooling), activation functions, and an integer value that represents a row of the

binary upper triangular matrix indicating how it is connected to other layers (Dimanov et al., 2022).

In addition to the multi-label SIXray, we benchmarked MEOW on a proprietary dataset contain-

ing different threats and modifications, generated using an award-winning multi-staged algorithm

to match and identify anomalous electronic devices. In this dataset, we focus on a residual X-ray

image which is produced as an intermediary step of a model as input as opposed to the raw pseudo-

coloured X-ray scans in SIXray, and hence we termed it "Residuals". In this proprietary dataset,

"modification types" refer to different ways that objects of interest in an image are altered e.g.

when items are added, removed, or tampered with. However, we are unable to provide specific

examples of the modification types we are working with, due to confidentiality agreements with

our industry partner. Next, using this dataset, we tested how the current state-of-the-art performs

in multi-output scenarios where the model is requested to simultaneously predict the type of

modification and identify what type of threat (if any) is present.

However, the computational cost of current NAS approaches impedes their direct application

to threat detection in these large datasets. Thus, motivated by the promising results of "Zero-cost

NAS" Abdelfattah et al. (2021), we devised a new multi-objective neuroevolution approach capable

of finding optimal architectures in less than an hour on an RTX 3090 GPU. Specifically, we used two

proxy scores - NASWOT (Mellor et al., 2021) (labelled jacob_conv in Abdelfattah et al. (2021)) and

SYNFLOW (Tanaka et al., 2020). In contrast to Zero-cost NAS, MEOW optimises for both proxy
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scores simultaneously. In short, to convert the NASWOT and SYNFLOW scores from a pruning

metric to a performance-estimation proxy for assessing a specific architecture, we reformulate

them like in Abdelfattah et al. (2021).

The overall NASWOT score (𝑁𝑆) per architecture is thus estimated as 𝑁𝑆 = ln ( |det(𝐾) |) where
the symmetric matrix 𝐾 of dimensions 𝑛×𝑛 (𝑛 = number of images for the current input mini-batch

X) represents the similarity between inputs for a given 𝑙-layered architecture to be assessed (see

details in Mellor et al. (2021)). Its entries 𝐾𝑖, 𝑗 are binary values characterising each pair of input

images 𝑖, 𝑗 . The following score calculation only considers layers of rectified units by the 𝑙𝑡ℎ-layer

activation function 𝑓𝑙 , and hence the output (softmax-activated) layer is excluded. The underlying

rationale of the approach is that the more dissimilar the binary codes associated with each pair of

inputs 𝑖 , 𝑗 are, the easier it is for the network output layer to discern between them ((Mellor et al.,

2021)). Such binary codes are computed as:

𝐾 =

𝐿∑︁
𝑙=0

((
𝑔𝑙 (X ) · 𝑔𝑙 (X )𝑇

)
+
(
(I𝑙 − 𝑔𝑙 (X )) · (I𝑙 − 𝑔𝑙 (X ))𝑇

))
(1)

whereX is the input to this layer (X ≡ X for 𝑙 = 1) and 𝑔𝑙 is a binary mapping 𝑔𝑙 : R+∪{0} −→ Z2

operating over each single output of the layer 𝑙 such that,

𝑔𝑙 (𝑥 ∈ X ) :=

{
1 if 𝑓𝑙 (𝑥) > 0

0 otherwise.
(2)

We denote the full tensor containing mappings for layer 𝑙 outputs as 𝑔𝑙 (X ). This tensor is
flattened such that the product �̂�𝑙 := 𝑔𝑙 (X ) · 𝑔𝑙 (X )𝑇 is a 𝑛 × 𝑛 matrix. Likewise, I𝑙 is a tensor of
ones of the same dimensionality as 𝑔𝑙 (X ). Intuitively, equation (1) computes the similarity between

each pair of images encoded in binary code {0, 1} aggregated over layers 1, ... 𝑁 . The final 𝑁𝑆

score summarises this similarity for the entire architecture by computing the log-determinant of

the encoding matrix 𝐾 .

The next proxy score considered is SYNFLOW, a data-agnostic (training-independent) index
which focuses on weight values (instead of the activations like NASWOT), and hence it provides a

complementary view to estimate the architecture performance.

In brief, the network is maximally stimulated with a responsive input (a "white" image -tensor

of ones). In this setting, a low dependency of the network output (at layer 𝑙 = 𝑁 − 1) on weight

magnitudes acts as a proxy for a high discrimination capability of the architecture (Abdelfattah et al.,

2021). Intuitively this proxy is indicative of the importance of parameters (weights) in determining

the network output, such that sparseness in relevant connections leads to more selective paths of

information processing fed to the classification layer 𝑁 (see details in Tanaka et al. (2020)).

The score 𝑠𝑙 (𝜃 ) per-connection (per-weight parameter) 𝜃 at layer 𝑙 < 𝑁 is termed synaptic

saliency (Tanaka et al., 2020), which is simultaneously computed for all layer connections 𝜃 ∈ Θ𝑙 as

𝑆𝑙 (Θ) =
𝜕L
𝜕Θ

⊙ Θ, (3)

where L is the pseudo-loss function, consisting of the aggregated activation for all units in layer

𝑁 − 1 (Tanaka et al., 2020), ⊙ is the Hadamard (element-wise) product and 𝑆𝑙 (Θ) is a tensor of
synaptic saliencies for all layer connections (note that the derivative in equation 3 is computed

over each input weight 𝜃 of the layer).

Next, following Abdelfattah et al. (2021), we aggregated all individual scores per neuron 𝑖 in

layer 𝑙 , where the subset Θ𝑖,𝑙 ⊂ Θ𝑙 contains the neuron’s input weights, to obtain 𝑆𝑖,𝑙 =
∑

𝜃 ∈Θ𝑖,𝑙
𝑠𝑙 (𝜃 ).

To conclude, we take this one step further by averaging these summarised scores per layer and

neuron, 𝑆𝑖,𝑙 , into a scalar index characterising the entire architecture as:
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𝑙𝑛
©­­«
∑𝑁−1

𝑙=1

(
1

(Θ𝑙,𝑖 ) ·
∑(Θ𝑖,𝑙 )

𝑖=1
𝑙𝑛(𝑆𝑖,𝑙 + 1)

)
𝑁 − 1

ª®®¬ (4)

Preluding the main experiments, we conducted an ablation study to explore different backbone

architectures and to determine which ones operate optimally for SIXray (and why). This can grant

us an understanding of what design patterns should be included in the search space for optimal

architectures. The study will also establish baseline models to compare with MEOW models.

This ablation study is designed (1) to compare the performance of different architectures/layer

blocks and (2) to provide insights into additional objectives we can consider when conducting the

multi-objective optimisation.

4 Experimental setup
MEOW pipeline consists of five steps: (1) Specify hyperparameters, which include reference points

for each of our objectives. We empirically choose the reference points for SIXray and the Residual

dataset to be 600 for NASWOT and 60 for SYNFLOW score. The maximum number of convolutional

layers in all experiments is 35. (2) Run the neuroevolution algorithm for 𝑔 generations with a

population size 𝑝 . (3) Train the produced architectures for 50 epochs following standard state-of-

the-art guidelines to estimate the Pareto front of produced solutions. (4) Construct an ensemble

model that combines predicted probabilities of all discovered architectures to make a final decision.

(5) Comparatively evaluate all architectures, including the ensemble model. We report the best-

performing architecture score from the MEOW generation (labelled "MEOW-opt" in Tables 1 and

2) as well as the score from the ensemble models (labelled "MEOW-ens" in Tables 1 and 2).

We used an Adam optimiser with a learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 10
−8

and a

conventional categorical cross-entropy loss. Top layers are discarded, and the same five dense layers

responsible for classification are added to all competing architectures to ensure a fair comparison.

Along these lines, we use categorical cross-entropy as loss and also shuffle the dataset using the

same random seeds. We did not use augmentation during our study to keep as many control

variables as possible.

In our experiments we optimise for three different objectives which are (1) NASWOT score,

(2) SYNFLOW score and (3) Level of complexity (as described in (Dimanov et al., 2021)) which

measures the model’s complexity in terms of number of parameters.

5 Results and Discussion
Results show the average precision for SIXray to facilitate the comparison with the original paper

(Miao et al., 2019); and the accuracies of the two outputs for the Residuals dataset.

SIXray benchmarks. We start with a preliminary study of the performance of the current state-

of-the-art architectures on the SIXray. Table 1 shows that, from existing staple models in the

literature, the best ones (excluding MEOW) are ResNet50 and ResNet101, which are mostly on

par with DenseNet. Most architectures display a reasonably consistent performance throughout

"Gun", "Knife", and "Pliers" (the threat class with the most samples) classes; however, performance

drops substantially for "Scissors" (the most undersampled one) and "Wrench" classes (Figure 1b).

Further analysis shows a sustained increase in performance from ResNet34 to ResNet50, followed

by a consistent drop from ResNet50 to ResNet101. This phenomenon can be explained by the depth

of ResNet101, which may prevent it from converging with our training configuration. It is also

possible that the model is overparameterised for this particular problem in line with the findings of

Pasupa and Sunhem (2016) and Malach and Shalev-Shwartz (2019).

Interestingly, models produced by the newMEOWapproach effectively captured the imbalanced

nature of the data, as demonstrated by their consistently higher performance in all classes -including
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Table 1: SIXray-10 results. MEOW-opt and MEOW-ens methods achieve the highest mAP by a signifi-

cant margin. For "Pliers", the second highest oversampled class, DenseNet achieves the best

performance, but MEOW architectures balance the rest of the classes more effectively and are

especially successful at classifying the most underrepresented class "Scissors".

Architecture AP Gun AP Knife AP Wrench AP Pliers AP Scissors mAP

ResNet34 89.71 85.46 62.48 83.50 52.99 74.83

ResNet50 90.64 87.17 64.31 85.78 61.58 77.87

ResNet101 87.65 84.26 69.33 85.29 60.39 77.38

Inception-v3 90.05 83.80 68.11 84.45 58.66 77.01

DenseNet 87.36 87.71 64.15 87.63 59.95 77.36

MEOW-opt 94.93 89.47 67.48 86.13 89.29 85.46

MEOW-ens 95.51 94.04 77.34 76.12 96.34 87.87

Table 2: Residuals dataset results. Columns show averaged accuracy for two separate multi-class

classification outputs: (1) detecting the type of modification and (2) identifying the threat

associated with this modification. MEOW discovered architectures outperform the state-of-

the-art, even though they are remarkably more parsimonious than the rest.

Architecture Threat Accuracy Modification Accuracy

Inception-v3 77.52 79.21

Nasnetmobile 68.15 72.96

Inceptionresnetv2 89.06 88.22

Resnet50 88.82 87.26

MEOW-opt 89.18 88.34

MEOW-ens 91.23 89.06

Table 3: Residuals results in % of F1 score per class. MEOW architectures, consistently with SIXray

results, achieve the best performance (except for one type of modification, and by less than

0.5%); despite MEOW architectures being substantially smaller than all state-of-the-art models.

Architecture Threat Modification

Threat 1 Threat 2 Threat 3 Threat 4 None Type 1 Type 2 Type 3 Benign

InceptionV3 87.46 87.80 80.36 70.00 71.00 91.13 83.94 60.08 71.30

NasnetMobile 72.22 84.52 40.26 67.06 67.65 86.01 77.20 51.72 66.95

InceptionResNetv2 89.03 89.76 85.71 90.28 89.60 93.54 87.88 78.19 90.06
ResNet50 89.70 89.55 88.70 89.07 87.33 92.49 88.00 77.02 86.96

MEOW-opt 88.74 87.82 87.55 90.40 90.06 93.78 87.66 79.89 88.24

MEOW-ens 92.11 92.94 91.98 90.27 90.00 94.81 88.02 79.53 89.74

the undersampled ones (Table 1). This suggests that the MEOW’s multi-objective optimisation

employed for architecture search renders highly-discriminative models. This property can be

attributed to the proxy scores since they are designed to reward architectures that can discern

dissimilar features in the data. In this case, it resulted in models that were particularly effective

at differentiating between the various classes. In short, the best MEOW architecture outperforms

state-of-the-art models on the SIXray dataset overall, even when compared to class-balanced

hierarchical refinement (CHR, (Miao et al., 2019)) enhanced architectures.

The higher performance of MEOW architectures w.r.t. the state-of-the-art calls for further

investigation into the importance of designing domain-specific architectures. Remarkably, the

optimal MEOW-opt architecture utilises just above 11 million parameters, significantly fewer than
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Table 4: Results on Residuals dataset for semantic segmentation tasks. Columns highlight the ( first ,

second and third best) approach. While MEOW-opt does not achieve the best test 𝐼𝑂𝑈

and 𝐹1, it remains the only architecture capable of yielding a validation performance which

can resemble its performance on an unseen dataset. In addition, MEOW uses only 0.53𝑀

parameters, compared to 62𝑀 and 30𝑀 for the other slightly higher-performing alternatives

making it far more favourable w.r.t. computational efficiency.

Architecture Number of parameters (M) Validation IOU (%) Validation F1 (%) Test IOU (%) Test F1 (%)

MobileNet - UNet 8.34 53.27 69.51 21.60 35.52

VGG16 - UNet 23.75 55.49 71.38 33.48 50.16

ResNet18 - UNet 14.34 54.96 70.93 37.98 55.05

ResNet34 - UNet 24.46 64.46 78.39 37.73 54.79

ResNet50 - UNet 32.56 53.09 69.36 39.18 56.30

InceptionResNetv2- UNet 62.06 62.93 77.25 42.80 59.95

Inceptionv3 - UNet 29.93 59.49 74.60 43.98 61.09
MEOW-opt 0.53 40.04 57.19 40.56 57.72

the 23.5 million parameters used by ResNet50. Thus, we will focus next on identifying the properties

of MEOW discovered architectures that underlie its high performance by establishing parallels

with the CHR approach (Miao et al., 2019). One of the key CHR steps is the utilisation of low- and

high-level features for refinement by concatenating intermediate activations and then filtering out

noisy information based on the signals from the next layer. Subsequently, each layer 𝑙 selected

for feature extraction becomes a separate stream of activations a𝑙
fed into an auxiliary classifier

y𝑙
:= 𝑓 𝑙 (a𝑙 , 𝜉𝑙 ) where 𝜉𝑙 is the hashing vectoriser of the selected layer and, finally, the expectation

across layers provide class-probability outputs y. Along these lines, some large skip connections

are also observed in the architecture discovered by MEOW, reminiscent of the CHR effect. After

the first convolutional layer, a skip connection links to a much lower dimensional representation

layer. Then, signals are added in what resembles an auxiliary feature extraction arm in (Miao

et al., 2019), which is effectively similar to what the CHR accomplishes with separated streams.

Noticeably, the architecture seems to be composed of ResNet-like blocks with various degrees

of skip connection depth, which, as we can see from Table 1, seems to be working better than

InceptionNet or DenseNet-like blocks.

In an attempt to utilise a better portion of the generated front of solutions rather than just one

(in the form of MOEW-s1), we decided to select four architectures with the highest contributing

hypervolume. Then, we designed an ensemble classifier which combines their output probabilities

y,y′...y′′′
to compute an ensemble prediction y𝒆𝒏𝒔 . This ensemble model (MEOW-ens) simply

incorporates an extra custom layer to compute the optimally weighted average of the four predicted

probabilities and make a final prediction. In summary, MEOW-ens achieves the best overall scores,

with the sole exception of the most out-of-distribution upsampled class in the testing set - "Pliers".

Overall the ensemble approach outperforms the state-of-the-art by more than 10%, which is over

five-fold the state-of-the-art improvement compared to the CHR approach (Miao et al., 2019).

Propietary dataset benchmarks. Next, we comparatively test the effectiveness of our new AutoML

framework versus state-of-the-art architectures in a real-world industrial problem, the Residuals

dataset outlined in Section 3.

Succinctly, each scan outputs an associated threat type and a modification type; thus, all models

are fitted with the same multi-output multi-class top layers (similar to our SIXray experiments).

Table 2 shows that MEOW architectures are once again outperforming all state-of-the-art architec-

tures, in line with SIXray results. The gap between the state-of-the-art and MEOW is significantly

smaller but still consistent with SIXray results. Judging by the overall results, NasNetMobile and

Inception-v3 fail to capture the features of the datasets, which reveals that conventional avant-garde
architectures should not be treated as a silver bullet to directly address an arbitrary computer vision
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problem. Having a 10% drop compared to ResNet is also inconsistent with the results for SIXray. It

uncovers a gap in our ability to estimate their performance on a new dataset and the benefits of

tailoring an architecture to fit the particular problem.

To investigate the results more closely, we look into the 𝐹1 scores for each class for both of the

outputs (threat type and a modification type) as presented in Table 3. Again, MEOW architectures

consistently take up top performance positions. However, in contrast to SIXray, the capability of

the ensemble is limited since the best MEOW architecture (MEOW-opt) outperforms the ensemble

method for some of the classes. Even though MEOW-ens achieves the best overall results, we

attribute this discrepancy to lower diversity in the approximation set of MEOW for the Residuals

dataset. Since we used only 20 generations with a population size of 20, it is fair to assume that the

algorithm did not successfully explore the enormous search space. Future work needs to address

this caveat with an ablation study over these two hyperparameters.

Strikingly, thanks to the proxy scores (Section 3), MEOW’s computational time is just under one
GPU hour for a population size of 20 and for 20 generations, which is a drastic improvement over the

8 hours required for previous, and already highly optimised, AutoML approaches such as Dimanov

et al. (2022), used to discover a segmentation model on Cityscapes with the same hyperparameters

as in MEOW. In addition, Dimanov et al. (2022) was already, to our best knowledge, one of the

fastest NAS runs to date, and Cityscapes dataset is also three times smaller than Residuals, making

the 8x speed-up of MEOW particularly remarkable. Moreover, since there is no training during

the discovery phase, it is possible to run MEOW without the need for a GPU since the CPU can

handle inference on most machines. This characteristic contributes to making the research field

more accessible for new practitioners and also feasible to use in a plethora of new domains and

industry settings, as suggested by our results.

In this study, we successfully showcased the enhanced capabilities of MEOW to tackle multi-

input/multi-output and multi-label classification tasks. Although MEOW is based on RAMOSS,

which is originally designed to address semantic segmentation problems, it demonstrated its

versatility by adapting to these new challenges.

To further explore its potential, we utilised a supplementary task from the Residuals dataset,

redefining the problem as a semantic segmentation task while maintaining the same multi-input

sequence (i.e., two input images provided to the network to calculate the residual). The next

experiment is specifically designed to test if the expected loss in performance is minimal and

compensated by key advantages such as resource economy and better generalisability.

Table 4 compares the performance of MEOW with much larger state-of-the-art methods in

semantic segmentation for the Residuals dataset. Results from the segmentation study are consistent

with the ones of RAMOSS from Dimanov et al. (2022). The best-balanced MEOW architecture

(MEOW-opt) manages to achieve the third-best results in terms of test IOU and F1 score while

being 30 to 60 times smaller in terms of the number of parameters compared to the first and second

methods. Notably, MEOW-opt is the only approach that shows strikingly similar results between the

validation and the testing sets. That is, the generalisation error is both low and more representative

of its real-world performance compared to competing alternatives. In contrast, results highlight the

potentially detrimental effect of using a well-performing generic architecture like, e.g., ResNet34-

Unet when it is applied in a real-world scenario. We speculate that this consistent performance is

tied to the fact that MEOW-opt is not overparameterised like some of the alternatives, although the

second least parameterised architecture (MobileNet-UNet) seemingly fails to display this ability.

To conclude, although the causality of the consistent performance of MEOW has yet to be

established, we attribute its generalisation capacity to the fact that the neuroevolution discovery

process adapts to the problem at hand, generating naturally tailored architectures. This serves as

further evidence for the effectiveness of the neuroevolution-controlled optimisation and suggests

the need for further research on AutoML techniques for industrial problems.
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6 Conclusion and Future work
Traditional neural architecture search, a particularly fast-evolving, "hot" research topic, has limited

use in the industry, given its extremely high computational cost. In this study, we propose a new

NAS approach to feasibly address real-world problems in threat detection, strongly reducing com-

putational demands. In addition, from a practical perspective, the AutoML approach is modularised

and hence streamlined to be used with new datasets, unlike other AutoML techniques (e.g., Real

et al. (2017); Liu et al. (2018, 2019)).

In this study, we designed an ensemble approach that leverages multiple sub-optimally discov-

ered architectures instead of disregarding them (as it is typically the case). Although the ensemble

strategy provides promising results, future work can explore using the collective knowledge of the

generated networks to conduct knowledge distillation (Hinton et al., 2015). The presented method

typically improves the overall performance of the state-of-the-art in both datasets used. Specifically,

its behaviour in the most extensive public concealed weapon detection dataset (SIXray) to this date

avows the importance of making AutoML scalable to real-world scenarios; and designing such

systems in a "disentangled" fashion from the dataset used as a proof-of-concept.

Results in both datasets suggest that the heuristic performance estimation such as the one

implemented in MEOW
1
can drastically reduce the computational cost of such algorithms, ef-

fectively replacing highly resource-greedy evaluation in these settings. Here, we also modify a

well-performing multi-objective approach to use multiple proxy scores to speed up the architecture

search and showcase how these proxies can be used in conjunction with multi-objective optimi-

sation to outperform state-of-the-art architectures. In summary, the results and the remarkably

low search time (about an hour) without the need to use GPUs provide further evidence of the

untapped potential of AutoML in industrial applications.

To conclude, albeit obvious, it is worth stressing that understanding how a model operates is

entangled with the understanding of the dataset used to train and evaluate it (giving birth to the

popular saying in the deep learning community "garbage in, garbage out" (Kilkenny and Robinson,

2018; Rose and Fischer, 2011; Sanders and Saxe, 2017)). Along these lines, future work should

explore the idea of repurposing our AutoML efforts to make a contribution to data quality.
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A CIFAR-10 results

Figure 3: The Pareto front of generated solutions with error bars for the test error and the number of

parameters for CIFAR-10. The red-marked sample represents the optimal encoding which

has the highest contributing hypervolume, referred to throughout this study as "MEOW-opt".

Figure 4: The Pareto front of generated solutions for CIFAR-10 with error bars for the test error

as a function of the number of parameters. Some state-of-the-art methods are shown for

comparison (green dots).

Here we present the results of a 10-run case study on the CIFAR-10 dataset, which is a widely-

used benchmark for neural architecture search. The section includes a Pareto front of generated

solutions (Figure 3). Additionally, we compare our approach to state-of-the-art models, shown

in a separate figure (Figure 4) for clarity. Results further support the generalisability of our

approach beyond threat identification problems, which is the main focus of this study. As expected,

14



specifically-designed architectures for CIFAR-10 can provide lower test errors than the novel

approach presented. However, MEOW-opt (red marked solution in Figures3 and 4 consistently

provides the best trade-off when compared to other methods in terms of balancing the different

objectives, that is, it is associated with the highest contributing hypervolume.

B Search space used

Table 5 presents the search space used to conduct the experiments in this study. It is important to

note that all the specified hyperparameters to filter the search space are adjustable.

Parameters Range

Active {0,1}

Num filters

{
2
𝑖
}𝑙𝑜𝑔2256
𝑖=1

Num nodes

{
2
𝑖
}𝑙𝑜𝑔2256
𝑖=1

Kernel {3,5,7}

Batch Normalisation {0,1}

Dropout {0,1}

Pooling {0,1,2}

Connections {𝑖}2(𝑛𝑐+𝑛𝑑 )
𝑖=1

Table 5: Layer parameters defining the search space. 𝑛𝑐 , 𝑛𝑑 are the number of convolutional and dense

layers, respectively. For each convolutional layer, all of the following are specified. Values

and significance of these parameters are discussed in more detail in (Dimanov et al., 2022)

C MEOW SIXray architecture

Figure 5 displays the MEOW-opt architecture used for SIXray (split into two pages). This visualisa-

tion also truncates some of the top and bottom layers of the architecture to enhance legibility. The

exported version of the architecture is available in our repositoryhttps://anon-github.automl.
cc/r/MEOW-B852.
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Figure 5: MEOW-opt architecture for SIXray (truncated after the last convolution to enhance legibility).
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D Broader Impact Statement

This research presents MEOW, a novel automated machine learning (AutoML) multi-objective ap-

proach for neural architecture search (NAS) in concealed weapon detection problems. The proposed

method offers significant benefits, such as reduced computational costs, increased adaptability, and

improved security measures in crowded public areas. However, potential risks, such as misuse by

malicious actors and overreliance on automated systems, must also be considered. The development

and adoption of MEOW could lead to a safer society and increase public trust in security measures,

but it is essential to implement proper regulation and oversight to ensure responsible and ethical

use.

Uncertainties surrounding the technology include the long-term impact on privacy and civil

liberties, as well as its scalability and adaptability to new and evolving threats. The results of this

study showcase the untapped potential of AutoML in industrial applications and open up new

avenues for research and development in various sectors. However, focusing on both the positive

applications and potential negative consequences is crucial when discussing the broader impact of

this research.

In conclusion, MEOW has the potential to significantly improve security measures in public

spaces and save lives by detecting concealed weapons. Nevertheless, it is essential to balance the

positive outcomes with the potential risks and uncertainties associated with the technology. This

requires a thoughtful approach that considers the ethical implications, societal impact, and potential

misuse of the technology while working towards creating a safer and more secure environment.
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we’ve combined the use of nerueovlution and proxy scores and in Section 3 we give further

details.

(b) Did you describe the limitations of your work? [Yes] In the results section we outline the

main benefits as well as caveats of our work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discussed

this in our broad impact statement

(d) Have you read the ethics author’s and review guidelines and ensured that your paper
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(b) Did you include complete proofs of all theoretical results? [N/A] We focus on empirical

results.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
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instructive README with installation and execution commands (either in the supplemen-

tal material or as a url)? [Yes] The code will be released in GitHub upon acceptance,

where it will be publicly available. Unfortunately, the Residual dataset will not since it is a

proprietary security-critical dataset. The temporary link to the repository is https://anon-

github.automl.cc/r/MEOW-B852

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] In Section 4, Experimental Setup we’ve done our best to explain how we’ve run

our experiments. Moreover, there is a detailed README which will be released with the

code.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

All figures except Figure 2. are generated solely by running Jupyter notebooks which

are present in the repository. Figure 2 was handcrafted and is a combination of multiple

generated results from these notebooks.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] Code is written with reproducability in mind and we

use an already existing code of a published neuroevolution algorithm that promotes code

expansion: https://github.com/DanielDimanov/RAMOSS. The documentation of our code

was removed for the anonimous repository for submission https://anon-github.automl.
cc/r/MEOW-B852 due to compliance with double-blind review process.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] Information about this can be

found in Sections 3 and 4.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] Such comparisons can be observed in our Results

sections and discussion.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[No] This is one of the limitations of our study and we plan to mitigate this by running

such auxiliary studies and expanding the repository dynamically.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We

wanted to ensure a fair comparison between methods since we recognise that sometimes

comparisons are flawed by design. We specify the exact conditions for each experiment in

Experimental Setup, and we don’t use augmentation because of its stochasticity.

(i) Did you compare performance over time? [Yes] In our results, we present both the timings

and scores of different approaches, and in Section 5, we have a more in-depth discussion.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We

run the experiments for five different runs (unless specified otherwise), and the seeds we

use are the following: [93,36,99,4,62]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [No] As we have a lot of different results, we have left these out and

presented the average. Because the rest of the process is designed to eliminate stochasticity

as much as possible, the deviations we observed are minimal and do not change the outcomes

of our work.
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(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] We have not

used NASBench to compare to different algorithms as the algorithm itself is not the focus

of the paper.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] The total GPU usage needed for a single

run of MEOW is 1 GPU hour. Further retraining can result in 2-3 additional GPU hours. In

total we used around 400 GPU hours during the prototying, testing with different seeds,

debugging etc.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] Such hyperparameters are presented in

the end of Section 3 and throughout Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] We have ensured the

authors of any previous work we use are properly cited.

(b) Did you mention the license of the assets? [Yes] We have mentioned the licenses of the

assets we have used and also the assets we will be unable to share in terms of the proprietary

dataset we tested the approach on.

(c) Did you include any new assets either in the supplemental material or as a url? [No] The

new assets in terms of code will be released after upon acceptance and the "Residuals"

dataset will not be released to the public because of security concerns.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] SIXray is an open dataset and for the Residuals dataset we have

mentioned that it is provided from industry partners one of whom is a co-author of the

paper.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] All generated data is generated at specialised

facilities and does not contain any identifiable information.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] No human subjects or crowdsourcing was involved in this research.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] No human subjects or crowdsourcing was involved in
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