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ABSTRACT

To reduce reliance on labeled data, learning with noisy labels (LNL) has garnered
increasing attention. However, most existing works primarily assume that noisy
datasets are dominated by closed-set noise, where the true labels of noisy samples
come from another known category, thereby overlooking the widespread presence
of open-set noise—where the true labels may not belong to any known category. In
this paper, we refine the LNL problem by explicitly accounting for the presence of
open-set noise. We theoretically analyze and compare the impacts of open-set and
closed-set noise, as well as the differences between various open-set noise modes.
Additionally, we examine a common open-set noise detection mechanism based on
prediction entropy. To empirically validate our theoretical insights, we construct
two open-set noisy datasets—CIFAR100-O and ImageNet-O—and introduce a
novel open-set test set for the widely used real-world noisy dataset, WebVision. Our
findings indicate that open-set noise exhibits distinct qualitative and quantitative
characteristics, underscoring the need for further exploration into how models can
be fairly and comprehensively evaluated under such conditions.

1 INTRODUCTION

In recent years, the remarkable success of machine learning has largely relied on the assumption that
data labels are accurate and noise-free. However, in real-world scenarios, label noise—arising from
factors such as annotation errors and label ambiguity—is pervasive, posing significant challenges to
model performance and generalization. To address this issue, various approaches have been proposed
for learning with noisy labels (LNL), including noise transition matrix estimation (Goldberger and
Ben-Reuven, 2017; Xia et al., 2019; 2022), noisy label correction (Song et al., 2019; Cascante-Bonilla
et al., 2021), robust loss functions (Ghosh et al., 2017; Zhang and Sabuncu, 2018; Wang et al., 2019),
and, more recently, dominant sample selection-based methods (Han et al., 2018; Arazo et al., 2019;
Li et al., 2020; Xia et al., 2021; Feng et al., 2022).

Most current efforts primarily focus on closed-set noise, where the true labels of noisy samples belong
to another known class. This includes common noise models such as symmetric noise, where sample
labels are randomly flipped to any other known class with a certain probability, and asymmetric
noise, where label confusion is influenced by class similarity (e.g., ’cat’ is more likely to be confused
with ’dog’ than with ’airplane’). Recent advances have also explored instance-dependent noise
models (Chen et al., 2021; Yang et al., 2022), where label confusion is directly influenced by the
semantics of individual instances.

However, unlike the extensive research on closed-set noise, there is significantly less focus on open-
set noise, where the true labels of noisy samples do not belong to any known category. This gap
is particularly noteworthy given that one of the primary motivations for learning with noisy labels
is to manage datasets collected through web crawling. By examining one of the most commonly
used benchmarks, the WebVision dataset (Li et al., 2017), we confirm the prevalence of open-set
noise (fig. 1).

In fact, the "open-world" assumption, which involves open-set samples, has received considerable
attention in other weakly supervised learning problems, such as open-set recognition and outlier
detection. However, it remains underexplored in the context of learning with noisy labels. To address
this gap, this paper focuses on a comprehensive theoretical analysis of open-set noise. The main
findings are outlined as follows:
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Tench?

Figure 1: Example images of class "Tench" from WebVision dataset - Clean samples are marked in
green, closed-set noise is marked in blue, and open-set noise is marked in red. See appendix H for
more discussions.

• We introduce the concept of a complete noise transition matrix, reformulate the Learning with
Noisy Labels (LNL) problem to account for open-set noise, and analyze two offline cases: fitted
and overfitted.

• We demonstrate that open-set noise generally has less negative impact on classification accuracy
than closed-set noise, analyze ‘hard’ vs. ‘easy’ open-set noise, propose an out-of-distribution
(OOD) detection task for further evaluation, and find entropy-based open-set noise detection
effective for ‘easy’ open-set noise.

• We conduct preliminary explorations with vision-language models and self-supervised models on
identifying and learning with ‘hard’ open-set noise, expand experiments on the performance of
robust loss functions under open-set noise, and analyze their effectiveness in challenging noise
scenarios.

2 RELATED WORKS

In this section, we provide a brief overview of mainstream LNL methods, relevant research connected
to this work, and the key motivations derived from them. Briefly speaking, methods for learning with
noisy labels can be roughly categorized into two main types.

Statistical-consistent methods The first type is often referred to as statistical-consistent methods,
such as estimating noise transition matrix (Chen et al., 2021; Yang et al., 2022; Xia et al., 2019;
Goldberger and Ben-Reuven, 2017; Liu et al., 2023; Wang et al., 2024) or designing robust loss
functions (Zhang and Sabuncu, 2018; Wang et al., 2019; Ghosh et al., 2017; Chen et al., 2023;
Mao et al., 2023; Patel and Sastry, 2023a; Wilton and Ye, 2024), aiming to achieve theoretically
risk-consistent or probabilistically-consistent models. However, most of these works often assume
an ideal scenario where the model can learn to fit the sampled distribution well, overlooking the
over-fitting issues arising from excessive model capacity and insufficient data in practical situations.
In this paper, we introduce the the concept of complete noise transition matrix that accounts for
open-set noise and conduct theoretical analyses and experimental validations for both ideal case and
over-fitting case, namely the fitted case and overfitted case.

Statistical-approximate methods The second type, often referred to as statistical-approximate
methods, includes dominant sample selection-based approaches that incorporate various regularization
terms and off-the-shelf techniques such as semi-supervised learning and model co-training to achieve
state-of-the-art performance. Most sample selection methods rely on the model’s current predictions,
such as the popular ‘small loss’ mechanism (Arazo et al., 2019; Li et al., 2020; Han et al., 2018; Yu
et al., 2019; Jiang et al., 2018), and various improved variants upon it (Song et al., 2019; Malach
and Shalev-Shwartz, 2017; Yi and Wu, 2019; Xia et al., 2021; Zhou et al., 2020; Wang et al.,
2022; Cordeiro et al., 2021b; Patel and Sastry, 2023b). Some other works attempt to use feature
representations for sample selection. Wu et al. (2020) and Wu et al. (2021) try to construct a graph
and identify clean samples through connected subgraphs, while Feng et al. (2022) and Ortego et al.
(2021) suggest directly using kNN in feature space to mitigate the impact of noisy labels. Moreover,
as hybrid methods, sample selection approaches often involve additional auxiliary techniques, such
as model co-training (Han et al., 2018; Yu et al., 2019; Wei et al., 2020; Zhao et al., 2024; Sun et al.,
2021; Cordeiro et al., 2021a), semi-supervised learning (Li et al., 2020; Arazo et al., 2019), and
contrastive learning (Li et al., 2022; Ortego et al., 2021; Huang et al., 2023; Zheltonozhskii et al.,
2021; Ghosh and Lan, 2021; Karim et al., 2022).
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Exploration of open-set noise Research on open-set noise remains relatively limited. Wang et al.
(2018) use the Local Outlier Factor algorithm to detect open-set noise in the feature space, while
Wu et al. (2021) propose identifying open-set noise through subgraph connectivity. Both Sachdeva
et al. (2021) and Albert et al. (2022) focus on entropy-related dynamics to identify open-set noise. In
contrast, Feng et al. (2022) avoid explicitly identifying open-set noise and instead prevent relabeling or
including it in the training process. More closely related to our work, Xia et al. (2022) also investigate
noise transition matrices that account for open-set noise but assume all open-set noise belongs to a
single meta-class. In this paper, we extend this idea by considering that open-set noise may originate
from multiple classes. Based on this premise, we analyze two distinct modes of open-set noise. Wei
et al. (2021) suggest leveraging open-set noise to mitigate the impact of closed-set noise, as it helps
reduce overfitting. However, our focus is on providing a thorough theoretical analysis of the effects
of different noise modes, including open-set noise versus closed-set noise, as well as comparisons
between different types of open-set noise.

3 METHODOLOGY

In section 3.1, we briefly introduce the problem formulation of LNL and extend it to account for
open-set noise. In section 3.2, we formalize how label noise affects model generalization, particularly
focusing on the proposed error rate inflation metric. In section 3.3, we analyze and compare the
impact of open-set vs. closed-set noise, as well as ‘easy’ open-set noise vs. ‘hard’ open-set noise. In
section 3.4, we scrutinize the open-set noise detection mechanism based on model prediction entropy
values.

3.1 REVISITING LNL CONSIDERING OPEN-SET NOISE

Supervised classification learning typically assumes that we sample a certain number of independently
and identically distributed training samples {xk, yk}Kk=1 from a joint distribution P (x, y; y ∈ Yin),
i.e., the so-called training set. By default, here all the possible values for yk in the discrete label
space Yin : {1, 2, ..., A} (referred here as inlier classes), are known in advance. With a certain loss
function, given the training set {xk, yk}Kk=1 we aim to train a model f : x → y whose predictions
can achieve the minimum classification error rate over the whole joint distribution P (x, y; y ∈ Yin).
Under LNL problem setting, we assume that the conditional distribution P (y|x; y ∈ Yin) has been
perturbed to Pn(y|x; y ∈ Yin), leading to the presence of noisy labels ynk in the noisy training set
{xk, y

n
k }Kk=1 that do not conform to the clean conditional distribution P (y|x; y ∈ Yin).

In this work, instead of assuming all the possible classes are known (y ∈ Yin), we consider samples
from unknown outlier classes may also exist in the training set. Let us denote these classes as outlier
classes Yout : {A+ 1, A+ 2, ..., A+B}, where B represents the number of outlier classes1. Then,
we expand the support of joint distribution to contain both inlier and outlier classes, denoted as
P (y|x; y ∈ Yin ∪ Yout) and Pn(y|x; y ∈ Yin ∪ Yout) for the clean and noisy ones, respectively.
For brevity, we denote the combined label space as Yall ≜ Yin ∪ Yout. For subsequent analysis, we
first define below complete noise transition matrix:
Definition 3.1 (Complete noise transition matrix). For a specific sample x (sample index omitted
here for simplicity), we define as T the complete noise transition matrix

T = {Tij}A+B
i,j=1 =

[
TinA×A 0A×B

ToutB×A 0B×B

]
(A+B)×(A+B)

Here, we denote as Tij ≜ P (yn = j|y = i,x = x; yn, y ∈ Yall). Note that, unlike existing literature,
we do not require the noise transition matrix to be class-dependent. The matrix Tin represents the
confusion process between different inlier classes Yin, and Tout captures the confusion process from
outlier classes Yout to inlier classes Yin. We explicitly define as T out the open-set noise mode. The
right-hand side (highlighted in gray) contains all-zero entries, as we assume in the noisy labelling
process the outlier classes are agnostic(unknown), i.e., all of collected samples will be labelled as one
of the inlier classes.

1The subsequent analysis is independent of the specific values of A and B, although it is generally expected
that B > A.
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For a specific sample x with such a complete noise transition matrix T , we can relate its clean
conditional distribution P (y|x = x; y ∈ Yall) with its noisy conditional distribution Pn(y|x =
x; y ∈ Yall) as follows:

Pn(y = j|x = x; y ∈ Yall) =

A+B∑
i=1

P (y = i|x = x; y ∈ Yall) · Tij (1)

Label noise Recent works usually discriminate label noise into closed-set noise and open-set noise.
For example, most recent studies define open-set noise as ‘a sample with its true label from unknown
outlier classes but mislabelled with a known label from inlier classes’. Before continuing with the
further discussion, it is necessary to clearly define these two concepts here clearly to avoid any
ambiguities, as we will try to comparably discriminate and analyze them later. Formally, we have:
Definition 3.2 (Label noise). For a sample x with clean label y and noisy label yn:

• When y = yn, (x, y, yn) is a clean sample;

• When y ̸= yn and y ∈ Yin, (x, y, yn) is a closed-set noise;

• When y ̸= yn and y ∈ Yout, (x, y, yn) is an open-set noise.

Specifically, we have y ∼ P (y = y|x = x; y ∈ Yall) while yn ∼ Pn(y = yn|x = x; y ∈ Yall).

However, we can only identify label noise type with (x, y, yn) — y yet to be sampled with unknown
clean conditional probability P (y = y|x = x; y ∈ Yall). To enable sample-wise analysis on the
impact of different label noise, we thus introduce below (Ox, Cx) label noise:
Definition 3.3 ((Ox, Cx) label noise). For sample x with clean conditional probability P (y|x =
x; y ∈ Yall) and complete noise transition matrix T :

Ox =

A+B∑
i=A+1

A∑
j=1

TijP (y = i|x = x; y ∈ Yall) =

A+B∑
i=A+1

P (y = i|x = x; y ∈ Yall),

Cx =

A∑
i=1

A∑
j=1,j ̸=i

TijP (y = i|x = x; y ∈ Yall) =

A∑
i=1

(1− Tii)P (y = i|x = x; y ∈ Yall).

(2)

Here, Ox represents the expected open-set noise ratio, and Cx represents the expected closed-set
noise ratio. We then define sample x as an (Ox, Cx) label noise - as per Definition 3.2, sample x is
expected to be an open-set noise with probability as Ox and expected to be an open-set noise with
probability Ox.

With Definition 3.3, we further formalize the concept of noise ratio for the whole distribution:
Definition 3.4 (Accumulated noise ratio). We define the accumulated noise ratio, N , as the accumu-
lated (Ox, Cx) label noise over all sample points x ∈ X :

N =

∫
x

Nx · P (x = x; y ∈ Yall)dx =

∫
x

(Ox + Cx) · P (x = x; y ∈ Yall)dx (3)

Here, Nx is referred to as the point-wise noise ratio.

3.2 ANALYZING CLASSIFICATION ERROR RATE INFLATION IN LNL

In this section, we analyze the impact of different types of label noise. We emphasize that, while
the reformulated LNL setting encompasses outlier classes Yout, both during training and evaluation,
they are unknown(agnostic). In other words, the default classification evaluation protocol focuses
solely on the classification error rate over the inlier classes; the learned model f is still tailored for
the classification of inlier classes Yin.

Error rate inflation Specifically, we denote as P f (y|x = x; y ∈ Yin) the learned inlier condi-
tional probability with model f . In the evaluation phase, for specific sample x the prediction is

4
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given by: yf = argmaxkP
f (y = k|x = x; y ∈ Yin) ∈ Yin, and the corresponding expected

classification error rate is defined as:

Ex =
∑
y ̸=yf

P (y = y,x = x; y ∈ Yin) = (1− P (y = yf )|x; y ∈ Yin)) · P (x = x; y ∈ Yin).

(4)
We also have the Bayes error rate corresponds to the Bayes optimal model f∗:

E∗
x = (1−maxkP (y = k|x = x; y ∈ Yin)) · P (x = x; y ∈ Yin). (5)

To measure the negative impact of noisy labels, we care about the additional errors introduced,
measured by the error rate inflation:

Definition 3.5 (Error rate inflation). With E∗
x as the Bayes error rate, we define the error rate inflation

for sample x as: ∆Ex = Ex − E∗
x.

Two pragmatic cases However, P f (y|x = x; y ∈ Yin), as the prediction of the learned model f ,
is influenced by many factors (such as model capacity, dataset size, training hyperparameters like
the number of epochs, etc.), making it non-trivial to determine its exact value for offline analysis2.
Therefore, we consider two specific pragmatic cases that encompass most learning scenarios:

• Fitted case: the model perfectly fits the noisy distribution: P f (y|x = x; y ∈ Yin) = Pn(y|x =
x; y ∈ Yin). This case may occur in scenarios such as fine-tuning a linear classifier with a frozen
pre-trained model - as the pre-trained model already captures well-separated sample representations
and the capacity of a linear classifier is limited.

• Overfitted case: the model completely memorises the noisy labels: P f (y|x = x; y ∈ Yin) =
P yn

(y|x = x; y ∈ Yin) - here P yn

denotes the one-hot encoded noisy label yn. This case may
arise in scenarios such as training a standard deep neural network from scratch with a single-label
dataset - where the model normally has sufficient capacity to memorize all the labels.

3.3 ERROR RATE INFLATION ANALYSIS w.r.t DIFFERENT LABEL NOISE

In this section, we focus on analyzing the error rate inflation caused by different types of label noise.
Let us recall the clean conditional distribution as P (y|x; y ∈ Yall). For ease of analysis, we consider
a simple scenario, wherein the entire clean conditional distribution over X remains unchanged, except
for one sample point, say x, which is affected by label noise:

Pn(y|x ̸= x; y ∈ Yall) = P (y|x ̸= x; y ∈ Yall), Pn(y|x = x; y ∈ Yall) ̸= P (y|x = x; y ∈ Yall).

Under this condition, we simplify the analysis of the impact of label noise on the entire distribution
to analyzing the error rate inflation of a single sample x. Let us denote P (y|x = x; y ∈ Yall) =

[p1, ..., pA, ..., pA+B ], and denote its noise transition matrix as T = {Tij}A+B
i,j=1.

Remark 3.6 (Derivation of ∆Ex). The inflation of the error rate, ∆Ex, is dependent on the complete
noise transition matrix T , and the clean conditional probability [p1, ..., pA, ..., pA+B ]. Specifically,
for above two cases, we have the corresponding error rate inflation for sample x as follows:

• Fitted case:
∆Ex = max[p1, ..., pA]− pargmax[

∑A+B
i=1 piTi1,...,

∑A+B
i=1 piTiA]

• Overfitted case:

∆Ex = max[p1, ..., pA]−
A∑
i=1

(pi ·
A+B∑
j=1

pjTji)

For a detailed derivation, please refer to appendix C.

2Please refer to (Mohri et al., 2018) for more discussions about related topics such as model generalization.
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Comparative analysis with proxy samples x1 and x2 For the subsequent comparative analysis,
we consider two proxy sample points, x1 and x2, corresponding to the different scenarios being
compared. Following the notation used for sample x, we add subscripts to denote samples x1 and
x2. For example, for sample x1, we have P (y|x = x1; y ∈ Yall) = [p11, ..., p

1
A, ..., p

1
A+B ], and the

complete noise transition matrix as T 1 = {T 1
ij}

A+B
i,j=1. To ensure a strict fair comparison, we analyze

the impact of various noise and noise modes while maintaining a consistent overall noise ratio. Firstly,
we assume the following:

Ox1 + Cx1 = Ox2 + Cx2 . (6)
Intuitively, we compare the error rate inflation (∆Ex1

vs. ∆Ex2
) under different label noise con-

ditions given the same point-wise noise ratio. Additionally, we assume that x1 and x2 have the
same prior sampling probability: P (x = x1; y ∈ Yall) = P (x = x2; y ∈ Yall), so that samples x1

and x2 are probabilistically interchangeable during the training set sampling process. These two
conditions together also ensure that the accumulated noise ratio N remains unchanged.

3.3.1 HOW DOES OPEN-SET NOISE COMPARE TO CLOSED-SET NOISE?

We begin by elucidating the differences between open-set noise and closed-set noise — in particular,
we are interested in understanding the effects of having "more open-set noise" versus "more closed-set
noise", given that Ox + Cx remains unchanged. Without loss of generality, we consider:

Ox1
> Ox2

, Cx1
< Cx2

. (7)

Intuitively, we regard sample x1 as being more prone to open-set noise compared to sample x2, thus
corresponding to the ‘more open-set noise’ scenario. However, without additional regularization, there
are infinitely many solutions that satisfy eq. (6) and eq. (7). Given the specific P (y|x = x1; y ∈ Yall)
and P (y|x = x2; y ∈ Yall), the corresponding noise transition matrices T 1 and T 2 (see the example
below) may not be unique. Therefore, the analysis of ∆Ex1

versus ∆Ex2
is not feasible—according

to Remark 3.6, the values of ∆Ex1
and ∆Ex2

cannot be determined.

Toy Example of Agnostic T Assume a ternary classification with two known inlier classes
("0" and "1") and one unknown outlier class "2". Consider a sample x1 with clean conditional
probability [0.1, 0.2, 0.7]. Now, assume two different noise transition matrices for T 1 as
follows:

[0.55, 0.45, 0.0] = [0.1, 0.2, 0.7]

 0.5 0.5 0
0.75 0.25 0
0.5 0.5 0


[0.45, 0.55, 0.0] = [0.1, 0.2, 0.7]

 0 1 0
0.5 0.5 0
0.5 0.5 0


In both conditions, we have Ox1

= 0.7 and Cx1
= 0.2, but we arrive at different noisy

conditional probabilities, similarly for sample x2.

We thus consider a class-concentrated assumption—in most classification datasets, that the majority
of samples belong exclusively to a specific class with high probability. In this condition, we have
proved:
Theorem 3.7 (Open-set noise vs closed-set noise). Consider samples x1 and x2 satisfying eq. (6)
and eq. (7) — compared to x2, x1 is considered as more prone to open-set noise. Let us denote
a = argmaxi P (y = i|x = x1; y ∈ Yall) and b = argmaxi P (y = i|x = x2; y ∈ Yall), and
assume (with high probability): p1a → 1, {p1i → 0}i ̸=a and p2b → 1, {p2b → 0}i ̸=b. Then, we have:

∆Ex1
< ∆Ex2

in both Fitted case and Overfitted case.

Please refer to appendix D.1 for a detailed proof. In summarize, we validate that in most conditions,
open-set noise is less harmful than closed-set noise in both fitted case and overfitted case, regardless
of the specific noise mode.
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3.3.2 HOW DOES DIFFERENT OPEN-SET NOISE COMPARE TO EACH OTHER?

We further study how different types of open-set noise affect the model. Specifically, we focus on the
impacts of different open-set noise modes (Tout) given the same open-set noise ratio:

Ox1
= Ox2

. (8)

To focus on open-set noise only and exclude the effect of closed-set noise, we assume:

Cx1
= Cx2

= 0 (9)

Especially, in this section, we assume sample x1 and sample x2 holds the same clean conditional
probability: [p11, ..., p

1
A, ..., p

1
A+B ] = [p21, ..., p

2
A, ..., p

2
A+B ], allowing us to focus only on the impact

of different open-set noise modes (Tout). We abbreviate the superscripts for simplicity subsequently.
According to Definition 3.3, it is straightforward that Ox1

= Ox2
always holds since

∑A+B
i=A+1 p

1
i =∑A+B

i=A+1 p
2
i , and Cx1

= Cx2
= 0 when T 1

in = T 2
in = I3.

Then, we have the flexibility to explore various forms of Tout — corresponding to different open-set
noise modes. Specifically, we consider two distinct open-set noise modes: ‘easy’ open-set noise
when the transition from outlier classes to inlier classes involves completely random flipping, and
‘hard’ open-set noise when there exists an exclusive transition between the outlier class and specific
inlier class. We denote as T easy for ‘easy’ open-set noise and Thard for ‘hard’ open-set noise, with
intuitive explanations below:

T easy =

 1
A ... 1

A
... ... ...
1
A ... 1

A


B×A

(10)

and

Thard =

[
0 ... 1
... ... ...
1 ... 0

]
B×A

(11)

Especially, for T easy, we have Tij =
1
A everywhere; for Thard, we denote as Hi : {argj(Thard

ji =

1)}Ai=1 the set of corresponding outlier classes j ∈ Yout confused to inlier class i ∈ Yin. We would
like to reiterate that although this resembles the widely studied symmetric and asymmetric noise,
here we do not further assume that different sample points follow the same noise transition matrix.

Without loss of generality, we consider x1 with ‘easy’ open-set noise T easy and x2 with ‘hard’
open-set noise Thard. Please note, that we no longer require class concentration assumption here as
the noise transition matrix is considered known. In this condition, we have proved:
Theorem 3.8 (‘Hard’ open-set noise vs ‘easy’ open-set noise). Consider samples x1, x2 satisfying
eq. (8) and eq. (9). We set the corresponding noise transition matrix as T 1

out = T easy, T 2
out =

Thard, T 1
in = T 2

in = I and denote P (y|x = x1; y ∈ Yall) = P (y|x = x2; y ∈ Yall) =
[p1, ..., pA, ..., pA+B ]. Then, we have:

• Fitted case:
∆Ex1 ≤ ∆Ex2 .

• Overfitted case:

∆Ex1
−∆Ex2

=

A∑
i=1

aibi.

where ai = pi and bi =
∑

j∈Hi
pj − 1

A

∑A+B
i=A+1 pi.

Please refer to appendix D.2 for a detailed proof. Specifically, we further discuss about overfitted case
here. Since

∑A
i=1 bi = 0,

∑A
i=1 ai = 1, we can easily infer max(∆Ex1−∆Ex2) ≥ 0,min(∆Ex1−

∆Ex2) ≤ 0. With rearrangement inequality (theorem D.3), we note when the ranking of {pi}Ai=1 is
completely in agreement with the ranking {

∑
j∈Hi

pj}Ai=1 (constant term − 1
A

∑A+B
i=A+1 pi omitted

here), we reach its maximum value with ∆Ex1 −∆Ex2 ≥ 0. Intuitively speaking, this implies a

3Please refer to appendix D.3 for the analysis with additional concurrent closed-set noise, i.e., T 1
in = T 2

in ̸= I.
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scenario that the ‘hard’ open-set noise tends to confuse a sample into the inlier class it primarily
belongs to (with higher semantic similarity), as indicated by its higher probability (the higher the
pi the higher the

∑
j∈Hi

pj). For example, an outlier ‘tiger’ image is wrongly included as a ‘cat’
rather than a ‘dog’ in a ‘cat vs dog’ binary classification dataset. As this is more consistent with the
common intuition for semantic hardness, we default to such noise mode for ‘hard’ open-set noise —
assuming the ranking of {pi}Ai=1 is of high agreement with the ranking of {

∑
j∈Hi

pj}Ai=1.

To summarize, we notice the ‘hard’ open-set noise and the ‘easy’ open-set noise exhibit contrasting
trends in two different cases. In the fitted case, ‘easy’ open-set noise appears to be less harmful,
while in the overfitted case, the impact of ‘hard’ open-set noise is comparatively smaller.

3.4 RETHINKING OPEN-SET NOISE DETECTION

In addition to examining the impact of various types of open-set label noise on model generalization,
we also assess the performance of current learning with noisy labels (LNL) methods when confronted
with different types of open-set noise. Most current LNL methods primarily address closed-set
noise, while the few sample selection approaches that target open-set noise generally focus on ‘easy’
open-set noise only. In this section, we evaluate the effectiveness of current methods in handling
different forms of open-set noise, including the newly introduced ‘hard’ open-set noise.

We specifically focus on an entropy-based open-set noise detection mechanism, which has been
widely applied in prior out-of-distribution (OOD) detection works (Chan et al., 2021; Xing et al.,
2024). Within the sample selection framework, several methods (Albert et al., 2022; Sachdeva et al.,
2021) have sought to extend closed-set noise detection techniques to identify open-set noise based on
similar principles. These methods are generally founded on the empirical observation that samples
with less confident and more averaged predictions often correspond to open-set instances, as indicated
by high entropy in the model’s predictions.

Similar to general sample selection methods, entropy-based open-set noise detection also occurs
in the early stages after the model has undergone a few epochs training, commonly referred to as
model warm-up training. At this point, the model is expected to have learned meaningful information
while avoiding overfitting. In this context, we assume that the current model used for open-set noise
detection is consistent with the fitted case described earlier.

Specifically, for a given sample x, we consider three variants for comparison: the original sample
without noise transition, treated as a clean sample ; the ‘hard’ open-set noise sample, following the
Thard open-set noise mode; and the ‘easy’ open-set noise sample, following the T easy open-set
noise mode. We denote the prediction entropy values corresponding to these three variants as Heasy ,
Hhard, and Hclean, respectively, and we have4:

Hclean = ENT([
p1∑A
i=1 pi

, ...,
pA∑A
i=1 pi

])

= ENT([p1 +
p1∑A
i=1 pi

A+B∑
i=A+1

pi, ..., pA +
pA∑A
i=1 pi

A+B∑
i=A+1

pi]),

Heasy = ENT([p1 +
1

A

A+B∑
i=A+1

pi, ..., pA +
1

A

A+B∑
i=A+1

pi]),

Hhard = ENT([p1 +
∑
j∈H1

pj , ..., pA +
∑
j∈HA

pj ]).

(12)

Obviously, we have Heasy ≥ Hclean
5. However, comparing Hhard and Hclean is non-trivial without

specific values for each entry. Thus, we propose that open-set noise detection based on prediction
entropy may only be effective for ‘easy’ open-set noise. This also suggests that the current success of
prior sample selection methods involving open-set noise may be constraineds.

4Derivation omitted as most steps are similar to the proof in appendix D.2, specifically eq. (34) and eq. (35).
5Empirically, the relative scarcity of open-set noise can also lead to low-confidence/high-entropy predictions,

a phenomenon beyond the scope of this work. We leave this for future exploration by interested readers.
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4 EXPERIMENTS

In this section, we aim to validate our theoretical findings. In section 4.1, we verify the theoretical
comparisons of different types of label noise. In section 4.2, we examine the entropy dynamics under
different open-set label noise modes. Furthermore, in appendix E, we revisit the performance of
current LNL methods in dealing with different open-set noise, including real-world WebVision noisy
dataset. Additionally, we experiment with robust loss functions under varying open-set noise settings
in appendix F. Finally, in appendix G, we propose several potential solutions for identifying and
learning with open-set noise and conduct preliminary experiments.

To conduct more controlled, fair, and accurate experiments, we introduce two synthetic open-set noisy
datasets—CIFAR100-O and ImageNet-O—constructed from the CIFAR100 and ImageNet datasets,
respectively. Furthermore, we introduce a novel open-set test set for the widely used WebVision
benchmark. For more details on datasets and implementations, please refer to appendix A.

4.1 EMPIRICAL VALIDATION OF THEOREM 3.7 AND THEOREM 3.8

In this section, we conduct experiments to validate the theorem 3.7 and theorem 3.8. Since most deep
models have sufficient capacity, we consider direct supervised learning from scratch on the noisy
dataset, treating the final model as the overfitted case - as evidenced by nearly 100% classification
accuracy on the training set. Conversely, obtaining a model that perfectly fits the data distribution is
often challenging; here, we consider training a single-layer linear classifier upon a frozen pretrained
encoder. Due to the limited capacity of the linear layer, we expect it to approximate the fitted case.

over

over

Figure 2: Direct supervised training with different noise modes and noise ratios. ‘PreActResNet18’
corresponds to overfitted case while ‘Pretrained-ResNet18’ corresponds to fitted case.

We present the classification accuracy, i.e., 1 - classification error rate, on the CIFAR100-O and
ImageNet-O datasets across different noise ratios, as shown in fig. 2(a/b). Regardless of the dataset or
noise ratio, we observe that: (1) In both cases, the impact of open-set noise on classification accuracy
is much smaller compared to closed-set noise. (2) ‘Hard’ open-set noise and ‘easy’ open-set noise
exhibit opposite trends under the two different cases. These results align with our theoretical analysis.

Since open-set noise has a relatively small impact on classification accuracy, evaluating accuracy
alone may not fully capture the model’s performance in handling open-set noise. Therefore, we also
report the model’s out-of-distribution (OOD) detection performance (Hendrycks and Gimpel, 2016),
as shown in fig. 2(c/d). For more details on the OOD detection task6, please refer to appendix A.3.
We observe that in both cases, the presence of open-set noise degrades OOD detection performance,
whereas, conversely, the presence of closed-set noise could even improve OOD detection performance.
For example, we notice that in the fitted case, the existence of open-set noise leads to steady

6Please note the distinction between the OOD detection task here and the open-set noise detection mechanism
mentioned in the methods section.
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improvement in OOD detection performance for both CIFAR100-O and ImageNet-O datasets, across
different noise ratios. Given this contrasting trend, we propose that beyond the default closed-
set classification, alternative evaluation frameworks, such as OOD detection, may provide a more
comprehensive assessment of LNL methods.

4.2 INSPECTING ENTROPY-BASED OPEN-SET NOISE DETECTION MECHANISM

In section 3.4, we analyze the open-set noise detection mechanism based on the entropy values
of model predictions and find that it may be effective only for ‘easy’ open-set noise. Here, we
empirically validate this across different open-set noise ratios. Specifically, we follow the warm-up
training strategy, training on the entire dataset for a certain number of epochs. We then report the
model’s predicted entropy values for each sample at different warm-up epochs (5th, 10th, 20th)
in fig. 3. Our results confirm that entropy dynamics serve as a more effective indicator for ‘easy’
open-set noise compared to ‘hard’ open-set noise ((a) vs (b), (c) vs (d) in fig. 3). We also test with
mixed noise including both open-set noise and closed-set noise. For further discussion, please refer
to appendix B.

Figure 3: Entropy dynamics w.r.t different datasets, noise modes, and noise ratios.

5 CONCLUSIONS

This paper investigates the impact of open-set label noise on model performance. Although the "open
world" setting, involving open-set samples, has been widely discussed in other weakly supervised
learning contexts, its application in learning with noisy labels (LNL) remains underexplored. In
response, we revisit the LNL problem, specifically examining the effects of open-set noise in
comparison to closed-set noise, as well as the differences among various types of open-set noise
in terms of classification performance. We find that open-set noise has a smaller impact on model
classification performance compared to common closed-set noise, and different modes of open-set
noise exhibit notable differences. Recognizing the limitations of existing evaluation frameworks
in handling open-set noise, we explore the out-of-distribution (OOD) detection task to address
shortcomings in model assessment and conduct preliminary experiments.

Additionally, we examine a common mechanism for detecting open-set noise based on prediction
entropy, finding that it may only be effective for ‘easy’ open-set noise. Overall, our theoretical and
empirical findings highlight the need for further investigation into open-set noise and its intricate
effects on model performance.
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A EXPERIMENT DETAILS

A.1 DATASET DETAILS

Previous works involving open-set noise also attempted to build synthetic noisy datasets, typi-
cally treating different datasets as open-set noise for each other to construct synthetic noisy data-
set (Sachdeva et al., 2021; Wu et al., 2021). In this scenario, potential domain gaps could affect a
focused analysis of open-set noise. In this work, we propose selecting inlier/outlier classes from
the same dataset to avoid this issue. Besides, in previous works, the consideration of open-set noise
modes often focused on random flipping from outlier classes to all possible inlier classes, which
is indeed the ‘easy’ open-set noise adopted in this paper. However, our theoretical analysis and
experimental findings demonstrate that ‘easy’ open-set noise and ‘hard’ open-set noise exhibit distinct
characteristics. Therefore, relying solely on experiments with ‘easy’ open-set noise is insufficient,
emphasizing the necessity to explore and understand the complexities associated with different types
of open-set noise.

CIFAR100-O For the original CIFAR100 dataset, in addition to the commonly-used 100 fine
classes, there exist 20 coarse classes each consisting of 5 fine classes. To build CIFAR100-O, we
select one fine class from each coarse class as an inlier class (20 classes in total) while considering
the remaining classes as outlier classes (80 classes in total). Then, we consider ‘hard’ and ‘easy’
open-set noise as below:

• ‘Hard’: Randomly selected samples from the outlier classs belonging to the same coarse class are
introduced as open-set noise of the target class.

• ‘Easy’: Regardless of the target category, samples from the remaining categories are randomly
introduced as open-set noise.

ImageNet-O For a more challenging benchmark, we consider ImageNet-1K datasets - consisting of
1,000 classes. Specifically, we randomly select 20 classes and artificially identify another 20 classes
similar to each of them as outlier classes (paired by ranking):

inliers= [’tench’, ’great white shark’, ’cock’, ’indigo bunting’, ’European fire salamander’, ’African
crocodile’, ’barn spider’, ’macaw’, ’rock crab’, ’golden retriever’, ’wood rabbit’, ’gorilla’, ’abaya’,

’beer bottle’, ’bookcase’, ’cassette player’, ’coffee mug’, ’shopping basket’, ’trifle’, ’meat loaf’]

outliers= [’goldfish’, ’tiger shark’, ’hen’, ’robin’, ’common newt’, ’American alligator’, ’garden
spider’, ’sulphur-crested cockatoo’, ’king crab’, ’Labrador retriever’, ’Angora’, ’chimpanzee’,

’academic gown’, ’beer glass’, ’bookshop’, ’CD player’, ’coffeepot’, ’shopping cart’, ’ice cream’,
’pizza’]

Then, we consider ‘hard’ and ‘easy’ open-set noise as below:

• ‘Hard’: Randomly selected samples from similar outlier classes are introduced as open-set noise
for the target category.

• ‘Easy’: Regardless of the target category, samples from the outlier classes are randomly introduced
as open-set noise.

For OOD detection, we directly use the corresponding test sets of outlier classes from the original
datasets.

WebVision WebVision (Li et al., 2017) is a large-scale dataset comprising 1,000 image classes
obtained through web crawling, which includes a substantial amount of open-set noise. Consistent
with previous studies (Jiang et al., 2018; Li et al., 2020; Ortego et al., 2021), we evaluate our methods
using the first 50 classes from the Google Subset of WebVision.

To assess the performance of out-of-distribution (OOD) detection on the WebVision dataset, we
create a separate test set of open-set images, following the same collection process as the original
dataset. Specifically, we use the Google search engine with class names as keywords and identify
retrieved OOD samples that are not included in the training set for this test set.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Closed-set noise We also evaluate closed-set noise in some experiments, and by default, we
consider the commonly used symmetric closed-set noise for simplicity. It is important to note that
in our theoretical analysis, we do not impose any specific assumptions about the form of closed-set
noise; our results apply to both symmetric and asymmetric closed-set noise.

A.2 IMPLEMENTATION DETAILS

In this section, we provide detailed implementation specifications for the experiments in section 4.1.
We also briefly introduce the applied out-of-distribution (OOD) detection protocol.

Fitted case For the fitted case, we train a randomly initialized classifier consisting of a single linear
layer built on top of the ResNet18 encoder with pretrained weights. In the CIFAR100-O dataset
experiments, a weak augmentation strategy, including image padding and random cropping, is applied
during training, with a batch size of 512. The weight decay is set to 0.0005, and the model is trained
for 100 epochs with a learning rate of 0.02, following a cosine annealing schedule.

For the ImageNet-O dataset, no augmentation is applied during training. The batch size remains 512,
with a weight decay of 0.01. The model is similarly trained for 100 epochs with a learning rate of
0.02, following the same cosine annealing schedule.

Overfitted case For the overfitted case, we train a PreResNet18 model from scratch. For both
datasets, a weak augmentation strategy, including image padding and random cropping, is applied
during training with a batch size of 128. The weight decay is set to 0.0005, and the model is trained
for 200 epochs with a learning rate of 0.02, following a cosine annealing schedule.

A.3 OOD DETECTION EVALUATION PROTOCOL

We employ the maximum softmax probability as proposed by Hendrycks and Gimpel (2016) for
out-of-distribution (OOD) detection. Specifically, let the trained model f output a softmax vector
pi for each sample xi. A threshold value t, ranging between 0 and 1, is selected. For evaluation,
we assign binary labels to indicate whether a sample belongs to a known class (closed-set) or an
unknown class (open-set), transforming the OOD detection task into a binary classification problem.
Samples with a maximum softmax value pmax

i below the threshold are considered potential open-set
examples, as a low maximum value suggests that the model has low confidence in assigning the
sample to any specific class.

B ENTROPY DYNAMICS FOR MIXED LABEL NOISE

In addition to the open-set noise only scenario, we also examine the entropy dynamics with mixed
label noise in fig. 4. The notation ‘0.2all_0.5easy’ denotes a scenario where the overall noise ratio
is 0.2, with half of the noise being classified as ‘easy’ open-set noise. In the case of mixed label
noise, the presence of closed-set noise significantly complicates the detection of open-set noise.
For instance, in fig. 4(d), the entropy values of open-set noise even surpass those of clean samples.
Although not formally analyzed, this observation suggests that entropy dynamics, derived from model
predictions, may be fragile, warranting a more cautious approach to handling open-set noise.

Epoch 5 Epoch 10 Epoch 20 Epoch 30

(a) CIFAR100-O 0.2all_0.5easy

Epoch 5 Epoch 10 Epoch 20 Epoch 30

(b) CIFAR100-O 0.2all_0.5hard
Epoch 5 Epoch 10 Epoch 20 Epoch 30

(c) ImageNet-O 0.4all_0.5easy

Epoch 5 Epoch 10 Epoch 20 Epoch 30

(d) ImageNet-O 0.4all_0.5hard

Figure 4: Entropy dynamics w.r.t mixed label noise.
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C ERROR RATE INFLATION IN TWO DIFFERENT CASES

In this section, we present the computation details of error rate inflation in two interested cases - fitted
case and overfitted case. Specifically, we have:

• Fitted case:

Ex = (1−P (y = argmaxkP
n(y = k|x = x; y ∈ Yin)|x = x; y ∈ Yin)) ·P (x = x; y ∈ Yin).

(13)

• Overfitted case:

Ex = (1− P (y = argmaxkP
yn

(y = k|x = x; y ∈ Yin)|x = x; y ∈ Yin)) · P (x = x; y ∈ Yin)

=
∑

yn∈Yin

(1− P (y = yn|x = x; y ∈ Yin))Pn(y = yn|x = x; y ∈ Yin) · P (x = x; y ∈ Yin)

= [1−
∑

yn∈Yin

P (y = yn|x = x; y ∈ Yin)Pn(y = yn|x = x; y ∈ Yin)] · P (x = x; y ∈ Yin)

(14)

While E∗
x denotes the Bayes optimal error rate:

E∗
x = (1−maxkP (y = k|x = x; y ∈ Yin)) · P (x = x; y ∈ Yin). (15)

We thus have ∆Ex in different cases as:

• Fitted case:

∆Ex =
(
maxkP (y = k|x = x; y ∈ Yin)− P (y = argmaxkP

n(y = k|x = x; y ∈ Yin)|x = x; y ∈ Yin)
)

· P (x = x; y ∈ Yin).
(16)

• Overfitted case:

∆Ex =
(
maxkP (y = k|x = x; y ∈ Yin)−

∑
yn∈Yin

P (y = yn|x = x; y ∈ Yin)Pn(y = yn|x = x; y ∈ Yin)
)

· P (x = x; y ∈ Yin).
(17)

Details on the derivation of error rate inflation For better clarity, we here restate the notations
in section 3.3. Let us denote P (y|x = x; y ∈ Yall) = [p1, ..., pA, ..., pA+B ], and denote its noise
transition matrix as T = {Tij}A+B

i,j=1. Here, {Tij = 0} for all j > A.

With eq. (1), we compute the corresponding noisy conditional probability as:

Pn(y|x = x; y ∈ Yall) = [

A+B∑
i=1

piTi1, ...,

A+B∑
i=1

piTiA, 0, ..., 0]. (18)
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We also have:

P (y = k|x = x; y ∈ Yin) =
P (y = k|x = x;y ∈ Yall)∑

i∈Yin P (y = i|x = x; y ∈ Yall)
=

pk∑A
i=1 pi

,

Pn(y = k|x = x; y ∈ Yin) =
Pn(y = k|x = x;y ∈ Yall)∑

i∈Yin Pn(y = i|x = x; y ∈ Yall)
=

A+B∑
i=1

piTik,

P (x = x; y ∈ Yin) =

∑
y∈Yin P (x = x, y = y; y ∈ Yall)∫ ∑
y∈Yin P (x = x, y = y; y ∈ Yall)dx

∝
∑

y∈Yin

P (x = x, y = y; y ∈ Yall)

∝
∑

y∈Yin

P (y = y|x = x; y ∈ Yall)P (x = x; y ∈ Yall)

∝
A∑
i=1

pi · P (x = x; y ∈ Yall).

(19)

Wrapping the above together, we have:

P (y|x = x; y ∈ Yin) = [
p1∑A
i=1 pi

, ...,
pA∑A
i=1 pi

],

Pn(y|x = x; y ∈ Yin) = [

A+B∑
i=1

piTi1, ...,

A+B∑
i=1

piTiA],

P (x = x; y ∈ Yin) ∝
A∑
i=1

pi · P (x = x; y ∈ Yall).

(20)

With eq. (16), eq. (17) and eq. (20), we can then compute and compare ∆Ex in both fitted case and
overfitted case:

• Fitted case:

∆Ex =
(
max[p1, ..., pA]− pargmax[

∑A+B
i=1 piTi1,...,

∑A+B
i=1 piTiA]

)
·P (x = x; y ∈ Yall) (21)

• Overfitted case:

∆Ex =
(
max[p1, ..., pA]−

A∑
i=1

(pi ·
A+B∑
j=1

pjTji)
)
·P (x = x; y ∈ Yall) (22)

In the main section 3.2, we have omitted the sampling prior term P (x = x; y ∈ Yall) (marked in
gray) for simplicity — cause in our subsequent comparative analysis, we assume that the sampling
prior: P (x = x; y ∈ Yall) of the sample points is fixed to ensure a fair comparison. Please continue
the section Comparative analysis with proxy samples x1 and x2 for further explanation.

D FULL PROOF OF THEOREM 3.7 AND THEOREM 3.8

Error rate inflation comparison s.t. same noise ratio To ensure a fair comparison, in this work,
we focus on the impact of different label noise given the same noise ratio - modifying Ox and Cx

while analyzing the trend of ∆Ex. Specifically, for two proxy sample points x1 and x2, we assume:

Ox1
+ Cx1

= Ox2
+ Cx2

. (23)

which leads us to:
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A+B∑
i=A+1

p1i +

A∑
i=1

A∑
j=1,j ̸=i

T 1
ijp

1
i =

A+B∑
i=A+1

p2i +

A∑
i=1

A∑
j=1,j ̸=i

T 2
ijp

2
i −→

A∑
i=1

T 1
iip

1
i =

A∑
i=1

T 2
iip

2
i (24)

Note that the superscript here refers to the sample point x2, not a square exponent.

D.1 PROOF OF THEOREM 3.7 — OPEN-SET NOISE VS CLOSED-SET NOISE

In this section, we try to compare open-set noise and closed-set noise. Without loss of generality, we
consider:

Ox1
> Ox2

. (25)

As clarified by the toy example in section 3.3.1, without extra regularizations, the noise transition
matrix is not identifiable. We thus consider a simple compromise situation - in most classification
problems, the majority of samples (with a high probability) belong to a specific class exclusively with
high probability.

Let us denote:
a = argmax

i
P (y = i|x = x1; y ∈ Yall)

and
b = argmax

i
P (y = i|x = x2; y ∈ Yall).

We assume :
p1a → 1, {p1i → 0}i ̸=a, p

2
b → 1, {p2i → 0}i ̸=b,

and we have:

Ox1
=

A+B∑
i=A+1

p1i , Ox2
=

A+B∑
i=A+1

p2i .

With eq. (25), we easily infer that: a ∈ Yout while b ∈ Yin. With eq. (24), we further have:

A∑
i=1

T 1
iip

1
i ≈

A∑
i=1

T 1
ii × 0 ≈ 0,

A∑
i=1

T 2
iip

2
i ≈

A∑
i=1,i̸=b

T 2
ii × 0 + T 2

bb × 1 ≈ T 2
bb.

Thus we have: T 2
bb ≈ 0, which enables us to analyze and compare ∆Ex1

and ∆Ex2
:

Fitted case In this case, according to eq. (21), we have:

∆Ex1
= max[p11, ..., p

1
A]− pargmax[

∑A+B
i=1 p1

iT
1
i1,...,

∑A+B
i=1 p1

iT
1
iA]

≤ max[p11, ..., p
1
A]−min[p11, ..., p

1
A]

p1
a→1,{p1

i→0}i̸=a,a∈Yout

−−−−−−−−−−−−−−−−→
≈ 0,

(26)

∆Ex2
= max[p21, ..., p

2
A]− pargmax[

∑A+B
i=1 p2

iT
2
i1,...,

∑A+B
i=1 p2

iT
2
iA]

[
∑A+B

i=1 p2
iT

2
i1,...,

∑A+B
i=1 p2

iT
2
iA]≈[T 2

b1,T
2
b2,...,

T2
bb︷︸︸︷
0 ,...,T 2

bA]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
= p2b − p2n ̸=b

p2
b→1,{p2

i→0}i̸=b,b∈Yin

−−−−−−−−−−−−−−−→
≈ 1.

(27)
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Overfitted case In this case, according to eq. (22), we similarly have:

∆Ex1 = max[p11, ..., p
1
A]−

A∑
i=1

(p1i ·
A+B∑
j=1

p1jT
1
ji) ≈ 0, (28)

∆Ex2
= max[p21, ..., p

2
A]−

A∑
i=1

(p2i ·
A+B∑
j=1

p2jT
2
ji) ≈ 1. (29)

We wrap up above for theorem D.1:

Theorem D.1 (Open-set noise vs Closed-set noise). Let us consider sample x1, x2 fulfilling eq. (23)
and eq. (25) - compared to x2, x1 is considered as more prone to open-set noise. Let us denote
a = argmaxi P (y = i|x = x1; y ∈ Yall) and b = argmaxi P (y = i|x = x2; y ∈ Yall), we
assume (with a high probability): p1a → 1, {p1i → 0}i̸=a and p2b → 1, {p2b → 0}i̸=b. Then, we have:

∆Ex1 < ∆Ex2

in both fitted case and overfitted case.

D.2 DERIVATION OF THEOREM 3.7 — ‘HARD’ OPEN-SET NOISE VS ‘EASY’ OPEN-SET NOISE

In this part, we try to analyze and compare ‘hard’ open-set noise with ‘easy’ open-set noise. For
better clarification, we repeat here the essential notations:

T 1
out = T easy =

 1
A ... 1

A
... ... ...
1
A ... 1

A


B×A

(30)

and

T 2
out = Thard =

[
0 ... 1
... ... ...
1 ... 0

]
B×A

(31)

and

T 1
in = T 2

in = I. (32)

Especially, for T easy, we have Tij =
1
A everywhere; for Thard, we denote as Hi : {argj(Thard

ji =

1)}Ai=1 the set of corresponding outlier classes j ∈ Yout confused to inlier class i ∈ Yin. We also
have:

[p11, ..., p
1
A, ..., p

1
A+B ] = [p21, ..., p

2
A, ..., p

2
A+B ] = [p1, ..., pA, ..., pA+B ]. (33)

Fitted case In this case, according to eq. (21), for sample x1 with ‘easy’ open-set noise, we have:

∆Ex1
= max[p11, ..., p

1
A]− pargmax[

∑A+B
i=1 p1

iT
1
i1,...,

∑A+B
i=1 p1

iT
1
iA]

= max[p11, ..., p
1
A]− pargmax[p1

1+
1
A

∑A+B
i=A+1 p1

i ,...,p
1
A+ 1

A

∑A+B
i=A+1 p1

i ]

= 0,

(34)

and, for sample x2 with ‘hard’ open-set noise, we have:

∆Ex2
= max[p21, ..., p

2
A]− pargmax[

∑A+B
i=1 p2

iT
2
i1,...,

∑A+B
i=1 p2

iT
2
iA]

= max[p21, ..., p
2
A]− pargmax[p2

1+
∑

b∈H1
p2
b ,...,p

2
A+

∑
b∈HA

p2
b ]

∈ [0, max[p21, ..., p
2
A]−min[p21, ..., p

2
A]].

(35)
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Overfitted case In this case, according to eq. (22), for sample x1 with ‘easy’ open-set noise, we
have:

∆Ex1
= max[p11, ..., p

1
A]−

A∑
i=1

(p1i ·
A+B∑
j=1

p1jT
1
ji)

= max[p11, ..., p
1
A]−

A∑
i=1

(
p1i · (

A∑
j=1

p1jT
1
ji +

A+B∑
j=A+1

p1jT
1
ji)

)
T 1
in=I, T 1

out=T easy

−−−−−−−−−−−−→

= max[p11, ..., p
1
A]−

A∑
i=1

p1i (p
1
i +

1

A

A+B∑
i=A+1

p1i ).

(36)

and, for sample x2 with ‘hard’ open-set noise, we have:

∆Ex2 = max[p21, ..., p
2
A]−

A∑
i=1

(p2i ·
A+B∑
j=1

p2jT
2
ji)

= max[p21, ..., p
2
A]−

A∑
i=1

(
p2i · (

A∑
j=1

p2jT
2
ji +

A+B∑
j=A+1

p2jT
2
ji)

)
T 2
in=I, T 2

out=Thard

−−−−−−−−−−−−→

= max[p21, ..., p
2
A]−

A∑
i=1

p2i (p
2
i +

∑
j∈Hi

p2j )

(37)

Omitting superscripts (eq. (33)), we further have:

∆Ex1
−∆Ex2

=

A∑
i=1

pi(
∑
j∈Hi

pj −
1

A

A+B∑
i=A+1

pi). (38)

Let ai = pi, bi =
∑

j∈Hi
pj − 1

A

∑A+B
i=A+1 pi, we have:

∆Ex1 −∆Ex2 =

A∑
i=1

aibi.

To summarize, we wrap up the above together:
Theorem D.2 (‘Hard’ open-set noise vs ‘easy’ open-set noise). Let us consider sample x1, x2 fulfill-
ing eq. (8) and eq. (9). We set the corresponding noise transition matrix as T 1

out = T easy, T 2
out =

Thard, T 1
in = T 2

in = I and denote P (y|x = x1; y ∈ Yall) = P (y|x = x2; y ∈ Yall) =
[p1, ..., pA, ..., pA+B ]. Then, we have:

• Fitted case:
∆Ex1

≤ ∆Ex2
.

• Overfitted case:

∆Ex1
−∆Ex2

=

A∑
i=1

aibi.

Here, ai = pi, bi =
∑

j∈Hi
pj − 1

A

∑A+B
i=A+1 pi.

Theorem D.3 (Rearrangement Inequality). For the sequences a1, a2, . . . , an and b1, b2, . . . , bn,
where a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, the rearrangement inequality is given by:
a1 ·b1+a2 ·b2+. . .+an ·bn ≥ a1 ·bσ(1)+a2 ·bσ(2)+. . .+an ·bσ(n) ≥ a1 ·bn+a2 ·bn−1+. . .+an ·b1
Here, σ denotes a permutation of the indices 1, 2, . . . , n. The leftmost expression corresponds to the
case where σ(i) = i (identity permutation), and the rightmost expression corresponds to the case
where σ(i) = n+ 1− i (reverse permutation).
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D.3 ‘HARD’ OPEN-SET NOISE vs. ‘EASY’ OPEN-SET NOISE WHEN T 1
in = T 2

in ̸= I

In the previous section, we analyzed open-set noise by setting the closed-set noise to zero to simplify
the analysis. In this section, we relax this assumption and no longer assume T 1

in = T 2
in ̸= I.

Intuitively, we aim to investigate whether the presence of additional closed-set noise affects the
conclusions drawn earlier.

Fitted case we first investigate the fitted case. Similarly, we have:

∆Ex1 = max[p11, . . . , p
1
A]− pargmax[

∑A+B
i=1 p1

iT
1
i1,...,

∑A+B
i=1 p1

iT
1
iA]

= max[p11, . . . , p
1
A]− pargmax[

∑A
i=1 p1

iTi1+
1
A

∑A+B
i=A+1 p1

i ,...,
∑A

i=1 p1
iTiA+ 1

A

∑A+B
i=A+1 p1

i ]

= max[p11, . . . , p
1
A]− pargmax[

∑A
i=1 p1

iTi1,...,
∑A

i=1 p1
iTiA]

(39)

∆Ex2 = max[p21, ..., p
2
A]− pargmax[

∑A+B
i=1 p2

iT
2
i1,...,

∑A+B
i=1 p2

iT
2
iA]

= max[p21, ..., p
2
A]− pargmax[

∑A
i=1 p2

iTi1+
∑

b∈H1
p2
b ,...,

∑A
i=1 p2

iTiA+
∑

b∈HA
p2
b ]
.

(40)

Unfortunately, without extra assumptions on Tin or [p11, . . . , p
1
A], to compare ∆Ex1

and ∆Ex2
is

impossible. Here, we consider two conservative but realistic cases:

i. Concentration assumption of [p11, . . . , p1A]: in this case, we assume the probability [p11, . . . , p
1
A]

concentrate on one specific class, say, t. We thus have p1t → 1, p1k → 0,∀k ̸= t. In this case, we
have:

∆Ex1 = max[p11, . . . , p
1
A]− pargmax[

∑A
i=1 p1

iTi1,...,
∑A

i=1 p1
iTiA]

≈ p1t − pargmax[p1
tTt1,...,p1

tTtt,...,p1
tTtA]

diagnomal-dominant noise transition matrix−−−−−−−−−−−−−−−−−−−−−−→
= 0.

(41)

∆Ex2 = max[p21, ..., p
2
A]− pargmax[

∑A
i=1 p2

iTi1+
∑

b∈H1
p2
b ,...,

∑A
i=1 p2

iTiA+
∑

b∈HA
p2
b ]

≈ p2t − pargmax[p2
tTt1+

∑
b∈H1

p2
b ,...,p

2
tTtt+

∑
b∈Ht

p2
b ,...,p

2
tTtA+

∑
b∈HA

p2
b ]

≥ 0.

(42)

Note we normally implciitly assume a daignomal-dominant noise transition matrix, that is, ∀i, j ̸=
i, Tii > Tij .

ii. Symmetric closed-set noise for Tin: in this case, we assume a symmetric noise transition matrix
T .

∆Ex1
= max[p11, . . . , p

1
A]− pargmax[

∑A
i=1 p1

iTi1,...,
∑A

i=1 p1
iTiA]

= max[p11, . . . , p
1
A]− pargmax[σ+p1

1T∆,...,σ+p1
AT∆]

= 0.

(43)

∆Ex2
= max[p21, ..., p

2
A]− pargmax[

∑A+B
i=1 p2

iT
2
i1,...,

∑A+B
i=1 p2

iT
2
iA]

= max[p21, ..., p
2
A]− pargmax[

∑A
i=1 p2

iTi1+
∑

b∈H1
p2
b ,...,

∑A
i=1 p2

iTiA+
∑

b∈HA
p2
b ]

= p2t − pargmax[σ+p2
1T∆+

∑
b∈H1

p2
b ,...,σ+p2

AT∆+
∑

b∈HA
p2
b ]

≥ 0.

(44)

In above two cases, we still have ∆Ex1
≤ ∆Ex2

. That is to say, under either of the two popular
assumptions above, we arrive at the same conclusion: ‘easy’ open-set noise is less harmful than ‘hard’
open-set noise.
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Overfitted case we then re-investigate the overfitted-case. Similalrly, we have:

∆Ex1
= max[p11, ..., p

1
A]−

A∑
i=1

(p1i ·
A+B∑
j=1

p1jT
1
ji)

= max[p11, ..., p
1
A]−

A∑
i=1

(
p1i · (

A∑
j=1

p1jT
1
ji +

A+B∑
j=A+1

p1jT
1
ji)

)
T 1
in ̸=I, T 1

out=T easy

−−−−−−−−−−−−→

= max[p11, ..., p
1
A]−

A∑
i=1

p1i (

A∑
j=1

p1jT
1
ji +

1

A

A+B∑
i=A+1

p1i ).

(45)

∆Ex2
= max[p21, ..., p

2
A]−

A∑
i=1

(p2i ·
A+B∑
j=1

p2jT
2
ji)

= max[p21, ..., p
2
A]−

A∑
i=1

(
p2i · (

A∑
j=1

p2jT
2
ji +

A+B∑
j=A+1

p2jT
2
ji)

)
T 2
in ̸=I, T 2

out=Thard

−−−−−−−−−−−−→

= max[p21, ..., p
2
A]−

A∑
i=1

p2i (

A∑
j=1

p2jT
2
ji +

∑
j∈Hi

p2j ).

(46)

Thus, we have:

∆Ex1
−∆Ex2

=

A∑
i=1

p2i (

A∑
j=1

p2jT
2
ji +

∑
j∈Hi

p2j )−
A∑
i=1

p1i (

A∑
j=1

p1jT
1
ji +

1

A

A+B∑
i=A+1

p1i )

=

A∑
i=1

p1i (
∑
j∈Hi

p1j −
1

A

A+B∑
i=A+1

p1i ).

(47)

We note that the result aligns with eq. (38). Therefore, the presence of additional open-set noise does
not affect the conclusion in the overfitted case.

E REVISITING EXISTING LNL METHODS WITH OPEN-SET NOISE

In the main paper, we provide both theoretical analyses and empirical studies for two cases of
interest, comparing the impact of different types of open-set noise on the model’s generalization
performance. In this section, we further examine the performance of existing learning with noisy
labels (LNL) methods, particularly the more prominent sample selection-based approaches, in
handling the various open-set label noise scenarios previously discussed. First, in appendix E.1,
we evaluate the effectiveness of integrating the open-set noise detection mechanism, discussed in
section 4.2, into methods that were not originally designed to address open-set noise. We then conduct
benchmark tests on two additional methods that explicitly account for open-set noise in appendix E.1.

E.1 AUGMENTING EXISTING LNL METHODS WITH ENTROPY-BASED OPEN-SET NOISE
DETECTION

In this section, we evaluate two representative learning with noisy labels (LNL) methods with well-
maintained open-source implementations: SSR (Feng et al., 2022) and DivideMix (Li et al., 2020).
Further details about these methods can be found in appendix E.2. Briefly, as standard sample
selection methods, both approaches typically consist of a sample selection module and a model
training module. Here, we retain the model training module and focus specifically on the sample
selection module. We examine the following three variants:
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• SSR/DivideMix: The original method.

• EntSel: Replaces the original sample selection module in SSR/DivideMix with the open-set noise
detection method discussed in section 4.2. For details on how samples are selected using the
open-set noise detection method, please refer to appendix E.2.

• SSR/DivideMix + EntSel: Selects the intersection of samples chosen by both the open-set noise
detection method and the original sample selection module.

Based on the theoretical analysis in section 4.2, we have the following expectations:

1. We expect EntSel to improve OOD detection performance, particularly for easy open-set noise,
though it may result in reduced closed-set detection performance;

2. Since SSR/DivideMix + EntSel integrates two sample selection mechanisms, we expect improve-
ments in both OOD detection and closed-set classification performance.
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Figure 5: Evaluation of directly supervised training with different noise modes/ratios. First row:
Closed-set classification accuracy; Second row: OOD detection ROC AUC.

In fig. 5, we present empirical results on CIFAR100-O and ImageNet-O with varying levels of
open-set noise, as well as mixed noise scenarios that include both closed-set and open-set noise. First,
we have confirmed that EntSel improves OOD detection performance while decreasing closed-set
classification performance compared to the original methods. This effect is particularly pronounced
when dealing with ‘easy’ open-set noise. However, SSR/DivideMix + EntSel does not enhance
performance as anticipated. Upon further analysis, we observe that SSR/DivideMix + EntSel selects
a significantly smaller subset of samples compared to either SSR/DivideMix or EntSel alone, likely
due to the intersection of the selected samples. This suggests that the precision-recall trade-off in
sample selection may be responsible for the performance decline. While combining both methods
increases precision, it reduces recall, potentially eliminating noisy samples but also discarding clean
ones. This indicates that using the intersection strategy may not be optimal. Effectively integrating
open-set noise detection mechanisms with existing sample selection methods remains a promising
area for future research.

Results on real-world noisy dataset We also present the results on the real-world WebVision
dataset in table 1. Consistent with previous experiments on synthetic datasets, we observe similar
trends between the two SSR method variants combined with EntSel and the original version. Specifi-
cally, EntSel (SSR) enhances OOD detection performance while reducing closed-set classification
performance. Both SSR+EntSel and DivideMix+EntSel result in declines in classification accuracy
and OOD detection performance. Notably, EntSel (DivideMix) does not improve OOD detection
performance. Additional experiments reveal that EntSel is highly sensitive to hyperparameter tuning.
For example, reducing the threshold θ′ for EntSel significantly improves performance on the WebVi-
sion dataset, particularly when EntSel is integrated with DivideMix. Adjusting θ′ from its default
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value of 0.5 to 0.2 increases classification accuracy from 62.96% to 67.2% and raises the ROC AUC
from 81.66% to 85.99%.

Interestingly, the original DivideMix, while achieving lower classification accuracy than the original
SSR (table 1), achieves higher ROC AUC scores in OOD detection. This result suggests that classifi-
cation accuracy alone may not provide a comprehensive evaluation of model performance—additional
metrics, such as OOD detection, are necessary for a more complete assessment.

Table 1: Results on WebVision dataset.

Method Accuracy (%) ROC AUC (%)

SSR 77.48 80.84
EntSel (SSR) 77.08 85.43
SSR + EntSel 76.04 79.90

DivideMix 74.08 86.39
EntSel (DivideMix) 62.96 81.66
DivideMix + EntSel 58.94 83.85

Benchmark more methods with newly-proposed open-set noise In this section, we present
additional benchmarking results on the CIFAR100-O dataset across various open-set noise ratios and
modes, as shown in table 2. To provide a more comprehensive analysis, we include two additional
methods alongside SSR and DivideMix: EvidentialMix (Sachdeva et al., 2021) and DSOS (Albert
et al., 2022), both of which propose tailored solutions for handling open-set noise during their design.

Table 2: Benchmarking results on CIFAR100-O datasets.

Method / Noise Ratio 0.2 Easy 0.4 Easy 0.2 Hard 0.4 Hard

SSR (Feng et al., 2022) 0.889 0.875 0.895 0.871
DivideMix (Li et al., 2020) 0.783 0.754 0.738 0.675
EvidentialMix (Sachdeva et al., 2021) 0.884 0.827 0.898 0.872
DSOS (Albert et al., 2022) 0.846 0.765 0.854 0.832

The results indicate that the various methods exhibit differing sensitivities to open-set noise. Notably,
the tailored solutions for open-set noise in EvidentialMix and DSOS do not yield consistent improve-
ments compared to standard methods like SSR. We acknowledge that this may be partially due to
insufficient hyperparameter tuning. Nevertheless, the performance analysis is complex and warrants
further investigation, as these methods typically involve multiple components and regularization
strategies, which are beyond the scope of this paper.

E.2 DETAILS OF INVOLVED METHODS

DivideMix (Li et al., 2020) Denoting as L = {li}Ni=1 the losses of all samples, DivideMix proposes
to model it (after min-max normalization) with a Gaussian Mixture Model. The probabilities {pi}Ni=1
of each sample belonging to the component with the smaller mean value are then extracted. Samples
with probability pi greater than the threshold θ are then identified as the "clean" subset. Link to code:
https://github.com/LiJunnan1992/DivideMix.

SSR (Feng et al., 2022) In contrast to DivideMix, SSR extracts features for each sample and
constructs a neighbourhood graph. By computing the nearest neighbour labels for each sample, a
pseudo-label distribution p is obtained through a kNN voting process. The consistency c = py/pmax

between this voted distribution and the given noisy label y (logit label) is then calculated. Samples
with consistency c greater than the threshold θ are identified as part of the "clean" subset. Link to
code: https://github.com/MrChenFeng/SSR_BMVC2022.

EvidentialMix (Sachdeva et al., 2021) EvidentialMix adopts a structure fundamentally similar to Di-
videMix, but unlike DivideMix, which relies on cross-entropy loss for sample selection, it introduces
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subjective logic loss as the selection criterion. This approach is believed to better differentiate open-set
noise samples. Link to code: https://github.com/ragavsachdeva/EvidentialMix.

DSOS (Albert et al., 2022) DSOS also modifies the sample selection criteria. They propose a
method called collision entropy, which can simultaneously identify both open-set and closed-set
noise. Link to code: https://github.com/PaulAlbert31/DSOS.

EntSel We also provide a concise overview of the steps involved in EntSel. Denoting as E =
{ei}Ni=1 the entropy of all samples’ predictions, we similarly model it (after min-max normalization)
with a Gaussian Mixture Model. The probabilities {pi}Ni=1 of each sample belonging to the component
with a smaller mean value are then extracted. Samples with probability pi greater than the threshold
θ′ are then identified as "inlier" subset and used for training.

F ROBUST LOSS FUNCTIONS MEET OPEN-SET NOISE

We are happy to include more results of methods based on robust loss functions. Specifically, we
considered some widely used robust loss functions, including the Symmetric Cross Entropy (SCE)
loss function (Wang et al., 2019) and the Generalized Cross Entropy (GCE) loss function (Zhang
and Sabuncu, 2018). We report below the experimental results (Classification accuracy and OOD
detection AUC score) on the CIFAR100-O and ImageNet-O datasets after replacing the standard
cross-entropy loss with two different robust loss functions.

Table 3: Classification accuracy with robust loss functions on CIFAR100-O dataset.

Noise mode Easy Hard

Noise ratio 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

CE 0.846 0.804 0.770 0.714 0.872 0.847 0.842 0.829
GCE 0.854 0.810 0.763 0.708 0.864 0.840 0.813 0.800
SCE 0.846 0.822 0.787 0.729 0.871 0.854 0.840 0.814

Table 4: Classification accuracy with robust loss functions on CIFAR100-O dataset.

Noise mode Easy Hard

Noise ratio 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

CE 0.804 0.793 0.773 0.754 0.770 0.728 0.692 0.664
GCE 0.782 0.771 0.752 0.719 0.759 0.718 0.679 0.639
SCE 0.794 0.799 0.784 0.756 0.749 0.718 0.682 0.651

Table 5: Classification accuracy with robust loss functions on ImageNet-O dataset.

Noise mode Easy Hard

Noise ratio 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

CE 0.822 0.783 0.752 0.721 0.859 0.838 0.834 0.821
GCE 0.813 0.788 0.739 0.714 0.853 0.833 0.818 0.834
SCE 0.826 0.797 0.759 0.720 0.841 0.839 0.831 0.827

We highlight the methods that achieve the best performance under different settings in bold. Overall,
we observe the following: - Compared to the original CE loss, the GCE loss function generally results
in lower classification accuracy and OOD detection AUC scores. - The SCE loss function appears to
improve the classification and OOD detection performance in the presence of ‘Easy’ open-set noise.
However, it seems to degrade performance when dealing with ‘Hard’ open-set noise.
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Table 6: Classification accuracy with robust loss functions on ImageNet-O dataset.

Noise mode Easy Hard

Noise ratio 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

CE 0.769 0.760 0.764 0.739 0.658 0.601 0.569 0.549
GCE 0.732 0.740 0.729 0.719 0.636 0.591 0.555 0.513
SCE 0.749 0.768 0.765 0.748 0.633 0.599 0.558 0.537

Nevertheless, we want to emphasize that the performance differences between the two robust loss
functions and the original cross-entropy loss in the above results are not significant. Furthermore,
these robust loss functions were not originally designed to account for open-set noise. Therefore, we
believe further analysis is needed to evaluate the performance of different robust loss functions under
open-set noise, and we leave it to our future work.

That said, we would like to offer some preliminary insights. We want to point out that these robust
loss functions generally only affect the convergence speed but do not alter the fully converged extrema.
For instance, in the case of the Symmetric Cross-Entropy (SCE) loss, we have:

LSCE = α · LCE + β · LRCE

where: LCE = −
∑C

i=1 yi log pi, LRCE = −
∑C

i=1 pi log yi, α and β are weighting coefficients for
the two terms.

∂LSCE

∂zi
= α · ∂LCE

∂zi
+ β · ∂LRCE

∂zi

Breaking it down:

• Gradient of CE Term: ∂LCE
∂zi

= pi − yi

• Gradient of RCE Term: ∂LRCE
∂zi

= yi

pi
· (1− pi)

• Gradient of SCE Loss: ∂LSCE
∂zi

= α · (pi − yi) + β · yi

pi
· (1− pi)

For the true class (i = y): ∂LSCE
∂zy

= α · (py − 1) + β · 1
py

· (1− py)

For all other classes (i ̸= y): ∂LSCE
∂zi

= α · pi + β · 0
pi

· (1− pi) = α · pi

We notice that, for both CE loss and SCE loss, their gradients reduce to 0 if and only if pi = yi,∀i,
which corresponds to the overfitted case analyzed in our paper. This implies that with sufficient
model capacity and training (as is often the case with modern deep neural networks), the conclusions
of our analysis remain valid even when robust loss functions are used.

G PRELIMINARY EXPLORATIONS ON HANDLING DIFFERENT OPEN-SET NOISE
SCENARIOS

While we would like to reiterate that our aim in this work is not to propose a new empirical solution,
we are happy to provide some potential ideas. Based on the theoretical analysis presented in our paper,
we observe that existing methods, such as entropy-based detection mechanisms, may struggle to
handle ‘hard’ open-set noise—this type of noise primarily arises from semantic similarities between
open-set noise and closed-set categories. Below, we explore two different methods and present the
results of preliminary experiments.

Entropy-based open-set noise detection with trained encoder We first investigate whether
pretrained encoders can assist in identifying open-set noise. Compared to randomly initialized feature
spaces, we expect that pretrained encoders, with their better-organized representations, may more
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effectively distinguish challenging open-set samples. Specifically, we observe the entropy dynamics
of open-set noise and clean samples after replacing the randomly initialized encoder in the main
paper with a pretrained encoder.

We first consider self-supervised pretraining. Specifically, we apply the MoCo framework (He et al.,
2020) to pretrain the encoder for 500 epochs. Below, we show the entropy dynamics at different
warmup training epochs with pretrained encoder:

Figure 6: Entropy dynamics with Self-supervised pretrained encoder.

We also consider to utilize the pretrained vision encoder of CLIP model (Radford et al., 2021).

Figure 7: Entropy dynamics with CLIP encoder (VIT-B/32).

Unfortunately, by comparing fig. 6 and fig. 7 above with fig. 3 in the paper, we observe that neither
of the two pretrained encoders results in noticeable improvements. The entropy-based open-set
noise detection mechanisms remain effective only for ‘easy’ open-set noise and continue to show
insensitivity to ‘hard’ open-set noise.

Zeroshot open-set noise detection with CLIP Due to its multi-modality nature, we further try to
utilize CLIP for zero-shot open-set noise detection. Specifically, we design a simple algorithm to
compute an intuitive indicator value for identifying open-set noise. For each sample x with annotated
label y,

1. Generate Text Prompts: For the target class y, we create a text prmopt: "A photo of class y.". For
non-target classes, we consider a set of prompts: ["A photo of class i." for i ∈ Ly]. Here, we denote
as Ly the possible source classes to which the sample x may belong. Practically, Ly can be a broad
set of classes, such as the 1K classes from ImageNet-1K dataset, or it can be manully defined to
include semanticlly-challenging classes; for example, [’tiger’, ’cheetah’] for class ’cat’. In below
experiments, we default to the first option.

2. Calculate Similarities: We first compute similarity to the target class: Sy = sim(vx, ty). Here,
vx and ty denotes the visual and textual representation, respetively. We also compute a maximum
similarities to non-target classes: Sother = max{sim(vx, ti) | i ∈ Ly}.

3. Compute the Difference: Dx = Sy − Sother.
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Intuitively, we measure and compare the similarity of the visual semantics of sample x to its annotated
text label and the most likely labels from the source classes. To illustrate the effectiveness of Dx as
an open-set noise indicator, we plot the distribution of Dx for different samples below:

Figure 8: Zeroshot open-set noise detection with CLIP.

We notice that, compared to the entropy-based open-set detection mechanism, the zero-shot open-set
identification brings steady improvements.

H MORE EXAMPLES OF OPEN-SET NOISE IN WEBVISION DATASET

In this section, we provide additional examples of open-set noise within the ‘Tench’ class of the
WebVision dataset. By tracing the origins of web pages hosting these open-set noise images, we
found that the term "Tench" or related keywords frequently appeared on these pages. We attribute
this to the data collection process on the web, where images were inadvertently included during
keyword searches and web crawling due to the presence of relevant keywords in image descriptions
or surrounding text, such as people with "Tench" in their name or related fishing tools.

As noted earlier, the prevailing belief in the current LNL community is that real-world noise pre-
dominantly stems from semantic similarity. Consequently, recent research has largely focused on
instance-dependent noise and its theoretical analysis. However, our findings suggest that, in real-
world scenarios—particularly in web-crawled datasets—noise may not always be linked to semantics,
but may also arise from latent high-dimensional factors, such as accompanying text. Addressing
different types of real-world noise also warrants increased attention and further exploration.
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Image Source

Figure 9: Open-set noise examples in class "Tench" of WebVision dataset with path:
/google/q0001/. The source images are resized to fit the layout. Please note that the web
links here are obtained in May 2024 and validated effective in Sept 2024, and there is no guarantee
that they will always be valid in the future.
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