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Abstract

If we take a depth image of an eye, noise artifacts and holes significantly affect the depth
values on the eye due to the specularity of the sclera. This paper aims at solving this
problem through semantic shape completion. We propose an end-to-end approach to train
a neural network, called SecNet (semantic eye completion network), that predicts a point
cloud with an accurate eye-geometry coupled with the semantic labels of each point. These
labels correspond to the essential eye-regions, i.e. pupil, iris and sclera. Particularly, our
work performs implicit estimation of the query points with semantic labels where both the
semantic and occupancy predictions are trained in an end-to-end way. To evaluate the ap-
proach, we then use the synthetic eye-scans rendered in UnityEyes simulator environment.
Compared to the state of the art, the proposed method improves the accuracy for shape-
completion for 3D eye-scan by 8.2%. In practice, we also demonstrate the application of
our semantic eye completion for gaze estimation.

Keywords: Eye completion, Implicit Field, Semantic Completion

1. Introduction

(b) Semantic Eye CompletionSkin ScleraPupilIris

(a) Input Partial Scan

Figure 1: Given a partial scan of an eye in (a), our
semantic completion in (b) reconstructs
the fine-grained eye surface where each
point is semantically labeled.

Video-oculography (VOG) has gained
popularity in recent years as a method
for eye-tracking (van der Geest and
Frens, 2002; Larrazabal et al., 2019;
Nair et al., 2020). The main elements
of VOG are egocentric cameras that
capture images of eye, which then un-
dergo image-processing techniques to
extract the eye movement information.
3D VOG systems on the other hand
also extract torsional eye-position us-
ing iris and pupil landmarks (Goni
et al., 2004). As such, the accuracy of
pupil tracking is central to the perfor-
mance of VOG system, which can be
significantly hampered by occlusions.

∗ Work was done during internship in Facebook Reality Labs.
† Work was done in Facebook Reality Labs.

© 2022 Y. Wang, Y. Shen, D.J. Tan, F. Tombari & S. Talathi.



Wang Shen Tan Tombari Talathi

Methods such as ellipse fitting (Fitzgibbon et al., 1999), RANSAC outlier removal (Jian
and Chen, 2010) and moving average filtering (Satriya et al., 2016), and more advanced
methods such as circular Hough transforms (Cherabit et al., 2012) for extreme pupil occlu-
sions (Setiawan et al., 2018) have in particular been found useful to solve the pupil occlusion
problems. However, in recent years, several algorithmic approaches that leverage 3D eye
structures (Liu et al., 2021, 2020a) have been proposed for pupil tracking in the presence
of occlusions.

Our work is focused on utilizing the 3D eye regions for pupil tracking. We leverage
recent advances in 3D machine learning to reconstruct the precise 3D structure of the eye
region to fill out the occluded regions. As shown in Fig. 1, shape completion is carried out
on the partial scan of eye to fill out the occluded eye regions.

Several works in recent years have addressed the problem of 3D shape completion using
learning based methods. These methods can be classified based on the data-format for 3D
scans. The most popular data-formats include volumetric (Song et al., 2017; Dai et al.,
2018), meshes (Groueix et al., 2018; Wei et al., 2021), point cloud (Chang et al., 2015; Dai
et al., 2017a) and implicit representation (Park et al., 2019; Erler et al., 2020; Chibane et al.,
2020). Among them, the implicit 3D reconstruction frameworks such as DeepSDF (Park
et al., 2019), IF-Net (Chibane et al., 2020) and Points2Surf (Erler et al., 2020) provide
high resolution 3D shape-completion by estimating the implicit values for random 3D query
points. To estimate the implicit values, point-wise feature extractors such as PointNet
features (Qi et al., 2017a) and PointNet++ features (Qi et al., 2017b) are commonly used.
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Figure 2: Nine gaze directions.

To solve the efficiency issue caused
by k-nearest neighbour search in the
PointNet++ feature space, this paper
adopts SoftPool (Wang et al., 2020b)
feature as a local descriptor to con-
struct an end-to-end model, called Sec-
Net, to estimate implicit code for each
given 3D query point. With the ad-
ditional information of semantics used
during training, our model is able to
perform semantic completion in an im-
plicit field of the eye region to pre-
cisely complete the eye surface geome-
tries, coupled with semantics including
the sclera, iris and pupil.

The training dataset for SecNet de-
pends on the paired 2D partial scan
and 3D ground truth. We create our
dataset by synthesizing eye-scans us-
ing the UnityEyes (Wood et al., 2016)
simulator. We then render the 3D eye-

scans of 1,000 distinct people, each fixating on nine different gaze points as shown in Fig. 2.

Empirically, our proposed the semantic implicit completion model is validated on this
eye region dataset, achieving state-of-the-art performance at reconstructing semantic ge-
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(a) Input (b) 3D-EPN (c) ForkNet (d) TreeGAN (e) SnowflakeNet (f) Points2Surf (g) SecNet (h) Ground Truth

Voxel Implicit SurfacePoint Cloud

Figure 3: Given the input partial scan in (a) and the ground truth in (h), we compare
different representations for semantic eye completion such as volumetirc data (b,
c), point cloud (d, e) and implicit surface (f, g). Note that, except for (c) and
(g) that directly infer the semantic completion, the approaches are segmented by
3D-GCN (Lin et al., 2020) to predict the semantic labels.

ometries. Moreover, we empirically demonstrate that the accurate reconstruction of the
completed eye region is helpful for gaze estimations.

2. Related works

This section focuses on the more general related work on 3D completion and semantic
completion. In addition, since we are proposing to use the semantic eye completion for gaze
estimation, we also discussed the related works that relied on depth images to estimate the
gaze direction.

2.1. 3D completion

There are three different ways of completing a shape from a partial scan as shown in Fig. 3:
volumetric grid, point cloud and implicit surface. Early works using deep learning have
relied on volumetic reconstruction because of its similarity to images, which allowed them
to extend the convolution operation to 3D. For instance, 3D-EPN (Dai et al., 2017b) takes
TSDF volumes (Werner et al., 2014) as input and builds an encoder-decoder structure
using 3D convolution. SSCNet (Song et al., 2017) proposed to use flipped TSDF as input
to perform semantic segmentation and completion at the same time. To solve the lack of 3D
annotations, ForkNet (Wang et al., 2019) proposed to use the discriminator to synthetically
generate new pairs of partial scan and its corresponding completed reconstruction. The
main issue in such approaches is that storing 3D data in a dense volumetric grid (Song
et al., 2017; Dai et al., 2018) consumes too much disk space and slows down inference speed
for down-stream applications (Dai et al., 2018).

Point clouds were the less popular choice because of its unorganized structure. Notably,
unlike volumetric data, we cannot easily apply the 3D convolution operations on them. To
handle this issue, PointNet (Qi et al., 2017a) proposed a solution that uses max-pooling
operations to make the feature permutation invariant so that the order of the points go-
ing through the architecture does not matter. Such feature was initially proposed for 3D
object classification and segmentation, which was later used in point cloud completion in
FoldingNet (Yang et al., 2018), PCN (Yuan et al., 2018) and AtlasNet (Groueix et al., 2018).
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PointNet feature, however, lacks the ability to describe the local geometry in the point
cloud. This motivated the extended version PointNet++ (Qi et al., 2017b) that uses k-
nearest neighbor search to describe the local structure. SoftPoolNet (Wang et al., 2020b),
on the other hand, is also motivated by the same objective but avoids running the time-
consuming k-nearest neighbor search. Instead, this method proposes to use trainable pa-
rameters to sort the points through the feature dimension.

As we can observe in Fig. 3, completion with implicit surface generates smoother recon-
struction with significantly less noise compared to volumetric and point clouds. Although
their input is also based on point cloud features (Erler et al., 2020; Guerrero et al., 2018),
implicit 3D reconstruction such as DeepSDF (Park et al., 2019), IF-Net (Chibane et al.,
2020) and Points2Surf (Erler et al., 2020) creates a fine-grained 3D shape by estimating
an object surface which distinguishes the inner and outer space. Such format not only
produces smoother surface reconstruction, but also reveals more local structural details
compared to traditional mesh reconstruction approaches such as screened poisson recon-
struction (SPR) (Kazhdan and Hoppe, 2013).

2.2. Semantic completion

While several methods focus on completion alone (Dai et al., 2017b; Park et al., 2019; Dai
et al., 2018; Yuan et al., 2018), there are other methods which simultaneously infer the
semantic labels with the geometric completion (Song et al., 2017; Wang et al., 2019, 2018).
For instance, SSCNet (Song et al., 2017) uses 3D dilated convolutions to build an encoder-
decoder architecture to predict semantic and occupancy value for each voxel in a predefined
3D grid. ForkNet (Wang et al., 2019) proposes a decoder with three branches which are
able to generate realistic newly paired partial scan and its semantic completion to train the
entire network for semantic completion.

For methods that perform completion alone (Dai et al., 2017b; Wang et al., 2020b; Erler
et al., 2020), one solution to gain semantic labels is to attach a segmentation framework, e.g.
PointNet (Qi et al., 2017a) and PointCNN (Li et al., 2018), after the geometric completion.
Recently, some features are proposed for point cloud segmentation to exploit local neigh-
bourhood such as PointNet++ (Qi et al., 2017b) focusing on extracting features from local
point groups. Also using the nearest neighbour search for feature extraction, KCNet (Shen
et al., 2018) further aggregates the local features to investigate more complex relationships.
KPConv (Thomas et al., 2019) and 3D-GCN (Lin et al., 2020) make the kernel of the point
cloud convolution deformable to generate better matches with different local geometries
for segmentation. Although implicit reconstruction is already well investigated, an implicit
reconstruction with semantic estimation is not explored. In this paper, we are proposing
one of the first few works on semantic implicit completion.

2.3. Gaze estimation

There are different ways to estimate the gaze, especially when using RGB images (Jianfeng
and Shigang, 2014). However, in this work, we limit the scope to the utilization of 3D data
which is less investigated.

To determine the direction of the user’s gaze, one of the most important parameters is the
position of the pupil, while the other is the eye’s spherical center. Given the 3D structure,
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EMGE (Zhou et al., 2016) proposes to estimate the entire spherical eyeball structure by
estimating several points in pupil while RTGE (Sun et al., 2015) locates the pupil by fitting
a circle to 2D scans which is back-projected to 3D for the gaze estimation. To the best of
our knowledge, we are the first approach that uses semantic eye completion to perform gaze
estimation.

With our solution, we encountered an issue in finding the appropriate dataset to train
our models. The publicly available datasets do not provide the paried 3D partial scans
and their completion. Most datasets focus on RGB images such as SynthesEyes (Wood
et al., 2015) which synthesizes 2D eye images with realistic illumination. This then prompt
us to build and publish a new dataset using the UnityEyes (Wood et al., 2016) simulator
engine. Similar to ShapeNet (Chang et al., 2015) for objects and ScanNet (Dai et al.,
2017a) for scenes, we then propose a method to build dataset based on eye meshes such as
UnityEyes (Wood et al., 2016) specializing on semantic eye completion.

3. Methodology

The input to the framework is a partial scan captured by a depth camera pointing towards
the eye. With Nscan points, each with (x, y, z) coordinate, we denote the partial scan as a
point cloud Pscan which is represented as an Nscan× 3 feature map. In practice, these scans
are affected by noise and self-occlussions, e.g. from the eyelid and eyelashes. The objective
then is to fix these issues and build a completed point cloud Peye.

Since semantic supervision is available for training, we also predict the semantic labels
that includes the skin, sclera, iris and pupil. While some methods (Lin et al., 2020) utilize
another inference model S such that the segmentation is predicted separately from the
completion as Seye = S(Peye), we propose to use a single model to infer the semantic eye
completion as GS(·). This therefore estimates the geometry and the semantics at the same
time.

3.1. Semantic implicit fields

Moreover, we take advantage of the particular problem at hand. Notably, the similarities of
the eye structures across different individuals and different movements allow us to effectively
use implicit reconstruction. This then solves the limitation from unstructured point cloud in
terms of structural accuracy and the limitation from voxel grids in terms of reconstruction
resolution; consequently, leading to a reduction of noise in the reconstruction with high
resolution. This is validated in Fig. 3. In addition, we noticed that our method even
produced a denser and smoother reconstruction than the ground truth.

Inspired by the works of IF-Net (Chibane et al., 2020) and Points2Surf (Erler et al.,
2020), we also learn implicit values between a set of query points and the mesh surface.
For each query point, these methods predict a value between −1 to 1, where a query point
on the surface is at the zero-crossing. The difference between traditional implicit surface
learning and our model is that we propose to present the semantic labels in addition to
the geometry, which we call semantic implicit field (SIF). Therefore, in our work, given an
arbitrary query point pquery, we can simplify the framework to a classification task where
the architecture predicts if the point is an empty space, or part of the skin, sclera, iris
or pupil. We refer the classification result as the semantic code cquery of the query point
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such that cquery = GS(Pscan, pquery). This implies that the output eye reconstruction Peye is
presented by all the query points that are not empty. In practice, assuming that the partial
scan is normalized to a unit cube, we sample the query points randomly around the partial
scan within a Chamfer distance of 0.3.

3.2. SecNet architecture

Fully-Connected

Fully-Connected Fully-Connected

Fully-ConnectedFully-Connected

Fully-Connected
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Modules Parameters

MLP (encoder) Dout = [512, 512, 8]

Soft Pooling Nr = 32, Nf = 8

Regional Convolution Np = 8, Dout = 8, Dkernel = [8, 8]

2D Convolution Dout = 64, Dkernel = [256, 8]

Positional Coding Dout = 64

MLP (decoder) Dout = [16, 32, 64, 5]

Table 1: Architecture of SecNet with the corresponding
hyperparameters for each module where Dout

represents the output dimensions.

The architecture for GS(·) is
summarized in Table 1, where we
build an encoder-decoder struc-
ture. Here, the encoder pro-
cesses the partial scan Pscan and
produces the latent feature that
describes the global structure.
Having the latent feature and
a query point pquery, the de-
coder runs the implicit estima-
tion that finds the semantic code
cquery which classifies whether
the point is empty or the specific
part of the eye.

In particular, the encoder
first randomly sub-samples the
Pscan into Nin = 2048 points
to have a constant tensor as in-
put. These points are fed to a
3-layer MLP that generates an
output dimension of 8. We then
use the SoftPool (Wang et al.,
2020b) operation with the num-
ber of regions Nf = 8 and
the number of regional points
Nr = 32, which produces an
8-region feature map with the
shape of [256, 8]. This is pro-
cessed by a regional convolu-
tion (Wang et al., 2020b) with
a kernel size Dkernel = [Np, Nf ]
for all 8 regions, which covers
Np = 8 points with zero padding
in each region. We then add a
2D convolution with kernel size
Dkernel = [Nr × Nf , Nf ], resulting in a 64-dimensional vector as the latent feature. Since
the encoder is only dependent on the partial scan, the latent feature is constant across all
the query points in the decoder.
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Every query point in the decoder is converted to a positional code using SIREN (Sitz-
mann et al., 2020), having the same dimension as the latent feature. Thereafter, the sum
of the positional coding and the latent feature serves as the input to the 4-layer MLP to
estimate the final semantic code cquery with a softmax activation.

We summarize the numerical values of our architecture in Table 1. This table shows the
architecture on top and the corresponding parameters for each layer at the bottom.

To train the proposed encoder-decoder model, we impose the per-category binary cross
entropy ϵc(·, ·) such that

Lsemantic =
∑
c

ϵc(cquery, cgt) =
∑
c

ϵc (GS(Pscan, pquery), cgt) (1)

sums up the entropy for all categories. Given this loss function, we train the model GS
with a batch size of 64. We employ the Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.0001 while the exponential decay rates β1 and β2 are set to 0.9 and 0.999,
respectively.

3.3. Gaze estimation

As a by-product of our semantic eye completion, we estimate the gaze direction through the
semantic points. Similar to RTGE (Sun et al., 2015), we solve this problem by estimating
a 3D vector from the center of the eyeball to the center of the pupil. To find the centers,
we use all the points on the sclera to fit a sphere that represents the eyeball; then, take
the average point of all the points on the iris. The gaze direction is finally estimated as
the vector that connects the center of the sphere and the average point. For the sphere, we
use an energy optimization to estimate its center pcenter = (xc, yc, zc) as well as its radius r.
This minimizes the loss

Leyeball =

Nsclera∑
i

∣∣∣∥∥pisclera − pcenter
∥∥2 − r2

∣∣∣ , (2)

summing up the absolute errors from all the Nsclera points labelled as sclera pisclera in the
semantic eye completion.

4. Dataset

We generate the dataset by rendering pairs of partial scans and their corresponding semantic
completion using the UnityEyes (Wood et al., 2016) mesh models. To generalize for the
gaze estimation, we rotate the eyeball towards nine gaze directions as shown in Fig. 2,
including up-right, up, up-left, right, straight, left, down-right, down and down-left. With
1,000 identities from UnityEyes, we then have a total of 9,000 pairs in the dataset. For
the experiments, we split our dataset with 800 identities for training and 200 for testing.
One of the main advantages in having depth images or partial scans as input is the privacy
preservation in training or during inference.
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(a) Ground Truth
Semantic Eye

(b) Add Defects and 
Jitter

(c) Input Partial 
Scan

Figure 4: Examples of our dataset.

Fig. 4 shows some examples of the
process that the model undergo when
creating the dataset. Since the dataset
is synthetically rendered, we impose
the defects and self-occlusion by ran-
domly dropping 61.2% points for pupil,
74.9% of iris, 29.7% of sclera and 9.0%
of skin on every mesh models as shown
in Fig. 4(b). In addition, the sur-
face also incorporates jitter in order to
mimic the sensor noise. The jitter is
defined by a Gaussian distribution with
zero mean and a 0.05 standard devia-
tion for points on the sclera, iris and
pupil. For this dataset, Fig. 4(c) illus-
trates the example input partial scans
that we use for this evaluation. Notice-
ably, without visualizing the ground
truth semantic labels in Fig. 4(c), iden-
tifying the regions on the eye or the gaze direction from the three images becomes very
difficult.

5. Experiments

To highlight our contributions in this work, we conduct the following 3 experiments: syn-
thetic eye augmentation, semantic eye completion and gaze estimation. We empirically
demonstrate the advantages of our approaches using the dataset from Sec. 4.

5.1. Semantic eye completion

We evaluate the semantic completion on the eye region on the dataset captured from Uni-
tyEyes (Wood et al., 2016) models. The point clouds of the partial scans serves as the
input for both training and testing. Their corresponding ground truth completed shape is
presented in terms of a point cloud with semantic labels. Our evaluations are carried out
across 4 categories including skin, sclera, iris and pupil. Note that, across all methods, the
input partial scan is normalized into the same scale of point coordinates ranging between
−0.5 to 0.5.

This evaluation compares against the state-of-the-art completion methods that recon-
struct using volumetric data, point cloud or implicit surface. While Fig. 3 shows the quali-
tative results of different approaches, Table 2 highlights the numerical comparison between
them. This table shows that we achieve the state-of-the-art results, reaching an average
L1-Chamfer distance of 6.15×10−3 on all the categories. It also shows that we have the best
results across all the four categories. It is noteworthy to mention that only ForkNet (Wang
et al., 2019) and our approach perform semantic completion, while other methods can only
infer the geometric completion. Due to this, for the other methods, we apply 3D-GCN (Lin
et al., 2020) on the reconstruction to find the semantic labels.
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Method skin sclera iris pupil avg.

V
o
xe
l 3D-EPN (Dai et al., 2017b) 13.43 22.09 19.43 15.96 17.73

ForkNet (Wang et al., 2019) 17.04 14.75 18.16 14.78 16.18
P
o
in
t
C
lo
u
d

PointNet++ (Qi et al., 2017b) 9.72 10.24 12.73 11.85 11.13
FoldingNet (Yang et al., 2018) 9.35 10.23 12.29 11.68 10.89
TopNet (Tchapmi et al., 2019) 8.82 10.22 11.82 11.02 10.48
AtlasNet (Groueix et al., 2018) 8.15 9.70 11.18 10.64 9.92
PCN (Yuan et al., 2018) 7.48 9.69 11.12 10.29 9.65
MSN (Liu et al., 2020b) 7.01 9.10 10.63 9.77 9.13
SoftPoolNet (Wang et al., 2020b) 6.54 8.78 9.79 9.46 8.65
GRNet (Xie et al., 2020) 6.22 8.70 9.68 9.14 8.44
PMP-Net (Wen et al., 2020) 5.74 8.26 8.98 8.83 7.96
CRN (Wang et al., 2020a) 5.57 8.23 8.98 8.81 7.90
SnowflakeNet (Xiang et al., 2021) 4.93 7.48 8.76 8.68 7.46

Im
p
li
ci
t IF-Net (Chibane et al., 2020) 5.43 7.98 7.95 7.09 7.12

Points2Surf (Erler et al., 2020) 4.93 7.45 7.48 6.91 6.70
SecNet 4.21 6.99 7.17 6.25 6.15

Table 2: Evaluation of the semantic eye completion. We measure the Chamfer distance for
each category; and, compute the average across all categories.

If we investigate closely on the comparison against the volumetric methods, their error
are significantly higher, e.g. ForkNet (Wang et al., 2019) has an average Chamfer distance
of 16.18 × 10−3, since they only use a grid with an output dimension of [64, 64, 64]. To
evaluate in the same metric, we convert the grid into a point cloud before evaluating the
Chamfer distance. From Fig. 3, we can observe that they have an obvious disadvantage due
to their low resolution.

As for point cloud approaches, we compare our semantic eye completion results with
some recently proposed methods such as FoldingNet (Yang et al., 2018), PCN (Yuan et al.,
2018), MSN (Liu et al., 2020b), GRNet (Xie et al., 2020) and SoftPoolNet (Wang et al.,
2020b). All these approaches reconstructs a point cloud which is further re-sampled to 4,096
points for evaluation. Compared to SnowflakeNet (Xiang et al., 2021) which is the state-
of-the-art point cloud completion approach, our method achieves decreased the Chamfer
distance by 1.31 × 10−3.

Lastly, when we compare against other implicit method, Points2Surf (Erler et al., 2020)
also performs well with a Chamfer distance of 6.70×10−3. However, our proposed architec-
ture performs the best among all listed approaches in Table 2 with an error of 6.15× 10−3.

5.2. Gaze estimation

Since we can convert the semantic eye completion to gaze direction through Sec. 3.3, this
section focuses on the evaluation of the gaze direction. In addition to the gaze from semantic
completion, we also include the related work that designed for gaze estimation such as
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Cosine Model Size Time

Method Accuracy Distance (MB) (seconds)

Direct

Gaze

Estimation

EMGE (Zhou et al., 2016) 42.1% 0.637 – 0.14
RTGE (Sun et al., 2015) 56.9% 0.691 – 0.08
3D-GCN (Lin et al., 2020) 61.8% 0.745 6.6 0.82

G
a
ze

fr
o
m

S
em

a
n
ti
c
E
ye

C
o
m
p
le
ti
o
n

V
o
xe
l 3D-EPN (Dai et al., 2017b) 81.4% 0.802 420.0 0.82

ForkNet (Wang et al., 2019) 83.8% 0.809 362.0 1.12

P
o
in
t
C
lo
u
d

PointNet++ (Qi et al., 2017b) 82.9% 0.781 29.7 2.33
FoldingNet (Yang et al., 2018) 84.6% 0.807 19.2 0.05
TopNet (Tchapmi et al., 2019) 85.1% 0.822 79.9 0.61
AtlasNet (Groueix et al., 2018) 85.2% 0.821 2.0 0.32
PCN (Yuan et al., 2018) 87.3% 0.823 54.8 0.11
MSN (Liu et al., 2020b) 88.0% 0.830 12.0 0.21
SoftPoolNet (Wang et al., 2020b) 89.2% 0.842 37.2 0.04
GRNet (Xie et al., 2020) 91.6% 0.857 293.0 0.88
PointCNN (Li et al., 2018) 87.6% 0.826 497.0 1.20
PMP-Net (Wen et al., 2020) 90.6% 0.850 22.0 4.21
CRN (Wang et al., 2020a) 93.1% 0.884 61.5 2.73

Im
p
li
ci
t IF-Net (Chibane et al., 2020) 93.6% 0.909 29.4 9.27

Points2Surf (Erler et al., 2020) 94.3% 0.921 24.0 12.64
SecNet 97.6% 0.971 9.7 0.19

Table 3: Evaluation of the gaze direction classification and estimation with the correspond-
ing model size and inference time. The table is divided into two regions. The
methods on top directly use the depth image to find the gaze; while, the methods
at the bottom estimates the gaze based on the semantic eye completion. Note that
(Zhou et al., 2016; Sun et al., 2015) does not depend on a parameterized inference
model.

EMGE (Zhou et al., 2016) and RTGE (Sun et al., 2015). These methods directly locate the
pupil and estimate the center of eyeball from 2D partial scan without eye completion. We
also include 3D-GCN (Lin et al., 2020) which segments the input partial scan into parts
prior to the gaze estimation.

We first consider this as a classification problem where we match the estimated gaze
based on the nine directions. Comparing with other methods in Table 3, our approach
reached a classification accuracy of 97.6% which is significantly higher than any other ap-
proach.

Instead of relying only on discrete values, we also considered the cosine distance to
evaluate the estimated gaze from the ground truth, which is the dot product of the two
vectors. Here, our approach also produces the best performance of 0.971.
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5.3. Efficiency

We also evaluate the processing time and the corresponding memory footprint of each model,
which is summarized in Table 3. This table illustrates that our inference time at 0.19 seconds
is much faster than the other implicit reconstruction methods such as DeepSDF (Park et al.,
2019) at 9.72 seconds and Points2Surf (Erler et al., 2020) at 12.64 seconds. This is because
the other methods require zero-crossing in reconstruction while our method does not. In
addition, our point-wise implicit estimation is conditioned on a SoftPool feature from the
encoder, which is processed once for each partial scan. Points2Surf, on the other hand,
decodes the implicit values using QSTN (Guerrero et al., 2018) which depends on analyzing
the local point cloud patches. This implies that it needs to be executed repetitively for each
query point. As a consequence, we can reduce the time by focusing on areas surrounding
the partial scan to decrease the number of query points to process. Overall, we do not
attain the lowest memory footprint or the lowest inference time. However, we argue that
our approach has a good trade-off between the two parameters.

5.4. Ablation study

We perform an ablation study to understand the effect of changes in the hyperparameters.
Table 4 summarizes this study. We noticed that the MLP in the encoder does not signifi-
cantly change the completion performance as long as the output dimension of the first layer
of the MLP is larger than 256. Having values above 512 only improves the average Chamfer
distance from 6.15 × 10−3 to 6.09 × 10−3.

Since our latent feature is extracted by SoftPool (Wang et al., 2020b) operators, we
validate the changes in performance by adapting different input feature dimension Nf and
number of points Nr chosen from each of the sequential feature map. Our experimental
results show that the performance ranges from 6.10×10−3 to 6.84×10−3. This is validated by
(Wang et al., 2020b) where we can reach a good performance as long as the feature dimension
Nf is larger than 4. For the MLP in decoder, we found that performance saturates when
Dout = [16, 32, 64, 5].

6. Conclusion

In this paper, we propose to complete the eye region through semantic implicit field. Using
our semantic eye completion, we also introduce a more practical use-case, i.e. gaze estima-
tion. We achieve the state-of-the-art performance for both semantic eye completion and
gaze estimation. Since we propose a new problem in semantic completion and a new type
of solution for gaze estimation, we propose a simple way to build the dataset for semantic
completion eyes based on UnityEyes (Wood et al., 2016) meshes to train and evaluate the
models.
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Modules Parameters Chamfer Distance

Gaussian (Tancik et al., 2020) 6.42
positional coding SIREN (Sitzmann et al., 2020) 6.15

sinusoidal (Vaswani et al., 2017) 6.31

Dout = [512, 256, 8] 6.99
Dout = [256, 512, 8] 7.33

MLP (encoder) Dout = [512, 512, 8] 6.15
Dout = [1024, 512, 8] 6.12
Dout = [512, 1024, 8] 6.09

Nr = 16, Nf = 8 6.84
Nr = 32, Nf = 4 8.07

Softpool (Wang et al., 2020b) Nr = 32, Nf = 8 6.15
Nr = 32, Nf = 16 6.10
Nr = 64, Nf = 8 6.14

Dout = [16, 16, 64, 5] 7.04
Dout = [16, 32, 32, 5] 6.60

MLP (decoder) Dout = [16, 32, 64, 5] 6.15
Dout = [16, 64, 64, 5] 6.13
Dout = [16, 32, 128, 5] 6.11

Table 4: Ablation study on network hyperparameters. The results in bold indicate the
chosen parameters in architectural design which balance the accuracy and model
size.
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