

000 001 002 003 004 005 SONAR: SPECTRAL-CONTRASTIVE AUDIO RESIDU- 006 ALS FOR ROBUST DEEPFAKE DETECTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Deepfake (DF) audio detectors still struggle to generalize to out of distribution inputs. A central reason is *spectral bias*, the tendency of neural networks to learn low-frequency structure before high-frequency (HF) details, which both causes DF generators to leave HF artifacts and leaves those same artifacts under-exploited by common detectors. To address this gap, we propose **Spectral-cONtrastive Audio Residuals (SONAR)**, a frequency-guided framework that explicitly disentangles an audio signal into complementary representations. An XLSR encoder captures the dominant low-frequency content, while the same cloned path, preceded by learnable SRM, value-constrained high-pass filters, distills faint HF residuals. Frequency cross-attention reunites the two views for long- and short-range frequency dependencies, and a frequency-aware Jensen–Shannon contrastive loss pulls real content–noise pairs together while pushing fake embeddings apart, accelerating optimization and sharpening decision boundaries. Evaluated on the ASVspoof 2021 and in-the-wild benchmarks, SONAR attains state-of-the-art performance and converges four times faster than strong baselines. By elevating faint high-frequency residuals to first-class learning signals, SONAR unveils a fully data-driven, frequency-guided contrastive framework that splits the latent space into two disjoint manifolds: natural-HF for genuine audio and distorted-HF for synthetic audio, thereby sharpening decision boundaries. Because the scheme operates purely at the representation level, it is architecture-agnostic and, in future work, can be seamlessly integrated into any model or modality where subtle high-frequency cues are decisive.

1 INTRODUCTION

Why deepfake detection matters. Generative AI now enables the creation of photorealistic images, video, and speech. In 2024, political deepfakes flooded social media during global elections, while voice-cloning scams caused multimillion-dollar losses, including a 25M\$ transfer United Nations Development Programme (2024); TRM Labs (2025). The FBI warns of AI-powered vishing Cybersecurity Dive (2025). More broadly, synthetic media erodes trust in journalism, markets, and legal evidence, making robust detection essential.

Prior work, and why it falls short. Most forensic research still centers on ever-deeper classifiers, overlooking how deepfake artifacts disturb the *joint* statistics of content and noise. Early SRM-style detectors either use fixed high pass filters Fridrich & Kodovský (2012); Qian et al. (2020) or, in the case of Bayar & Stamm’s constrained convolution Bayar & Stamm (2016), *learnable* prediction-error kernels that deliberately suppress content. Yet all of these methods operate on high frequency (HF) residuals *in isolation*, ignoring their correlation with the underlying signal. Han et al. Han et al. (2021) add a second, content branch with learnable SRM filters, but the two streams are only fused at the top and no constraint enforces statistical coupling, Zhu et al. Zhu et al. (2024) similarly boost noise for image forgery detection, treating it as an auxiliary cue that still requires pixel-level masks. None of these approaches capture the higher-order dependency between HF noise and semantic content an interplay that isolated filtering or late fusion cannot model.

In audio forensics, the field has progressed from handcrafted spectral features combined with GMM or LCNN classifiers Yamagishi et al. (2019) to fine-tuned self-supervised encoders such as HuBERT

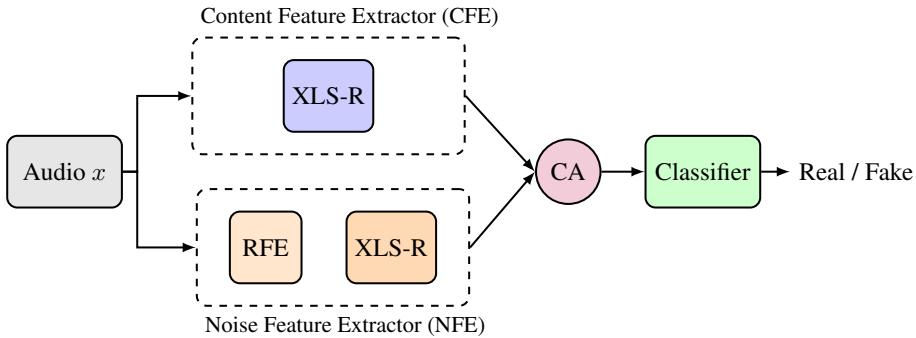


Figure 1: **SONAR overview.** Audio is processed in parallel by the Content Feature Extractor (CFE) and the Noise Feature Extractor (NFE). Their embeddings are fused via cross-attention (CA) and classified as real/fake.

and XLSR Hsu et al. (2021); Tak et al. (2022b); Zhang et al. (2024); Xiao & Das (2024). However, frequency-aware approaches have not yet been explored in this domain. Moreover, neither line of work models the alignment between semantic content and high frequency noise.

We state that all the previous work both in images and in audio suffers from a common limitation: **spectral bias**, also known as the *frequency principle* (F-principle) Rahaman et al. (2019); Basri et al. (2019); Cao et al. (2019); Xu et al. (2024); Fridovich-Keil et al. (2022). Whereby deep networks favor low frequency structure first and leave subtle HF cues under-represented. Although image methods partly address this by routing HF residuals through a separate branch, they stop at *mere separation*, they never model how low and high frequency information *should co-vary* in the same feature space during the learning process. There is no existing detector, visual or auditory that actively *aligns* genuine content–noise pairs while *repelling* their fake counterparts in latent space. This *alignment gap* is especially detrimental in audio, where high frequency artifacts are easily masked by perceptual post-processing, and, to date, no audio (or image) deepfake detector has explicitly addressed this issue in a data-driven application.

To better understand these limitations and motivate our solution, we conducted an exploratory statistical analysis of real vs. fake utterances across our train and test datasets. Our findings confirm that deepfakes differ from real audio not only in energy, but also in higher-order frequency statistics. Specifically, we observed a breakdown of natural low↔high co-modulation patterns (Fig. 2a), together with systematic shift in the contrast between low- and high-frequency energy bands (Fig. 2b). These cues cannot be exploited by fixed filters alone and strongly justify SONAR’s use of learnable, distribution-level alignment.

Our approach: SONAR and the gap it fills. We close this gap with **SONAR**, a frequency guided, dual path framework that **learns** a bank of *data-driven SRM filters* to isolate high frequency (HF) residuals and imposes a Jensen–Shannon divergence loss to *pull* real content–noise pairs together while *pushing* fake pairs apart in latent space. By transforming HF residuals from a nuisance into a supervisory signal and learning their alignment with semantic content in feature space, SONAR directly combats spectral bias, accelerates convergence, and sets new state-of-the-art performance on both controlled benchmarks (ASVspoof 2021) and challenging “in the wild” audio. To our knowledge, it is the *first* audio deepfake detector to exploit **learnable, distributional alignment** between low and high frequency embeddings.

Our contributions are threefold.

- **SONAR: frequency-contrastive dual path.** We introduce **SONAR**, the first audio deepfake detector to jointly model low-frequency content and high-frequency residuals, turning spectral bias into a discriminative signal.

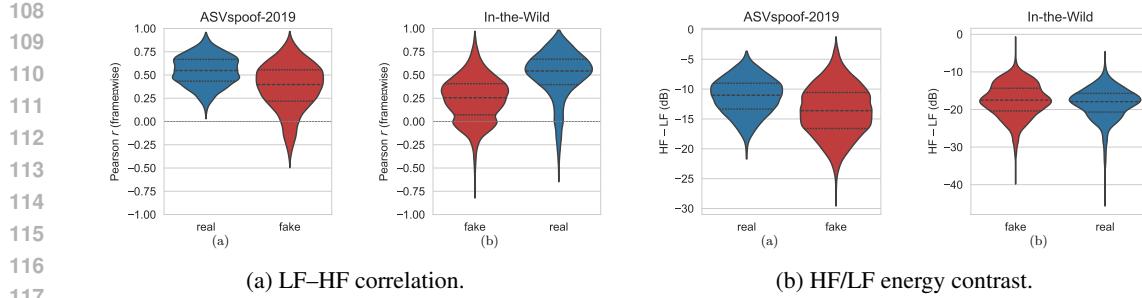


Figure 2: **Low–high frequency structure reveals spoofing artifacts.** (a) Pearson correlation between low- (0–4 kHz) and high-frequency (7–8 kHz) bands shows real speech with strong co-modulation ($r \approx 0.6$), while fakes collapse toward zero or negative values. (b) The energy difference $\Delta E = E_{HF} - E_{LF}$ is systematically shifted for fakes across corpora, exposing a consistent HF/LF imbalance. These second-order cues motivate SONAR’s *distributional alignment* objective.

- **Learnable SRM & JS frequency alignment loss.** A learnable SRM filter bank with a Jensen–Shannon alignment loss explicitly aligns real content–noise pairs and separates fake ones, a formulation not used in prior work.
- **State-of-the-art with fast convergence.** SONAR achieves new SOTA EERs on ASVspoof 2021 and In-the-Wild, converging in as few as 12 epochs while remaining robust to codecs and bandwidth shifts.

2 RELATED WORK

High frequency cues in deep learning. Fourier features markedly reduce spectral bias in MLPs Tancik et al. (2020). Successors such as Wave NN Yang et al. (2022), BiHPF Jeong et al. (2022), and ADD Woo (2022) insert explicit high pass branches or filters, showing that frequency-aware modules consistently sharpen detail capture.

Frequency domain image forgery detection. Two stream, high pass pipelines detect manipulation artifacts by pairing low pass content with residual branches Masi et al. (2020); Qian et al. (2020); Bayar & Stamm (2016); Fridrich & Kodovský (2012). Denoising-guided schemes Zhu et al. (2024) and compact frequency blocks Tan et al. (2024) further improve generalization with fewer parameters.

Audio deepfake detection. Classic systems combine handcrafted cepstral features with GMM/LCNN backends Yamagishi et al. (2019). Modern approaches leverage SSL encoders (HuBERT, Wav2Vec, XLSR, Whisper, WavLM) Hsu et al. (2021); Baevski et al. (2020); Babu et al. (2021); Radford et al. (2022); Chen et al. (2022), yet often falter on out of distribution (OOD) audio Müller et al. (2022). Tak et al. fine tuned XLSR with an AASIST head and augmentation for strong OOD results Tak et al. (2022b), later work fused XLSR layers with specialized classifiers to push performance further Zhang et al. (2024); Truong et al. (2024); Xiao & Das (2024).

Our contribution. Building on Tak et al. (2022b) and Xiao & Das (2024), we add a *learnable* dual path filter that explicitly aligns content and noise embeddings, boosting sensitivity to subtle high frequency artifacts. The result is faster convergence and state-of-the-art robustness across both benchmark and in the wild tests.

3 MATHEMATICAL MOTIVATION

Spectral bias as a coupling defect. A spoken frame X contains *low-frequency* formants L and *high-frequency* micro-structure H , produced by the *same* vocal–tract event, hence jointly distributed: $p_{\text{real}}(L, H) \neq p(L)p(H)$. Deep learning training is **spectrally biased**: it first fits the high energy LF error then runs out of budget, leaving an HF “hole” Rahaman et al. (2019). This provides us motivation for the assumption of approximate factorization $p_{\text{fake}}(L, H) \simeq p(L)p(H)$ and, critically,

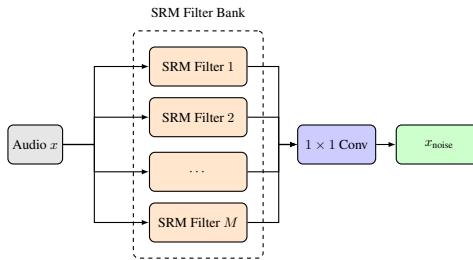


Figure 3: **Rich Feature Extractor (RFE).** Audio x is processed by a bank of M SRM-inspired filters, concatenated, and passed through a 1×1 learnable convolution layer to produce the noise residual representation x_{noise} .

a *mismatch* in the *joint* LF–HF statistics, an empirically validated assumption, see Figures 2a and 2b.

Dual-path embeddings. We split X with an ideal band-pass filter, $L = \mathcal{F}_{\text{low}}X$, $H = \mathcal{F}_{\text{high}}X$, feed each band to the **same** encoder ϕ_{θ} to obtain

$$\mathbf{z}_{\text{content}} = \phi_{\theta}(L), \quad \mathbf{z}_{\text{noise}} = \phi_{\theta}^{\text{HF}}(\text{SRM}(H)),$$

and treat the softmaxed frames as empirical distributions $p(\mathbf{z}_{\text{content}})$, $p(\mathbf{z}_{\text{noise}})$.

Alignment loss. For label $y \in \{0 = \text{fake}, 1 = \text{real}\}$ we minimize

$$\mathcal{L}_{\text{align}} = y \text{JS}[p(\mathbf{z}_{\text{content}}) \parallel p(\mathbf{z}_{\text{noise}})] + (1-y)(1 - \text{JS}), \quad (1)$$

pulling LF and HF embeddings together for real speech and *pushing* them apart for fakes.

Error bound. Pinsker’s inequality turns the Jensen–Shannon divergence $\mathcal{D}_{\text{JS}} = \text{JS}[p(\mathbf{z}_{\text{content}}) \parallel p(\mathbf{z}_{\text{noise}})]$ into a Bayes error bound $P_e \leq \frac{1}{2}\sqrt{2\mathcal{D}_{\text{JS}}}$. Thus equation 1 **shrinks** P_e for genuine pairs ($\mathcal{D}_{\text{JS}} \downarrow$) and **widens** the margin for fakes ($\mathcal{D}_{\text{JS}} \uparrow$), with the HF encoder acting as a targeted regularizer on the generator’s weak band.

The HF “hole” is not merely an energy dip, it *breaks* the natural LF \leftrightarrow HF dependency of real speech. SONAR restores this dependency for genuine audio and accentuates its absence for forgeries, turning a fundamental spectral-bias flaw into a reliable discriminative signal.

4 METHODOLOGY

From Mathematical Motivation to Real-Life Application. Our statistical analysis (Fig. 2) confirmed that fakes break the natural LF–HF co-modulation of real speech, supporting the factorization assumption $p_{\text{fake}}(L, H) \approx p(L)q(H)$. The mathematical motivation in Sec. 3 showed that aligning LF and HF embeddings via the JS loss directly tightens the Bayes error bound. SONAR operationalizes this by: (i) splitting each input X into content (L) and noise (H) with an SRM-constrained filter bank, (ii) encoding both with twin XLSR paths to obtain $\mathbf{z}_c, \mathbf{z}_n$, and (iii) regulating their JS divergence through equation 1. For reals the loss minimizes divergence, restoring LF–HF dependency, for fakes it maximizes it, amplifying artifacts and widening the decision margin predicted by theory. We implement this dual-path head on AASIST Tak et al. (2022b), and in SONAR-Finetune attach it to XLSR-Mamba Xiao & Das (2024), training only the frequency-enhancing head for efficiency.

4.1 SONAR FEATURE EXTRACTION

The SONAR architecture consists of:

- **Content Feature Extractor (CFE):** A Wav2Vec2.0 XLSR Encoder.
- **Noise Feature Extractor (NFE):** A module based on constrained SRM filters followed by a Wav2Vec2.0 XLSR Encoder.

216 • **Fusion via Cross-Attention:** This merges the two feature streams into a unified representation.
 217
 218

219 Figure 1 illustrates the overall system.
 220

221 4.1.1 CONTENT FEATURE EXTRACTION (CFE)
 222

223 Given an input signal $\mathbf{x} \in \mathbb{R}^T$, we extract content features as:
 224

$$\mathbf{z}_{\text{content}} = \text{CFE}(\mathbf{x}) \in \mathbb{R}^{F \times D}, \quad (2)$$

226 with F time steps and feature dimension D .
 227

228 4.1.2 NOISE FEATURE EXTRACTION (NFE)
 229

230 The Noise Feature Extractor (NFE) builds on a Rich Feature Extraction (RFE) module (Figure 3).
 231 This module leverages constrained SRM filters to emphasize high-frequency components, which are
 232 then processed by the Wav2Vec2.0 XLSR Encoder Babu et al. (2021). The XLSR encoder weights
 233 were *not shared* across branches, allowing the model to learn disentangled representations of noise
 234 and content. A discussion of the resulting computational cost is provided in Appendix A.
 235

236 **Constrained SRM Filters:** We initialize M (hyperparameter for number of filters) learnable filters,
 237 each of length 5, with two key constraints:
 238

$$w_i[m] = -1, \quad (\text{central coefficient}) \quad (3)$$

$$\sum_k w_i[k] = 0, \quad (\text{zero-sum constraint}) \quad (4)$$

243 where $w_i[m]$ is the i -th filter at index m and we initialize the weights from $N(0, I)$. To ensure these
 244 are *hard constraints*, after every optimizer step we project the filters back to the constraint set: each
 245 filter is divided by the negative of its center coefficient (fixing the middle entry to -1), and then
 246 its mean is subtracted to enforce strict zero-sum. This guarantees that the constraints hold exactly
 247 throughout training without requiring reparameterization or relaxation.

248 These enforced constraints force each filter to act as a high-pass operator, suppressing low-frequency
 249 (content) information and highlighting high-frequency noise, consistent with prior work Bayar &
 250 Stamm (2016); Zhu et al. (2024); Han et al. (2021). Given an input signal \mathbf{x} , convolving with these
 251 filters yields:

$$\mathbf{F}_{\text{noise}} = \text{Conv1D}_{\text{SRM}}(\mathbf{x}), \quad (5)$$

253 where $\mathbf{F}_{\text{noise}} \in \mathbb{R}^{M \times T}$ contains the intermediate noise feature maps.
 254

255 Extracting these high frequency features enables the network to detect subtle discrepancies in fake
 256 audio.
 257

258 4.1.3 FUSION AND CLASSIFICATION
 259

260 The content and noise embeddings, $\mathbf{z}_{\text{content}}$ and $\mathbf{z}_{\text{noise}}$, are fused using a cross-attention mechanism.
 261 We conducted all experiments with an embedding dimension of 1024 and 8 attention heads.
 262

$$\mathbf{e}_{\text{out}} = \text{CA}(\mathbf{z}_{\text{content}}, \mathbf{z}_{\text{noise}}) \in \mathbb{R}^{F \times D}. \quad (6)$$

265 The fused representation is then fed to the AASIST classifier Jung et al. (2022):
 266

$$\hat{y} = \text{AASIST}(\mathbf{e}_{\text{out}}) \in \mathbb{R}^2, \quad (7)$$

268 where \hat{y} is the score vector for the real/fake decision.
 269

The architecture of XLSR and AASIST models are detailed in the appendix.

270 4.2 TRAINING OBJECTIVE
271272 4.2.1 JS-BASED LOSS FOR REAL VS. SPOOF EMBEDDED FREQUENCY DISTRIBUTIONS
273274 Let $\mathbf{Z}_{\text{content}} \in \mathbb{R}^{F \times D}$ and $\mathbf{Z}_{\text{noise}} \in \mathbb{R}^{F \times D}$ denote the content and noise embeddings extracted from
275 the dual path feature extractor for an audio example \mathbf{x} . Our goal is to increase the probability
276 distance between the frequency embeddings of fake data while simultaneously reducing the distance
277 among those of real data.278 To achieve this, we employ the Jensen–Shannon (JS) divergence Fuglede & Topsøe (2004) as a
279 metric for comparing distributions. First, we apply a frame-wise softmax to each embedding,
280 converting them into probability distributions. Then, we compute a single JS divergence score,
281 $\text{JS}(\mathbf{z}_{\text{content}}, \mathbf{z}_{\text{noise}})$, using \log_2 as the logarithmic base. This ensures that the divergence is normalized
282 to the range $[0, 1]$, facilitating stable comparison across samples.283 **Frame-wise JS Divergence:** At each frame i , we can treat $\mathbf{z}_{\text{content}}[i]$ and $\mathbf{z}_{\text{noise}}[i]$ as two embeddings
284 in \mathbb{R}^D . By applying softmax to each and get two discrete distributions $\mathbf{p}_{\text{content}}[i]$ and $\mathbf{p}_{\text{noise}}[i]$, where
285 the final score for audio \mathbf{x} with embeddings $\mathbf{Z}_{\text{content}}, \mathbf{Z}_{\text{noise}}$ will be:

286
$$\text{JS}(\mathbf{Z}_{\text{content}}, \mathbf{Z}_{\text{noise}}) = \frac{1}{F} \sum_{i=1}^F \text{JS}(\mathbf{p}_{\text{content}}[i], \mathbf{p}_{\text{noise}}[i])$$

287
288

290 We label the example with $y = 1$ if it is *real*, and $y = 0$ if it is *spoof*.
291292 **JS-Based Loss:**
293294 With these settings, we define the custom loss function for each sample (x, y) :
295296 Where $\mathbf{Z}_{\text{content}}, \mathbf{Z}_{\text{noise}}$ are the embeddings from our **SONAR** feature extraction.
297

298
$$L_{\text{JS}}(x, y) = y \cdot \text{JS}(\mathbf{z}_c, \mathbf{z}_n) + (1 - y) \cdot (1 - \text{JS}(\mathbf{z}_c, \mathbf{z}_n)) \quad (8)$$

299

300 We combine the above L_{JS} (align loss as in equation 1) with a weighted cross-entropy (WCE)
301 loss, which handles the real/fake classification in a more conventional way and accounts for class
302 imbalance:
303

304
$$\mathcal{L}(x, y) = \text{WCE}(\hat{y}, y) + \lambda_{\text{JS}} \cdot L_{\text{JS}}(\mathbf{z}_{\text{content}}, \mathbf{z}_{\text{noise}}), \quad (9)$$

305

306 where $\hat{y} \in [0, 1]$ is the classifier’s predicted probability of being real. The scalar λ_{JS} balances
307 how strongly the network must enforce the JS-based criterion. After ablation study, we chose to be
308 $\lambda_{\text{JS}}=1$.
309310 4.3 SONAR-LITE SETUP
311312 We propose SONAR-Lite to evaluate the intrinsic discriminative power of our frequency-guided
313 backbone. Replacing AASIST with a lightweight two-layer MLP isolates the contribution of the
314 dual-path features, which alone suffice to robustly separate real and spoofed inputs. Despite its
315 simplicity, SONAR-Lite still attains state-of-the-art performance. Let $\mathbf{z}_{\text{content}}, \mathbf{z}_{\text{noise}} \in \mathbb{R}^{B \times T \times D}$
316 denote the dual-path embeddings, aggregated by mean pooling over time:
317

318
$$\tilde{\mathbf{z}}_{\text{content}} = \frac{1}{T} \sum_{t=1}^T \mathbf{z}_{\text{content},t}, \quad \tilde{\mathbf{z}}_{\text{noise}} = \frac{1}{T} \sum_{t=1}^T \mathbf{z}_{\text{noise},t},$$

319

320 and concatenated into a single vector $\mathbf{x} = [\tilde{\mathbf{z}}_{\text{content}}, \tilde{\mathbf{z}}_{\text{noise}}]$. This vector is then fed into a lightweight
321 two-layer fully connected classifier.
322323 This simplified design demonstrates that the dual path features alone provide robust discriminative
324 power, as validated by our experimental results (see Table 1).
325326 4.4 SONAR-FINETUNE
327328 To address the computational overhead of training dual XLSR encoders from scratch, we explored a
329 finetuning strategy leveraging the pre-trained XLSR-Mamba pipeline Xiao & Das (2024). Under the
330

Model	LA \downarrow	DF \downarrow	ITW \downarrow
WavLM-Large+MFA Guo et al. (2024)	5.08	2.56	—
XLSR+AASIST Tak et al. (2022b)	1.90	3.69	10.46
XLSR+MoE Wang et al. (2024)	—	—	9.17
XLSR+Conformer Rosello et al. (2023)	0.97	2.58	8.42
XLSR+Conformer+TCM Truong et al. (2024)	1.18	2.25	7.79
XLSR-SLS Zhang et al. (2024)	2.87	1.92	7.46
XLSR-Mamba Xiao & Das (2024)	0.93	1.88	6.71
SONAR-Lite (M=30, $\lambda_{JS} = 1$)	1.78 (2.03)	2.11 (2.5)	6.98 (7.2)
SONAR-Full (M=30, $\lambda_{JS} = 1$, enhancing Tak et al. (2022b))	1.55 (1.68)	1.57 (1.95)	6.00 (6.8)
SONAR-Finetune (M=30, $\lambda_{JS} = 1$) on Xiao & Das (2024)	1.20 (1.30)	1.45 (1.62)	5.43 (5.8)

Table 1: EER (%) on ASVspoof 2021 LA, DF, and In The Wild datasets. Bold entries are best per column. Results from prior work are single-run values, SONAR variants report best (mean) over 3 runs. Statistical significance: SONAR-Full vs. AASIST on ITW ($t = 19.4, p = 0.0026$) and SONAR-Finetune vs. XLSR-Mamba on ITW ($t = 4.73, p = 0.0419$) both confirm robust improvements ($p < 0.05$).

assumption that the original XLSR model, inherently favors low frequency (content) information, we designate it as the content path. To complement this, We then insert our NFE module into the pipeline to extract complementary high frequency cues. These content and noise embeddings are fused via the cross-attention and passed into the mostly-frozen Mamba classifier, with only the noise XLSR, fusion module, and the final two Mamba layers updated during training. The training process started from the best reported checkpoint of the paper and was stopped once the alignment loss (1) plateaued, which in our experiments consistently occurred within 6 epochs. This efficient setup allows us to retain most of the pre-trained model’s capacity while enriching it with high frequency information with low effort. Remarkably, this finetuned configuration achieves state-of-the-art performance, as detailed in Table 1.

5 EXPERIMENTS & RESULTS

5.1 DATASETS & TRAINING CONFIGURATION

For our experiments, in the same manner that all audio DF detection models are trained, we utilized the ASVspoof 2019 Logical Access (LA) training set Yamagishi et al. (2019) for model training and the corresponding LA validation set for tuning. The model wasn’t expose to any other data set in the process. For evaluation, we used the ASVspoof 2021 competition datasets Delgado et al. (2021) that were designed only for testing. They are covering both Logical Access (clean TTS and VC) and Deep Fake scenarios. Since the ASVspoof 2019 LA training set is highly imbalanced (approximately 1:9 real to fake ratio), we employed a *weighted cross-entropy* (WCE) loss with class priors estimated from the training split. This ensured that the model avoided bias toward the majority class during optimization. To further assess generalization, we also evaluated on the In The Wild dataset introduced by Müller et al. (2022), which contains diverse, real world audio samples. This comprehensive protocol ensures robustness in both controlled and uncontrolled environments. Audio data were segmented into approximately 4-second clips (64,600 samples). As in prior work Tak et al. (2022b); Xiao & Das (2024); Rosello et al. (2023), we applied RawBoost Tak et al. (2022a). We tested several setups with consistent trends and adopted the standard config for fairness. SONAR-Full and SONAR-Lite training we optimized our model using the AdamW optimizer with an learning rate of 10^{-5} , decaying to 10^{-8} via cosine annealing. For the finetune version we did the same but only optimized the NFE, fusion layer, and the last two layers of the mamba classifier. For speed purposes, training was performed on 4 NVIDIA L40 GPUs with an effective batch size of 28×4 . The proposed model can fit inside a single L-40. Each experiment was run three times with different random seeds, employing early stopping (patience of three epochs) and selecting the model with the lowest validation EER. All results are reproducible using our open source code that will be released upon acceptance. Audio deepfake detection is evaluated using the **Equal Error Rate (EER)**, which is the point where the false acceptance rate equals the false rejection rate. Despite

Method / Augmentation	DF ↓	LA ↓	ITW ↓
<i>Architectural Ablations</i>			
SONAR-Full w/o RFE, JS	2.54	2.93	8.91
SONAR-Full w/o RFE	2.40	2.48	8.44
SONAR-Full w/o JS	2.65	2.90	8.50
SONAR-Full w/ non-learnable RFE (M=30)	2.30	2.36	8.20
SONAR-Full w/ $M=1$ SRM	2.83	2.91	8.00
SONAR-Full w/ $M=10$ SRM	2.43	2.51	7.40
SONAR-Full w/ $\lambda_{JS}=0.5$	2.42	2.61	7.91
SONAR-Full w/ $\lambda_{JS}=0.8$	1.90	1.78	7.02
SONAR-Full w/ SRM and $\lambda_{JS}=1$ (best configuration)	1.57	1.55	6.00
<i>Robustness to Sampling Rates / Codecs (ITW only)</i>			
Resample → 44.1 kHz			≈ 0
Resample → 48 kHz			≈ 0
MP3 (64 kbps)			medium jitter ($ \Delta p \leq 0.1$)
Opus (32 kbps)			medium jitter ($ \Delta p \leq 0.1$)
Vorbis (q3)			small jitter ($ \Delta p \leq 0.05$)

Table 2: **Ablation study (SONAR-Full).** Top: pooled EER (%) on DF, LA, and ITW sets under different architectural ablations. Bottom: robustness analysis of SONAR-Full (trained on the standard ASVspoof2019 dataset at 16 kHz) evaluated on the ITW test set because its difficulty under different resampling and codec augmentations. Results are reported as probability shifts in the softmax outputs.

having nearly double the number of parameters, SONAR-Full introduces only a marginal increase in inference time compared to latest SOTA XLSR-Mamba Xiao & Das (2024), as shown in Fig. 6.

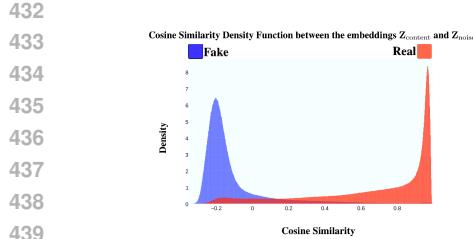
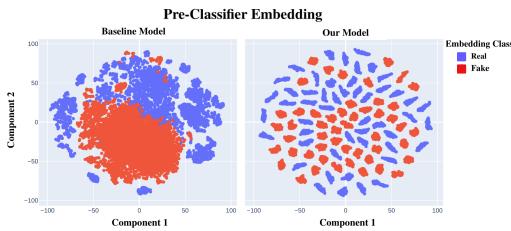
5.2 RESULTS

SONAR achieves new state-of-the-art performance across DF, LA, and IN THE WILD (Table 1):

- **DF:** *SONAR-Full* and *SONAR-Finetune* reach **1.57%** and **1.45%**, surpassing all prior methods.
- **LA:** Both achieve competitive performance (**1.20%–1.55%**) and are the strongest models trained with a single run.
- **In The Wild:** *SONAR-Full* and *SONAR-Finetune* set a new benchmark at **6.00%** and **5.43%**.

The LA decrease against models like XLSR-Mamba Xiao & Das (2024) and XLSR-Conformer Truong et al. (2024), Rosello et al. (2023) is explained by a key evaluation difference: their reported results rely on *checkpoint averaging* or run-smoothing, while SONAR is evaluated strictly under **single training runs**. Our reported values are means over three independent seeds, ensuring that improvements reflect genuine convergence rather than post-hoc stabilization. This distinction naturally accounts for the apparent advantage of XLSR-Mamba on LA (0.93% vs. 1.55% for SONAR-Full). Under a fair single-run protocol, SONAR achieves SOTA performance on LA, DF and ITW. Thus, the small LA difference is not a weakness but an expected outcome of different evaluation protocols, and SONAR’s frequency-guided alignment offers stronger and more robust generalization in out-of-distribution settings.

Convergence speed. SONAR also converges rapidly: while Tak et al. (2022b) trained for 100 epochs, SONAR-Full stabilizes in 12, and SONAR-Finetune in only 4–6. Despite the added branch, SONAR attains higher accuracy with nearly an order-of-magnitude faster training, thanks to the alignment loss (Eq. 8) which tightens LF–HF coupling and accelerates separation of real and fake embeddings.



486 REPRODUCIBILITY STATEMENT
487

488 We have taken several steps to ensure that the findings reported in this paper are reproducible.
 489 All datasets used are publicly available: ASVspoof 2019 and 2021 (Sec. 5.1, 4) and the In-the-
 490 Wild corpus Müller et al. (2022), 4. Our preprocessing and segmentation procedure (4-second
 491 clips, Default settings of RawBoost augmentation) is described in Sec. 5.1 and the source in 4.
 492 The full architecture of SONAR, including the constrained SRM filters, dual-path XLSR encoders,
 493 and cross-attention fusion, is detailed in Sec. 4, with additional implementation details provided in
 494 the Appendix (A). Training objectives, including the Jensen–Shannon alignment loss and weighted
 495 cross-entropy, are specified in Eq. 1–8. All experiments were run three times with different seeds,
 496 and statistical significance tests are reported in Table 1. An anonymous code repository containing
 497 source code training scripts accompanies this submission in the supplementary materials.

498 REFERENCES
499

500 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kri-
 501 tika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, and
 502 Michael Auli. XLS-R: Self-supervised cross-lingual speech representation learning at scale, 2021.
 503 arXiv preprint.

504 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. Wav2vec 2.0: A frame-
 505 work for self-supervised learning of speech representations. In *Proceedings of the 33rd Confer-
 506 ence on Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 12449–12460, 2020.

507 Ronen Basri, David Jacobs, Yoni Kasten, and Shai Kritchman. The convergence rate of
 508 neural networks for learned functions of different frequencies. In *Advances in Neu-
 509 ral Information Processing Systems 32 (NeurIPS)*, pp. 4761–4771. Curran Associates, Inc.,
 510 2019. URL [https://proceedings.neurips.cc/paper_files/paper/2019/
 511 file/4e9e68236e492a121de9b5a9b21f0daf-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/4e9e68236e492a121de9b5a9b21f0daf-Paper.pdf).

512 Buse Bayar and Matthew C. Stamm. A deep learning approach to universal image manipulation de-
 513 tection using a new convolutional layer. In *Proceedings of the 4th ACM Workshop on Information
 514 Hiding and Multimedia Security*, pp. 5–10. ACM, 2016.

515 Yanyang Cao, Ziyang Fang, Yifei Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding
 516 the spectral bias of deep learning, 2019. arXiv:1912.01198.

517 Shuai Chen, Yu Cheng, Zhehuai Wang, Yao Qian, Jian Wu, Dong Yu, and Shujie Liu. WavLM:
 518 Large-scale self-supervised pre-training for full stack speech processing. *IEEE Journal of Se-
 519 lected Topics in Signal Processing*, 16(6):1505–1518, 2022.

520 Cybersecurity Dive. Fbi warns senior us officials are being impersonated using
 521 texts, ai voice messages. [https://www.cybersecuritydive.com/news/
 522 fbi-warns-senior-us-officials-being-impersonated-ai/716824/](https://www.cybersecuritydive.com/news/fbi-warns-senior-us-officials-being-impersonated-ai/716824/), 2025. Accessed: 2025-07-27.

523 Héctor Delgado, Nicholas Evans, Tomi Kinnunen, Kong Aik Lee, Xuechen Liu, Andreas Nautsch,
 524 Jose Patino, Md Sahidullah, Massimiliano Todisco, Xin Wang, and Junichi Yamagishi. ASVspoof
 525 2021: Automatic speaker verification spoofing and countermeasures challenge evaluation plan,
 526 2021. arXiv preprint.

527 Shromona Fridovich-Keil, Raphael Gontijo Lopes, and Rebecca Roelofs. Spectral bias
 528 in practice: The role of function frequency in generalization. In *Advances in Neu-
 529 ral Information Processing Systems 35 (NeurIPS)*, pp. 7368–7382. Curran Associates, Inc.,
 530 2022. URL [https://proceedings.neurips.cc/paper_files/paper/2022/
 531 file/30f8ed20cb52a79c7b374eb15dce8f3f-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/30f8ed20cb52a79c7b374eb15dce8f3f-Paper-Conference.pdf).

532 Jessica Fridrich and Jan Kodovský. Rich models for steganalysis of digital images. *IEEE Trans-
 533 actions on Information Forensics and Security*, 7(3):868–882, 2012. doi: 10.1109/TIFS.2012.
 534 2190402.

540 Bent Fuglede and Frederik Topsøe. Jensen-Shannon divergence and Hilbert space embedding. In
 541 *Proceedings of the 2004 IEEE International Symposium on Information Theory (ISIT)*, pp. 31.
 542 IEEE, 2004.

543

544 Yinlin Guo, Haofan Huang, Xi Chen, He Zhao, and Yuehai Wang. Audio deepfake detection with
 545 self-supervised WavLM and multi-fusion attentive classifier. In *Proceedings of the IEEE International
 546 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 12702–12706,
 547 Seoul, Korea, 2024. IEEE.

548 Bing Han, Xintong Han, Haodong Zhang, Jing Li, and Xiaoyang Cao. Fighting fake news: Two
 549 stream network for deepfake detection via learnable SRM. *IEEE Transactions on Biometrics,
 550 Behavior, and Identity Science*, 3(3):320–331, 2021. doi: 10.1109/TBIM.2021.3065735.

551

552 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
 553 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 554 prediction of hidden units. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 555 Pattern Recognition (CVPR)*, pp. 1418–1427. IEEE, 2021.

556

557 Yeong-Jun Jeong, Min-Guk Kim, Han-Ui Jang, Hwan-Tae Lim, and Hye-Jin Kim. BIHPF: Bi-
 558 lateral high-pass filters for robust deepfake detection. In *Proceedings of the IEEE/CVF Winter
 559 Conference on Applications of Computer Vision (WACV)*, pp. 5049–5058. IEEE, 2022.

560

561 Jee-Weon Jung, Hemlata Tak, Vishal M. Patel, Junichi Yamagishi, and Nicholas Evans. AASIST:
 562 Audio anti-spoofing using integrated spectro-temporal graph attention networks. In *Proceedings
 563 of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 6369–6373. IEEE, 2022.

564

I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. AbdAlmageed. Two-branch recur-
 565 rent network for isolating deepfakes in videos. In *European Conference on Computer Vision*, pp.
 566 667–684. Springer, 2020.

567

Nico M. Müller, Paul Czempin, Florian Dieckmann, Ahmad Froghyar, and Konrad Böttinger. Does
 568 audio deepfake detection generalize? In *Proceedings of the Annual Conference of the Interna-
 569 tional Speech Communication Association (Interspeech)*, pp. 2973–2977. ISCA, 2022.

570

571 Yong Qian, Guangming Yin, Lu Sheng, Zixuan Chen, and Junjie Shao. Thinking in frequency:
 572 Face forgery detection by mining frequency-aware clues. In *Computer Vision – ECCV 2020*,
 573 volume 12367 of *Lecture Notes in Computer Science*, pp. 86–103. Springer, 2020. doi: 10.1007/
 574 978-3-030-58558-7_6.

575

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 576 Robust speech recognition via large-scale weak supervision, 2022. arXiv preprint.

577

578 N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville.
 579 On the spectral bias of neural networks. In *Proceedings of the 36th International Confer-
 580 ence on Machine Learning (ICML)*, volume 97, pp. 5301–5310. PMLR, 2019. URL <https://proceedings.mlr.press/v97/rahaman19a.html>.

581

582 Eros Rosello, Alejandro Gomez-Alanis, Angel M. Gomez, and Antonio Peinado. A
 583 conformer-based classifier for variable-length utterance processing in anti-spoofing. In *Proceed-
 584 ings of the Annual Conference of the International Speech Communication Association (Inter-
 585 speech)*, pp. 5281–5285, 2023.

586

587 Hemlata Tak, Madhu Kamble, Jose Patino, Massimiliano Todisco, and Nicholas Evans. Rawboost:
 588 A raw data boosting and augmentation method applied to automatic speaker verification anti-
 589 spoofing. In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
 590 Processing (ICASSP)*, pp. 6382–6386, Singapore, 2022a. IEEE. doi: 10.1109/ICASSP43922.
 591 2022.9746673.

592

Hemlata Tak, Massimiliano Todisco, Xin Wang, Jee-Weon Jung, Junichi Yamagishi, and Nicholas
 593 Evans. Automatic speaker verification spoofing and deepfake detection using Wav2Vec 2.0 and
 data augmentation, 2022b. arXiv preprint.

594 C. Tan et al. Frequency-aware deepfake detection: Improving generalizability through frequency
 595 space domain learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 596 ume 38, pp. 5976–5984. AAAI Press, 2024.

598 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Steven Fridovich-Keil, Nithin Raghavan,
 599 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
 600 works learn high frequency functions in low dimensional domains. In *Proceedings of the 33rd*
 601 *Conference on Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 7537–7547,
 602 2020.

603 TRM Labs. Ai-enabled fraud: How scammers are exploiting generative ai. <https://www.trmlabs.com/post/ai-enabled-fraud-how-scammers-are-exploiting-generative-ai>, 2025.
 604 Accessed: 2025-07-27.

605 Khanh Truong, Hemlata Tak, Xin Wang, and Junichi Yamagishi. Temporal-channel modeling in
 606 multi-head self-attention for synthetic speech detection. In *Proceedings of Interspeech 2024*, pp.
 607 123–127, Dublin, Ireland, 2024. ISCA.

608 United Nations Development Programme. A “super year” for elections – strengthen-
 609 ing democracy and good governance in 2024. <https://www.undp.org/blog/super-year-elections-2024>, 2024. Accessed: 2025-07-27.

610 Zhiyong Wang, Ruibo Fu, Zhengqi Wen, Jianhua Tao, Xiaopeng Wang, Yuankun Xie, Xin Qi,
 611 Shuchen Shi, Yi Lu, Yukun Liu, Chenxing Li, Xuefei Liu, and Guanjun Li. Mixture of experts
 612 fusion for fake audio detection using frozen wav2vec 2.0, 2024.

613 Seungho Woo. ADD: Frequency attention and multi-view based knowledge distillation to detect
 614 low-quality compressed deepfake images. In *Proceedings of the AAAI Conference on Artificial*
 615 *Intelligence*, volume 36, pp. 1153–1160, 2022.

616 Yang Xiao and Rohan Kumar Das. XLSR-Mamba: A dual-column bidirectional state space model
 617 for spoofing attack detection. *IEEE Signal Processing Letters*, 31:1045–1049, 2024. doi: 10.
 618 1109/LSP.2024.3412212.

619 Zhi-Qin John Xu, Yingbo Zhang, and Tao Luo. Overview frequency principle/spectral bias in deep
 620 learning. *Communications on Applied Mathematics and Computation*, pp. 1–38, 2024. doi:
 621 10.1007/s42967-024-00382-2. Early access.

622 Junichi Yamagishi, Massimiliano Todisco, Md Sahidullah, Héctor Delgado, Xin Wang, Nicholas
 623 Evans, Tomi Kinnunen, Kong Aik Lee, Ville Vestman, and Andreas Nautsch. ASVspoof 2019:
 624 Automatic speaker verification spoofing and countermeasures challenge evaluation plan. In
 625 *ASVspoof 2019 Workshop*, volume 13, 2019.

626 Mingyang Yang, Yi Ren, Zehui Tang, Zhijie Lin, Xiaohu Qie, and Zhou Zhao. Wavegan: Frequency-
 627 aware GAN for high-fidelity few-shot image generation. In *Computer Vision – ECCV 2022*,
 628 volume 13677 of *Lecture Notes in Computer Science*, pp. 567–584. Springer, 2022. doi: 10.1007/
 629 978-3-031-19781-7_33.

630 Qingxuan Zhang, Shaojie Wen, and Tianyi Hu. Audio deepfake detection with self-supervised XLS-
 631 R and SLS classifier. In *Proceedings of the 32nd ACM International Conference on Multimedia*
 632 (*ACM MM*), pp. 6765–6773. ACM, 2024.

633 Jian Zhu, Chen Wang, Yifan Zhao, and Chunhua Shen. Learning discriminative noise guidance for
 634 image forgery detection and localization. In *Proceedings of the AAAI Conference on Artificial*
 635 *Intelligence*, volume 38, pp. 7913–7921, 2024.

648
649
A APPENDIX650
651
XLSR ARCHITECTURE OVERVIEW652
653
XLSR (Cross-Lingual Speech Representations) is a large-scale multilingual model based on the
654
655
Wav2Vec 2.0 architecture, trained on over 400,000 hours of speech across 128 languages. It is
designed to learn universal speech representations that generalize well across languages and tasks.
XLSR extends Wav2Vec 2.0 with larger model capacity and multilingual pretraining.
656657
658
CORE COMPONENTS659
660
• **Feature Encoder.** The input waveform $x \in \mathbb{R}^T$ is first passed through a series of temporal
convolutional layers that output a latent representation:

661
$$z = \text{ConvEncoder}(x) \in \mathbb{R}^{T' \times d}$$

662
663
where $T' \ll T$ due to downsampling, and d is the channel dimension.664
665
• **Quantization Module (Pretraining Only).** A Gumbel-softmax quantizer maps z to discrete
latent codes $q(z)$ sampled from a learned codebook. This discrete representation is
666
667
used as a target in contrastive learning. The quantization module is discarded after pretraining.668
• **Transformer Encoder.** The encoded sequence z is fed into a multi-layer Transformer:

669
$$c = \text{Transformer}(z)$$

670
671
For XLSR 300M, the Transformer consists of 24 layers, each with hidden size 1024, 16
self-attention heads, and feed-forward networks of dimension 4096.672
673
• **Contrastive Objective (Pretraining).** The model is trained to distinguish the true quantized
target $q(z)$ from a set of distractors using a contrastive loss, encouraging the model to
674
675
learn meaningful representations without labels.676
677
DOWNSTREAM USAGE678
679
After pretraining, the quantizer and contrastive heads are removed. The contextualized features c
680
681
are used as inputs to downstream tasks such as speech recognition, speaker verification, or deepfake
detection. In our work, we extract c either in frozen mode or via finetuning, and feed it into a
task-specific classifier.683
AASIST ARCHITECTURE OVERVIEW685
686
AASIST (Audio Anti-Spoofing using Integrated Spectra-Temporal Modeling) is a deep learning
687
688
model designed for detecting spoofed audio in speaker verification systems. It combines spectra-
temporal modeling with attention-based mechanisms to robustly capture discriminative features be-
tween genuine and fake audio, particularly under real world conditions.690
CORE COMPONENTS691
692
• **Learnable Frontend:** The raw waveform $x \in \mathbb{R}^T$ is first passed through a 1D convolutional
frontend that acts as a learnable filterbank:

693
694
$$x_{\text{spec}} = \text{Conv1D}(x)$$

695
696
This mimics handcrafted feature extraction (e.g., STFT or filterbanks) in a data-driven way
and outputs time-frequency like representations.697
698
• **Graph Attention Layer (GAT):** The core innovation of AASIST is to treat the spectro-
temporal representation as a graph where each node corresponds to a time-frequency patch.
699
700
A Graph Attention Network (GAT) models the structured relationships between these
patches:

701
$$h'_i = \sum_{j \in \mathcal{N}(i)} \alpha_{ij} \mathbf{W} h_j$$

702 where α_{ij} are attention weights learned over neighbors $\mathcal{N}(i)$, and \mathbf{W} is a shared linear
 703 transform.

704

- 705 • **Spectro-Temporal Blocks:** A series of convolutional blocks capture local patterns in both
 706 time and frequency domains. These are alternated with GAT layers to jointly model local
 707 and global context.
- 708 • **Global Aggregation and Classification:** After the GAT and convolutional layers, the
 709 model aggregates features via global average pooling and passes them through fully con-
 710 nected layers for binary classification:

711

$$712 \hat{y} = \sigma(\text{MLP}(\text{GAP}(H)))$$

713

714 ADVANTAGES

715

- 716 • **Spectro-Temporal Awareness:** By combining CNNs and GATs, AASIST captures both
 717 fine-grained local patterns and long-range spectral dependencies.
- 718 • **Fully Learnable Pipeline:** From waveform to classification, the architecture is end-to-end
 719 trainable without handcrafted features.
- 720 • **Strong Benchmarks:** AASIST achieves state-of-the-art performance on ASVspoof 2019
 721 and 2021 logical access (LA) and deepfake (DF) subsets, especially under noisy and real
 722 world conditions.

724 USAGE IN OUR WORK

726 We adopt AASIST as a strong baseline in our experiments on **SONAR-Full** model. Its ability to de-
 727 tect both TTS and VC-based attacks makes it a competitive model for evaluating deepfake detection
 728 methods.

731 LIMITATIONS

733 **Sensitivity to resampling and reliance on high-frequency cues.** Figure 5 reveals that the
 734 Equal-Error Rate increases monotonically when the input audio is down-sampled for example, from
 735 16 kHz to 4 kHz, thereby stripping energy above the new Nyquist frequency. The degradation from a
 736 state-of-the-art 6demonstrates that SONAR exploits high-frequency noise artifacts introduced dur-
 737 ing deep-fake synthesis. While this helps on clean, full-bandwidth recordings, it also exposes a
 738 limitation: the detector becomes less robust when real-world pipelines or codecs apply aggressive
 739 low-pass filtering or resampling. However, we note that most audio found *in the wild* is sampled at
 740 16,kHz or higher, meaning this sensitivity is less likely to affect practical deployments. Moreover,
 741 our model maintained strong performance across a range of common codecs, including high-quality
 742 MP3 compression, indicating robustness to realistic encoding conditions. Practitioners should there-
 743 fore (i) preserve as high a capture sample-rate as feasible, or (ii) retrain / fine-tune the model on data
 744 that reflect the target bandwidth and compression conditions. **Model size and compute.** Although
 745 the dual-path design roughly doubles the parameter count to 650 M (with XLSR large), it remains
 746 feasible to train for 12 epochs on a single L40 GPU standard for real world remote server deploy-
 747 ments. We leave further optimization via parameter sharing and pruning for future work.

748 **Modality scope.** Experiments are confined to audio. While the frequency-guided principle is
 749 generic, porting SONAR to images or video will require modality-specific high-pass filtering and
 fusion schemes, which we have not yet explored.

750 **Dataset coverage.** Evaluation spans ASVspoof 2021 (LA/DF) and the Müller *in-the-wild* corpus,
 751 although these are the academic benchmarks for spoofing detection, unseen spoof mechanisms or
 752 languages may still degrade performance.

753 **False positives/negatives.** Like any detector, SONAR can misclassify highly compressed real
 754 speech or exceptionally well-crafted fakes, which could erode user trust, threshold calibration for
 755 different deployment domains remains an open question.

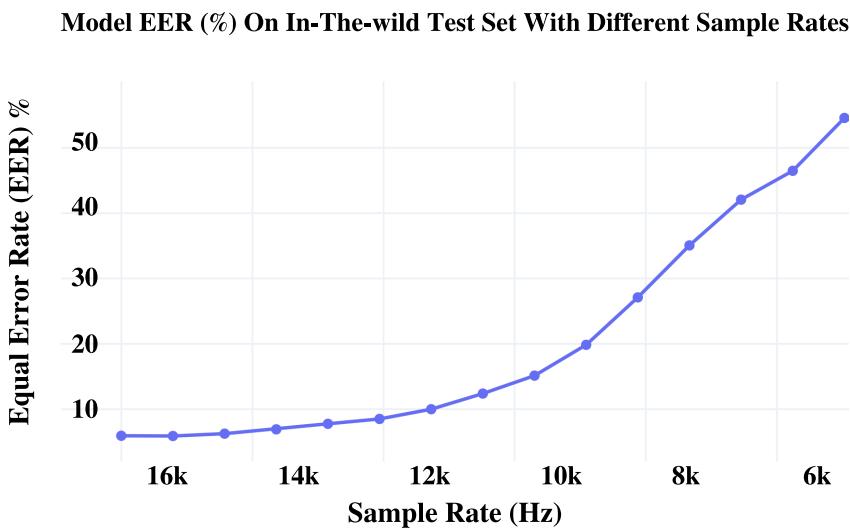


Figure 5: Impact of resampling on detection accuracy. Equal-Error Rate (EER) rises as the sampling rate (SR) of the test set is lowered, confirming that the model relies on high-frequency artifacts introduced during deep-fake synthesis.

Model	License	URL
XLSR (fairseq)	MIT	https://github.com/facebookresearch/fairseq
XLSR-Mamba	MIT	https://github.com/swagshaw/XLSR-Mamba
AASIST	MIT	https://github.com/clovaai/aasist

Table 3: Licenses for pretrained models.

LICENSING OF THIRD-PARTY ASSETS

All third-party assets used in this work, including models and datasets, are listed in Table 3, along with their license terms and usage conditions. We ensure that all included components comply with their respective open source or research use licenses.

All third-party assets used in this work are listed below, including pretrained models and datasets, along with their license terms and URLs.

BROADER IMPACT

The rapid commoditisation of neural voice cloning poses concrete risks in day-to-day life from account-takeover attempts at banks and call-centre fraud, to automated disinformation in political campaigns and social media. SONAR contributes a stronger line of defence: it is a *detection-only* model that neither synthesises nor enhances fake audio. Wider deployment could therefore help journalists, financial institutions and platform moderators to flag spoofed content early, limiting downstream harm. On the negative side, ever-stronger detectors may escalate an adversarial arms-race, encouraging attackers to craft subtler manipulations. We mitigate this by (i) releasing code and eval-

810	Dataset	License	URL / Terms
811	In The Wild	Apache 2.0	https://deepfake-total.com/in_the_wild
812	ASVspoof (LA/DF)	2019 ODC-By v1.0	https://datashare.ed.ac.uk/handle/10283/3336
813	ASVspoof (LA/DF)	2021 ODC-By v1.0	https://doi.org/10.5281/zenodo.4837263
814			
815			
816			
817			
818			
819			
820			
821			
822			
823			
824			
825			
826			
827			
828			
829			
830			
831			
832			
833			
834			
835			
836			
837			
838			
839			
840			
841			
842			
843			
844			
845			
846			
847			
848			
849			
850			
851			
852			
853			
854			
855			
856			
857			
858			
859			
860			
861			
862			
863			

Table 4: Licenses for datasets.

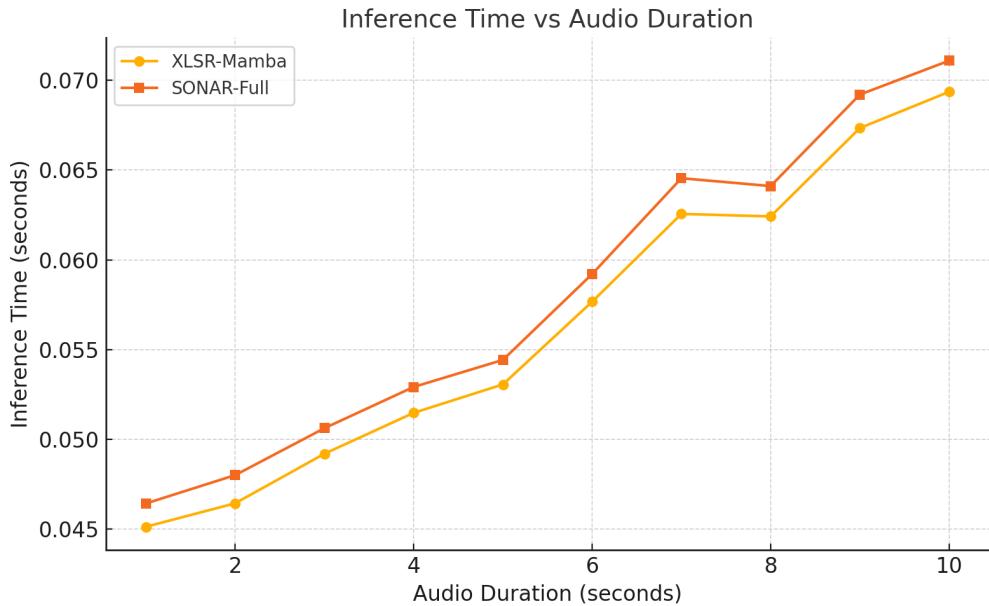


Figure 6: **Inference latency scales linearly with audio length.** We compare inference times (in seconds) for the XLSR-Mamba and SONAR-Full models across increasing audio durations from 1 to 10 seconds. SONAR introduces only a minimal overhead relative to XLSR-Mamba, while delivering improved detection performance (cf. Table 1).

uation scripts to foster transparent benchmarks, and (ii) encouraging periodic re-training on newly emerging spoof methods. The model uses only publicly available speech data collected with consent, and stores no personal attributes beyond the embeddings required for classification.

We build directly on the publicly released AASIST and XLS-R reference implementations, adopting the CUDA-optimised training framework of Tak et al. All experiments were run end-to-end on a single NVIDIA L40 (48 GB) GPU under PyTorch 2.2 with CUDA 12.2. The complete source code, Hydra configs, pretrained checkpoints, and the shell scripts used to reproduce every table and figure accompany this paper in the supplementary package.

COMPUTATIONAL COST.

We analyzed the additional cost of SONAR relative to a single-stream XLSR baseline. The extra components are: (i) the Rich Feature Extractor (RFE), (ii) a second encoder branch, and (iii) a cross-attention fusion.

864 **RFE and fusion are negligible.** For a 4 s clip at 16 kHz with $M=10$ filters, the RFE adds only
865 ~8M FLOPs ($< 0.01\text{G}$), and the cross-attention adds ~0.16G FLOPs. Both are $< 1\%$ of a single
866 XLSR pass.
867

868 **Encoders dominate.** SONAR-Full essentially doubles the encoder cost, giving $\approx 2\times$ the parame-
869 ters and FLOPs of XLSR. However, since the two streams run concurrently on GPU, the measured
870 wall-clock latency increases by only 15–25% (Fig. 6), not 100%.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917