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ABSTRACT

Test-time adaptation (TTA) aims to adapt a trained classifier using online unla-
beled test data only, without any information related to the training procedure.
Most existing TTA methods adapt the trained classifier using the classifier’s pre-
diction on the test data as pseudo-label. However, under test-time domain shift,
accuracy of the pseudo labels cannot be guaranteed, and thus the TTA methods
often encounter performance degradation at the adapted classifier. To overcome
this limitation, we propose a novel test-time adaptation method, called 7est-time
Adaptation via Self-Training with nearest neighbor information (TAST), which is
composed of the following procedures: (1) adds trainable adaptation modules on
top of the trained feature extractor; (2) newly defines a pseudo-label distribution
for the test data by using the nearest neighbor information; (3) trains these mod-
ules only a few times during test time to match the nearest neighbor-based pseudo
label distribution and a prototype-based class distribution for the test data; and (4)
predicts the label of test data using the average predicted class distribution from
these modules. The pseudo-label generation is based on the basic intuition that
a test data and its nearest neighbor in the embedding space are likely to share
the same label under the domain shift. By utilizing multiple randomly initialized
adaptation modules, TAST extracts useful information for the classification of the
test data under the domain shift, using the nearest neighbor information. TAST
showed better performance than the state-of-the-art TTA methods on two standard
benchmark tasks, domain generalization, namely VLCS, PACS, OfficeHome, and
Terralncognita, and image corruption, particularly CIFAR-10/100C. Our code is
available at https://github.com/minguk jang/TAST.

1 INTRODUCTION

Deep neural networks often encounter significant performance degradations under domain shift (i.e.,
distribution shift). This phenomenon has been observed in various tasks including classification
(Taori et al.| 2020; [Wang et al.l 2021b), visual recognition (Saenko et al., 2010; |Csurkal 2017)), and
reinforcement learning (Cobbe et al., [2019; Mendonca et al., 2020; |[Lee and Chung, [2021b). There
are two broad classes of domain adaptation methods that attempt to solve this problem: supervised
domain adaptation (SDA) (Tzeng et al.,2015; Motiian et al.,|2017) and unsupervised domain adapta-
tion (UDA) (Ganin and Lempitsky, 2015;|Long et al., 2016;|Sener et al.|[2016). Both SDA and UDA
methods aim to obtain domain-invariant representations by aligning the representations of training
and test data closely in the embedding space. While testing, UDA methods require the training
dataset and SDA methods additionally require labeled data of the test domain. However, in practice,
it is often difficult to access training datasets or labeled data in the test domain during test time, due
to data security or labeling cost.

Test-time adaptation (TTA) (Iwasawa and Matsuo, 2021; Wang et al., 2021a) is a prominent ap-
proach to alleviate the problems caused by the domain shift. TTA methods aim to adapt the trained
model to the test domain without a labeled dataset in the test domain and any information related to
the training procedure (e.g., training dataset, feature statistics of training domain (Sun et al., 2020;
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Liu et al., [2021; [Eastwood et al .| 2022])). TTA methods have access to the online unlabeled test data
only, whereas domain adaptation methods assume access to the whole (i.e., offline) test data.

There are three popular categories for TTA: normalization-based method (Schneider et al., [2020),
entropy minimization (Liang et al., |2020; |Wang et al., |2021a) and prototype-based methods (Iwa-
sawa and Matsuo, [2021)). Normalization method replaces the batch normalization (BN) statistics of
the trained model with the BN statistics estimated on test data, and does not update model parame-
ters except for the BN layers. Entropy minimization methods fine-tune the trained feature extractor,
which is the trained classifier except the last linear layer, by minimizing the prediction entropy of
test data. These methods force the classifier to have over-confident predictions for the test data, and
thus have a risk of degrading model calibration (Guo et al., | 2017;|Mukhoti et al.,[2020)), a measure of
model interpretability and reliability. One form of entropy minimization is self-training (Rosenberg
et al., 2005} [Lee}, 2013} Xie et al.,[2020). Self-training methods use predictions from the classifier as
pseudo labels for the test data and fine-tune the classifier to make it fit to the pseudo labels. These
methods have a limitation that the fine-tuned classifier can overfit to the inaccurate pseudo labels,
resulting in confirmation bias (Arazo et al.,2020). This limitation can be harmful when the perfor-
mance of the trained classifier is significantly degraded due to the domain shift. On the other hand,
Iwasawa and Matsuo| (2021) proposed a prototype-based TTA method, named T3A, that simply
modifies a trained linear classifier (the last layer) by using the pseudo-prototype representations of
each class and the prototype-based classification for test data, where the prototypes are constructed
by previous test data and the prediction for the data from trained classifier. T3A does not update
the trained feature extractor at test time. T3A is simple but it brings a marginal performance gain
(Table[T]and[3).

In this work, we propose a new test-time adaptation method, which is simple yet effective in mit-
igating the confirmation bias problem of self-training, by adding adaptation modules on top of the
feature extractor, which are simply trainable during test time. We use the prototype-based classifier
as in T3A, but not in the embedding space of the original feature extractor but in the embedding
space of the adaptation modules, trained with nearest neighbor information, to achieve higher per-
formance gains than the original simple prototype-based classifier method. Our method, named
Test-time Adaptation via Self-Training with nearest neighbor information (TAST), is composed of
the following procedures: (1) adds randomly initialized adaptation modules on top of the feature
extractor at the beginning of test time (Figure [I); (2) generates pseudo label distribution for a test
data considering the nearest neighbor information; (3) trains the adaptation modules only a few times
during test time to match the nearest neighbor-based pseudo label distribution and a prototype-based
class distribution for the test data; and (4) predicts the label of test data using the average predicted
class distribution from the adaptation modules. Specifically, in (1), we add the trainable adaptation
modules to obtain new feature embeddings that are useful for classification in the test domain. In
(2), TAST assigns the mean of the labels of the nearby examples in the embedding space as the
pseudo label distribution for the test data based on the idea that a test data and its nearest neighbors
are more likely to have the same label. In (3), TAST trains the adaptation modules to output the
pseudo label distribution when the test data is fed into (Figure[I|Right). And in (4), we average the
predicted class distributions from adaptation modules for the prediction of test data (Figure [T] Lef?).

We investigate the effectiveness of TAST on two standard benchmarks, domain generalization and
image corruption. We demonstrate that TAST outperforms the current state-of-the-art test-time
adaptation methods such as Tent (Wang et al., 2021a)), T3A, and TTT++ (Liu et al., 2021) on the
two benchmarks. For example, TAST surpasses the current state-of-the-art algorithm by 1.01% on
average with ResNet-18 learned by Empirical Risk Minimization (ERM) on the domain generaliza-
tion benchmarks. Extensive ablation studies show that both the nearest neighbor information and the
adaptation module utilization contribute to the performance increase. Moreover, we experimentally
found that the adaptation modules adapt feature extractor outputs effectively although the adaptation
modules are randomly initialized at the beginning of test time and trained with a few gradient steps
per test batch during test time.

2 PRELIMINARIES

Test-time domain shift Consider a labeled dataset D™" = {(x;,y;)}/"™" drawn from a distri-
bution P*" where z € R? and y € Y := {1,2,---, K} for a K-class classification problem.
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Figure 1: Overview of TAST. Left: A schematic of TAST compared to T3A. The dashed class indi-
cates the ground-truth class. (a) T3A constructs prototypes that represent classes in the embedding
space of feature extractor fy using a support set S. Then T3A predicts the label of the test data x as
the class of the nearest prototype. (b) TAST adds trainable adaptation modules {h, } on top of fg
and computes the estimated class distributions of x by aggregating the pseudo labels of the nearest
support examples of z in the embedding space of adaptation modules. Right: Overview of TAST
training. Based on the intuition that a test data x and its nearest neighbors N (z; S) are likely to share
the same label, we use the mean of prototype-based predictions of the support examples in N (z; S)
as the pseudo label of x. We train the adaptation modules to predict the pseudo labels when the test
data is fed into. Notice that the feature extractor fy is frozen during test time.

A number of classifiers have been proposed that easily classify unseen test data under the i.i.d.
assumption that unseen test data D't is drawn from the same distribution as training data, i.e.,
pran — pest We assume the classifier is a deep neural network composed of two parts: a feature
extractor fy : R% — R4 and a linear classifier Juw : R4= — Y. where 0 and w are the neural network
parameters. ERM optimizes 6 and w to obtain a good classifier for future samples in D'**' by min-
imizing the objective function £(6, w) = E, 4y pmin [[(gw(fo()), y)], where [ is a loss function
such as cross-entropy loss. However, under the test-time domain shift (i.e., distribution shift), the
i.i.d. assumption between the training and test distributions does not hold, i.e., P™" = P and
the trained classifiers often show poor classification performance for the test data.

Prototype-based classification in test-time adaptation Prototype-based classification refers to a
method that obtains prototype representations, which represent each class in the embedding space,
and then predicts the label of an input as the class of the nearest prototype. Since labeled data is
not available in the TTA setting, T3A (Iwasawa and Matsuo, |2021) utilizes a support set that is
composed of previous test data and their predictions for the test data by the trained classifier. T3A
does not modify parameters of the classifier. Since the embedding space of the feature extractor is
unchanged during the test time, T3A constructs the support set using the feature representations for
test data instead of the data itself. Specifically, a support set S; = {S},S?,--- ,SE} is a set of test
samples until time ¢. The support set is initialized with the weight of the last linear classifier, i.e.,

S’g = {ﬁ} where wk is the parts of w related to k-th class for k = 1,2, ..., K. At time ¢, the
support set is updated as

|
=

k fo(zt) : _
Sf _ Sf_q U { Hfz(zt)l\ } if arg max, p, 0
Sk, otherwise,

where py, represents the likelihood that the classifier assigns x; to the k-th class. Using the sup-
port set S¥, one can obtain the class prototype for class k by taking the centroid of the representa-
tions in the support set. Formally, the prototype iy, for class k is computed as p; = @ >, sk Z

for k = 1,2,--- K. Then, the prediction for an input x; is made by comparing the distances
between the embedding of x; and the prototypes, i.e., § = argmin,d(fp(xs), u.) with a pre-
defined metric d such as Euclidean distance or cosine similarity|'| Since the wrongly pseudo la-
beled examples can degrade the classification performance, the support examples with unconfi-
dent pseudo labels are regarded as unreliable examples and filtered out, i.e., at time stamp ¢,

"We use the cosine similarity as a distance metric d for experiments throughout this paper.
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Algorithm 1 Test-time Adaptation via Self-Training with nearest neighbor information (TAST)

Require: Feature extractor fg, number of adaptation modules N., adaptation modules {h(,)i}f.\f:“l, test batch
B, support set S, number of gradient steps per adaptation 7", number of support examples per each class M,
number of nearby support examples NV, learning rate o

Ensure: Predictions forall x € B
Update the support set S with eq. (I) and the entropy-based filtering
Retrieve the nearest neighbors N (z; S) for all 2 € B with eq.

fort =1:T do
fori=1: N.do
for x € B do

Obtain the nearest neighbor-based pseudo label 157 (-|z) of 2 with eq. (4)
Compute the prototype-based class distribution p?™°(-|x) of 2 with eq. (6)

end for ‘
$i = bi — AV, 1 X en CEGN (), I (-|2))
end for
end for

Compute the predictions for all x € B with eq.

Ske{z|z € SF, H(0(gw(2))) < ai}, where oy is the M-th largest prediction entropy of the
samples from Sf, H is Shannon entropy (Lin, (1991), and o is the softmax function. T3A mod-
ifies only the support set configuration and does not update the trained model parameters at test
time. Thus, T3A cannot effectively mitigate the classification performance degradation caused by
test-time domain shift. To address this issue, we extract useful information for classification of the
test data by utilizing multiple randomly initialized adaptation modules that are trained using nearest
neighbor-based pseudo labels.

3 METHODOLOGY

In this section, we describe two main components of our method TAST: adaptation module uti-
lization (Section [3.1) and pseudo-label generation considering nearest neighbor information (Sec-

tion [3.2)).
3.1 ADAPTATION MODULE

We first discuss the parts to be fine-tuned in the trained classifier before explaining our test-time
adaptation method. One possible choice is to fine-tune the whole network parameters in the classi-
fier during test time, but this approach can be unstable and inefficient (Wang et al.| [2021aj [Kumar,
et al.l 2022)). Another choice is to fine-tune only the parameters of batch normalization (BN) layers
in the classifier as in Wang et al.|(2021a). Although it achieves effective test-time adaptation, it has
a limitation that it can be utilized only if there are BN layers in the trained classifier. The other
choice is to train a new classifier added on top of the frozen feature extractor during test time as in
Lee and Chung|(2021a)). We construct the new classifier by adding a randomly initialized adaptation
module as illustrated in Figure (1| During the test time, we train the adaptation module and predict
the label of the test data using prototype-based class distributions from the adaptation module. The
random initialization of the adaptation module may cause performance degradation of trained clas-
sifier. Thus, we consider an ensemble scheme (Wen et al., 2020; [YM. et al., 2020; Mesbah et al.}
2021) to alleviate the issues caused by the random initialization of the adaptation modules to obtain
more robust and accurate predictions. We train the adaptation modules independently and predict
the label of the test data using the average predicted class distribution from the adaptation modules.

3.2 SELF-TRAINING WITH NEAREST NEIGHBOR INFORMATION

TAST generates pseudo label distributions for unlabeled test data with the nearest neighbor informa-
tion and fine-tunes the adaptation modules with the pseudo label distributions. The whole adaptation
procedure of TAST is described in Algorithm[I] We first update the support set S and filter out the
unconfident examples from the support set as in [Iwasawa and Matsuo| (2021). Then, we find N
nearby support examples of test data = in the embedding space of fg. We denote N'(z;S) as the set
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of nearby support examples of z,
N(z;8) := {z € S|d(fo(z), 2) < B}, 2)

where [, is the distance between = and the N,-th nearest neighbor of x from S in the embedding
space of fy. Each adaptation module is trained individually during test time. For the ¢-th adaptation
module h¢iﬂ we compute the prototype representations (; 1, i4i 2, - - - , (i, in the embedding space
of hy, o fo with a support set S = {S',S2,--- |SK}, e, pip = @ > sesk hg,(2), for k=
1,2,..., K. With the prototypes, we compute the prototype-based predicted class distribution of the
nearby support examples in the embedding space of hy, o fy, i.e., for z € N(z;S), the likelihood
that the prototype-based classifier assigns z to the k-th class is computed as

proto eXp(_d(h¢i (Z)a ,Ui,k)/T)
k12 = S (U, () 0/ 7)° @

where 7 is the softmax temperatureﬂ With the nearest neighbor information, TAST generates a

pseudo label distribution pIA5T of z by aggregating prototype-based predicted class distribution of

the nearby support examples in NV'(z;S) as

1
PIAST (k|x) = Z 1]arg max pf™°(c|z) = k], 4)
s 2N (z;S) ¢
fork =1,2,..., K. Specifically, we use the one-hot class distributions for pseudo label generation

as in |Lee| (2013); [Sohn et al.| (2020). Then, we fine-tune the adaptation modules by minimizing
the cross-entropy loss between the predicted class distribution of the test example and the nearest
neighbor-based pseudo label distribution:

LTST(4,) = |Dlebt| Z CE(F™ST(-[), prolO( lz)), (5)
D\(.\\
) o S o) /) ©

B Ec exp(_d(htﬁi (fg('r»v /J'i,(:)/T) ’

where CE denotes the standard cross-entropy loss. We iterate the pseudo labeling and fine-tuning
processes for 1" steps per batch. We note that our method does not propagate gradients into the
pseudo labels as in|[Laine and Aila| (2017); Berthelot et al.|(2019). Finally, we predict the label of x
using the average predicted class distribution p;*>" from the adaptation modules, i.e.,

1 roto
PP (ke) = 5 D0 (kL) @
® 2eN (a39)
§ST — arg maxpTAST(C\l") = argmax — ZPTAST clx) ®)

Additionally, we consider a variant of TAST, named TAST-BN, that fine-tunes the BN layers instead
of adaptation modules. The support set stores the test data itself instead of the feature representa-
tions since the embedding space of the feature extractor steadily changes during the test time. The
pseudocode for TAST-BN is presented in Appendix

4 EXPERIMENTS

In this section, we show the effectiveness of our method compared to the state-of-the-art test-time
adaptation methods on two standard benchmarks, i.e., domain generalization and image corruption.
We compare TAST with the following baseline methods: (1) Pseudo Labeling (PL) (Lee} 2013)) fine-
tunes the trained classifier using confident pseudo labels based on classifier predictions; (2) PLCIf is
a modified version of PL that fine-tunes only the last linear classifier; (3) Tent (Wang et al., [2021a)

Detailed explanation about the adaptation modules is described in Section 4.1.1. and Appendix A.
3We set 7 manually to 0.1 inspired by [Oreshkin et al.[(2018) for experiments throughout this paper. More
experimental results with different 7 are summarized in Appendix[g
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Table 1: Average accuracy (%) using classifiers learned by ERM on the domain generalization
benchmarks. We use ResNet-18 and ResNet-50 as backbone networks. Bold indicates the best
performance for each benchmark. Underline indicates the best performance among the baseline
methods for each benchmark. Most of the baseline methods degrade the classification performance
of the trained classifiers on the benchmarks. However, our method consistently outperforms all the
baselines on all of the benchmarks.

Method N{lesl:goery Backbone VLCS PACS OfficeHome  Terralncognita  Avg

ERM 74.88+£0.46  79.29+0.77  62.10£0.31 40.62+1.19 64.22
+Tent 72.88+£0.82  83.894+0.54 60.86+0.39 33.70+£1.09 62.83
+TentAdapter 67.02£1.16  80.75£1.01  62.64+0.38 39.91£0.76 62.58
+TentCIf 72.96+£1.48 78.57£1.78 59.33+0.62 38.30+£3.44 62.29
+SHOT 65.24+2.29 82.36+0.63  62.58+0.39 33.57+£1.04 60.94
+SHOTIM ResNet-18 | 64.86+2.22  82.33+0.61  62.57+0.39 33.35£1.23 60.78
+PL 62.97+£2.72 70.98+1.78  58.20+3.21 37.44£7.20 57.40
+PLCIf 74.89+£0.61 78.11+2.30 61.924+0.41 41.78+£1.94 64.18
+T3A v 77.26+1.49 80.83+0.67 63.214+0.50 40.2040.60 65.38
+TAST (Ours) v 77.27+0.67 81.94+0.44 63.70+0.52 42.64+0.72 66.39
+TAST-BN (Ours) v 75.21£2.36 87.07+0.53 62.79+0.41 39.43+2.24 66.13
ERM 76.71£0.50 83.21%1.14 67.13+0.99 45.93£1.34 68.25
+Tent 72.96+1.27 85.16+£0.62  66.29+0.77 37.08+2.04 65.37
+TentAdapter 69.65+£1.17 83.69£1.16 67.914+0.89 43.89+1.25 66.29
+TentCIf 75.80£0.68  82.66+1.59  66.794+0.98 43.64£2.59 67.22
+SHOT 67.07£0.90 84.07£1.23  67.65+0.72 35.20£0.82 63.50
+SHOTIM ResNet-50 | 66.93+0.84 84.14+1.25 67.65+0.77 34.37£1.07 63.27
+PL 69.41+3.12 81.72+4.61 62.85£3.05 38.09+2.35 63.02
+PLCIf 75.65+0.88  83.33£1.59 67.01£1.00 46.6642.12 68.16
+T3A v 77.29£0.39 83.92+1.13  68.264+0.84 45.61£1.10 68.77
+TAST (Ours) v 77.66+0.48 84.11+1.22 68.63+0.70 47.431+2.09 69.46
+TAST-BN (Ours) v 73.52+1.37 89.16+0.47 68.88+0.50 41.474+2.88 68.26

fine-tunes only the parameters of the BN layers to minimize the prediction entropy of test data;
(4) TentAdapter is a modified version of Tent that adds a BN layer between the feature extractor
and the last linear classifier, and fine-tunes only the added BN layer; (5) TentCIf is a modified
version of Tent that fine-tunes only the last linear classifier instead of the BN layers; (6) SHOTIM
(Liang et al.| [2020) updates the feature extractor to maximize the mutual information between an
input and its prediction; (7) SHOT is a method that adds a pseudo-label loss to SHOTIM; (8) T3A
predicts the label of the test data by comparing distances between test data and the generated pseudo-
prototypes. Originally, SHOT is one of source-free domain adaptation methods which focus on the
offline setting, but we compare our method with the online version of SHOT for a fair comparison.

4.1 DOMAIN GENERALIZATION

The domain generalization benchmarks are designed to evaluate the generalization ability of the
trained classifiers to the unseen domain. The evaluation is performed by a leave-one-domain-out
procedure, which uses a domain as a test domain and the remaining domains as training domains.
We use the publicly released codeE]of T3A for the domain generalization benchmarks.

4.1.1 EXPERIMENTAL SETUP

Training setup We test TAST on four domain generalization benchmarks, specifically VLCS
(Fang et al.,[2013)), PACS (Li et al.,2017), OfficeHome (Venkateswara et al.,|2017)), and Terralncog-
nita (Beery et al.| 2018)). For a fair comparison, we follow the training setup including dataset splits
and hyperparameter selection method used in T3A. We use residual networks (He et al., [2016) in-
cluding batch normalization layers with 18 and 50 layers (hereinafter referred to as ResNet-18 and
ResNet-50, respectively), which are widely used for classification tasks. We train the networks
with various learning algorithms such as ERM and CORAL (Sun and Saenko, [2016)). Details about
the learning algorithms are explained in Appendix |Al The backbone networks are trained with the

*nttps://github.com/matsuolab/T3A
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Table 2: Ablation studies to evaluate the effects of the number of adaptation module and the near-
est neighbor information. We use ResNet-18 trained by ERM. TAST-N is a method that removes
adaptation modules from TAST.

Method | N. | VLCS PACS OfficecHome  Terralncognita ~ Avg
ERM - 74.884+0.46  79.29+0.77 62.1040.31 40.624+1.19 64.22
+T3A - 77.26+£1.49 80.83+0.67 63.214+0.50 40.20+£0.60 65.38
+TAST-N (Ours) - 76.20+1.87 81.624+0.52  63.5440.63 41.88+1.21 65.81

1 75.20£0.77  81.23£0.70  62.09+0.64 42.594+0.41 65.28
5 | 76.68+0.77 81.81+0.13  63.51+£0.59 42.68+0.80 66.17
10 | 77.43+£0.62 81.56+0.85 63.39£0.56 42.60+0.63 66.25
20 | 77.27£0.67 81.944+0.44  63.70+0.52 42.64+0.72 66.39

+TAST (Ours)

default hyperparameters introduced in |Gulrajani and Lopez-Paz| (2021). We use a BatchEnsemble
(Wen et al., 2020), which is an efficient ensemble method that reduces the computational cost by
weight-sharing, for the adaptation modules of TAST. The output dimension of each adaptation mod-
ule is set to a quarter of the output dimension of the feature extractmﬂ e.g., 128 for ResNet-18. We
use Kaiming normalization (He et al.,|2015) for initializing the adaptation modules at the beginning
of test time. We run experiments using four different random seeds. More details on the bench-
marks and the training setups can be found in Appendix [A] Moreover, a discussion on computation
complexity such as runtime comparison is summarized in Appendix [A]

Hyperparameters For a fair comparison, the baseline methods use the same hyperparameters as
in|Iwasawa and Matsuo|(2021). TAST uses the same set of possible values for each hyperparameter
with baseline methods. TAST involves four hyperparameters: the number of gradient steps per
adaptation 7', the number of support examples per each class M, the number of nearby support
examples Vg, and the number of adaptation modules N.. We define a finite set of possible values
for each hyperparameter, Ny € {1,2,4,8}, T € {1,3}, and M € {1,5,20,50,100, —1}, where
—1 means to storing all samples without filtering. N, is set to 20. We use Adam optimizer with a
learning rate of 0.001. More details on the hyperparameters can be found in Appendix[A] Moreover,
refer to Appendix [C|for the sensitivity analysis on hyperparameters including the test batch sizes.

4.1.2 EXPERIMENTAL RESULTS

In Table[I] we summarize the experimental results of test-time adaptation methods using classifiers
trained by ERM. Our method consistently improves the performance of the trained classifiers by
2.17% for ResNet-18 and 1.21% for ResNet-50 on average, respectively. TAST also outperforms
the baseline methods including the state-of-the-art test-time adaptation method T3A. Compared
to T3A, TAST shows better performance by 1.01% for ResNet-18 and 0.69% for ResNet-50 on
average, respectively. Especially, we find that our method significantly improves the performance
of the trained classifiers in the Terralncognita benchmark, which is a challenging benchmark in
that the trained classifier shows the lowest prediction accuracy. We observe that the performance
of the baseline methods, which fine-tune the feature extractors, is lower than that of the classifiers
without adaptation, whereas TAST-BN improves the performance of the trained classifiers. Refer to
Appendix [C] for the experimental results of test-time adaptation methods using classifiers trained by
different learning algorithms such as CORAL (Sun and Saenkol 2016) and MMD (Li et al., 2018).

Effect of nearest neighbor information To understand the effect of nearest neighbor information,
we compare Tent and TAST-BN, both of which fine-tine the BN layers. To adjust the BN layers,
Tent uses entropy minimization loss, whereas TAST-BN uses the pseudo-label loss using the nearest
neighbor information. As shown in Table |1} the performances of TAST-BN is better than those of
Tent by 3.3% for ResNet-18 and 2.89% for ResNet-50, respectively. In addition, we consider an
ablated variant of TAST, named TAST-N, that removes adaptation modules from TAST. TAST-N is
optimization-free and has the same support set configuration as T3A. T3A uses the prototype-based
prediction of the test data itself, whereas TAST-N uses the aggregated predicted class distribution

>More experimental results with different output dimensions are summarized in Appendix
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of the nearby support examples. As shown in Table [2] the prediction using the nearest neighbor
information leads to a performance gain of 0.43% on average.

Effect of adaptation modules TAST adds randomly initialized adaptation modules on top of the
trained feature extractor as illustrated in Figure[T|and trains the adaptation modules during test time.
For each test batch, we update the adaptation modules 7' times using pseudo label distributions
considering nearest neighbor information. We set 7" to 1 or 3 throughout all experiments. To verify
that the few step updates are sufficient to train the adaptation modules, we conduct experiments with
different T € {0, 1, 2,4, 8}. We test on PACS using classifiers learned by ERM while M and N are
set to —1 and one of {1,2,4,8}. We summarize the experimental results in Figure [2 We observe
that the performance of the adapted classifier is better than that of the non-adapted classifier (i.e.,
T = 0) and robust to changes in 7. Hence, we conjecture that we can obtain a sufficiently good
adaptation module with a few-step updates similar to|Lee and Chung| (2021a)).

In addition, to investigate the effect of adaptation modules, we test TAST with a varying number of
adaptation modules, e.g., N, € {1,5,10,20}. In Table |2} we find that utilizing a single adaptation
module leads to degraded performance than TAST-N. However, TAST with multiple adaptation
modules shows improvement over TAST-N and T3A on average.

0810 Method CIFAR-10C  CIFAR-100C
g 0805 No adaptation 29.14 60.35
g | +SHOT 15.32 41.54
g o0.800 +Tent 13.95 39.04
o705 +PL 22.34 40.06
' N +T3A 26.68 58.28
0.790 —— 1 2 4 —— 8 +TAST (Ours) 26.61 60.74
0 1 2 3 4 5 6 7 8 +TAST-BN (Ours) 13.08 37.82
T +TTT++ 14.33 42.38

Figure 2: Sensitivity analysis about N, the num-
ber of nearby support examples, and T', the num- Table 3: Average error rate (%) on CIFAR-
ber of gradient steps per adaptation. Average ac- 10C/100C. We test on the highest level of image
curacy on test environment A using classifiers corruption. Bold indicates the best performance
learned by ERM on PACS when M is setto —1. for each image corruption.

4.2 IMAGE CORRUPTION

The image corruption benchmark is designed to evaluate the robustness of a classifier to unseen
corrupted samples when the classifier is trained using clean samples. We use the publicly released
code E] of TTT++ (Liu et al., |2021) for the image corruption benchmark. For a fair comparison, we
compare our method with the online version of TTT++, which fine-tunes the feature extractor using
the instance discrimination task along with matching the feature statistics of training and test time.

4.2.1 EXPERIMENTAL SETUP

We test the robustness of TAST to image corruption on CIFAR-10/100 (Krizhevsky and Hinton,
2009), which is composed of generic images consisting of 10/100 classes, respectively. To make
a corrupted test dataset, we apply 15 types of common image corruptions (e.g., Gaussian noise,
shot noise) to the test dataset. We call the corrupted dataset CIFAR-10C/100C (Hendrycks and
Dietterich, |2019). We use the highest level (i.e., level-5) of image corruption for this experiment.
We use ResNet-50 as a backbone network. For a fair comparison, we use the released trained model
of Liu et al.|(2021) and the same hyperparameters whenever possible. The number of nearby support
examples N is set to 1, the number of gradient steps per adaptation 7 is set to 1, the number of
adaptation modules N, is set to 20, the number of support examples per each class M is set to
100, and the test batch size is set to 128. More experimental results with other hyperparameter
combinations are summarized in Appendix [C|

Shttps://github.com/vita-epfl/ttt-plus—plus
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4.2.2 EXPERIMENTAL RESULTS

The overall experimental results on CIFAR-10C/100C are summarized in Table 3] We note that
the best TTA method which achieves effective adaptation in the image corruption benchmarks can
be different from that of the domain generalization benchmarks, since the two benchmarks deal
with very different types of domain/distribution shifts. From Table [T] and [3] we can observe that
the test-time adaptation algorithms using the frozen feature extractor such as T3A and TAST show
poor performance for image corruption benchmarks but better performance for domain generaliza-
tion benchmarks, compared to those using the adapted feature extractor such as Tent and TAST-BN.
Specifically, TAST-BN outperforms all the TTA methods and TTT++, and it achieves performance
gains of 1.25% for CIFAR-10C and 4.56% for CIFAR-100C on average, compared to Tent, respec-
tively. Refer to Appendix [E]for the detailed experimental results on 15 types of image corruptions.

5 RELATED WORKS

Test-time training methods Test-time training methods fine-tune trained classifiers by the self-
supervised learning task used at training time. |Sun et al.|(2020) uses a rotation prediction task (Feng
et al.,2019)), which predicts the rotation angle of the rotated images. [Liu et al.[{(2021) use an instance
discrimination task (Chen et al., [2020). However, TTA methods, our focus in this paper, have no
access to any information related to the training procedure. We empirically demonstrated that our
method outperforms the existing test-time training methods on the image corruption benchmark even
without the knowledge of the self-supervised learning task.

Source-free domain adaptation methods Source-Free Domain Adaptation (SFDA) methods
(Liang et al., |2020; Ishii and Sugiyamal 2021} |Yeh et al.} 2021} [Eastwood et al.| |2022) aim to adapt
trained classifiers to unseen test domains without training dataset. SFDA methods mainly focus on
the setting that they can access the whole unlabeled test data, whereas TTA methods can access the
online unlabeled test data only. Recently, several SFDA methods using nearest neighbor informa-
tion (Tang et al., 2021; |Yang et al., 2021) have achieved good performances in domain adaptation
benchmarks. Especially, NRC (Yang et al.l[2021) is built on the similar intuition that a test data and
its nearest neighbors share the same label under domain shift. However, unlike NRC, TAST utilizes
adaptation module structures and prototype-based classification.

Ensemble scheme in test-time adaptation BACS (Zhou and Levinel |2021)), which incorporates
a Bayesian inference framework into the TTA setting, adapts the trained model to an unseen test
domain with a regularization term induced by a posterior approximated at training time. BACS
constructs the ensemble of predictive models to obtain diverse labeling for uncertainty estimates at
the beginning of training time and trains the models independently during training time. During test
time, BACS averages the predictions of the adapted ensemble members. On the other hand, TAST
builds an ensemble of adaptation modules to alleviate the issues caused by the random initialization
of the modules at the beginning of test time.

6 DISCUSSION

We proposed TAST to effectively adapt trained classifiers during test time considering nearest neigh-
bor information. We demonstrated the efficiency and effectiveness of our method by conducting
experiments on domain generalization and image corruption benchmarks. To the best of our knowl-
edge, our work is the first one that utilizes an ensemble scheme that is built at test time for test-time
adaptation. We expect that adaptation using the ensemble scheme can be combined with the other
methods in source-free domain adaptation or test-time training.

One of the limitations of TAST is the extension to large-scale benchmarks. TAST and TAST-BN
require good prototypes in the embedding space for prediction and pseudo-labeling. To obtain good
prototypes, TAST and TAST-BN construct and update the prototypes using the encountered pseudo-
labeled data during the test time. This prototype construction/update, however, can be ineffective
for the large-scale benchmarks especially for too many classes and small batch sizes. Detailed
discussion of TAST/TAST-BN on large-scale benchmarks and possible improvement of TAST-BN
for large-scale benchmarks is described in Appendix D}
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A BENCHMARK AND IMPLEMENTATION DETAILS

A.1 DOMAIN GENERALIZATION BENCHMARKS

We test on four domain generalization benchmarks, specifically VLCS (Fang et al.| [2013), PACS
(Li et al., |2017), OfficeHome (Venkateswara et al.l [2017), and Terralncognita (Beery et al.l 2018).
VLCS is composed of photographic images from four different datasets (PASCAL VOC207 (Ever-
ingham et al}2010), LableMe (Russell et al., [2008)), Caltech 101 (Fei-Fei et al., 2007, and SUN09
(Chot et al., [2010)), consisting of 10,729 examples of 5 categories (bird, car, chair, dog, and per-
son). PACS is composed of images of objects from four different domains (photo, art, cartoon, and
sketch), consisting of 9,991 examples of 7 categories (dog, elephant, giraffe, guitar, horse, house,
and person). OfficeHome is composed of images of objects in the office and home from 4 different
domains (artistic images, clip art, product, and real-world images), consisting of 15,588 examples
of 65 categories (e.g., alarm clock, backpack, and batteries). Terralncognita is composed of wild
animal images taken from 4 different locations (L100, L38, L43, and L46), consisting of 24,788
examples of 10 classes.

A.2 IMPLEMENTATION DETAILS ON DOMAIN GENERALIZATION BENCHMARKS

We follow the dataset splits and the hyperparameter selection method used in T3A. We split each
dataset of training domains into training and validation sets. The training and validation sets are used
for network training and hyperparameter selection, respectively. Specifically, we split each dataset
into 80% and 20% and use the smaller set as the validation set. We choose the hyperparameters that
maximize the validation accuracy of the adapted classifier. This hyperparameter selection method
is called the training-domain validation. We train backbone networks using four different learning
algorithms: ERM, CORAL, MMD, and Mixup. ERM is explained in Section 2 of the manuscript;
CORAL aims to obtain domain-invariant representations by aligning covariance matrices of train-
ing data and test data; MMD tries to match the training and test data distributions using the MMD
measure; Mixup trains classifiers using mixed images/features and mixed labels created by linear in-
terpolation of examples from the training domains. We run experiments using four different random
seeds: 0, 1, 2, and 3.

All the hyperparameters for training and test-time adaptation are taken from T3A and DomainBed.
We train the network with Adam optimizer with default hyperparameters introduced in DomainBed,
e.g., alearning rate of 0.00005, a weight decay of 0, a dropout rate of 0, and a batch size of 32. In ad-
dition to the hyperparameters for test-time adaptation described in Section 4.1.1 of the manuscript,
there is one more hyperparameter /3 for the baseline methods. The learning rate for test-time adap-
tation is obtained by multiplying S to the learning rate used in training time. We set the confidence
threshold for PL. and PLCIf to 0.9. The possible values for 8 are set to 0.1, 1.0, and 10.0. For
TAST-BN, we restrict the size of the whole support set to 150 due to effective memory usage and
reduced runtime since the test data and the support examples are fed into the classifier for every test
batch.

A.3 IMPLEMENTATION DETAILS ON IMAGE CORRUPTION BENCHMARKS

We use the same hyperparameters introduced in TTT++. We train ResNet-50 for 1000 epochs using
the classification and instance discrimination tasks jointly. The weight on the instance discrimination
task for balancing the two tasks is set to 0.1. For the instance discrimination task, we use the
same data augmentation schemes of TTT++, e.g., RandomResizeCrop, RandomHorizontalCrop,
HorizontalFlip, ColorJitter, RandomGrayscale, and Normalization. We set the batch size for training
the networks to 256. At test time, PL, SHOT, and TTT++ use SGD optimizer with a learning rate of
0.001 and a momentum of 0.9. On the other hand, Tent, TAST, and TAST-BN use Adam optimizer
with a learning rate of 0.001. We set the batch size to 128 during the test time due to effective
memory usage. We run experiments using four different random seeds: 0, 1, 2, and 3. We set the
confidence threshold for PL and PLCIf to 0.9. For PL, we adjust only the BN layers in the trained
model as in Tent. For TAST-BN, we restrict the size of the whole support set to 200. However, even
in CIFAR-100C experiments, we can store only two support examples per class if the support set
size is fixed at 200. Thus, we do not restrict the size of support set for TAST-BN on CIFAR-100C.
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A.4 RUNTIME COMPARISON

Table 4: Mean runtime (sec) to adapt classifiers that use ResNet-18 as a backbone network with a
single hyperparameter combination (7' =1, Ny = 8, M = —1).

Method VLCS PACS OfficeHome Terralncognita
Tent 53.32  15.17 50.56 76.48
TentAdapter 0.59 0.43 0.64 0.92
TentCIf 0.52 0.40 0.60 0.81
SHOT 55.10  20.97 54.66 77.08
SHOTIM 54.82  20.73 54.63 77.00
PL 55.03 20.75 54.53 77.02
PLCIf 0.57 0.43 0.62 0.92
T3A 0.62 0.58 3.44 1.61
TAST (Ours) 7.71 6.92 12.74 23.69
TAST-BN (Ours) 81.54 73.93 114.33 179.48

We conduct our experiments on TITAN XP. We report the average runtime spent to adapt classifiers
that use ResNet-18 as a backbone network in Tabled] We note that TAST, which updates the support
set and the adaptation modules, requires only 1/3 to 1/4 running time compared to the methods that
update the entire feature extractors, e.g. SHOT or SHOTIM. On the other hand, TAST-BN, which
updates the support set as well as the BN layer, requires more running time (about 2x) compared to
SHOT or SHOTIM. The overhead is not significant though due to the online setting.

A.5 DETAILS ABOUT ADAPTATION MODULES

We use BatchEnsemble (BE) for the adaptation modules of our method. BE is a simple and efficient
ensemble method that greatly reduces the computational cost by weight-sharing. Each ensemble
member of BE is composed of two layers with a shared weight and rank-one factors. Specifically,
the weight matrix of j-th ensemble member is W o r;s7 where W is a shared weight and r;s7 is
the rank-one factor of j-th ensemble member. Although the existing deep ensemble (DE) methods
do not share any weights, all ensemble members share W, and thus BE reduces the number of
parameters compared to DE. Moreover, unlike DE, only the last layer of all ensemble members of
BE are different, and thus it can be easily vectorized and trained simultaneously. Therefore, BE
greatly reduces the computation cost.

The adaptation module structure is used in many fields such as self-supervised learning (which is
often called “projection head”). Although the existing methods mainly focus on training time, TAST
focuses on test time. For example, SImCLR (Chen et al., [2020) adds a projection head on the top of
a feature extractor at the beginning of training time and trains the feature extractor and the projection
head with an instance discrimination loss. After the training time, for downstream tasks, SimCLR
uses feature extractor outputs rather than projection head ones. However, TAST adds adaptation
modules at the beginning of test time and trains the modules with the nearest neighbor-based pseudo-
label distribution. To predict the label of test data, we use the averaged predicted class distribution
from the adaptation modules.

B PSEUDOCODE FOR TAST-BN

We present the pseudocode for TAST-BN in Algorithm [2] TAST-BN fine-tunes the BN layers in the
feature extractor instead of adaptation modules. Since the embedding space of the feature extractor
steadily changes, the support set stores the test data itself instead of the feature representations.
Formally, a support set S; = {S},S?,...,SK} is a set of test samples until time ¢. The support set
is initialized as an empty set. At the time ¢, the support set is updated as

€))

Sk _ Sk, u{x}, ifargmax.p.=k
t SHIH otherwise,
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Algorithm 2 TAST-BN

Require: Feature extractor fy, test batch B, support set S, number of gradient steps per adaptation 7', number
of support examples per each class M, number of nearby support examples N, learning rate o
Ensure: Predictions g, forallz € B
Update the support set S with eq. (9) in Section B
Retrieve the nearest neighbors N (z; S) for all z € B with eq. in Section B
fort=1:Tdo
Compute prototypes { i }1_; using the support set in the embedding space of fo
for z € N(z;S) do

proto exp(—d(fo(2),k)/T) —
PPOR]2) = st ey R =12 K

end for
for x € B do
AT (K|z) 1\% > .eN (o) Llarg max, P clz) = k], k=1,2,....,K

proto Sxp(—dlfo (@)os)/7)
PR le) < = aat=ats @ R =12 K

end for
0« 06— QVQﬁ ZmEE CE(ﬁTAST(_|x)’ppr0t0(_|m))
end for
for x € B do
PP RE) = 5 Doen POKI2), k= 1,2, K

TAST(

Je  argmax,p clz)

end for

where py is the likelihood the classifier assigns x; to the class k. Using the support set, we retrieve
N nearby support examples of = in the embedding space of fy, i.e.,

N(w;S) :={z € Sld(fo(x), fo(2)) < Pa}, (10)

where 3, is the distance between x and the Ng-th nearest neighbor of = from S in the embedding
space of fyp. Then, we generate a pseudo label distribution for the test data and fine-tune the BN
layers to match the nearest neighbor-based pseudo label and a prototype-based class distributions
for the test data with the same procedure described in Section 3 of the manuscript.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTAL RESULTS USING CLASSIFIERS TRAINED BY DIFFERENT LEARNING
ALGORITHMS

In Table 5] we show the results of test-time adaptation methods using classifiers trained by three
different learning algorithms, namely CORAL, MMD, and Mixup. TAST consistently enhances the
performance of the trained classifiers on the benchmarks by 1.73%, 1.81%, and 2.30% on average
using the classifiers trained by CORAL, MMD, and Mixup, respectively. We find that TAST has a
minor performance gain compared to the results in Table 1 of manuscript, whereas it surpasses T3A
on most of benchmarks. Compared to T3A, TAST shows better performance on the benchmarks by
0.21%, 0.14%, and 0.40% on average with the classifiers trained by CORAL, MMD, and Mixup,
respectively. Refer to Section 4 in Appendix [E] for the experimental results of the other baseline
methods.

C.2 FINE-TUNING BOTH ADAPTATION MODULES AND BN LAYERS SIMULTANEOUSLY

We consider a method, named TAST-both, that fine-tunes both the attached adaptation modules
and the BN layers in the feature extractor simultaneously. Table [6|reports the experimental results
using classifiers learned by ERM on domain generalization benchmarks. We use ResNet-18 as a
backbone network. As shown in Table [6] TAST-both shows worse performance than TAST-BN and
TAST. We conjecture that the random initialization of adaptation modules and the changes in feature
representation due to BN layer training negatively affect the learning of the other layers.
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Table 5: Average accuracy (%) on domain generalization benchmarks using classifiers trained by
different learning algorithms, namely CORAL, MMD, and Mixup. We use ResNet-18 as a back-
bone network. Bold indicates the best performance for each benchmark. TAST and TAST-BN
consistently improve the performance of the trained classifiers and they outperform T3A on most of
the benchmarks.

Method VLCS PACS OfficeHome Terralncognita  Avg
CORAL 74.00+1.13  81.00£0.79  62.78+0.06 36.51£2.35 63.57
+T3A 75.49£1.67 82.75£0.51 63.72+0.32 38.39+1.39 65.09
+TAST (Ours) 74.82+2.43 83.16£0.81  64.00+£0.25 39.21+1.75 65.30
+TAST-BN (Ours)  77.01+£0.36  87.21+0.57 62.98+0.23 37.45+£1.11 66.16
MMD 74.90+0.50 81.06£0.92  62.20+0.48 35.73£2.70 63.47
+T3A 77.28+0.45 82.52+0.53  63.34£0.55 37.40+1.86 65.14
+TAST (Ours) 76.21+£0.79 83.29£0.26  63.49+0.49 38.124+2.47 65.28
+TAST-BN (Ours)  76.06+0.89 86.35+0.76  63.22+0.26 39.46+1.63 66.27
Mixup 74.97+£0.86 78.29+£0.88  61.83+0.88 41.04+1.01 64.03
+T3A 78.43+0.76 81.91+£0.54 63.49£0.86 39.8940.90 65.93
+TAST (Ours) 77.19+0.80 82.85£0.36  63.83+0.74 41.44+1.67 66.33

+TAST-BN (Ours)  76.89+0.86 87.14+0.56 62.09£0.86 42.70£1.90 67.21

Table 6: Average accuracy (%) using classifiers trained by ERM on domain generalization bench-
marks. We use ResNet-18 as a backbone network. TAST-both is a method fine-tunes both the
attached adaptation modules and the BN layers simultaneously. TAST-both shows worse perfor-
mances than TAST-BN and TAST.

Method | Ne | VLCS PACS OfficeHome  Terralncognita | avg
ERM - 74.88+0.46  79.30+0.77  62.0940.31 40.634+1.19 64.22
+T3A - 77.26+1.49 80.83+0.67 63.214+0.50 40.204+0.60 65.38
+TAST-N - 76.20+1.87 81.62+0.52  63.5440.63 41.88+1.21 65.81
+TAST-BN - 75214236  87.07+£0.53  62.79+0.41 39.43+2.24 66.13
1 75.20+0.77 81.23+0.70  62.0940.64 42.594+0.41 65.28
+TAST 5 76.68+£0.77 81.81+0.13  63.5140.59 42.68+0.80 66.17
10 | 77.43£0.62 81.56+£0.85 63.391+0.56 42.60+0.63 66.25
20 | 77.2740.67 81.94+0.44 63.70£0.52 42.64+0.72 66.39
73.35+0.57 84.85+0.56 61.70%0.39 39.2742.05 64.79
+TAST-both 5 73.88+£0.35 84.994+0.63 61.81+0.44 39.16+1.57 64.96
10 | 73.66£1.57 85.13+£0.27 62.03+0.52 38.50+1.25 64.83

20 | 75.16+0.17 85.52£0.05 62.01£0.67 38.54+1.52 65.31

C.3 EXPERIMENTAL RESULTS USING DIFFERENT HYPERPARAMETERS ON CIFAR-10C

In Table 4 of the manuscript, we report the experimental results when N and M are set to 1 and 100
on the CIFAR-10C, respectively. In Table[/] we summarize the experimental results using different
combinations of Ny and M on the CIFAR-10C. There are two observations in Table [/} (1) T3A has
shown the best performances when M is set to 100; and (2) TAST and TAST-BN perform better
with smaller NV,.

C.4 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

We follow the hyperparameter selection method used in T3A. We split the dataset of training do-
mains into training and validation sets. The validation set is used to select hyperparameters that
maximize the validation accuracy of the adapted classifier. On the other hand, for the image cor-
ruption benchmark, we use manually determined hyperparameters as in Tent. Thus, we summarized
experimental results on other combinations of hyperparameters in Table [SHTT]

Additionally, we investigate the sensitivity of two hyperparameters which are set manually through-
out all experiments, the softmax temperature 7 and the output dimension of adaptation modules
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Table 7: Average error rate (%) in the online setting on CIFAR-10C with different hyperparameters.

Method | M N, | gauss brit contr defoc elast fog frost glass impul jpeg motn pixel shot snow zoom
No adaptation | - - | 4873 701 1327 11.84 2338 2941 2824 50.78 57.00 19.46 2338 47.88 44.00 2193 10.84
+T3A 1 - | 4456 828 1327 1345 2218 2859 27.18 4643 5511 1896 2259 4292 4032 21.77 10.53
+T3A 5 - | 4465 794 1411 1334 2267 29.00 2857 4592 56.03 19.67 24.16 40.18 40.55 22.61 12.02
+T3A 20 - | 4426 772 13.82 1335 2224 2871 2836 4549 5587 1934 2376 39.82 4038 2244 1220
+T3A 50 - | 42.82 743 1365 1236 2215 2854 27.69 4442 5491 19.13 22.83 3833 3853 22.09 11.15
+T3A 100 - | 41.87 730 1361 1199 2206 2852 27.13 4410 5426 18.71 2254 3753 37.84 2197 10.72
+T3A -1 - | 4383 733 1356 11.63 22.11 29.07 27.56 46.79 55.16 1873 2277 41.16 39.58 2223 10.34
+TAST 1 1 | 4724 868 1293 1674 2231 28.66 2723 4876 5597 1921 2263 4832 4280 21.57 10.34
+TAST 5 1 ]47.19 978 1588 1558 2430 30.94 29.70 48.66 58.05 2149 27.57 41.00 4421 24.58 1475
+TAST 5 2 | 4808 11.34 17.73 17.10 2593 31.99 30.54 49.77 5854 2372 29.55 44.09 4555 2623 1641
+TAST 5 4 | 4853 1095 1725 16.82 2558 31.78 30.19 50.00 58.86 23.67 29.35 4337 4535 2563 16.26
+TAST 20 1 | 4358 774 1401 1297 2190 2873 2776 4562 5520 19.78 23.63 3877 3922 2273 1213
+TAST 20 2 | 4438 822 1451 1373 2228 29.07 28.66 4630 5592 2049 2439 40.60 4038 2337 12.76
+TAST 20 4 | 4441 819 1426 13.60 2222 29.05 28.81 46.17 56.05 20.09 24.24 4033 4039 23.18 12.67
+TAST 50 1 | 4247 737 1365 12.14 2148 2830 26.88 4499 5452 1926 2276 3759 37.73 22.06 11.03
+TAST 50 2 | 4279 7.62 1411 1230 21.57 2873 2750 4526 55.18 1996 23.10 3899 3843 2243 11.25
+TAST 50 4 | 42.89 754 1390 12.15 2145 2851 2748 4510 5493 1971 22.87 3894 3821 2229 11.02
+TAST 100 1 | 4202 734 1355 1186 21.38 2858 2651 4499 5419 1896 2255 37.08 37.62 21.84 10.64
+TAST 100 2 | 4235 7.61 13.89 11.95 21.50 28.75 27.06 4515 5455 1958 2277 38.09 37.64 2199 10.73
+TAST 100 4 | 4234 750 13.80 11.72 2145 2832 2689 4475 5446 19.18 2254 38.00 37.61 2197 10.67
+TAST -1 1 |4520 744 1405 1155 22.87 30.19 2787 5028 57.07 19.65 2295 41.99 4135 2265 10.20
+TAST -1 2 | 4486 745 1388 11.62 2203 29.38 28.03 50.37 5825 20.02 2273 4267 41.04 2248 10.30
+TAST -1 4 14493 736 1364 11.17 21.57 2882 28.17 49.63 5874 19.64 2241 4338 41.02 22.15 9.86
+TAST-BN 1 1 ] 1946 1195 11.02 1284 21.54 1938 16.64 26.03 2776 1793 1529 14.01 19 17.94 1178
+TAST-BN 5 1 | 1621 84 848 956 1792 1559 13.06 23.1 2368 1358 1279 11.06 14.85 14.02 836
+TAST-BN 5 2 1726 9.27 923 1051 1951 16.17 1386 2432 2469 1457 13.81 12.05 1598 15.06 895
+TAST-BN 5 4 | 1889 1029 11.05 1323 20.66 1699 1479 2495 26.1 1612 17.02 13.57 1842 17.11 10.22
+TAST-BN 20 1 | 1491 768 781 862 1681 1510 1225 21.82 2254 1238 11.67 1034 13.77 1299 1757
+TAST-BN 20 2 15.11 785 7.96 875 17.00 15.02 1232 2207 2254 1257 1199 1050 1398 13.12 7.70
+TAST-BN 20 4 | 1500 798 800 871 1687 14.89 1224 2188 2243 1255 11.89 1047 1406 13.06 7.59

dy. We set 7 and dy to 0.1 and d, /4, where d, is the output dimension of the feature extractor.
In Table [BTT] we report the average accuracy of the adapted classifier by TAST with the different
combinations of 7 and dy. In the experiments, we use ResNet-18 as a backbone network trained by
ERM on PACS, which is one of the domain generalization benchmarks. We experimentally show
that the performance of TAST is robust to changes in 7 and d,. We especially think that the clas-
sification performance of TAST is not significantly affected by changes in 7 because 7 affects both
the prototype-based predicted class distribution of test data and the new pseudo-label distribution
using nearest neighbor information and then we train the adaptation modules with the cross-entropy
loss affected by 7 only a few times per each test batch during test time. Moreover, we can observe
a similar classification performance regardless of the dimension of adaptation modules similar to
Chen et al.|(2020).

Table 8: Sensitivity analysis about the softmax temperature 7 and the output dimension of adap-
tation modules dg. Average accuracy on test environment A using classifiers learned by ERM on
PACS.

. dg
testenv:A d. )2 d./A(used) d./8  d./16
10 | 0.8025 08028 08024 08023 0.8026
1 0.8034 08038 08029  0.8034 0.8034

7 0.1 (used) | 0.8031 0.8038 0.8056 0.8038  0.8034
0.01 0.8026  0.8018 0.8025 0.8028 0.8023
0.001 0.8020  0.8030 0.8023 0.8019  0.8001

We used the test batch size as in T3A and Tent for domain generalization and image corruption
benchmarks, respectively, as described in Appendix [A]and Section 4 of the manuscript. We summa-
rize experimental results using different test batch size. We conduct experiments using classifiers,
which have ResNet-18 backbone networks, learned by ERM on PACS. As shown in Table @ we
can find that Tent and PL show reduced performance in experiments using smaller test batch size,
but T3A, TAST, and TAST-BN are robust to changes in test batch size.
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Table 9: Sensitivity analysis about the softmax temperature 7 and the output dimension of adap-

tation modules dg. Average accuracy on test environment C using classifiers learned by ERM on
PACS.

) dg
testenv:C d,  d.j2  d.jA(used) d./8  d./16
10 | 07842 07838 07841 07838 0.7835
1 07830 07836 07829  0.7837 07836

7 0.1 (used) | 0.7817 0.7815 0.7826 0.7816  0.7824
0.01 0.7810  0.7816 0.7842 0.7832  0.7825
0.001 0.7811  0.7796 0.7802 0.7806  0.7803

Table 10: Sensitivity analysis about the softmax temperature 7 and the output dimension of adap-

tation modules dy. Average accuracy on test environment P using classifiers learned by ERM on
PACS.

. dg
testenv:P d.  d.j2  d./A(used) d./8 d./16
10 | 09611 09611 09614 09613 0.9609
1 09614 09614 09611 09614 09616

7 0.1 (used) | 0.9615 0.9620 0.9644 0.9613  0.9606
0.01 0.9621  0.9609 0.9613 0.9606  0.9604
0.001 09611 0.9615 0.9607 0.9606 0.9613

Table 11: Sensitivity analysis about the softmax temperature 7 and the output dimension of adap-
tation modules dy. Average accuracy on test environment S using classifiers learned by ERM on
PACS.

. dg
testenv:S d. )2 d./A(used) d./8  d./16
10 | 07180 07208 07186 07155 0.7185
1 07175 07214 07180 07211 0.7202

7 0.1 (used) | 0.7211 0.7222 0.7252 0.7216  0.7220
0.01 0.7236  0.7232 0.7223 0.7225  0.7209
0.001 0.7246  0.7196 0.7251 0.7235  0.7225

Table 12: Ablation studies to evaluate the effects of the test batch size.

Batch size B

Methods 8 16 32 (used) 64 128

ERM 7931+ 075 79304076 79294077 79294076 79.28+0.70
+Tent 77524049 81.16:4£046 83.89+0.54 83.90+0.54 83.85+0.12
+SHOT 81444032 82124075 82361063 83184034 82.950.33
+PL 67904426 70.33+3.53 70984178 77.5242.89 78.90+0.39
+T3A 81214076 81224069 80831067 81204073 81.27+0.6
FTAST (ours) 81.8140.35 81.52+1.04 81.94+044 81924087 81.69+0.64
+TAST-BN (ours) | 86.78-0.78 86.66-1.24 87.07-0.53 86.90-0.49 86.92+0.42

D TAST oN IMAGENET-C

ImageNet-C is an image corruption benchmark such as CIFAR-10/100C, but it is a large-scale
benchmark composed of larger images from more diverse classes. ImageNet-C is challenging for
the existing test-time adaptation/training methods including TTT++. Also TAST and TAST-BN may
struggle with ImageNet-C, since TAST and TAST-BN require prototypes to represent each class in
the embedding space. To obtain good prototypes, a sufficient amount of data per class is required,
but we have no access to any labeled data due to TTA settings. Pseudo-labeling alleviates this issue
on CIFAR-10/100C, but not on ImageNet-C due to the following concerns:
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* The prototype updates of TAST and TAST-BN are based on the estimated labels of test
data by the classifier, not the ground-truth labels. Under test-time domain shift, classifier
bias may occur, which may result in assigning most test data only to a subset of classes.
As observed in (Chen et al.|(2022)), the classifier bias often occurs under the covariate shift
such as image corruption and style transfer. Then, even after a large number of batch
updates which cover all the ground-truth classes by at least one sample, some prototypes
may have not been updated since no previous test data has been classified to those classes.
For example, we found that for the experiments with Gaussian noise, it took 768 batches
out of 782 batches until all the prototypes were updated at least by once.

* Since the number of classes (1000) is much larger than the test batch size (64), few proto-
types for our method are updated per each test batch while the remaining prototypes remain
unupdated. It might affect the performance of the prototype-based classification. To ad-
dress this issue, it might require a batch size larger than 1000, which is impossible due to
the hardware cost.

When the number of classes (1000) is much larger than the test batch size (64), obtaining good
prototypes for TAST-BN can be difficult especially at the early stage of test time as explained above.
To alleviate the concerns, we consider a variant of TAST-BN, in which the prototypes are initialized
with the weight of the last linear classifier as in TAST and fixed during the test time. We call
this variant TAST-BN (w/ fixed prototypes). In Table [I3] we report the experimental results (test
accuracy) on ImageNet-C with severity level 5 when we set (N5, M, T) to (1,—1,1).

Table 13: Accuracy of TAST-BN (w/ fixed prototypes) on ImageNet-C

method [ brit contr defoc elast fog frost gauss glass impul  jpeg motn pixel shot snow zoom | avg
NoAdapt 0.5893  0.0543 0.1792 0.1695 02442 0.2331 0.0221 0.0982 0.0185 0.3165 0.1478 0.2061 0.0293 0.1689 0.2250 | 0.1801
TAST-BN (w/ fixed prototypes) | 0.6498 0.1926 0.1670 0.4495 0.4960 0.3422 0.1665 0.1645 0.1742 04183 02826 0.5040 0.1728 03615 0.4014 | 0.3295

Of course, one can still update the prototypes over the test time, but the performance gain from the
updating may not be as significant as before. Nonetheless, from the result of Table we can see
that the effective adaptation on ImageNet-C can be achieved with the combination of the prototype
approach and self-training (entropy minimization) method of TAST-BN (w/ fixed prototypes).

E FULL RESULTS

Table 14: Full results using classifiers trained by ERM for Table 1 of the manuscript on VLCS. We
use ResNet-18 as a backbone network.

Method C L S v Avg
ERM 94.70%1.33 63.791+1.30 67.90+1.97 73.15+1.37 74.88
+Tent 89.8242.89 61.98+1.10 6551191 74.21+1.61 72.88
+TentAdapter 79.8014.74 58.51+1.44 61.62+0.92 68.1411.74 67.02
+TentCIf 94.7541.43 63.7441.41 67.924+2.22 65.4046.91 72.96
+SHOT 91.4546.83 48.26+1.77 54.7542.59 66.51£1.25 65.24
+SHOTIM 90.2847.00 47.96+1.45 54.6642.47 66.524+1.19 64.86
+PL 93.574+2.24 53.8242.51 50.5849.50 53.9142.78 62.97
+PLCIf 94.6711.38 63.641+1.31 67.9042.21 73.3411.00 74.89
+T3A 97.5241.99 65.3242.24 70.70+3.48 75.51+1.75 77.26
+TAST (Ours) 99.1740.60 65.871+1.90 68.13+1.76 75.924+1.75 77.27

+TAST-BN (Ours) 92.6018.66 64.75+1.29 67.2743.14 76.231+3.73 75.21
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Table 15: Full results using classifiers trained by ERM for Table 1 of the manuscript on PACS. We
use ResNet-18 as a backbone network.

Method A C P S Avg
ERM 77.784+0.81 75.0941.22 95.1940.29 69.114+1.22 79.29
+Tent 82.21+£1.07 81.20+0.51 95.3240.33 76.824+1.97 83.89
+TentAdapter 78.8940.67 77.4510.82 95.7710.40 70.8942.75 80.75
+TentCIf 78.16£1.05 75.014+1.53 95.50+0.35 65.6015.96 78.57
+SHOT 81.0940.86 79.68+0.91 96.18+0.27 72.4842.04 82.36
+SHOTIM 81.1040.90 79.66+0.95 96.18+0.27 72.354+2.03 82.33
+PL 76.421-4.89 61.051+5.48 95.70+0.56 50.754+8.79 70.98
+PLCIf 79.09+1.41 75.461+2.93 95.431+0.32 62.48+7.31 78.11
+T3A 78.8140.97 77.141+1.20 95.9240.36 71.4441.63 80.83
+TAST (Ours) 80.5610.53 78.261+0.99 96.4410.20 72.5240.77 81.94

+TAST-BN (Ours) 86.4910.20 83.70+2.57 97.23+0.11 80.8511.42 87.07

Table 16: Full results using classifiers trained by ERM for Table 1 of the manuscript on OfficeHome.
We use ResNet-18 as a backbone network.

Method A C P R Avg
ERM 55.1940.49 47.76£1.02 72.2240.53 73.2110.89 62.10
+Tent 53.3940.61 48.28+0.88 70.5040.68 71.2940.72 60.86
+TentAdapter 55.5340.43 49.53+0.95 72.474+0.27 73.01£1.23 62.64
+TentCIf 55.17+0.67 36.73+£1.94 72.21+0.52  73.22+0.97 59.33
+SHOT 55.141+0.57 50.2741.18 71.6940.45 73.2140.91 62.58
+SHOTIM 55.08%+0.56 50.2941.17 71.71£0.40 73.2140.90 62.57
+PL 54.4941.06 34.66113.13 71.4540.37 72.2010.65 58.20
+PLCIf 55.1440.70 47.70£1.25 72.2140.54 72.6210.96 61.92
+T3A 55.101+0.74 49.56+1.14 74.10£0.55 74.07+1.18 63.21
+TAST (Ours) 56.151+0.68 50.0411.31 74.331+0.28 74.284+1.23 63.70

+TAST-BN (Ours) 55.114+0.58 51.3540.85 72.5840.80 72.131+0.78 62.79

Table 17: Full results using classifiers trained by ERM for Table 1 of the manuscript on Terralncog-
nita. We use ResNet-18 as a backbone network.

Method L100 L38 143 L46 Avg
ERM 37.181+2.46 36.124+4.20 53.18%+1.27 36.0241.37 40.62
+Tent 38.2940.48 25.824+3.91 41.53+1.59 29.1541.83 33.70
+TentAdapter 40.55+1.46 37.4442.22 46.33+1.32 35.30+1.26 39.91
+TentCIf 34.444+13.31 34.1945.76 52.7142.03 31.8642.26 38.30
+SHOT 33.8710.66 28.58+2.10 40.9942.07 30.831+1.26 33.57
+SHOTIM 33.83+1.29 28.131+2.30 40.8142.18 30.64+1.46 33.35
+PL 51.92+1.19 35.61420.74 39.97410.98 22264821 37.44
+PLCIf 45.2242.45 36.0345.81 52.76+1.54 33.10£2.27 41.78
+T3A 36.22+1.89 40.08+1.98 50.7241.02 33.79+£1.25 40.20
+TAST (Ours) 43.671+2.83 39.2443.79 52.6443.02 35.01£1.09 42.64

+TAST-BN (Ours) 51.0647.31 32.7447.54 41.70+2.86 32.214£3.05 39.43

Table 18: Full results using classifiers trained by ERM for Table 1 of the manuscript on VLCS. We
use ResNet-50 as a backbone network.

Method C L S v Avg
ERM 97.66+0.64 63.871+1.71 7121+1.52 74.0942.06 76.71
+Tent 92.36+2.44 58.4643.29 67.8442.03 73.1942.68 72.96
+TentAdapter 85.36+3.49 58.3543.46 66.4742.71 68.4242.11 69.65
+TentCIf 97.61£0.58 63.6742.10 68.774+1.27 73.164+1.31 75.80
+SHOT 98.72+1.50 46.824+2.57 55.70£1.78 67.0442.88 67.07
+SHOTIM 98.65+1.46 46.5442.32 55.81£2.32 66.7342.82 66.93
+PL 98.4810.34 53.45+2.82 59.454+9.24 66.2418.63 69.41
+PLCIf 97.6310.64 63.361+2.10 69.741+0.78 71.861+4.53 75.65
+T3A 99.1740.38 64.78+1.61 73.01+3.24 72201284 77.29
+TAST (Ours) 99.3540.30 65.641+1.78 73.631+3.58 72.0142.68 77.66

+TAST-BN (Ours) 96.0942.40 60.2246.08 65.78+6.51 71.9945.90 73.52
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Table 19: Full results using classifiers trained by ERM for Table 1 of the manuscript on PACS. We
use ResNet-50 as a backbone network.

Method A C P S Avg
ERM 82.9241.65 78.05+3.36 96.5010.32 75.3843.31 83.21
+Tent 82.5441.32 84.90+1.35 95.4540.93 77.74+1.36 85.16
+TentAdapter 82.7542.01 79.50+2.26 96.7840.20 75.7343.22 83.69
+TentCIf 83.00+£1.87 77.8644.20 96.5540.36 73.2546.14 82.66
+SHOT 84.67+£1.70 80.1741.39 96.5840.52 74.8642.95 84.07
+SHOTIM 84.62+£1.79 80.2441.41 96.544-0.46 75.1642.88 84.14
+PL 84.59+5.51 76.3542.57 96.4140.68 69.54+11.22 81.72
+PLCIf 83.884+2.00 78.931+3.68 96.531+0.40 73.961+6.08 83.33
+T3A 83.5642.03 79.7543.14 96.9910.24 75.36+3.57 83.92
+TAST (Ours) 83.85+2.05 79.1543.03 96.9340.27 76.4943.13 84.11

+TAST-BN (Ours) 87.114+2.04 88.5041.93 97.791+0.47 83231142 89.16

Table 20: Full results using classifiers trained by ERM for Table 1 of the manuscript on OfficeHome.
We use ResNet-50 as a backbone network.

Method A C P R Avg
ERM 61.3240.69 53.4441.11 75.84+1.10 77.9040.92 67.13
+Tent 60.9840.67 53.9441.24 74.4940.71 75.7540.53 66.29
+TentAdapter 62.6340.45 54.9041.17 76.20+1.09 77.9241.01 67.91
+TentCIf 61.3540.73 52.7241.40 75.23£1.05 77.864+1.07 66.79
+SHOT 61.9140.33 55.5840.91 75.49+1.54 77.6040.80 67.65
+SHOTIM 61.8440.32 55.6340.92 75.56+1.60 77.5740.79 67.65
+PL 59.4241.55 42.40+12.31 73.8042.26 75.77+1.50 62.85
+PLCIf 61.3510.40 52.874+1.96 75.861+1.09 77.94%+1.10 67.01
+T3A 61.91+0.59 55.07+1.14 77.3941.38 78.6710.61 68.26
+TAST (Ours) 62.431+0.80 55.81+1.26 77.461+1.07 78.831+0.93 68.63

+TAST-BN (Ours) 63.2240.85 58.2010.98 77.14%1.10 76.9410.39 68.88

Table 21: Full results using classifiers trained by ERM for Table 1 of the manuscript on Terralncog-
nita. We use ResNet-50 as a backbone network.

Method L100 L38 L43 L46 Avg
ERM 46.8441.96 43.2442.51 53.324+1.92 40.3041.93 45.93
+Tent 41.2042.71 29.7243.59 41.3542.92 36.0342.85 37.08
+TentAdapter 46.64+1.17 41.114+3.16 49.314+1.05 38.5242.04 43.89
+TentCIf 49.87+3.80 43.31+£3.19 53.01£2.31 28.4016.19 43.64
+SHOT 36.17£2.70 29.80+2.92 41.0040.30 33.83+1.86 35.20
+SHOTIM 35.5642.76 27.4944.01 40.77£0.45 33.67+1.84 3437
+PL 56.7545.78 46.12+1.03 29.44410.14 20.0614.65 38.09
+PLCIf 52.2843.95 43.76+£2.96 52.78+2.15 37.81+2.49 46.66
+T3A 45.13+1.26 44.67+2.56 52.5240.78 40.1342.31 45.61
+TAST (Ours) 53.0143.95 43.27+3.21 53.7942.72 39.6613.65 47.43

+TAST-BN (Ours) 55.7542.37 33.9249.86 43.87+4.70 32.331+4.40 41.47
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Table 22: Average accuracy(%) using classifiers trained by CORAL on the domain generalization
benchmarks for Table@ namely VLCS, PACS, OfficeHome, and Terralncognita. We use ResNet-18
and ResNet-50 as backbone networks. Bold indicates the best performance for each benchmark.
Our proposed method TAST outperforms all the baselines on most of the benchmarks.

Method ‘ Backbone ‘ VLCS PACS OfficeHome Terralncognita Avg
CORAL 74.00+1.13 81.00£0.79 62.7840.06 36.5142.35 63.57
+Tent 71.134+1.45 84.1740.61 62.3740.09 36.7140.77 63.60
+TentAdapter 65.661+1.86 82.2840.36 63.3740.13 37.8941.23 62.30
+TentCIf 7227+1.29 75.71+1.74 62.6510.08 30.2746.34 60.23
+SHOT 66.011+3.75 84.6710.47 63.5440.23 33.2040.49 61.86
+SHOTIM ResNet-18 65.754+3.70 84.631+0.49 63.5340.21 33.104:0.42 61.75
+PL 66.58+1.92 76.4613.23 61.194+1.52 29.3245.57 58.39
+PLCIf 73.7010.39 76.16+2.44 62.6810.13 34.2943.96 61.71
+T3A 75.49+1.67 82.7540.51 63.7240.32 38.39+1.39 65.09
+TAST (Ours) 74.824+2.43 83.164-0.81 64.001+0.25 39.21+1.75 65.30
+TAST-BN (Ours) 77.011+0.36 87.21+0.57 62.9840.23 37.45+1.11 66.16
CORAL 76.3941.01 83.5240.67 66.8910.20 42.79+1.27 67.40
+Tent 74.431+0.98 86.5040.77 66.3010.28 42.154+2.81 67.35
+TentAdapter 68.261+1.39 85.0540.59 67.681+0.20 41.5440.93 65.63
+TentCIf 76.451+1.00 82.14+1.71 64.0340.56 39.7442.47 65.59
+SHOT 64.1140.79 85.09+1.03 67.7340.29 33.9640.59 62.72
+SHOTIM ResNet-50 63.6340.60 85.06+0.93 67.7240.29 34.1740.90 62.65
+PL 72.744+1.32 75.9616.46 60.7442.91 36.69+3.47 61.53
+PLCIf 75.684+1.23 83.56+0.80 66.2440.42 44.93+3.76 67.60
+T3A 77.334+0.97 84.54+0.63 68.0840.34 43.5040.19 68.36
+TAST (Ours) 77.234+1.25 85.04+0.49 68.3940.54 44.224+1.33 68.72
+TAST-BN (Ours) 79.131+0.43 90.411-0.64 69.0440.36 43.46+4.46 70.51

Table 23: Full results using classifiers trained by CORAL for Tableon VLCS. We use ResNet-18
as a backbone network.

Method C L S \% Avg
CORAL 93.31£3.73 61.111+1.66 70.6240.87 70.954+0.36 74.00
+Tent 95.78+1.20 59.2440.85 63.38+2.06 66.131+3.09 71.13
+TentAdapter 79.8945.76 54.2943.98 62.7241.06 65.76+1.79 65.66
+TentCIf 94.96+2.77 58.4243.37 71.01£1.26 64.714+5.42 72.27
+SHOT 88.21£11.66 50.2942.91 58.00+1.79 67.5540.51 66.01
+SHOTIM 87.74+£11.38 49.8942.74 57.73£1.76 67.6140.49 65.75
+PL 95.78+1.34 54.0944.31 55.0342.09 61.4249.04 66.58
+PLCIf 95.04+2.59 57.674+3.74 71.00£1.33 71.0940.48 73.70
+T3A 97.10+£3.42 63.614+3.43 67.90+0.78 73.3441.26 75.49
+TAST (Ours) 95.36+£7.76 62.9543.23 69.06+1.05 71.8941.95 74.82

+TAST-BN (Ours) 98.90+0.58 61.014+2.41 69.7442.57 78.40+1.15 77.01

Table 24: Full results using classifiers trained by CORAL for Tableon PACS. We use ResNet-18
as a backbone network.

Method A C P S Avg
CORAL 78.744+1.79 74.57+1.79 92.484+0.90 78.2141.51 81.00
+Tent 82.11£0.95 81.2241.02 95.1540.04 78.2041.33 84.17
+TentAdapter 80.06+£0.86 77.14£1.35 94.0540.31 77.8740.50 82.28
+TentCIf 77.1440.99 63.00+6.22 92.934+1.12 69.7742.86 7571
+SHOT 82.92+1.33 81.13£1.18 95.2840.60 79.3741.05 84.67
+SHOTIM 82.92+1.24 81.06+1.17 95.3010.57 79.23+1.10 84.63
+PL 83.44+1.79 67.361+9.25 94.201+2.49 60.82412.65 76.46
+PLCIf 79.724+1.06 62.98+8.19 93.1240.60 68.811+1.23 76.16
+T3A 80.68+1.15 77.5240.54 93.2540.66 79.531+0.70 8275
+TAST (Ours) 80.88+1.33 77.8610.92 94.284+0.56 79.6011.60 83.16

+TAST-BN (Ours) 86.9610.66 83.58+1.32 96.5910.62 81.69%1.16 87.21
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Table 25: Full results using classifiers trained by CORAL for Table [22| on OfficeHome. We use
ResNet-18 as a backbone network.

Method A C P R Avg
CORAL 55.7840.29 50.0940.09 72.0940.32 73.1640.39 62.78
+Tent 55.3340.33 50.7940.31 71.0840.32 72.2940.41 62.37
+TentAdapter 56.59+0.34 51.544-0.07 72.1910.19 73.1710.30 63.37
+TentCIf 55.56+0.40 49.9640.16 72.0740.44 73.0010.44 62.65
+SHOT 55.774+0.29 52.671+0.44 72.2240.64 73.5040.28 63.54
+SHOTIM 55.7240.28 52.6440.39 72.231+0.63 73.5240.29 63.53
+PL 54.1741.83 46.74£4.73 71.531+0.40 72.3440.89 61.19
+PLCIf 55.7740.38 50.041-0.44 71.90+0.37 73.0310.42 62.68
+T3A 55.8310.36 51.6840.51 73.70+0.43 73.6610.55 63.72
+TAST (Ours) 56.2240.57 51.731+0.48 74.05+0.73 74.0010.52 64.00
+TAST-BN (Ours) 54.7140.40 52.0740.61 72.801+0.65 72.331+0.49 62.98

Table 26: Full results using classifiers trained by CORAL for Table [22|on Terralncognita. We use
ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg
CORAL 38.414+2.79 25.9846.65 45.59+2.53 36.08+1.75 36.51
+Tent 37.314+3.54 24.761+1.90 45.99+0.73 38.79+1.78 36.71
+TentAdapter 41.76+1.23 33.9+2.32 40.59+3.21 35.2940.98 37.89
+TentCIf 29.99412.66 15.84418.76 43.36+4.29 31.8942.89 30.27
+SHOT 35.9540.88 25.851+1.40 38.3310.69 32.6740.83 33.20
+SHOTIM 35.8140.77 25.64+£1.15 38.161+0.75 32.7840.45 33.10
+PL 37.32423.49 24.27424.17 31.8447.57 23.8446.83 29.32
+PLCIf 45.07+7.63 20.52419.27 44.4+£1.32 27.1843.00 34.29
+T3A 37.1442.17 34.4943.47 45.00+£3.91 36.9141.86 38.39
+TAST (Ours) 46.011+2.18 32.114+4.30 43.31£3.17 35.4242.53 39.21
+TAST-BN (Ours) 43.0413.00 32.254+5.90 42.53+2.54 31.9940.81 3745

Table 27: Full results using classifiers trained by CORAL for Tableon VLCS. We use ResNet-50

as a backbone network.

Method C L S \% Avg

CORAL 96.8241.06 62.5110.81 71.46+1.71 74.7943.23 76.39
+Tent 96.5312.09 59.5540.71 67.961+3.68 73.6912.62 74.43
+TentAdapter 84.2442.39 56.07+2.77 63.90+1.46 68.8412.75 68.26
+TentCIf 96.99+1.16 61.48+1.68 72.32+1.97 75.0043.07 76.45
+SHOT 85.07£1.63 46.27+2.62 56.77+1.03 68.3441.01 64.11
+SHOTIM 83.57+0.89 45.86+2.93 56.55+0.81 68.5340.98 63.63
+PL 98.3240.64 53.6446.70 67.76+1.16 71.2245.85 72.74
+PLCIf 96.85+1.30 58.7142.76 72.204+1.96 74.9443.89 75.68
+T3A 98.24+0.70 64.6941.64 73.0642.04 73.3443.81 77.33
+TAST (Ours) 99.1540.28 64.1742.37 72.324+1.75 73.2743.27 77.23
+TAST-BN (Ours) 99.14+0.45 64.9542.74 73.3940.94 79.0442.19 79.13

Table 28: Full results using classifiers trained by CORAL for Tableon PACS. We use ResNet-50

as a backbone network.

Method A C P S Avg
CORAL 84.40+1.36 79.8842.80 95.584+0.69 74.2443.09 83.52
+Tent 86.12+£1.37 85.154+1.85 96.284+0.78 78.4741.52 86.50
+TentAdapter 84.34+0.98 81.6342.47 96.3840.50 77.86+1.10 85.05
+TentCIf 84.68+1.88 80.3242.89 95.9841.01 67.5948.18 82.14
+SHOT 85.75£1.92 82.3842.52 96.88+0.92 75.371+2.56 85.09
+SHOTIM 85.72+1.82 82.3842.43 96.8440.94 75.2941.96 85.06
+PL 84.87+3.66 77.931+3.78 96.2910.73 44.74420.19 75.96
+PLCIf 85.4341.52 79.8113.15 96.21+0.91 72.78+5.06 83.56
+T3A 84.714+1.96 81.304+2.98 96.68+0.53 75.474+2.36 84.54
+TAST (Ours) 85.74%1.77 81.054+2.79 96.88+0.49 76.48+2.33 85.04
+TAST-BN (Ours) 90.95+1.20 86.78+1.39 98.171+0.43 85.7240.63 90.41
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Table 29: Full results using classifiers trained by CORAL for Table [22| on OfficeHome. We use
ResNet-50 as a backbone network.

Method A C P R Avg
CORAL 60.841+1.18 53.8240.69 76.0610.25 76.85+1.15 66.89
+Tent 61.11+1.05 54.1610.56 73.61£0.66 76.31+1.28 66.30
+TentAdapter 61.91+1.17 55.731+0.67 76.2840.47 76.824+1.09 67.68
+TentCIf 54.31+1.96 49.96+1.28 75.3040.08 76.56+1.64 64.03
+SHOT 61.79+1.61 56.934+0.72 75.974+0.79 76.231+1.08 67.73
+SHOTIM 61.754+1.52 56.934+0.79 75.9440.81 76.2440.95 67.72
+PL 54.7843.96 40.714+10.95 74.1940.49 73.284+1.81 60.74
+PLCIf 59.804-0.85 53.4041.46 75.60+0.17 76.154+1.39 66.24
+T3A 61.5941.51 55.5740.85 77.45+0.74 77.724+1.36 68.08
+TAST (Ours) 62.024+1.30 55.8840.86 78.06+1.01 77.60+1.41 68.39

+TAST-BN (Ours) 63.4541.48 59.01+1.14 76.68+0.74 77.00+1.13 69.04

Table 30: Full results using classifiers trained by CORAL for Table [22|on Terralncognita. We use
ResNet-50 as a backbone network.

Method L100 L38 143 L46 Avg
CORAL 45.5240.53 39.3342.81 48.98+2.28 37.354£2.71 42.79
+Tent 46.7242.57 34.1443.01 48.051+10.46 39.70+3.14 42.15
+TentAdapter 48.2742.51 38.0711.08 44.89+2.73 34.9243.07 41.54
+TentCIf 42.57+5.73 38.3543.37 44.10+2.18 33.9245.58 39.74
+SHOT 38.95+1.35 26.9941.76 40.93+2.51 28.98+4.77 33.96
+SHOTIM 39.5242.40 26.4513.94 41.07£2.21 29.6444.16 34.17
+PL 51.29412.49 47.88+5.50 29.58+10.72 17.99410.59 36.69
+PLCIf 53.6915.34 43.781+6.46 47.671+6.30 34.5745.18 44.93
+T3A 45.57+1.04 40.314+1.50 49.81+2.10 38.3141.60 43.50
+TAST (Ours) 53.814+0.58 39.9942.38 48.07+3.86 35.0243.12 44.22

+TAST-BN (Ours) 54.8013.22 41.561+6.79 47.09+5.58 30.384+4.60 43.46

Table 31: Average accuracy(%) using classifiers trained by MMD for Table|5|on the domain gener-
alization benchmarks, namely VLCS, PACS, OfficeHome, and Terralncognita. We use ResNet-18
as a backbone network.

Method VLCS PACS OfficeHome Terralncognita Avg
MMD 74.9010.50 81.0640.92 62.201+0.48 35.734+2.70 63.47
+Tent 74.5910.66 84.4740.19 62.1540.33 36.114+0.72 64.33
+TentAdapter 65.94+1.91 82.44+40.26 62.8010.46 37.6640.34 62.21
+TentCIf 74.9140.60 57.7645.32 62.1010.50 28.9446.56 55.93
+SHOT 65.4142.03 85.5740.28 63.2540.53 32.3440.68 61.64
+SHOTIM 65.0042.20 85.5340.29 63.2040.56 32.2540.55 61.50
+PL 66.174+1.73 74.4244.09 60.4941.03 22.3048.42 55.85
+PLCIf 74.8440.50 69.9540.95 62.164-0.45 31.9445.67 59.72
+T3A 77.2840.45 82.5240.53 63.3440.55 37.40+1.86 65.14
+TAST (Ours) 76.2140.79 83.2940.26 63.494-0.49 38.1242.47 65.28

+TAST-BN (Ours) 76.0640.89 86.35+0.76 63.2240.26 39.46+1.63 66.27

Table 32: Full results using classifiers trained by MMD for Table [31{on VLCS. We use ResNet-18
as a backbone network.

Method C L S \4 Avg
MMD 95.514+2.59 62.3240.68 70.09+0.80 71.6810.83 74.90
+Tent 97.201+0.55 61.5310.60 69.324£2.58 70.33£0.92 74.59
+TentAdapter 80.71£5.21 54.9442.31 61.88+0.30 66.25+1.58 65.94
+TentCIf 95.71+2.16 61.8711.02 70.15£0.91 71.90+0.82 74.91
+SHOT 88.1018.59 48.99+2.74 57.14%1.13 67.43£0.47 65.41
+SHOTIM 86.931+8.90 48.71£2.70 56.98+1.17 67.37£0.48 65.00
+PL 95.63£1.07 51.754£2.10 59.89+11.04 57.40+6.85 66.17
+PLCIf 95.69+2.19 61.65+0.85 70.14£0.86 71.87£0.79 74.84
+T3A 99.15+0.52 64.19£0.76 71.16£0.74 74.62+1.63 77.28
+TAST (Ours) 99.29+0.46 63.1410.66 69.62+£1.23 72.81£1.30 76.21

+TAST-BN (Ours) 99.1410.48 61.5442.74 65.03+1.95 78.531+0.35 76.06
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Table 33: Full results using classifiers trained by MMD for Table |31)on PACS. We use ResNet-18
as a backbone network.

Method A C P S Avg

MMD 79.5240.50 74.661+1.28 93.4610.95 76.601+2.62 81.06
+Tent 82.8440.97 81.2240.85 95.4940.40 78.3240.48 84.47
+TentAdapter 80.5140.84 77.0940.44 94.5540.33 77.5910.64 82.44
+TentCIf 56.534+16.38 47.89+6.86 93.3740.67 33.26+8.17 57.76
+SHOT 84.5040.13 81.98+0.98 95.58+40.22 80.1940.95 85.57
+SHOTIM 84.49+0.20 81.94+0.93 95.58+0.22 80.09+0.89 85.53
+PL 84.59+0.48 53.964+10.45 95.1040.18 64.04411.28 74.42
+PLCIf 80.04£0.60 63.8748.49 93.60+0.57 42.2847.47 69.95
+T3A 81.9240.41 75.35+1.11 94.99+40.36 77.814+1.62 82.52
+TAST (Ours) 81.76£0.31 77.1340.51 95.3740.70 78.9141.12 83.29

+TAST-BN (Ours) 86.23+1.18 82.16+£1.93 97.46+0.14 79.5541.08 86.35

Table 34: Full results using classifiers trained by MMD for Table on OfficeHome. We use
ResNet-18 as a backbone network.

Method A C P R Avg
MMD 54.39£0.86  49.71£1.02  71.95£0.59  72.74£0.41 62.20
+Tent 55.73£047  49.71£020  70.75£0.74 72411045 6215
+TentAdapter 55.3440.56 51.09£1.09 72.11+0.46 72.68+0.27 62.80
+TentCIf 54.3940.72 49.28+1.18 71.9540.66 72.77£0.27 62.10
+SHOT 54.8310.77 52.384+0.95 72.59+£0.71 73.18+0.15 63.25
+SHOTIM 54.8540.85 52.2740.97 72.54£0.71 73.15£0.17 63.20
+PL 53.26+1.14 44.63+3.44 71.76£0.68 72.3340.08 60.49
+PLCIf 54.4440.67 49.67+0.97 71.97+0.65 72.574+0.29 62.16
+T3A 54.43+1.26 51.2540.83 73.86+£0.57 73.8410.47 63.34
+TAST (Ours) 55.17+1.04 50.80+1.14 74.20£0.57 73.78+0.51 63.49

+TAST-BN (Ours) 54.40£0.60 52.2140.38 73.301+0.35 72.9640.42 63.22

Table 35: Full results using classifiers trained by MMD for Table [31) on Terralncognita. We use
ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg
MMD 34.57+£3.77 26.5746.18 46.08+2.85 35.72+1.17 35.73
+Tent 37.04+£3.72 25.4041.81 44.82+0.72 37.19+1.64 36.11
+TentAdapter 40.0442.45 33.3842.98 42.38+2.80 34.8411.06 37.66
+TentCIf 22.9249.25 15.19415.33 45.24+4.15 32.3941.27 28.94
+SHOT 33.79+1.34 25.68+2.73 37.8110.67 32074271 3234
+SHOTIM 33.48+1.14 25.77+1.95 37.8740.61 31.874+2.44 32.25
+PL 29.454-26.19 13.78420.60 27.69410.39 18.27+5.75 2230
+PLCIf 36.9618.00 17.63+18.15 46.28+4.42 26.87+2.41 31.94
+T3A 35.161+2.74 34.414+2.73 43.83+4.22 36.194+1.79 37.40
+TAST (Ours) 44.701+1.82 31.971+4.96 42.30+4.83 33.5044.40 38.12

+TAST-BN (Ours) 43.8115.05 37.354+2.57 44.41£1.55 32.284+1.73 39.46

Table 36: Average accuracy(%) using classifiers trained by Mixup for Table on the domain gener-
alization benchmarks, namely VLCS, PACS, OfficeHome, and Terralncognita. We use ResNet-18
as a backbone network.

Method VLCS PACS OfficeHome Terralncognita Avg
Mixup 74.97+0.86 78.2940.88 61.83£0.88 41.04£1.01 64.03
+Tent 72.73£0.41 83.8840.51 61.82+0.45 39.524+0.36 64.49
+TentAdapter 62.8310.83 81.444-0.27 62.8240.64 40.72£1.81 61.95
+TentCIf 74.331+0.92 68.9512.86 61.4510.88 37.21+4.79 60.49
+SHOT 68.691+0.91 84.431+0.39 62.811+0.42 36.3240.50 63.06
+SHOTIM 68.311+0.98 84.5240.36 62.8010.43 36.0310.61 62.92
+PL 59.90+2.19 68.0242.43 60.6610.63 32.3046.83 55.22
+PLCIf 74.1940.78 70.94+43.00 61.6710.86 40.631+4.88 61.86
+T3A 78.431+0.76 81.9140.54 63.4910.86 39.8940.90 65.93
+TAST (Ours) 77.1940.80 82.8540.36 63.831+0.74 41.4441.67 66.33

+TAST-BN (Ours) 76.8910.86 87.14£0.56 62.0910.86 42.70+1.90 67.21
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Table 37: Full results using classifiers trained by Mixup for Table |36/on VLCS. We use ResNet-18

as a backbone network.

Method C L S v Avg
Mixup 94.73£1.35 62.5240.79 69.704-0.89 72.9341.27 74.97
+Tent 95.274+0.47 59.8441.01 68.614+1.04 67.1941.62 72.73
+TentAdapter 76.52+1.36 52.4041.05 60.0041.63 62.4142.25 62.83
+TentCIf 94.87+1.31 61.7240.73 68.444+1.04 72.2942.22 74.33
+SHOT 96.4743.75 51.01+1.22 58.83+1.55 68.474+0.27 68.69
+SHOTIM 95.63+4.31 50.49+1.13 58.71£1.71 68.4110.35 68.31
+PL 94.941-1.82 49.88+0.35 45.87+7.30 48.90+4.44 59.90
+PLCIf 94.8241.29 59.1610.65 69.851+0.94 72.9241.54 74.19
+T3A 99.1140.76 64.751+1.02 72.691+2.16 77.16+0.79 78.43
+TAST (Ours) 98.974-0.87 63.1940.77 71.04+1.80 75.56+1.03 77.19
+TAST-BN (Ours) 99.2740.32 60.761+4.75 69.631+2.58 7791+1.76 76.89

Table 38: Full results using classifiers trained by Mixup for Table |36/ on PACS. We use ResNet-18

as a backbone network.

Method A C P S Avg
Mixup 80.28+2.31 70.6911.19 94.2610.85 67.9410.73 78.29
+Tent 81.5140.82 79.4911.01 95.58+0.18 78.94+1.04 83.88
+TentAdapter 82.404+1.00  7598+0.79  94.63+0.45 72.75+1.57 81.44
+TentCIf 79.66+3.73 64.24+4.07 94.17+1.01 37.754+13.33 68.95
+SHOT 85.2040.56 80.131-0.88 96.2010.75 76.1810.45 84.43
+SHOTIM 85.1740.56 80.641+0.92 96.2240.77 76.0510.50 84.52
+PL 82.8242.54 66.4818.08 95.4010.64 27.37+5.71 68.02
+PLCIf 79.324+2.88 70.6111.26 94.2610.89 39.58415.47 70.94
+T3A 83.0641.31 75.9240.58 95.8710.66 72.8012.09 81.91
+TAST (Ours) 83.934+0.99 76.751+1.32 96.3410.63 74.391+1.69 82.85
+TAST-BN (Ours) 86.184+0.49 82.69+1.44 97.2740.48 82.4311.80 87.14

Table 39: Full results using classifiers trained by Mixup for Table
ResNet-18 as a backbone network.

on OfficeHome. We use

Method A C P R Avg
Mixup 53.9241.21 49.17+£1.49 71.661+0.52 72.5610.82 61.83
+Tent 53.2240.92 50.754+0.79 71.2240.74 72.1010.62 61.82
+TentAdapter 54.78+1.29 51.474+1.09 72.21+0.25 72.8240.74 62.82
+TentCIf 53.874+1.20 48.22+1.48 71.65+0.42 72.0610.84 61.45
+SHOT 53.95+1.17 52.20+1.27 72.2940.36 72.7940.43 62.81
+SHOTIM 53.94+1.22 52.154+1.30 72.284+0.42 72.8340.41 62.80
+PL 52.8240.96 48.17+1.38 70.9740.82 70.7041.00 60.66
+PLCIf 53.85+1.10 49.124+1.43 71.6440.47 72.0641.04 61.67
+T3A 54.83+1.49 50.9741.51 74.1440.63 74.0040.31 63.49
+TAST (Ours) 54.97+0.96 51.314+1.84 74.8840.66 74.1640.22 63.83
+TAST-BN (Ours) 53.09+1.44 51.0441.81 72.444-0.64 71.8040.64 62.09

Table 40: Full results using classifiers trained by Mixup for Table [36| on Terralncognita. We use
ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg
Mixup 52.26+1.44 35.901+4.46 41.234+2.04 34.774+2.14 41.04
+Tent 41.3542.74 33.0542.75 44.174+1.50 39.514+1.83 39.52
+TentAdapter 45.3542.22 44.174+2.15 42.254+1.98 31.1142.43 40.72
+TentCIf 49.6247.17 37.29412.05 37.4542.99 24.484-0.73 37.21
+SHOT 42.7843.48 31.0442.88 39.58+1.29 31.86+£3.47 36.32
+SHOTIM 42.1443.38 30.7143.18 39.37+1.34 31.89£3.51 36.03
+PL 52.5640.16 34.80421.65 23.33+4.85 18.5146.10 32.30
+PLCIf 53.30%1.59 35.52418.76 40.68+1.15 33.0442.57 40.63
+T3A 43.05+2.28 38.531+2.37 43.324+3.33 34.651+1.22 39.89
+TAST (Ours) 57.57+5.18 36.431+3.72 38.3442.38 33.4042.08 41.44
+TAST-BN (Ours) 56.814+4.34 42.44+2.03 41.01£2.50 30.5441.52 42.70
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Table 41: Full results using classifiers trained by ERM for Tableof manuscript on VLCS. We use
ResNet-18 as a backbone network.

Method Ne C L S v Avg
ERM - 94.70+1.33 63.7911.30 67.9041.97 73.15£1.37 74.88
+T3A - 97.52+1.99 65.3242.24 70.7013.48 75.51+1.75 77.26
+TAST-N (Ours) - 95.314+4.33 65.62+1.79 68.943.22 74.9611.66 76.20
+TAST (Ours) 1 98.6241.06 62.61£1.90 66.8413.01 72.73+1.17 75.20
+TAST (Ours) 5 99.1540.68 65.58+3.08 67.53+1.49 74.46+1.87 76.68
+TAST (Ours) 10 99.2240.45 66.21£1.36 68.621+2.39 75.6642.03 77.43
+TAST (Ours) 20 99.1740.60 65.87£1.90 68.131+1.76 75.924+1.75 77.27

Table 42: Full results using classifiers trained by ERM for Table 2| of manuscript on PACS. We use
ResNet-18 as a backbone network.

Method Ne A C P S Avg
ERM - 77.7840.81 75.0941.22 95.1940.29 69.11£1.22 79.29
+T3A - 78.81+0.97 77.14£1.20 95.9240.36 71.4441.63 80.83
+TAST-N (Ours) - 80.18+0.88 77.34+1.38 96.5740.27 72.3840.77 81.62
+TAST (Ours) 1 80.21£0.80 77.06+1.44 96.1340.53 71.514+1.22 81.23
+TAST (Ours) 5 80.85+0.86 77.9140.71 96.494-0.37 72.00+1.16 81.81
+TAST (Ours) 10 79.95+1.42 78.1240.98 96.5140.25 71.65+2.32 81.56
+TAST (Ours) 20 80.56+£0.53 78.2640.99 96.4440.20 72.5240.77 81.94

Table 43: Full results using classifiers trained by ERM for Table |2 of manuscript on OfficeHome.
We use ResNet-18 as a backbone network.

Method Ne A C P R Avg
ERM - 55.1940.49 47.76£1.02 72.2240.53 73.2140.89 62.10
+T3A - 55.1010.74 49.56+1.14 74.1010.55 74.07%1.18 63.21
+TAST-N (Ours) - 55.2540.97 50.4541.03 74.24+0.55 74.234+1.37 63.54
+TAST (Ours) 1 53.53£0.90 49.46+1.39 72.84+0.69 72.534+1.30 62.09
+TAST (Ours) 5 55.34+1.04 50.51£1.03 74.23£0.43 73.974+0.95 63.51
+TAST (Ours) 10 55.76£0.68 49.52+1.38 74.17£0.49 74.11£1.00 63.39
+TAST (Ours) 20 56.15+0.68 50.0441.31 74.33£0.28 74.284+1.23 63.70

Table 44: Full results using classifiers trained by ERM for Table of manuscript on Terralncognita.
We use ResNet-18 as a backbone network.

Method Ne L100 L38 L43 L46 Avg
ERM - 37.1842.46 36.1244.20 53.18%+1.27 36.02+1.37 40.62
+T3A - 36.2241.89 40.08+1.98 50.7241.02 33.79+1.25 40.20
+TAST-N (Ours) - 39.75+1.76 39.20£2.65 52.331+2.63 36.2441.28 41.88
+TAST (Ours) 1 43.231+0.87 42.4942.08 51.224+3.69 33.414+1.05 42.59
+TAST (Ours) 5 43.954+2.33 38.89+2.42 52.4443.04 35.4241.27 42.68
+TAST (Ours) 10 43.96+2.92 38.48+3.56 53.274+2.73 34.67+£1.24 42.60
+TAST (Ours) 20 43.671+2.83 39.2443.79 52.6413.02 35.01£1.09 42.64

Table 45: Average error rate (%) on CIFAR-10C for the highest severe corruptions. Bold indicates
the best performance for each image corruption.

Method gauss  brit contr defoc elast fog frost glass impul jpeg motn pixel shot snow zoom
No adaptation 4873 7.01 1327 11.84 2338 2941 2824 50.78 57.00 19.46 2338 47.88 4400 2193 10.84
+SHOT 17.09 8.64 857 983 1953 19.72 1393 2560 27.15 1398 1401 11.68 16.02 1589 822
+Tent 1591 791 785 927 18.13 1645 1262 2348 2452 13.19 1270 1093 1459 14.06 7.68
+PL 3356 7.54 11.53 10.60 2021 23.86 21.78 3836 43.64 16.88 18.72 29.83 3043 1875 9.43
+T3A 41.87 7.30 13.61 11.99 22.06 2852 27.13 44.10 5426 1871 22.54 37.53 3784 2197 10.72
+TAST (Ours) 42,02 734 1355 11.86 2138 2858 26.51 4499 54.19 1896 2255 37.08 37.62 21.84 10.64
+TAST-BN (Ours) 1491 7.68 7.81 8.62 16.81 1510 1225 21.82 22.54 1238 11.67 1034 13.77 1299 7.57
+TTT++ 1625 727 746 9.12 1817 17.72 1236 2574 2643 13.13 1285 11.38 15.02 1440 7.59
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Table 46: Average error rate (%) on CIFAR-100C for the highest severe corruptions. Bold indicates
the best performance for each image corruption.

Method gauss  brit  contr defoc elast fog frost glass impul jpeg motn pixel shot snow zoom
No adaptation 80.77 28.86 5093 39.62 59.54 68.11 60.19 5479 8226 87.75 4996 5422 7227 77.84 54.58
+SHOT 4595 30.14 3193 3281 46.19 4949 40.65 5479 57.02 3799 3922 3757 4433 4408 30.97
+Tent 43.02 29.65 30.52 3148 43.88 44.03 3921 5091 53.10 3622 3631 3410 41.58 41.85 29.73
+PL 4394 30.14 3120 32.11 4507 46.57 40.11 52.66 5448 3748 3692 3459 42.68 42.77 30.19
+T3A 7695 29.54 48.02 39.64 5568 6590 5845 7823 8639 4882 5346 6631 7414 5501 37.68
+TAST (Ours) 80.13 29.40 50.86 4043 58.13 6924 60.89 8194 8894 5044 5726 7058 7747 5698 38.46
+TAST-BN (Ours) 42.01 29.00 30.20 30.74 42.97 41.02 3819 4895 5120 3570 35.03 33.38 40.01 39.88 29.07
+TTT++ 47.10 2999 31.10 3261 47.73 51.74 4137 5736 6040 3893 39.01 37.17 4534 4453 3131
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