
Published as a conference paper at ICLR 2023

TEST-TIME ADAPTATION VIA SELF-TRAINING
WITH NEAREST NEIGHBOR INFORMATION

Minguk Jang, Sae-Young Chung, Hye Won Chung
School of Electrical Engineering
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Republic of Korea
{mgjang, schung, hwchung}@kaist.ac.kr

ABSTRACT

Test-time adaptation (TTA) aims to adapt a trained classifier using online unla-
beled test data only, without any information related to the training procedure.
Most existing TTA methods adapt the trained classifier using the classifier’s pre-
diction on the test data as pseudo-label. However, under test-time domain shift,
accuracy of the pseudo labels cannot be guaranteed, and thus the TTA methods
often encounter performance degradation at the adapted classifier. To overcome
this limitation, we propose a novel test-time adaptation method, called Test-time
Adaptation via Self-Training with nearest neighbor information (TAST), which is
composed of the following procedures: (1) adds trainable adaptation modules on
top of the trained feature extractor; (2) newly defines a pseudo-label distribution
for the test data by using the nearest neighbor information; (3) trains these mod-
ules only a few times during test time to match the nearest neighbor-based pseudo
label distribution and a prototype-based class distribution for the test data; and (4)
predicts the label of test data using the average predicted class distribution from
these modules. The pseudo-label generation is based on the basic intuition that
a test data and its nearest neighbor in the embedding space are likely to share
the same label under the domain shift. By utilizing multiple randomly initialized
adaptation modules, TAST extracts useful information for the classification of the
test data under the domain shift, using the nearest neighbor information. TAST
showed better performance than the state-of-the-art TTA methods on two standard
benchmark tasks, domain generalization, namely VLCS, PACS, OfficeHome, and
TerraIncognita, and image corruption, particularly CIFAR-10/100C. Our code is
available at https://github.com/mingukjang/TAST.

1 INTRODUCTION

Deep neural networks often encounter significant performance degradations under domain shift (i.e.,
distribution shift). This phenomenon has been observed in various tasks including classification
(Taori et al., 2020; Wang et al., 2021b), visual recognition (Saenko et al., 2010; Csurka, 2017), and
reinforcement learning (Cobbe et al., 2019; Mendonca et al., 2020; Lee and Chung, 2021b). There
are two broad classes of domain adaptation methods that attempt to solve this problem: supervised
domain adaptation (SDA) (Tzeng et al., 2015; Motiian et al., 2017) and unsupervised domain adapta-
tion (UDA) (Ganin and Lempitsky, 2015; Long et al., 2016; Sener et al., 2016). Both SDA and UDA
methods aim to obtain domain-invariant representations by aligning the representations of training
and test data closely in the embedding space. While testing, UDA methods require the training
dataset and SDA methods additionally require labeled data of the test domain. However, in practice,
it is often difficult to access training datasets or labeled data in the test domain during test time, due
to data security or labeling cost.

Test-time adaptation (TTA) (Iwasawa and Matsuo, 2021; Wang et al., 2021a) is a prominent ap-
proach to alleviate the problems caused by the domain shift. TTA methods aim to adapt the trained
model to the test domain without a labeled dataset in the test domain and any information related to
the training procedure (e.g., training dataset, feature statistics of training domain (Sun et al., 2020;

1

https://github.com/mingukjang/TAST

Published as a conference paper at ICLR 2023

Liu et al., 2021; Eastwood et al., 2022)). TTA methods have access to the online unlabeled test data
only, whereas domain adaptation methods assume access to the whole (i.e., offline) test data.

There are three popular categories for TTA: normalization-based method (Schneider et al., 2020),
entropy minimization (Liang et al., 2020; Wang et al., 2021a) and prototype-based methods (Iwa-
sawa and Matsuo, 2021). Normalization method replaces the batch normalization (BN) statistics of
the trained model with the BN statistics estimated on test data, and does not update model parame-
ters except for the BN layers. Entropy minimization methods fine-tune the trained feature extractor,
which is the trained classifier except the last linear layer, by minimizing the prediction entropy of
test data. These methods force the classifier to have over-confident predictions for the test data, and
thus have a risk of degrading model calibration (Guo et al., 2017; Mukhoti et al., 2020), a measure of
model interpretability and reliability. One form of entropy minimization is self-training (Rosenberg
et al., 2005; Lee, 2013; Xie et al., 2020). Self-training methods use predictions from the classifier as
pseudo labels for the test data and fine-tune the classifier to make it fit to the pseudo labels. These
methods have a limitation that the fine-tuned classifier can overfit to the inaccurate pseudo labels,
resulting in confirmation bias (Arazo et al., 2020). This limitation can be harmful when the perfor-
mance of the trained classifier is significantly degraded due to the domain shift. On the other hand,
Iwasawa and Matsuo (2021) proposed a prototype-based TTA method, named T3A, that simply
modifies a trained linear classifier (the last layer) by using the pseudo-prototype representations of
each class and the prototype-based classification for test data, where the prototypes are constructed
by previous test data and the prediction for the data from trained classifier. T3A does not update
the trained feature extractor at test time. T3A is simple but it brings a marginal performance gain
(Table 1 and 3).

In this work, we propose a new test-time adaptation method, which is simple yet effective in mit-
igating the confirmation bias problem of self-training, by adding adaptation modules on top of the
feature extractor, which are simply trainable during test time. We use the prototype-based classifier
as in T3A, but not in the embedding space of the original feature extractor but in the embedding
space of the adaptation modules, trained with nearest neighbor information, to achieve higher per-
formance gains than the original simple prototype-based classifier method. Our method, named
Test-time Adaptation via Self-Training with nearest neighbor information (TAST), is composed of
the following procedures: (1) adds randomly initialized adaptation modules on top of the feature
extractor at the beginning of test time (Figure 1); (2) generates pseudo label distribution for a test
data considering the nearest neighbor information; (3) trains the adaptation modules only a few times
during test time to match the nearest neighbor-based pseudo label distribution and a prototype-based
class distribution for the test data; and (4) predicts the label of test data using the average predicted
class distribution from the adaptation modules. Specifically, in (1), we add the trainable adaptation
modules to obtain new feature embeddings that are useful for classification in the test domain. In
(2), TAST assigns the mean of the labels of the nearby examples in the embedding space as the
pseudo label distribution for the test data based on the idea that a test data and its nearest neighbors
are more likely to have the same label. In (3), TAST trains the adaptation modules to output the
pseudo label distribution when the test data is fed into (Figure 1 Right). And in (4), we average the
predicted class distributions from adaptation modules for the prediction of test data (Figure 1 Left).

We investigate the effectiveness of TAST on two standard benchmarks, domain generalization and
image corruption. We demonstrate that TAST outperforms the current state-of-the-art test-time
adaptation methods such as Tent (Wang et al., 2021a), T3A, and TTT++ (Liu et al., 2021) on the
two benchmarks. For example, TAST surpasses the current state-of-the-art algorithm by 1.01% on
average with ResNet-18 learned by Empirical Risk Minimization (ERM) on the domain generaliza-
tion benchmarks. Extensive ablation studies show that both the nearest neighbor information and the
adaptation module utilization contribute to the performance increase. Moreover, we experimentally
found that the adaptation modules adapt feature extractor outputs effectively although the adaptation
modules are randomly initialized at the beginning of test time and trained with a few gradient steps
per test batch during test time.

2 PRELIMINARIES

Test-time domain shift Consider a labeled dataset Dtrain = {(xi, yi)}ntrain
i=1 drawn from a distri-

bution P train, where x ∈ Rd and y ∈ Y := {1, 2, · · · ,K} for a K-class classification problem.

2

Published as a conference paper at ICLR 2023

Nearest-
Neighbor
Classifier

Nearest-
Neighbor
Classifier

Adaptation
modules
ℎ𝜙𝜙𝑖𝑖 𝑖𝑖=1

𝑁𝑁𝑒𝑒

Adaptation
modules
ℎ𝜙𝜙𝑖𝑖 𝑖𝑖=1

𝑁𝑁𝑒𝑒

𝑥𝑥
Feature

extractor
𝑓𝑓𝜃𝜃

Prototype
-based

Classifier

(a) T3A

Support set
𝕊𝕊

Adaptation
modules
ℎ𝜙𝜙𝑖𝑖 𝑖𝑖=1

𝑁𝑁𝑒𝑒𝑥𝑥
Feature

extractor
𝑓𝑓𝜃𝜃

Nearest-
Neighbor
Classifier

(b) TAST

Support set
𝕊𝕊

𝑥𝑥

Prototype-based
Classifier

𝑧𝑧

𝑝𝑝𝑖𝑖
proto �̂�𝑝𝑖𝑖TAST

CE loss

Adaptation modules
ℎ𝜙𝜙𝑖𝑖 𝑖𝑖=1

𝑁𝑁𝑒𝑒
Shared

Support set
𝕊𝕊

Nearest neighbor
in support set

Feature extractor
𝑓𝑓𝜃𝜃

𝑧𝑧 = 𝑓𝑓𝜃𝜃(𝑥𝑥)

Label Aggregation

Adaptation modules
ℎ𝜙𝜙𝑖𝑖 𝑖𝑖=1

𝑁𝑁𝑒𝑒

Prototype-based
Classifier

Figure 1: Overview of TAST. Left: A schematic of TAST compared to T3A. The dashed class indi-
cates the ground-truth class. (a) T3A constructs prototypes that represent classes in the embedding
space of feature extractor fθ using a support set S. Then T3A predicts the label of the test data x as
the class of the nearest prototype. (b) TAST adds trainable adaptation modules {hϕi} on top of fθ
and computes the estimated class distributions of x by aggregating the pseudo labels of the nearest
support examples of x in the embedding space of adaptation modules. Right: Overview of TAST
training. Based on the intuition that a test data x and its nearest neighborsN (x;S) are likely to share
the same label, we use the mean of prototype-based predictions of the support examples in N (x;S)
as the pseudo label of x. We train the adaptation modules to predict the pseudo labels when the test
data is fed into. Notice that the feature extractor fθ is frozen during test time.

A number of classifiers have been proposed that easily classify unseen test data under the i.i.d.
assumption that unseen test data Dtest is drawn from the same distribution as training data, i.e.,
P train = P test. We assume the classifier is a deep neural network composed of two parts: a feature
extractor fθ : Rd → Rdz and a linear classifier gw : Rdz → Y , where θ and w are the neural network
parameters. ERM optimizes θ and w to obtain a good classifier for future samples in Dtest by min-
imizing the objective function L(θ, w) = E(x,y)∈Dtrain [l(gw(fθ(x)), y)], where l is a loss function
such as cross-entropy loss. However, under the test-time domain shift (i.e., distribution shift), the
i.i.d. assumption between the training and test distributions does not hold, i.e., P train ̸= P test, and
the trained classifiers often show poor classification performance for the test data.

Prototype-based classification in test-time adaptation Prototype-based classification refers to a
method that obtains prototype representations, which represent each class in the embedding space,
and then predicts the label of an input as the class of the nearest prototype. Since labeled data is
not available in the TTA setting, T3A (Iwasawa and Matsuo, 2021) utilizes a support set that is
composed of previous test data and their predictions for the test data by the trained classifier. T3A
does not modify parameters of the classifier. Since the embedding space of the feature extractor is
unchanged during the test time, T3A constructs the support set using the feature representations for
test data instead of the data itself. Specifically, a support set St = {S1t ,S2t , · · · ,SKt } is a set of test
samples until time t. The support set is initialized with the weight of the last linear classifier, i.e.,
Sk0 =

{
wk

∥wk∥

}
, where wk is the parts of w related to k-th class for k = 1, 2, . . . ,K. At time t, the

support set is updated as

Skt =

{
Skt−1 ∪

{
fθ(xt)

∥fθ(xt)∥

}
if argmaxc pc = k

Skt−1 otherwise,
(1)

where pk represents the likelihood that the classifier assigns xt to the k-th class. Using the sup-
port set Skt , one can obtain the class prototype for class k by taking the centroid of the representa-
tions in the support set. Formally, the prototype µk for class k is computed as µk = 1

|Skt |
∑

z∈Skt
z

for k = 1, 2, · · · ,K. Then, the prediction for an input xt is made by comparing the distances
between the embedding of xt and the prototypes, i.e., ŷ = argminc d(fθ(xt), µc) with a pre-
defined metric d such as Euclidean distance or cosine similarity.1 Since the wrongly pseudo la-
beled examples can degrade the classification performance, the support examples with unconfi-
dent pseudo labels are regarded as unreliable examples and filtered out, i.e., at time stamp t,

1We use the cosine similarity as a distance metric d for experiments throughout this paper.

3

Published as a conference paper at ICLR 2023

Algorithm 1 Test-time Adaptation via Self-Training with nearest neighbor information (TAST)

Require: Feature extractor fθ , number of adaptation modules Ne, adaptation modules {hϕi}
Ne
i=1, test batch

B, support set S, number of gradient steps per adaptation T , number of support examples per each class M ,
number of nearby support examples Ns, learning rate α

Ensure: Predictions for all x ∈ B
Update the support set S with eq. (1) and the entropy-based filtering
Retrieve the nearest neighborsN (x; S) for all x ∈ B with eq. (2)
for t = 1 : T do

for i = 1 : Ne do
for x ∈ B do

Obtain the nearest neighbor-based pseudo label p̂TAST
i (·|x) of x with eq. (4)

Compute the prototype-based class distribution pproto
i (·|x) of x with eq. (6)

end for
ϕi ← ϕi − α∇ϕi

1
|B|

∑
x∈B CE(p̂TAST

i (·|x), pproto
i (·|x))

end for
end for
Compute the predictions for all x ∈ B with eq. (8)

Skt←{z|z ∈ Skt , H(σ(gw(z))) ≤ αk}, where αk is the M -th largest prediction entropy of the
samples from Skt , H is Shannon entropy (Lin, 1991), and σ is the softmax function. T3A mod-
ifies only the support set configuration and does not update the trained model parameters at test
time. Thus, T3A cannot effectively mitigate the classification performance degradation caused by
test-time domain shift. To address this issue, we extract useful information for classification of the
test data by utilizing multiple randomly initialized adaptation modules that are trained using nearest
neighbor-based pseudo labels.

3 METHODOLOGY

In this section, we describe two main components of our method TAST: adaptation module uti-
lization (Section 3.1) and pseudo-label generation considering nearest neighbor information (Sec-
tion 3.2).

3.1 ADAPTATION MODULE

We first discuss the parts to be fine-tuned in the trained classifier before explaining our test-time
adaptation method. One possible choice is to fine-tune the whole network parameters in the classi-
fier during test time, but this approach can be unstable and inefficient (Wang et al., 2021a; Kumar
et al., 2022). Another choice is to fine-tune only the parameters of batch normalization (BN) layers
in the classifier as in Wang et al. (2021a). Although it achieves effective test-time adaptation, it has
a limitation that it can be utilized only if there are BN layers in the trained classifier. The other
choice is to train a new classifier added on top of the frozen feature extractor during test time as in
Lee and Chung (2021a). We construct the new classifier by adding a randomly initialized adaptation
module as illustrated in Figure 1. During the test time, we train the adaptation module and predict
the label of the test data using prototype-based class distributions from the adaptation module. The
random initialization of the adaptation module may cause performance degradation of trained clas-
sifier. Thus, we consider an ensemble scheme (Wen et al., 2020; YM. et al., 2020; Mesbah et al.,
2021) to alleviate the issues caused by the random initialization of the adaptation modules to obtain
more robust and accurate predictions. We train the adaptation modules independently and predict
the label of the test data using the average predicted class distribution from the adaptation modules.

3.2 SELF-TRAINING WITH NEAREST NEIGHBOR INFORMATION

TAST generates pseudo label distributions for unlabeled test data with the nearest neighbor informa-
tion and fine-tunes the adaptation modules with the pseudo label distributions. The whole adaptation
procedure of TAST is described in Algorithm 1. We first update the support set S and filter out the
unconfident examples from the support set as in Iwasawa and Matsuo (2021). Then, we find Ns

nearby support examples of test data x in the embedding space of fθ. We denote N (x;S) as the set

4

Published as a conference paper at ICLR 2023

of nearby support examples of x,

N (x;S) := {z ∈ S|d(fθ(x), z) ≤ βx}, (2)

where βx is the distance between x and the Ns-th nearest neighbor of x from S in the embedding
space of fθ. Each adaptation module is trained individually during test time. For the i-th adaptation
module hϕi

2, we compute the prototype representations µi,1, µi,2, . . . , µi,K in the embedding space
of hϕi

◦ fθ with a support set S = {S1,S2, · · · ,SK}, i.e., µi,k = 1
|Sk|

∑
z∈Sk hϕi

(z), for k =

1, 2, . . . ,K. With the prototypes, we compute the prototype-based predicted class distribution of the
nearby support examples in the embedding space of hϕi ◦ fθ, i.e., for z ∈ N (x;S), the likelihood
that the prototype-based classifier assigns z to the k-th class is computed as

pproto
i (k|z) := exp(−d(hϕi

(z), µi,k)/τ)∑
c exp(−d(hϕi(z), µi,c)/τ)

, (3)

where τ is the softmax temperature3. With the nearest neighbor information, TAST generates a
pseudo label distribution p̂TAST

i of x by aggregating prototype-based predicted class distribution of
the nearby support examples in N (x;S) as

p̂TAST
i (k|x) := 1

Ns

∑
z∈N (x;S)

1[argmax
c

pproto
i (c|z) = k], (4)

for k = 1, 2, . . . ,K. Specifically, we use the one-hot class distributions for pseudo label generation
as in Lee (2013); Sohn et al. (2020). Then, we fine-tune the adaptation modules by minimizing
the cross-entropy loss between the predicted class distribution of the test example and the nearest
neighbor-based pseudo label distribution:

LTAST(ϕi) =
1

|Dtest|
∑

x∈Dtest

CE(p̂TAST
i (·|x), pproto

i (·|x)), (5)

pproto
i (k|x) := exp(−d(hϕi(fθ(x)), µi,k)/τ)∑

c exp(−d(hϕi
(fθ(x)), µi,c)/τ)

, k = 1, 2, . . . ,K, (6)

where CE denotes the standard cross-entropy loss. We iterate the pseudo labeling and fine-tuning
processes for T steps per batch. We note that our method does not propagate gradients into the
pseudo labels as in Laine and Aila (2017); Berthelot et al. (2019). Finally, we predict the label of x
using the average predicted class distribution pTAST

i from the adaptation modules, i.e.,

pTAST
i (k|x) := 1

Ns

∑
z∈N (x;S)

pproto
i (k|z) (7)

ŷTAST = argmax
c

pTAST(c|x) = argmax
c

1

Ne

Ne∑
i=1

pTAST
i (c|x) (8)

Additionally, we consider a variant of TAST, named TAST-BN, that fine-tunes the BN layers instead
of adaptation modules. The support set stores the test data itself instead of the feature representa-
tions since the embedding space of the feature extractor steadily changes during the test time. The
pseudocode for TAST-BN is presented in Appendix B.

4 EXPERIMENTS

In this section, we show the effectiveness of our method compared to the state-of-the-art test-time
adaptation methods on two standard benchmarks, i.e., domain generalization and image corruption.
We compare TAST with the following baseline methods: (1) Pseudo Labeling (PL) (Lee, 2013) fine-
tunes the trained classifier using confident pseudo labels based on classifier predictions; (2) PLClf is
a modified version of PL that fine-tunes only the last linear classifier; (3) Tent (Wang et al., 2021a)

2Detailed explanation about the adaptation modules is described in Section 4.1.1. and Appendix A.
3We set τ manually to 0.1 inspired by Oreshkin et al. (2018) for experiments throughout this paper. More

experimental results with different τ are summarized in Appendix C

5

Published as a conference paper at ICLR 2023

Table 1: Average accuracy (%) using classifiers learned by ERM on the domain generalization
benchmarks. We use ResNet-18 and ResNet-50 as backbone networks. Bold indicates the best
performance for each benchmark. Underline indicates the best performance among the baseline
methods for each benchmark. Most of the baseline methods degrade the classification performance
of the trained classifiers on the benchmarks. However, our method consistently outperforms all the
baselines on all of the benchmarks.

Method Memory Backbone VLCS PACS OfficeHome TerraIncognita Avgusage

ERM

ResNet-18

74.88±0.46 79.29±0.77 62.10±0.31 40.62±1.19 64.22
+Tent 72.88±0.82 83.89±0.54 60.86±0.39 33.70±1.09 62.83
+TentAdapter 67.02±1.16 80.75±1.01 62.64±0.38 39.91±0.76 62.58
+TentClf 72.96±1.48 78.57±1.78 59.33±0.62 38.30±3.44 62.29
+SHOT 65.24±2.29 82.36±0.63 62.58±0.39 33.57±1.04 60.94
+SHOTIM 64.86±2.22 82.33±0.61 62.57±0.39 33.35±1.23 60.78
+PL 62.97±2.72 70.98±1.78 58.20±3.21 37.44±7.20 57.40
+PLClf 74.89±0.61 78.11±2.30 61.92±0.41 41.78±1.94 64.18
+T3A ✓ 77.26±1.49 80.83±0.67 63.21±0.50 40.20±0.60 65.38
+TAST (Ours) ✓ 77.27±0.67 81.94±0.44 63.70±0.52 42.64±0.72 66.39
+TAST-BN (Ours) ✓ 75.21±2.36 87.07±0.53 62.79±0.41 39.43±2.24 66.13

ERM

ResNet-50

76.71±0.50 83.21±1.14 67.13±0.99 45.93±1.34 68.25
+Tent 72.96±1.27 85.16±0.62 66.29±0.77 37.08±2.04 65.37
+TentAdapter 69.65±1.17 83.69±1.16 67.91±0.89 43.89±1.25 66.29
+TentClf 75.80±0.68 82.66±1.59 66.79±0.98 43.64±2.59 67.22
+SHOT 67.07±0.90 84.07±1.23 67.65±0.72 35.20±0.82 63.50
+SHOTIM 66.93±0.84 84.14±1.25 67.65±0.77 34.37±1.07 63.27
+PL 69.41±3.12 81.72±4.61 62.85±3.05 38.09±2.35 63.02
+PLClf 75.65±0.88 83.33±1.59 67.01±1.00 46.66±2.12 68.16
+T3A ✓ 77.29±0.39 83.92±1.13 68.26±0.84 45.61±1.10 68.77
+TAST (Ours) ✓ 77.66±0.48 84.11±1.22 68.63±0.70 47.43±2.09 69.46
+TAST-BN (Ours) ✓ 73.52±1.37 89.16±0.47 68.88±0.50 41.47±2.88 68.26

fine-tunes only the parameters of the BN layers to minimize the prediction entropy of test data;
(4) TentAdapter is a modified version of Tent that adds a BN layer between the feature extractor
and the last linear classifier, and fine-tunes only the added BN layer; (5) TentClf is a modified
version of Tent that fine-tunes only the last linear classifier instead of the BN layers; (6) SHOTIM
(Liang et al., 2020) updates the feature extractor to maximize the mutual information between an
input and its prediction; (7) SHOT is a method that adds a pseudo-label loss to SHOTIM; (8) T3A
predicts the label of the test data by comparing distances between test data and the generated pseudo-
prototypes. Originally, SHOT is one of source-free domain adaptation methods which focus on the
offline setting, but we compare our method with the online version of SHOT for a fair comparison.

4.1 DOMAIN GENERALIZATION

The domain generalization benchmarks are designed to evaluate the generalization ability of the
trained classifiers to the unseen domain. The evaluation is performed by a leave-one-domain-out
procedure, which uses a domain as a test domain and the remaining domains as training domains.
We use the publicly released code 4 of T3A for the domain generalization benchmarks.

4.1.1 EXPERIMENTAL SETUP

Training setup We test TAST on four domain generalization benchmarks, specifically VLCS
(Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), and TerraIncog-
nita (Beery et al., 2018). For a fair comparison, we follow the training setup including dataset splits
and hyperparameter selection method used in T3A. We use residual networks (He et al., 2016) in-
cluding batch normalization layers with 18 and 50 layers (hereinafter referred to as ResNet-18 and
ResNet-50, respectively), which are widely used for classification tasks. We train the networks
with various learning algorithms such as ERM and CORAL (Sun and Saenko, 2016). Details about
the learning algorithms are explained in Appendix A. The backbone networks are trained with the

4https://github.com/matsuolab/T3A

6

https://github.com/matsuolab/T3A

Published as a conference paper at ICLR 2023

Table 2: Ablation studies to evaluate the effects of the number of adaptation module and the near-
est neighbor information. We use ResNet-18 trained by ERM. TAST-N is a method that removes
adaptation modules from TAST.

Method Ne VLCS PACS OfficeHome TerraIncognita Avg

ERM - 74.88±0.46 79.29±0.77 62.10±0.31 40.62±1.19 64.22
+T3A - 77.26±1.49 80.83±0.67 63.21±0.50 40.20±0.60 65.38
+TAST-N (Ours) - 76.20±1.87 81.62±0.52 63.54±0.63 41.88±1.21 65.81

+TAST (Ours)

1 75.20±0.77 81.23±0.70 62.09±0.64 42.59±0.41 65.28
5 76.68±0.77 81.81±0.13 63.51±0.59 42.68±0.80 66.17
10 77.43±0.62 81.56±0.85 63.39±0.56 42.60±0.63 66.25
20 77.27±0.67 81.94±0.44 63.70±0.52 42.64±0.72 66.39

default hyperparameters introduced in Gulrajani and Lopez-Paz (2021). We use a BatchEnsemble
(Wen et al., 2020), which is an efficient ensemble method that reduces the computational cost by
weight-sharing, for the adaptation modules of TAST. The output dimension of each adaptation mod-
ule is set to a quarter of the output dimension of the feature extractor5, e.g., 128 for ResNet-18. We
use Kaiming normalization (He et al., 2015) for initializing the adaptation modules at the beginning
of test time. We run experiments using four different random seeds. More details on the bench-
marks and the training setups can be found in Appendix A. Moreover, a discussion on computation
complexity such as runtime comparison is summarized in Appendix A.

Hyperparameters For a fair comparison, the baseline methods use the same hyperparameters as
in Iwasawa and Matsuo (2021). TAST uses the same set of possible values for each hyperparameter
with baseline methods. TAST involves four hyperparameters: the number of gradient steps per
adaptation T , the number of support examples per each class M , the number of nearby support
examples Ns, and the number of adaptation modules Ne. We define a finite set of possible values
for each hyperparameter, Ns ∈ {1, 2, 4, 8}, T ∈ {1, 3}, and M ∈ {1, 5, 20, 50, 100,−1}, where
−1 means to storing all samples without filtering. Ne is set to 20. We use Adam optimizer with a
learning rate of 0.001. More details on the hyperparameters can be found in Appendix A. Moreover,
refer to Appendix C for the sensitivity analysis on hyperparameters including the test batch sizes.

4.1.2 EXPERIMENTAL RESULTS

In Table 1, we summarize the experimental results of test-time adaptation methods using classifiers
trained by ERM. Our method consistently improves the performance of the trained classifiers by
2.17% for ResNet-18 and 1.21% for ResNet-50 on average, respectively. TAST also outperforms
the baseline methods including the state-of-the-art test-time adaptation method T3A. Compared
to T3A, TAST shows better performance by 1.01% for ResNet-18 and 0.69% for ResNet-50 on
average, respectively. Especially, we find that our method significantly improves the performance
of the trained classifiers in the TerraIncognita benchmark, which is a challenging benchmark in
that the trained classifier shows the lowest prediction accuracy. We observe that the performance
of the baseline methods, which fine-tune the feature extractors, is lower than that of the classifiers
without adaptation, whereas TAST-BN improves the performance of the trained classifiers. Refer to
Appendix C for the experimental results of test-time adaptation methods using classifiers trained by
different learning algorithms such as CORAL (Sun and Saenko, 2016) and MMD (Li et al., 2018).

Effect of nearest neighbor information To understand the effect of nearest neighbor information,
we compare Tent and TAST-BN, both of which fine-tine the BN layers. To adjust the BN layers,
Tent uses entropy minimization loss, whereas TAST-BN uses the pseudo-label loss using the nearest
neighbor information. As shown in Table 1, the performances of TAST-BN is better than those of
Tent by 3.3% for ResNet-18 and 2.89% for ResNet-50, respectively. In addition, we consider an
ablated variant of TAST, named TAST-N, that removes adaptation modules from TAST. TAST-N is
optimization-free and has the same support set configuration as T3A. T3A uses the prototype-based
prediction of the test data itself, whereas TAST-N uses the aggregated predicted class distribution

5More experimental results with different output dimensions are summarized in Appendix C.

7

Published as a conference paper at ICLR 2023

of the nearby support examples. As shown in Table 2, the prediction using the nearest neighbor
information leads to a performance gain of 0.43% on average.

Effect of adaptation modules TAST adds randomly initialized adaptation modules on top of the
trained feature extractor as illustrated in Figure 1 and trains the adaptation modules during test time.
For each test batch, we update the adaptation modules T times using pseudo label distributions
considering nearest neighbor information. We set T to 1 or 3 throughout all experiments. To verify
that the few step updates are sufficient to train the adaptation modules, we conduct experiments with
different T ∈ {0, 1, 2, 4, 8}. We test on PACS using classifiers learned by ERM while M and Ns are
set to −1 and one of {1, 2, 4, 8}. We summarize the experimental results in Figure 2. We observe
that the performance of the adapted classifier is better than that of the non-adapted classifier (i.e.,
T = 0) and robust to changes in T . Hence, we conjecture that we can obtain a sufficiently good
adaptation module with a few-step updates similar to Lee and Chung (2021a).

In addition, to investigate the effect of adaptation modules, we test TAST with a varying number of
adaptation modules, e.g., Ne ∈ {1, 5, 10, 20}. In Table 2, we find that utilizing a single adaptation
module leads to degraded performance than TAST-N. However, TAST with multiple adaptation
modules shows improvement over TAST-N and T3A on average.

0 1 2 3 4 5 6 7 8
T

0.790

0.795

0.800

0.805

0.810

Ac
cu

ra
cy

Ns

1 2 4 8

Figure 2: Sensitivity analysis about Ns, the num-
ber of nearby support examples, and T , the num-
ber of gradient steps per adaptation. Average ac-
curacy on test environment A using classifiers
learned by ERM on PACS when M is set to −1.

Method CIFAR-10C CIFAR-100C

No adaptation 29.14 60.35
+SHOT 15.32 41.54
+Tent 13.95 39.04
+PL 22.34 40.06
+T3A 26.68 58.28
+TAST (Ours) 26.61 60.74
+TAST-BN (Ours) 13.08 37.82
+TTT++ 14.33 42.38

Table 3: Average error rate (%) on CIFAR-
10C/100C. We test on the highest level of image
corruption. Bold indicates the best performance
for each image corruption.

4.2 IMAGE CORRUPTION

The image corruption benchmark is designed to evaluate the robustness of a classifier to unseen
corrupted samples when the classifier is trained using clean samples. We use the publicly released
code 6 of TTT++ (Liu et al., 2021) for the image corruption benchmark. For a fair comparison, we
compare our method with the online version of TTT++, which fine-tunes the feature extractor using
the instance discrimination task along with matching the feature statistics of training and test time.

4.2.1 EXPERIMENTAL SETUP

We test the robustness of TAST to image corruption on CIFAR-10/100 (Krizhevsky and Hinton,
2009), which is composed of generic images consisting of 10/100 classes, respectively. To make
a corrupted test dataset, we apply 15 types of common image corruptions (e.g., Gaussian noise,
shot noise) to the test dataset. We call the corrupted dataset CIFAR-10C/100C (Hendrycks and
Dietterich, 2019). We use the highest level (i.e., level-5) of image corruption for this experiment.
We use ResNet-50 as a backbone network. For a fair comparison, we use the released trained model
of Liu et al. (2021) and the same hyperparameters whenever possible. The number of nearby support
examples Ns is set to 1, the number of gradient steps per adaptation T is set to 1, the number of
adaptation modules Ne is set to 20, the number of support examples per each class M is set to
100, and the test batch size is set to 128. More experimental results with other hyperparameter
combinations are summarized in Appendix C.

6https://github.com/vita-epfl/ttt-plus-plus

8

https://github.com/vita-epfl/ttt-plus-plus

Published as a conference paper at ICLR 2023

4.2.2 EXPERIMENTAL RESULTS

The overall experimental results on CIFAR-10C/100C are summarized in Table 3. We note that
the best TTA method which achieves effective adaptation in the image corruption benchmarks can
be different from that of the domain generalization benchmarks, since the two benchmarks deal
with very different types of domain/distribution shifts. From Table 1 and 3, we can observe that
the test-time adaptation algorithms using the frozen feature extractor such as T3A and TAST show
poor performance for image corruption benchmarks but better performance for domain generaliza-
tion benchmarks, compared to those using the adapted feature extractor such as Tent and TAST-BN.
Specifically, TAST-BN outperforms all the TTA methods and TTT++, and it achieves performance
gains of 1.25% for CIFAR-10C and 4.56% for CIFAR-100C on average, compared to Tent, respec-
tively. Refer to Appendix E for the detailed experimental results on 15 types of image corruptions.

5 RELATED WORKS

Test-time training methods Test-time training methods fine-tune trained classifiers by the self-
supervised learning task used at training time. Sun et al. (2020) uses a rotation prediction task (Feng
et al., 2019), which predicts the rotation angle of the rotated images. Liu et al. (2021) use an instance
discrimination task (Chen et al., 2020). However, TTA methods, our focus in this paper, have no
access to any information related to the training procedure. We empirically demonstrated that our
method outperforms the existing test-time training methods on the image corruption benchmark even
without the knowledge of the self-supervised learning task.

Source-free domain adaptation methods Source-Free Domain Adaptation (SFDA) methods
(Liang et al., 2020; Ishii and Sugiyama, 2021; Yeh et al., 2021; Eastwood et al., 2022) aim to adapt
trained classifiers to unseen test domains without training dataset. SFDA methods mainly focus on
the setting that they can access the whole unlabeled test data, whereas TTA methods can access the
online unlabeled test data only. Recently, several SFDA methods using nearest neighbor informa-
tion (Tang et al., 2021; Yang et al., 2021) have achieved good performances in domain adaptation
benchmarks. Especially, NRC (Yang et al., 2021) is built on the similar intuition that a test data and
its nearest neighbors share the same label under domain shift. However, unlike NRC, TAST utilizes
adaptation module structures and prototype-based classification.

Ensemble scheme in test-time adaptation BACS (Zhou and Levine, 2021), which incorporates
a Bayesian inference framework into the TTA setting, adapts the trained model to an unseen test
domain with a regularization term induced by a posterior approximated at training time. BACS
constructs the ensemble of predictive models to obtain diverse labeling for uncertainty estimates at
the beginning of training time and trains the models independently during training time. During test
time, BACS averages the predictions of the adapted ensemble members. On the other hand, TAST
builds an ensemble of adaptation modules to alleviate the issues caused by the random initialization
of the modules at the beginning of test time.

6 DISCUSSION

We proposed TAST to effectively adapt trained classifiers during test time considering nearest neigh-
bor information. We demonstrated the efficiency and effectiveness of our method by conducting
experiments on domain generalization and image corruption benchmarks. To the best of our knowl-
edge, our work is the first one that utilizes an ensemble scheme that is built at test time for test-time
adaptation. We expect that adaptation using the ensemble scheme can be combined with the other
methods in source-free domain adaptation or test-time training.

One of the limitations of TAST is the extension to large-scale benchmarks. TAST and TAST-BN
require good prototypes in the embedding space for prediction and pseudo-labeling. To obtain good
prototypes, TAST and TAST-BN construct and update the prototypes using the encountered pseudo-
labeled data during the test time. This prototype construction/update, however, can be ineffective
for the large-scale benchmarks especially for too many classes and small batch sizes. Detailed
discussion of TAST/TAST-BN on large-scale benchmarks and possible improvement of TAST-BN
for large-scale benchmarks is described in Appendix D.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This research was supported by the National Research Foundation of Korea under grant
2021R1C1C11008539, and by the Ministry of Science and ICT, Korea, under the IITP (Institute
for Information and Communications Technology Panning and Evaluation) grant No.2020-0-00626.

REFERENCES

E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness. Pseudo-labeling and confir-
mation bias in deep semi-supervised learning, 2020.

S. Beery, G. Van Horn, and P. Perona. Recognition in terra incognita. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019.

B. Chen, J. Jiang, X. Wang, P. Wan, J. Wang, and M. Long. Debiased self-training for semi-
supervised learning. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in
Neural Information Processing Systems, 2022.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 1597–1607. PMLR, 13–18 Jul 2020.

M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large
database of object categories. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 129–136, 2010. doi: 10.1109/CVPR.2010.5540221.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. Quantifying generalization in rein-
forcement learning. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 1282–1289. PMLR, 09–15 Jun 2019.

G. Csurka. Domain adaptation for visual applications: A comprehensive survey. CoRR,
abs/1702.05374, 2017.

C. Eastwood, I. Mason, C. Williams, and B. Schölkopf. Source-free adaptation to measurement
shift via bottom-up feature restoration. In International Conference on Learning Representations,
2022.

M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–338, jun 2010. ISSN 0920-5691. doi:
10.1007/s11263-009-0275-4.

C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In 2013 IEEE International Conference on Computer
Vision, pages 1657–1664, 2013. doi: 10.1109/ICCV.2013.208.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples:
An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst.,
106(1):59–70, apr 2007. ISSN 1077-3142. doi: 10.1016/j.cviu.2005.09.012.

Z. Feng, C. Xu, and D. Tao. Self-supervised representation learning by rotation feature decou-
pling. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 10356–10366, 2019. doi: 10.1109/CVPR.2019.01061.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In F. Bach
and D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1180–1189, Lille, France, 07–
09 Jul 2015. PMLR.

10

Published as a conference paper at ICLR 2023

I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2021.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1321–1330. PMLR,
06–11 Aug 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. doi:
10.1109/CVPR.2016.90.

D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

M. Ishii and M. Sugiyama. Source-free domain adaptation via distributional alignment by matching
batch normalization statistics. ArXiv, abs/2101.10842, 2021.

Y. Iwasawa and Y. Matsuo. Test-time classifier adjustment module for model-agnostic domain gen-
eralization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 2427–2440. Curran As-
sociates, Inc., 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference
for Learning Representations, San Diego, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario, 2009.

A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang. Fine-tuning can distort pretrained
features and underperform out-of-distribution. In International Conference on Learning Repre-
sentations, 2022.

S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In International Confer-
ence on Learning Representations, 2017.

D.-H. Lee. Pseudo-label : The simple and efficient semi-supervised learning method for deep neural
networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL), 07 2013.

D. H. Lee and S.-Y. Chung. Unsupervised embedding adaptation via early-stage feature recon-
struction for few-shot classification. In M. Meila and T. Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 6098–6108. PMLR, 18–24 Jul 2021a.

S. Lee and S.-Y. Chung. Improving generalization in meta-rl with imaginary tasks from latent
dynamics mixture. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 27222–27235.
Curran Associates, Inc., 2021b.

D. Li, Y. Yang, Y. Song, and T. M. Hospedales. Deeper, broader and artier domain generalization.
In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 5543–5551. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.591.

H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

11

Published as a conference paper at ICLR 2023

J. Liang, D. Hu, and J. Feng. Do we really need to access the source data? source hypothesis transfer
for unsupervised domain adaptation. In International Conference on Machine Learning (ICML),
pages 6028–6039, 2020.

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, Jan. 1991. ISSN 0018-9448. doi: 10.1109/18.61115.

Y. Liu, P. Kothari, B. van Delft, B. Bellot-Gurlet, T. Mordan, and A. Alahi. Ttt++: When does self-
supervised test-time training fail or thrive? In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 21808–21820. Curran Associates, Inc., 2021.

M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised domain adaptation with residual transfer
networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

R. Mendonca, X. Geng, C. Finn, and S. Levine. Meta-reinforcement learning robust to distributional
shift via model identification and experience relabeling. CoRR, abs/2006.07178, 2020.

Y. Mesbah, Y. Y. Ibrahim, and A. M. Khan. Domain generalization using ensemble learning. CoRR,
abs/2103.10257, 2021.

S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto. Unified deep supervised domain adaptation
and generalization. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania. Calibrating deep neural
networks using focal loss. In Advances in Neural Information Processing Systems, volume 33,
pages 15288–15299. Curran Associates, Inc., 2020.

B. Oreshkin, P. Rodrı́guez López, and A. Lacoste. Tadam: Task dependent adaptive metric for
improved few-shot learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object detection
models. 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)
- Volume 1, 1:29–36, 2005.

B. Russell, A. Torralba, K. Murphy, and W. Freeman. Labelme: A database and web-based tool
for image annotation. International Journal of Computer Vision, 77(1-3):157–173, 2008. ISSN
0920-5691. doi: 10.1007/s11263-007-0090-8.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains.
In Proceedings of the 11th European Conference on Computer Vision: Part IV, ECCV’10, page
213–226, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 364215560X.

S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge. Improving robust-
ness against common corruptions by covariate shift adaptation. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 11539–11551. Curran Associates, Inc., 2020.

O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning transferrable representations for un-
supervised domain adaptation. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang, and
C. Raffel. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.
arXiv preprint arXiv:2001.07685, 2020.

12

Published as a conference paper at ICLR 2023

B. Sun and K. Saenko. Deep CORAL: correlation alignment for deep domain adaptation. CoRR,
abs/1607.01719, 2016.

Y. Sun, X. Wang, L. Zhuang, J. Miller, M. Hardt, and A. A. Efros. Test-time training with self-
supervision for generalization under distribution shifts. In ICML, 2020.

S. Tang, Y. Yang, Z. Ma, N. Hendrich, F. Zeng, S. S. Ge, C. Zhang, and J. Zhang. Near-
est neighborhood-based deep clustering for source data-absent unsupervised domain adaptation.
CoRR, abs/2107.12585, 2021.

R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt. Measuring robustness to
natural distribution shifts in image classification. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 18583–18599. Curran Associates, Inc., 2020.

E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains and
tasks. In ICCV, 2015.

H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for unsu-
pervised domain adaptation. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5385–5394, 2017.

D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Tent: Fully test-time adaptation by
entropy minimization. In International Conference on Learning Representations, 2021a.

J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin. Generalizing to unseen domains: A survey on
domain generalization. In Z.-H. Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pages 4627–4635. International Joint Confer-
ences on Artificial Intelligence Organization, 8 2021b. doi: 10.24963/ijcai.2021/628. Survey
Track.

Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient ensemble and
lifelong learning. In International Conference on Learning Representations, 2020.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training with noisy student improves imagenet
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang. Adversarial domain adaptation with
domain mixup. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 6502–
6509. AAAI Press, 2020.

S. Yang, Y. Wang, J. van de weijer, L. Herranz, and S. JUI. Exploiting the intrinsic neighborhood
structure for source-free domain adaptation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

H.-W. Yeh, B. Yang, P. C. Yuen, and T. Harada. Sofa: Source-data-free feature alignment for
unsupervised domain adaptation. In 2021 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 474–483, 2021. doi: 10.1109/WACV48630.2021.00052.

A. YM., R. C., and V. A. Self-labelling via simultaneous clustering and representation learning. In
International Conference on Learning Representations, 2020.

A. Zhou and S. Levine. Bayesian adaptation for covariate shift. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

13

Published as a conference paper at ICLR 2023

A BENCHMARK AND IMPLEMENTATION DETAILS

A.1 DOMAIN GENERALIZATION BENCHMARKS

We test on four domain generalization benchmarks, specifically VLCS (Fang et al., 2013), PACS
(Li et al., 2017), OfficeHome (Venkateswara et al., 2017), and TerraIncognita (Beery et al., 2018).
VLCS is composed of photographic images from four different datasets (PASCAL VOC207 (Ever-
ingham et al., 2010), LableMe (Russell et al., 2008), Caltech 101 (Fei-Fei et al., 2007), and SUN09
(Choi et al., 2010)), consisting of 10,729 examples of 5 categories (bird, car, chair, dog, and per-
son). PACS is composed of images of objects from four different domains (photo, art, cartoon, and
sketch), consisting of 9,991 examples of 7 categories (dog, elephant, giraffe, guitar, horse, house,
and person). OfficeHome is composed of images of objects in the office and home from 4 different
domains (artistic images, clip art, product, and real-world images), consisting of 15,588 examples
of 65 categories (e.g., alarm clock, backpack, and batteries). TerraIncognita is composed of wild
animal images taken from 4 different locations (L100, L38, L43, and L46), consisting of 24,788
examples of 10 classes.

A.2 IMPLEMENTATION DETAILS ON DOMAIN GENERALIZATION BENCHMARKS

We follow the dataset splits and the hyperparameter selection method used in T3A. We split each
dataset of training domains into training and validation sets. The training and validation sets are used
for network training and hyperparameter selection, respectively. Specifically, we split each dataset
into 80% and 20% and use the smaller set as the validation set. We choose the hyperparameters that
maximize the validation accuracy of the adapted classifier. This hyperparameter selection method
is called the training-domain validation. We train backbone networks using four different learning
algorithms: ERM, CORAL, MMD, and Mixup. ERM is explained in Section 2 of the manuscript;
CORAL aims to obtain domain-invariant representations by aligning covariance matrices of train-
ing data and test data; MMD tries to match the training and test data distributions using the MMD
measure; Mixup trains classifiers using mixed images/features and mixed labels created by linear in-
terpolation of examples from the training domains. We run experiments using four different random
seeds: 0, 1, 2, and 3.

All the hyperparameters for training and test-time adaptation are taken from T3A and DomainBed.
We train the network with Adam optimizer with default hyperparameters introduced in DomainBed,
e.g., a learning rate of 0.00005, a weight decay of 0, a dropout rate of 0, and a batch size of 32. In ad-
dition to the hyperparameters for test-time adaptation described in Section 4.1.1 of the manuscript,
there is one more hyperparameter β for the baseline methods. The learning rate for test-time adap-
tation is obtained by multiplying β to the learning rate used in training time. We set the confidence
threshold for PL and PLClf to 0.9. The possible values for β are set to 0.1, 1.0, and 10.0. For
TAST-BN, we restrict the size of the whole support set to 150 due to effective memory usage and
reduced runtime since the test data and the support examples are fed into the classifier for every test
batch.

A.3 IMPLEMENTATION DETAILS ON IMAGE CORRUPTION BENCHMARKS

We use the same hyperparameters introduced in TTT++. We train ResNet-50 for 1000 epochs using
the classification and instance discrimination tasks jointly. The weight on the instance discrimination
task for balancing the two tasks is set to 0.1. For the instance discrimination task, we use the
same data augmentation schemes of TTT++, e.g., RandomResizeCrop, RandomHorizontalCrop,
HorizontalFlip, ColorJitter, RandomGrayscale, and Normalization. We set the batch size for training
the networks to 256. At test time, PL, SHOT, and TTT++ use SGD optimizer with a learning rate of
0.001 and a momentum of 0.9. On the other hand, Tent, TAST, and TAST-BN use Adam optimizer
with a learning rate of 0.001. We set the batch size to 128 during the test time due to effective
memory usage. We run experiments using four different random seeds: 0, 1, 2, and 3. We set the
confidence threshold for PL and PLClf to 0.9. For PL, we adjust only the BN layers in the trained
model as in Tent. For TAST-BN, we restrict the size of the whole support set to 200. However, even
in CIFAR-100C experiments, we can store only two support examples per class if the support set
size is fixed at 200. Thus, we do not restrict the size of support set for TAST-BN on CIFAR-100C.

14

Published as a conference paper at ICLR 2023

A.4 RUNTIME COMPARISON

Table 4: Mean runtime (sec) to adapt classifiers that use ResNet-18 as a backbone network with a
single hyperparameter combination (T = 1, Ns = 8,M = −1).

Method VLCS PACS OfficeHome TerraIncognita

Tent 53.32 15.17 50.56 76.48
TentAdapter 0.59 0.43 0.64 0.92
TentClf 0.52 0.40 0.60 0.81
SHOT 55.10 20.97 54.66 77.08
SHOTIM 54.82 20.73 54.63 77.00
PL 55.03 20.75 54.53 77.02
PLClf 0.57 0.43 0.62 0.92
T3A 0.62 0.58 3.44 1.61
TAST (Ours) 7.71 6.92 12.74 23.69
TAST-BN (Ours) 81.54 73.93 114.33 179.48

We conduct our experiments on TITAN XP. We report the average runtime spent to adapt classifiers
that use ResNet-18 as a backbone network in Table 4. We note that TAST, which updates the support
set and the adaptation modules, requires only 1/3 to 1/4 running time compared to the methods that
update the entire feature extractors, e.g. SHOT or SHOTIM. On the other hand, TAST-BN, which
updates the support set as well as the BN layer, requires more running time (about 2x) compared to
SHOT or SHOTIM. The overhead is not significant though due to the online setting.

A.5 DETAILS ABOUT ADAPTATION MODULES

We use BatchEnsemble (BE) for the adaptation modules of our method. BE is a simple and efficient
ensemble method that greatly reduces the computational cost by weight-sharing. Each ensemble
member of BE is composed of two layers with a shared weight and rank-one factors. Specifically,
the weight matrix of j-th ensemble member is W ◦ rjsTj where W is a shared weight and rjs

T
j is

the rank-one factor of j-th ensemble member. Although the existing deep ensemble (DE) methods
do not share any weights, all ensemble members share W , and thus BE reduces the number of
parameters compared to DE. Moreover, unlike DE, only the last layer of all ensemble members of
BE are different, and thus it can be easily vectorized and trained simultaneously. Therefore, BE
greatly reduces the computation cost.

The adaptation module structure is used in many fields such as self-supervised learning (which is
often called “projection head”). Although the existing methods mainly focus on training time, TAST
focuses on test time. For example, SimCLR (Chen et al., 2020) adds a projection head on the top of
a feature extractor at the beginning of training time and trains the feature extractor and the projection
head with an instance discrimination loss. After the training time, for downstream tasks, SimCLR
uses feature extractor outputs rather than projection head ones. However, TAST adds adaptation
modules at the beginning of test time and trains the modules with the nearest neighbor-based pseudo-
label distribution. To predict the label of test data, we use the averaged predicted class distribution
from the adaptation modules.

B PSEUDOCODE FOR TAST-BN

We present the pseudocode for TAST-BN in Algorithm 2. TAST-BN fine-tunes the BN layers in the
feature extractor instead of adaptation modules. Since the embedding space of the feature extractor
steadily changes, the support set stores the test data itself instead of the feature representations.
Formally, a support set St = {S1t ,S2t , . . . ,SKt } is a set of test samples until time t. The support set
is initialized as an empty set. At the time t, the support set is updated as

Skt =

{
Skt−1 ∪ {xt} , if argmaxc pc = k

Skt−1, otherwise,
(9)

15

Published as a conference paper at ICLR 2023

Algorithm 2 TAST-BN
Require: Feature extractor fθ , test batch B, support set S, number of gradient steps per adaptation T , number

of support examples per each class M , number of nearby support examples Ns, learning rate α
Ensure: Predictions ŷx for all x ∈ B

Update the support set S with eq. (9) in Section B
Retrieve the nearest neighborsN (x; S) for all x ∈ B with eq. (10) in Section B
for t = 1 : T do

Compute prototypes {µk}Kk=1 using the support set in the embedding space of fθ
for z ∈ N (x; S) do

pproto(k|z)← exp(−d(fθ(z),µk)/τ)∑
c exp(−d(fθ(z),µc)/τ)

, k = 1, 2, . . . ,K

end for
for x ∈ B do

p̂TAST(k|x)← 1
Ns

∑
z∈N (x;S) 1[argmaxc p

proto(c|z) = k], k = 1, 2, . . . ,K

pproto(k|x)← exp(−d(fθ(x),µk)/τ)∑
c exp(−d(fθ(x),µc)/τ)

, k = 1, 2, . . . ,K

end for
θ ← θ − α∇θ

1
|B|

∑
x∈B CE(p̂TAST(·|x), pproto(·|x))

end for
for x ∈ B do

pTAST(k|x)← 1
Ns

∑
z∈N (x;S) p

proto(k|z), k = 1, 2, . . . ,K

ŷx ← argmaxc p
TAST(c|x)

end for

where pk is the likelihood the classifier assigns xt to the class k. Using the support set, we retrieve
Ns nearby support examples of x in the embedding space of fθ, i.e.,

N (x;S) := {z ∈ S|d(fθ(x), fθ(z)) ≤ βx}, (10)

where βx is the distance between x and the Ns-th nearest neighbor of x from S in the embedding
space of fθ. Then, we generate a pseudo label distribution for the test data and fine-tune the BN
layers to match the nearest neighbor-based pseudo label and a prototype-based class distributions
for the test data with the same procedure described in Section 3 of the manuscript.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTAL RESULTS USING CLASSIFIERS TRAINED BY DIFFERENT LEARNING
ALGORITHMS

In Table 5, we show the results of test-time adaptation methods using classifiers trained by three
different learning algorithms, namely CORAL, MMD, and Mixup. TAST consistently enhances the
performance of the trained classifiers on the benchmarks by 1.73%, 1.81%, and 2.30% on average
using the classifiers trained by CORAL, MMD, and Mixup, respectively. We find that TAST has a
minor performance gain compared to the results in Table 1 of manuscript, whereas it surpasses T3A
on most of benchmarks. Compared to T3A, TAST shows better performance on the benchmarks by
0.21%, 0.14%, and 0.40% on average with the classifiers trained by CORAL, MMD, and Mixup,
respectively. Refer to Section 4 in Appendix E for the experimental results of the other baseline
methods.

C.2 FINE-TUNING BOTH ADAPTATION MODULES AND BN LAYERS SIMULTANEOUSLY

We consider a method, named TAST-both, that fine-tunes both the attached adaptation modules
and the BN layers in the feature extractor simultaneously. Table 6 reports the experimental results
using classifiers learned by ERM on domain generalization benchmarks. We use ResNet-18 as a
backbone network. As shown in Table 6, TAST-both shows worse performance than TAST-BN and
TAST. We conjecture that the random initialization of adaptation modules and the changes in feature
representation due to BN layer training negatively affect the learning of the other layers.

16

Published as a conference paper at ICLR 2023

Table 5: Average accuracy (%) on domain generalization benchmarks using classifiers trained by
different learning algorithms, namely CORAL, MMD, and Mixup. We use ResNet-18 as a back-
bone network. Bold indicates the best performance for each benchmark. TAST and TAST-BN
consistently improve the performance of the trained classifiers and they outperform T3A on most of
the benchmarks.

Method VLCS PACS OfficeHome TerraIncognita Avg

CORAL 74.00±1.13 81.00±0.79 62.78±0.06 36.51±2.35 63.57
+T3A 75.49±1.67 82.75±0.51 63.72±0.32 38.39±1.39 65.09
+TAST (Ours) 74.82±2.43 83.16±0.81 64.00±0.25 39.21±1.75 65.30
+TAST-BN (Ours) 77.01±0.36 87.21±0.57 62.98±0.23 37.45±1.11 66.16

MMD 74.90±0.50 81.06±0.92 62.20±0.48 35.73±2.70 63.47
+T3A 77.28±0.45 82.52±0.53 63.34±0.55 37.40±1.86 65.14
+TAST (Ours) 76.21±0.79 83.29±0.26 63.49±0.49 38.12±2.47 65.28
+TAST-BN (Ours) 76.06±0.89 86.35±0.76 63.22±0.26 39.46±1.63 66.27

Mixup 74.97±0.86 78.29±0.88 61.83±0.88 41.04±1.01 64.03
+T3A 78.43±0.76 81.91±0.54 63.49±0.86 39.89±0.90 65.93
+TAST (Ours) 77.19±0.80 82.85±0.36 63.83±0.74 41.44±1.67 66.33
+TAST-BN (Ours) 76.89±0.86 87.14±0.56 62.09±0.86 42.70±1.90 67.21

Table 6: Average accuracy (%) using classifiers trained by ERM on domain generalization bench-
marks. We use ResNet-18 as a backbone network. TAST-both is a method fine-tunes both the
attached adaptation modules and the BN layers simultaneously. TAST-both shows worse perfor-
mances than TAST-BN and TAST.

Method Ne VLCS PACS OfficeHome TerraIncognita avg

ERM - 74.88±0.46 79.30±0.77 62.09±0.31 40.63±1.19 64.22
+T3A - 77.26±1.49 80.83±0.67 63.21±0.50 40.20±0.60 65.38
+TAST-N - 76.20±1.87 81.62±0.52 63.54±0.63 41.88±1.21 65.81
+TAST-BN - 75.21±2.36 87.07±0.53 62.79±0.41 39.43±2.24 66.13

+TAST

1 75.20±0.77 81.23±0.70 62.09±0.64 42.59±0.41 65.28
5 76.68±0.77 81.81±0.13 63.51±0.59 42.68±0.80 66.17

10 77.43±0.62 81.56±0.85 63.39±0.56 42.60±0.63 66.25
20 77.27±0.67 81.94±0.44 63.70±0.52 42.64±0.72 66.39

+TAST-both

1 73.35±0.57 84.85±0.56 61.70±0.39 39.27±2.05 64.79
5 73.88±0.35 84.99±0.63 61.81±0.44 39.16±1.57 64.96

10 73.66±1.57 85.13±0.27 62.03±0.52 38.50±1.25 64.83
20 75.16±0.17 85.52±0.05 62.01±0.67 38.54±1.52 65.31

C.3 EXPERIMENTAL RESULTS USING DIFFERENT HYPERPARAMETERS ON CIFAR-10C

In Table 4 of the manuscript, we report the experimental results when Ns and M are set to 1 and 100
on the CIFAR-10C, respectively. In Table 7, we summarize the experimental results using different
combinations of Ns and M on the CIFAR-10C. There are two observations in Table 7: (1) T3A has
shown the best performances when M is set to 100; and (2) TAST and TAST-BN perform better
with smaller Ns.

C.4 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

We follow the hyperparameter selection method used in T3A. We split the dataset of training do-
mains into training and validation sets. The validation set is used to select hyperparameters that
maximize the validation accuracy of the adapted classifier. On the other hand, for the image cor-
ruption benchmark, we use manually determined hyperparameters as in Tent. Thus, we summarized
experimental results on other combinations of hyperparameters in Table 8-11.

Additionally, we investigate the sensitivity of two hyperparameters which are set manually through-
out all experiments, the softmax temperature τ and the output dimension of adaptation modules

17

Published as a conference paper at ICLR 2023

Table 7: Average error rate (%) in the online setting on CIFAR-10C with different hyperparameters.

Method M Ns gauss brit contr defoc elast fog frost glass impul jpeg motn pixel shot snow zoom

No adaptation - - 48.73 7.01 13.27 11.84 23.38 29.41 28.24 50.78 57.00 19.46 23.38 47.88 44.00 21.93 10.84
+T3A 1 - 44.56 8.28 13.27 13.45 22.18 28.59 27.18 46.43 55.11 18.96 22.59 42.92 40.32 21.77 10.53
+T3A 5 - 44.65 7.94 14.11 13.34 22.67 29.00 28.57 45.92 56.03 19.67 24.16 40.18 40.55 22.61 12.02
+T3A 20 - 44.26 7.72 13.82 13.35 22.24 28.71 28.36 45.49 55.87 19.34 23.76 39.82 40.38 22.44 12.20
+T3A 50 - 42.82 7.43 13.65 12.36 22.15 28.54 27.69 44.42 54.91 19.13 22.83 38.33 38.53 22.09 11.15
+T3A 100 - 41.87 7.30 13.61 11.99 22.06 28.52 27.13 44.10 54.26 18.71 22.54 37.53 37.84 21.97 10.72
+T3A -1 - 43.83 7.33 13.56 11.63 22.11 29.07 27.56 46.79 55.16 18.73 22.77 41.16 39.58 22.23 10.34
+TAST 1 1 47.24 8.68 12.93 16.74 22.31 28.66 27.23 48.76 55.97 19.21 22.63 48.32 42.80 21.57 10.34
+TAST 5 1 47.19 9.78 15.88 15.58 24.30 30.94 29.70 48.66 58.05 21.49 27.57 41.00 44.21 24.58 14.75
+TAST 5 2 48.08 11.34 17.73 17.10 25.93 31.99 30.54 49.77 58.54 23.72 29.55 44.09 45.55 26.23 16.41
+TAST 5 4 48.53 10.95 17.25 16.82 25.58 31.78 30.19 50.00 58.86 23.67 29.35 43.37 45.35 25.63 16.26
+TAST 20 1 43.58 7.74 14.01 12.97 21.90 28.73 27.76 45.62 55.20 19.78 23.63 38.77 39.22 22.73 12.13
+TAST 20 2 44.38 8.22 14.51 13.73 22.28 29.07 28.66 46.30 55.92 20.49 24.39 40.60 40.38 23.37 12.76
+TAST 20 4 44.41 8.19 14.26 13.60 22.22 29.05 28.81 46.17 56.05 20.09 24.24 40.33 40.39 23.18 12.67
+TAST 50 1 42.47 7.37 13.65 12.14 21.48 28.30 26.88 44.99 54.52 19.26 22.76 37.59 37.73 22.06 11.03
+TAST 50 2 42.79 7.62 14.11 12.30 21.57 28.73 27.50 45.26 55.18 19.96 23.10 38.99 38.43 22.43 11.25
+TAST 50 4 42.89 7.54 13.90 12.15 21.45 28.51 27.48 45.10 54.93 19.71 22.87 38.94 38.21 22.29 11.02
+TAST 100 1 42.02 7.34 13.55 11.86 21.38 28.58 26.51 44.99 54.19 18.96 22.55 37.08 37.62 21.84 10.64
+TAST 100 2 42.35 7.61 13.89 11.95 21.50 28.75 27.06 45.15 54.55 19.58 22.77 38.09 37.64 21.99 10.73
+TAST 100 4 42.34 7.50 13.80 11.72 21.45 28.32 26.89 44.75 54.46 19.18 22.54 38.00 37.61 21.97 10.67
+TAST -1 1 45.20 7.44 14.05 11.55 22.87 30.19 27.87 50.28 57.07 19.65 22.95 41.99 41.35 22.65 10.20
+TAST -1 2 44.86 7.45 13.88 11.62 22.03 29.38 28.03 50.37 58.25 20.02 22.73 42.67 41.04 22.48 10.30
+TAST -1 4 44.93 7.36 13.64 11.17 21.57 28.82 28.17 49.63 58.74 19.64 22.41 43.38 41.02 22.15 9.86
+TAST-BN 1 1 19.46 11.95 11.02 12.84 21.54 19.38 16.64 26.03 27.76 17.93 15.29 14.01 19 17.94 11.78
+TAST-BN 5 1 16.21 8.4 8.48 9.56 17.92 15.59 13.06 23.1 23.68 13.58 12.79 11.06 14.85 14.02 8.36
+TAST-BN 5 2 17.26 9.27 9.23 10.51 19.51 16.17 13.86 24.32 24.69 14.57 13.81 12.05 15.98 15.06 8.95
+TAST-BN 5 4 18.89 10.29 11.05 13.23 20.66 16.99 14.79 24.95 26.1 16.12 17.02 13.57 18.42 17.11 10.22
+TAST-BN 20 1 14.91 7.68 7.81 8.62 16.81 15.10 12.25 21.82 22.54 12.38 11.67 10.34 13.77 12.99 7.57
+TAST-BN 20 2 15.11 7.85 7.96 8.75 17.00 15.02 12.32 22.07 22.54 12.57 11.99 10.50 13.98 13.12 7.70
+TAST-BN 20 4 15.00 7.98 8.00 8.71 16.87 14.89 12.24 21.88 22.43 12.55 11.89 10.47 14.06 13.06 7.59

dϕ. We set τ and dϕ to 0.1 and dz/4, where dz is the output dimension of the feature extractor.
In Table 8-11, we report the average accuracy of the adapted classifier by TAST with the different
combinations of τ and dϕ. In the experiments, we use ResNet-18 as a backbone network trained by
ERM on PACS, which is one of the domain generalization benchmarks. We experimentally show
that the performance of TAST is robust to changes in τ and dϕ. We especially think that the clas-
sification performance of TAST is not significantly affected by changes in τ because τ affects both
the prototype-based predicted class distribution of test data and the new pseudo-label distribution
using nearest neighbor information and then we train the adaptation modules with the cross-entropy
loss affected by τ only a few times per each test batch during test time. Moreover, we can observe
a similar classification performance regardless of the dimension of adaptation modules similar to
Chen et al. (2020).

Table 8: Sensitivity analysis about the softmax temperature τ and the output dimension of adap-
tation modules dϕ. Average accuracy on test environment A using classifiers learned by ERM on
PACS.

testenv:A dϕ
dz dz/2 dz/4 (used) dz/8 dz/16

τ

10 0.8025 0.8028 0.8024 0.8023 0.8026
1 0.8034 0.8038 0.8029 0.8034 0.8034

0.1 (used) 0.8031 0.8038 0.8056 0.8038 0.8034
0.01 0.8026 0.8018 0.8025 0.8028 0.8023
0.001 0.8020 0.8030 0.8023 0.8019 0.8001

We used the test batch size as in T3A and Tent for domain generalization and image corruption
benchmarks, respectively, as described in Appendix A and Section 4 of the manuscript. We summa-
rize experimental results using different test batch size. We conduct experiments using classifiers,
which have ResNet-18 backbone networks, learned by ERM on PACS. As shown in Table 12, we
can find that Tent and PL show reduced performance in experiments using smaller test batch size,
but T3A, TAST, and TAST-BN are robust to changes in test batch size.

18

Published as a conference paper at ICLR 2023

Table 9: Sensitivity analysis about the softmax temperature τ and the output dimension of adap-
tation modules dϕ. Average accuracy on test environment C using classifiers learned by ERM on
PACS.

testenv:C dϕ
dz dz/2 dz/4 (used) dz/8 dz/16

τ

10 0.7842 0.7838 0.7841 0.7838 0.7835
1 0.7830 0.7836 0.7829 0.7837 0.7836

0.1 (used) 0.7817 0.7815 0.7826 0.7816 0.7824
0.01 0.7810 0.7816 0.7842 0.7832 0.7825

0.001 0.7811 0.7796 0.7802 0.7806 0.7803

Table 10: Sensitivity analysis about the softmax temperature τ and the output dimension of adap-
tation modules dϕ. Average accuracy on test environment P using classifiers learned by ERM on
PACS.

testenv:P dϕ
dz dz/2 dz/4 (used) dz/8 dz/16

τ

10 0.9611 0.9611 0.9614 0.9613 0.9609
1 0.9614 0.9614 0.9611 0.9614 0.9616

0.1 (used) 0.9615 0.9620 0.9644 0.9613 0.9606
0.01 0.9621 0.9609 0.9613 0.9606 0.9604

0.001 0.9611 0.9615 0.9607 0.9606 0.9613

Table 11: Sensitivity analysis about the softmax temperature τ and the output dimension of adap-
tation modules dϕ. Average accuracy on test environment S using classifiers learned by ERM on
PACS.

testenv:S dϕ
dz dz/2 dz/4 (used) dz/8 dz/16

τ

10 0.7180 0.7208 0.7186 0.7155 0.7185
1 0.7175 0.7214 0.7180 0.7211 0.7202

0.1 (used) 0.7211 0.7222 0.7252 0.7216 0.7220
0.01 0.7236 0.7232 0.7223 0.7225 0.7209
0.001 0.7246 0.7196 0.7251 0.7235 0.7225

Table 12: Ablation studies to evaluate the effects of the test batch size.

Methods Batch size B
8 16 32 (used) 64 128

ERM 79.31± 0.75 79.30±0.76 79.29±0.77 79.29±0.76 79.28±0.70
+Tent 77.52±0.49 81.16±0.46 83.89±0.54 83.90±0.54 83.85±0.12
+SHOT 81.44±0.32 82.12±0.75 82.36±0.63 83.18±0.34 82.95±0.33
+PL 67.90±4.26 70.33±3.53 70.98±1.78 77.52±2.89 78.90±0.39
+T3A 81.21±0.76 81.22±0.69 80.83±0.67 81.20±0.73 81.27±0.6
+TAST (ours) 81.81±0.35 81.52±1.04 81.94±0.44 81.92±0.87 81.69±0.64
+TAST-BN (ours) 86.78±0.78 86.66±1.24 87.07±0.53 86.90±0.49 86.92±0.42

D TAST ON IMAGENET-C

ImageNet-C is an image corruption benchmark such as CIFAR-10/100C, but it is a large-scale
benchmark composed of larger images from more diverse classes. ImageNet-C is challenging for
the existing test-time adaptation/training methods including TTT++. Also TAST and TAST-BN may
struggle with ImageNet-C, since TAST and TAST-BN require prototypes to represent each class in
the embedding space. To obtain good prototypes, a sufficient amount of data per class is required,
but we have no access to any labeled data due to TTA settings. Pseudo-labeling alleviates this issue
on CIFAR-10/100C, but not on ImageNet-C due to the following concerns:

19

Published as a conference paper at ICLR 2023

• The prototype updates of TAST and TAST-BN are based on the estimated labels of test
data by the classifier, not the ground-truth labels. Under test-time domain shift, classifier
bias may occur, which may result in assigning most test data only to a subset of classes.
As observed in Chen et al. (2022), the classifier bias often occurs under the covariate shift
such as image corruption and style transfer. Then, even after a large number of batch
updates which cover all the ground-truth classes by at least one sample, some prototypes
may have not been updated since no previous test data has been classified to those classes.
For example, we found that for the experiments with Gaussian noise, it took 768 batches
out of 782 batches until all the prototypes were updated at least by once.

• Since the number of classes (1000) is much larger than the test batch size (64), few proto-
types for our method are updated per each test batch while the remaining prototypes remain
unupdated. It might affect the performance of the prototype-based classification. To ad-
dress this issue, it might require a batch size larger than 1000, which is impossible due to
the hardware cost.

When the number of classes (1000) is much larger than the test batch size (64), obtaining good
prototypes for TAST-BN can be difficult especially at the early stage of test time as explained above.
To alleviate the concerns, we consider a variant of TAST-BN, in which the prototypes are initialized
with the weight of the last linear classifier as in TAST and fixed during the test time. We call
this variant TAST-BN (w/ fixed prototypes). In Table 13, we report the experimental results (test
accuracy) on ImageNet-C with severity level 5 when we set (Ns,M, T) to (1,−1, 1).

Table 13: Accuracy of TAST-BN (w/ fixed prototypes) on ImageNet-C

method brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom avg
NoAdapt 0.5893 0.0543 0.1792 0.1695 0.2442 0.2331 0.0221 0.0982 0.0185 0.3165 0.1478 0.2061 0.0293 0.1689 0.2250 0.1801
TAST-BN (w/ fixed prototypes) 0.6498 0.1926 0.1670 0.4495 0.4960 0.3422 0.1665 0.1645 0.1742 0.4183 0.2826 0.5040 0.1728 0.3615 0.4014 0.3295

Of course, one can still update the prototypes over the test time, but the performance gain from the
updating may not be as significant as before. Nonetheless, from the result of Table 13, we can see
that the effective adaptation on ImageNet-C can be achieved with the combination of the prototype
approach and self-training (entropy minimization) method of TAST-BN (w/ fixed prototypes).

E FULL RESULTS

Table 14: Full results using classifiers trained by ERM for Table 1 of the manuscript on VLCS. We
use ResNet-18 as a backbone network.

Method C L S V Avg

ERM 94.70±1.33 63.79±1.30 67.90±1.97 73.15±1.37 74.88
+Tent 89.82±2.89 61.98±1.10 65.51±1.91 74.21±1.61 72.88
+TentAdapter 79.80±4.74 58.51±1.44 61.62±0.92 68.14±1.74 67.02
+TentClf 94.75±1.43 63.74±1.41 67.92±2.22 65.40±6.91 72.96
+SHOT 91.45±6.83 48.26±1.77 54.75±2.59 66.51±1.25 65.24
+SHOTIM 90.28±7.00 47.96±1.45 54.66±2.47 66.52±1.19 64.86
+PL 93.57±2.24 53.82±2.51 50.58±9.50 53.91±2.78 62.97
+PLClf 94.67±1.38 63.64±1.31 67.90±2.21 73.34±1.00 74.89
+T3A 97.52±1.99 65.32±2.24 70.70±3.48 75.51±1.75 77.26

+TAST (Ours) 99.17±0.60 65.87±1.90 68.13±1.76 75.92±1.75 77.27
+TAST-BN (Ours) 92.60±8.66 64.75±1.29 67.27±3.14 76.23±3.73 75.21

20

Published as a conference paper at ICLR 2023

Table 15: Full results using classifiers trained by ERM for Table 1 of the manuscript on PACS. We
use ResNet-18 as a backbone network.

Method A C P S Avg

ERM 77.78±0.81 75.09±1.22 95.19±0.29 69.11±1.22 79.29
+Tent 82.21±1.07 81.20±0.51 95.32±0.33 76.82±1.97 83.89
+TentAdapter 78.89±0.67 77.45±0.82 95.77±0.40 70.89±2.75 80.75
+TentClf 78.16±1.05 75.01±1.53 95.50±0.35 65.60±5.96 78.57
+SHOT 81.09±0.86 79.68±0.91 96.18±0.27 72.48±2.04 82.36
+SHOTIM 81.10±0.90 79.66±0.95 96.18±0.27 72.35±2.03 82.33
+PL 76.42±4.89 61.05±5.48 95.70±0.56 50.75±8.79 70.98
+PLClf 79.09±1.41 75.46±2.93 95.43±0.32 62.48±7.31 78.11
+T3A 78.81±0.97 77.14±1.20 95.92±0.36 71.44±1.63 80.83

+TAST (Ours) 80.56±0.53 78.26±0.99 96.44±0.20 72.52±0.77 81.94
+TAST-BN (Ours) 86.49±0.20 83.70±2.57 97.23±0.11 80.85±1.42 87.07

Table 16: Full results using classifiers trained by ERM for Table 1 of the manuscript on OfficeHome.
We use ResNet-18 as a backbone network.

Method A C P R Avg

ERM 55.19±0.49 47.76±1.02 72.22±0.53 73.21±0.89 62.10
+Tent 53.39±0.61 48.28±0.88 70.50±0.68 71.29±0.72 60.86
+TentAdapter 55.53±0.43 49.53±0.95 72.47±0.27 73.01±1.23 62.64
+TentClf 55.17±0.67 36.73±1.94 72.21±0.52 73.22±0.97 59.33
+SHOT 55.14±0.57 50.27±1.18 71.69±0.45 73.21±0.91 62.58
+SHOTIM 55.08±0.56 50.29±1.17 71.71±0.40 73.21±0.90 62.57
+PL 54.49±1.06 34.66±13.13 71.45±0.37 72.20±0.65 58.20
+PLClf 55.14±0.70 47.70±1.25 72.21±0.54 72.62±0.96 61.92
+T3A 55.10±0.74 49.56±1.14 74.10±0.55 74.07±1.18 63.21

+TAST (Ours) 56.15±0.68 50.04±1.31 74.33±0.28 74.28±1.23 63.70
+TAST-BN (Ours) 55.11±0.58 51.35±0.85 72.58±0.80 72.13±0.78 62.79

Table 17: Full results using classifiers trained by ERM for Table 1 of the manuscript on TerraIncog-
nita. We use ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg

ERM 37.18±2.46 36.12±4.20 53.18±1.27 36.02±1.37 40.62
+Tent 38.29±0.48 25.82±3.91 41.53±1.59 29.15±1.83 33.70
+TentAdapter 40.55±1.46 37.44±2.22 46.33±1.32 35.30±1.26 39.91
+TentClf 34.44±13.31 34.19±5.76 52.71±2.03 31.86±2.26 38.30
+SHOT 33.87±0.66 28.58±2.10 40.99±2.07 30.83±1.26 33.57
+SHOTIM 33.83±1.29 28.13±2.30 40.81±2.18 30.64±1.46 33.35
+PL 51.92±1.19 35.61±20.74 39.97±10.98 22.26±8.21 37.44
+PLClf 45.22±2.45 36.03±5.81 52.76±1.54 33.10±2.27 41.78
+T3A 36.22±1.89 40.08±1.98 50.72±1.02 33.79±1.25 40.20

+TAST (Ours) 43.67±2.83 39.24±3.79 52.64±3.02 35.01±1.09 42.64
+TAST-BN (Ours) 51.06±7.31 32.74±7.54 41.70±2.86 32.21±3.05 39.43

Table 18: Full results using classifiers trained by ERM for Table 1 of the manuscript on VLCS. We
use ResNet-50 as a backbone network.

Method C L S V Avg

ERM 97.66±0.64 63.87±1.71 71.21±1.52 74.09±2.06 76.71
+Tent 92.36±2.44 58.46±3.29 67.84±2.03 73.19±2.68 72.96
+TentAdapter 85.36±3.49 58.35±3.46 66.47±2.71 68.42±2.11 69.65
+TentClf 97.61±0.58 63.67±2.10 68.77±1.27 73.16±1.31 75.80
+SHOT 98.72±1.50 46.82±2.57 55.70±1.78 67.04±2.88 67.07
+SHOTIM 98.65±1.46 46.54±2.32 55.81±2.32 66.73±2.82 66.93
+PL 98.48±0.34 53.45±2.82 59.45±9.24 66.24±8.63 69.41
+PLClf 97.63±0.64 63.36±2.10 69.74±0.78 71.86±4.53 75.65
+T3A 99.17±0.38 64.78±1.61 73.01±3.24 72.20±2.84 77.29

+TAST (Ours) 99.35±0.30 65.64±1.78 73.63±3.58 72.01±2.68 77.66
+TAST-BN (Ours) 96.09±2.40 60.22±6.08 65.78±6.51 71.99±5.90 73.52

21

Published as a conference paper at ICLR 2023

Table 19: Full results using classifiers trained by ERM for Table 1 of the manuscript on PACS. We
use ResNet-50 as a backbone network.

Method A C P S Avg

ERM 82.92±1.65 78.05±3.36 96.50±0.32 75.38±3.31 83.21
+Tent 82.54±1.32 84.90±1.35 95.45±0.93 77.74±1.36 85.16
+TentAdapter 82.75±2.01 79.50±2.26 96.78±0.20 75.73±3.22 83.69
+TentClf 83.00±1.87 77.86±4.20 96.55±0.36 73.25±6.14 82.66
+SHOT 84.67±1.70 80.17±1.39 96.58±0.52 74.86±2.95 84.07
+SHOTIM 84.62±1.79 80.24±1.41 96.54±0.46 75.16±2.88 84.14
+PL 84.59±5.51 76.35±2.57 96.41±0.68 69.54±11.22 81.72
+PLClf 83.88±2.00 78.93±3.68 96.53±0.40 73.96±6.08 83.33
+T3A 83.56±2.03 79.75±3.14 96.99±0.24 75.36±3.57 83.92

+TAST (Ours) 83.85±2.05 79.15±3.03 96.93±0.27 76.49±3.13 84.11
+TAST-BN (Ours) 87.11±2.04 88.50±1.93 97.79±0.47 83.23±1.42 89.16

Table 20: Full results using classifiers trained by ERM for Table 1 of the manuscript on OfficeHome.
We use ResNet-50 as a backbone network.

Method A C P R Avg

ERM 61.32±0.69 53.44±1.11 75.84±1.10 77.90±0.92 67.13
+Tent 60.98±0.67 53.94±1.24 74.49±0.71 75.75±0.53 66.29
+TentAdapter 62.63±0.45 54.90±1.17 76.20±1.09 77.92±1.01 67.91
+TentClf 61.35±0.73 52.72±1.40 75.23±1.05 77.86±1.07 66.79
+SHOT 61.91±0.33 55.58±0.91 75.49±1.54 77.60±0.80 67.65
+SHOTIM 61.84±0.32 55.63±0.92 75.56±1.60 77.57±0.79 67.65
+PL 59.42±1.55 42.40±12.31 73.80±2.26 75.77±1.50 62.85
+PLClf 61.35±0.40 52.87±1.96 75.86±1.09 77.94±1.10 67.01
+T3A 61.91±0.59 55.07±1.14 77.39±1.38 78.67±0.61 68.26

+TAST (Ours) 62.43±0.80 55.81±1.26 77.46±1.07 78.83±0.93 68.63
+TAST-BN (Ours) 63.22±0.85 58.20±0.98 77.14±1.10 76.94±0.39 68.88

Table 21: Full results using classifiers trained by ERM for Table 1 of the manuscript on TerraIncog-
nita. We use ResNet-50 as a backbone network.

Method L100 L38 L43 L46 Avg

ERM 46.84±1.96 43.24±2.51 53.32±1.92 40.30±1.93 45.93
+Tent 41.20±2.71 29.72±3.59 41.35±2.92 36.03±2.85 37.08
+TentAdapter 46.64±1.17 41.11±3.16 49.31±1.05 38.52±2.04 43.89
+TentClf 49.87±3.80 43.31±3.19 53.01±2.31 28.40±6.19 43.64
+SHOT 36.17±2.70 29.80±2.92 41.00±0.30 33.83±1.86 35.20
+SHOTIM 35.56±2.76 27.49±4.01 40.77±0.45 33.67±1.84 34.37
+PL 56.75±5.78 46.12±1.03 29.44±10.14 20.06±4.65 38.09
+PLClf 52.28±3.95 43.76±2.96 52.78±2.15 37.81±2.49 46.66
+T3A 45.13±1.26 44.67±2.56 52.52±0.78 40.13±2.31 45.61

+TAST (Ours) 53.01±3.95 43.27±3.21 53.79±2.72 39.66±3.65 47.43
+TAST-BN (Ours) 55.75±2.37 33.92±9.86 43.87±4.70 32.33±4.40 41.47

22

Published as a conference paper at ICLR 2023

Table 22: Average accuracy(%) using classifiers trained by CORAL on the domain generalization
benchmarks for Table 5, namely VLCS, PACS, OfficeHome, and TerraIncognita. We use ResNet-18
and ResNet-50 as backbone networks. Bold indicates the best performance for each benchmark.
Our proposed method TAST outperforms all the baselines on most of the benchmarks.

Method Backbone VLCS PACS OfficeHome TerraIncognita Avg

CORAL

ResNet-18

74.00±1.13 81.00±0.79 62.78±0.06 36.51±2.35 63.57
+Tent 71.13±1.45 84.17±0.61 62.37±0.09 36.71±0.77 63.60
+TentAdapter 65.66±1.86 82.28±0.36 63.37±0.13 37.89±1.23 62.30
+TentClf 72.27±1.29 75.71±1.74 62.65±0.08 30.27±6.34 60.23
+SHOT 66.01±3.75 84.67±0.47 63.54±0.23 33.20±0.49 61.86
+SHOTIM 65.75±3.70 84.63±0.49 63.53±0.21 33.10±0.42 61.75
+PL 66.58±1.92 76.46±3.23 61.19±1.52 29.32±5.57 58.39
+PLClf 73.70±0.39 76.16±2.44 62.68±0.13 34.29±3.96 61.71
+T3A 75.49±1.67 82.75±0.51 63.72±0.32 38.39±1.39 65.09
+TAST (Ours) 74.82±2.43 83.16±0.81 64.00±0.25 39.21±1.75 65.30
+TAST-BN (Ours) 77.01±0.36 87.21±0.57 62.98±0.23 37.45±1.11 66.16

CORAL

ResNet-50

76.39±1.01 83.52±0.67 66.89±0.20 42.79±1.27 67.40
+Tent 74.43±0.98 86.50±0.77 66.30±0.28 42.15±2.81 67.35
+TentAdapter 68.26±1.39 85.05±0.59 67.68±0.20 41.54±0.93 65.63
+TentClf 76.45±1.00 82.14±1.71 64.03±0.56 39.74±2.47 65.59
+SHOT 64.11±0.79 85.09±1.03 67.73±0.29 33.96±0.59 62.72
+SHOTIM 63.63±0.60 85.06±0.93 67.72±0.29 34.17±0.90 62.65
+PL 72.74±1.32 75.96±6.46 60.74±2.91 36.69±3.47 61.53
+PLClf 75.68±1.23 83.56±0.80 66.24±0.42 44.93±3.76 67.60
+T3A 77.33±0.97 84.54±0.63 68.08±0.34 43.50±0.19 68.36
+TAST (Ours) 77.23±1.25 85.04±0.49 68.39±0.54 44.22±1.33 68.72
+TAST-BN (Ours) 79.13±0.43 90.41±0.64 69.04±0.36 43.46±4.46 70.51

Table 23: Full results using classifiers trained by CORAL for Table 22 on VLCS. We use ResNet-18
as a backbone network.

Method C L S V Avg

CORAL 93.31±3.73 61.11±1.66 70.62±0.87 70.95±0.36 74.00
+Tent 95.78±1.20 59.24±0.85 63.38±2.06 66.13±3.09 71.13
+TentAdapter 79.89±5.76 54.29±3.98 62.72±1.06 65.76±1.79 65.66
+TentClf 94.96±2.77 58.42±3.37 71.01±1.26 64.71±5.42 72.27
+SHOT 88.21±11.66 50.29±2.91 58.00±1.79 67.55±0.51 66.01
+SHOTIM 87.74±11.38 49.89±2.74 57.73±1.76 67.61±0.49 65.75
+PL 95.78±1.34 54.09±4.31 55.03±2.09 61.42±9.04 66.58
+PLClf 95.04±2.59 57.67±3.74 71.00±1.33 71.09±0.48 73.70
+T3A 97.10±3.42 63.61±3.43 67.90±0.78 73.34±1.26 75.49

+TAST (Ours) 95.36±7.76 62.95±3.23 69.06±1.05 71.89±1.95 74.82
+TAST-BN (Ours) 98.90±0.58 61.01±2.41 69.74±2.57 78.40±1.15 77.01

Table 24: Full results using classifiers trained by CORAL for Table 22 on PACS. We use ResNet-18
as a backbone network.

Method A C P S Avg

CORAL 78.74±1.79 74.57±1.79 92.48±0.90 78.21±1.51 81.00
+Tent 82.11±0.95 81.22±1.02 95.15±0.04 78.20±1.33 84.17
+TentAdapter 80.06±0.86 77.14±1.35 94.05±0.31 77.87±0.50 82.28
+TentClf 77.14±0.99 63.00±6.22 92.93±1.12 69.77±2.86 75.71
+SHOT 82.92±1.33 81.13±1.18 95.28±0.60 79.37±1.05 84.67
+SHOTIM 82.92±1.24 81.06±1.17 95.30±0.57 79.23±1.10 84.63
+PL 83.44±1.79 67.36±9.25 94.20±2.49 60.82±12.65 76.46
+PLClf 79.72±1.06 62.98±8.19 93.12±0.60 68.81±1.23 76.16
+T3A 80.68±1.15 77.52±0.54 93.25±0.66 79.53±0.70 82.75

+TAST (Ours) 80.88±1.33 77.86±0.92 94.28±0.56 79.60±1.60 83.16
+TAST-BN (Ours) 86.96±0.66 83.58±1.32 96.59±0.62 81.69±1.16 87.21

23

Published as a conference paper at ICLR 2023

Table 25: Full results using classifiers trained by CORAL for Table 22 on OfficeHome. We use
ResNet-18 as a backbone network.

Method A C P R Avg

CORAL 55.78±0.29 50.09±0.09 72.09±0.32 73.16±0.39 62.78
+Tent 55.33±0.33 50.79±0.31 71.08±0.32 72.29±0.41 62.37
+TentAdapter 56.59±0.34 51.54±0.07 72.19±0.19 73.17±0.30 63.37
+TentClf 55.56±0.40 49.96±0.16 72.07±0.44 73.00±0.44 62.65
+SHOT 55.77±0.29 52.67±0.44 72.22±0.64 73.50±0.28 63.54
+SHOTIM 55.72±0.28 52.64±0.39 72.23±0.63 73.52±0.29 63.53
+PL 54.17±1.83 46.74±4.73 71.53±0.40 72.34±0.89 61.19
+PLClf 55.77±0.38 50.04±0.44 71.90±0.37 73.03±0.42 62.68
+T3A 55.83±0.36 51.68±0.51 73.70±0.43 73.66±0.55 63.72

+TAST (Ours) 56.22±0.57 51.73±0.48 74.05±0.73 74.00±0.52 64.00
+TAST-BN (Ours) 54.71±0.40 52.07±0.61 72.80±0.65 72.33±0.49 62.98

Table 26: Full results using classifiers trained by CORAL for Table 22 on TerraIncognita. We use
ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg

CORAL 38.41±2.79 25.98±6.65 45.59±2.53 36.08±1.75 36.51
+Tent 37.31±3.54 24.76±1.90 45.99±0.73 38.79±1.78 36.71
+TentAdapter 41.76±1.23 33.9±2.32 40.59±3.21 35.29±0.98 37.89
+TentClf 29.99±12.66 15.84±18.76 43.36±4.29 31.89±2.89 30.27
+SHOT 35.95±0.88 25.85±1.40 38.33±0.69 32.67±0.83 33.20
+SHOTIM 35.81±0.77 25.64±1.15 38.16±0.75 32.78±0.45 33.10
+PL 37.32±23.49 24.27±24.17 31.84±7.57 23.84±6.83 29.32
+PLClf 45.07±7.63 20.52±19.27 44.4±1.32 27.18±3.00 34.29
+T3A 37.14±2.17 34.49±3.47 45.00±3.91 36.91±1.86 38.39

+TAST (Ours) 46.01±2.18 32.11±4.30 43.31±3.17 35.42±2.53 39.21
+TAST-BN (Ours) 43.04±3.00 32.25±5.90 42.53±2.54 31.99±0.81 37.45

Table 27: Full results using classifiers trained by CORAL for Table 22 on VLCS. We use ResNet-50
as a backbone network.

Method C L S V Avg

CORAL 96.82±1.06 62.51±0.81 71.46±1.71 74.79±3.23 76.39
+Tent 96.53±2.09 59.55±0.71 67.96±3.68 73.69±2.62 74.43
+TentAdapter 84.24±2.39 56.07±2.77 63.90±1.46 68.84±2.75 68.26
+TentClf 96.99±1.16 61.48±1.68 72.32±1.97 75.00±3.07 76.45
+SHOT 85.07±1.63 46.27±2.62 56.77±1.03 68.34±1.01 64.11
+SHOTIM 83.57±0.89 45.86±2.93 56.55±0.81 68.53±0.98 63.63
+PL 98.32±0.64 53.64±6.70 67.76±1.16 71.22±5.85 72.74
+PLClf 96.85±1.30 58.71±2.76 72.20±1.96 74.94±3.89 75.68
+T3A 98.24±0.70 64.69±1.64 73.06±2.04 73.34±3.81 77.33

+TAST (Ours) 99.15±0.28 64.17±2.37 72.32±1.75 73.27±3.27 77.23
+TAST-BN (Ours) 99.14±0.45 64.95±2.74 73.39±0.94 79.04±2.19 79.13

Table 28: Full results using classifiers trained by CORAL for Table 22 on PACS. We use ResNet-50
as a backbone network.

Method A C P S Avg

CORAL 84.40±1.36 79.88±2.80 95.58±0.69 74.24±3.09 83.52
+Tent 86.12±1.37 85.15±1.85 96.28±0.78 78.47±1.52 86.50
+TentAdapter 84.34±0.98 81.63±2.47 96.38±0.50 77.86±1.10 85.05
+TentClf 84.68±1.88 80.32±2.89 95.98±1.01 67.59±8.18 82.14
+SHOT 85.75±1.92 82.38±2.52 96.88±0.92 75.37±2.56 85.09
+SHOTIM 85.72±1.82 82.38±2.43 96.84±0.94 75.29±1.96 85.06
+PL 84.87±3.66 77.93±3.78 96.29±0.73 44.74±20.19 75.96
+PLClf 85.43±1.52 79.81±3.15 96.21±0.91 72.78±5.06 83.56
+T3A 84.71±1.96 81.30±2.98 96.68±0.53 75.47±2.36 84.54

+TAST (Ours) 85.74±1.77 81.05±2.79 96.88±0.49 76.48±2.33 85.04
+TAST-BN (Ours) 90.95±1.20 86.78±1.39 98.17±0.43 85.72±0.63 90.41

24

Published as a conference paper at ICLR 2023

Table 29: Full results using classifiers trained by CORAL for Table 22 on OfficeHome. We use
ResNet-50 as a backbone network.

Method A C P R Avg

CORAL 60.84±1.18 53.82±0.69 76.06±0.25 76.85±1.15 66.89
+Tent 61.11±1.05 54.16±0.56 73.61±0.66 76.31±1.28 66.30
+TentAdapter 61.91±1.17 55.73±0.67 76.28±0.47 76.82±1.09 67.68
+TentClf 54.31±1.96 49.96±1.28 75.30±0.08 76.56±1.64 64.03
+SHOT 61.79±1.61 56.93±0.72 75.97±0.79 76.23±1.08 67.73
+SHOTIM 61.75±1.52 56.93±0.79 75.94±0.81 76.24±0.95 67.72
+PL 54.78±3.96 40.71±10.95 74.19±0.49 73.28±1.81 60.74
+PLClf 59.80±0.85 53.40±1.46 75.60±0.17 76.15±1.39 66.24
+T3A 61.59±1.51 55.57±0.85 77.45±0.74 77.72±1.36 68.08

+TAST (Ours) 62.02±1.30 55.88±0.86 78.06±1.01 77.60±1.41 68.39
+TAST-BN (Ours) 63.45±1.48 59.01±1.14 76.68±0.74 77.00±1.13 69.04

Table 30: Full results using classifiers trained by CORAL for Table 22 on TerraIncognita. We use
ResNet-50 as a backbone network.

Method L100 L38 L43 L46 Avg

CORAL 45.52±0.53 39.33±2.81 48.98±2.28 37.35±2.71 42.79
+Tent 46.72±2.57 34.14±3.01 48.05±10.46 39.70±3.14 42.15
+TentAdapter 48.27±2.51 38.07±1.08 44.89±2.73 34.92±3.07 41.54
+TentClf 42.57±5.73 38.35±3.37 44.10±2.18 33.92±5.58 39.74
+SHOT 38.95±1.35 26.99±1.76 40.93±2.51 28.98±4.77 33.96
+SHOTIM 39.52±2.40 26.45±3.94 41.07±2.21 29.64±4.16 34.17
+PL 51.29±12.49 47.88±5.50 29.58±10.72 17.99±10.59 36.69
+PLClf 53.69±5.34 43.78±6.46 47.67±6.30 34.57±5.18 44.93
+T3A 45.57±1.04 40.31±1.50 49.81±2.10 38.31±1.60 43.50

+TAST (Ours) 53.81±0.58 39.99±2.38 48.07±3.86 35.02±3.12 44.22
+TAST-BN (Ours) 54.80±3.22 41.56±6.79 47.09±5.58 30.38±4.60 43.46

Table 31: Average accuracy(%) using classifiers trained by MMD for Table 5 on the domain gener-
alization benchmarks, namely VLCS, PACS, OfficeHome, and TerraIncognita. We use ResNet-18
as a backbone network.

Method VLCS PACS OfficeHome TerraIncognita Avg

MMD 74.90±0.50 81.06±0.92 62.20±0.48 35.73±2.70 63.47
+Tent 74.59±0.66 84.47±0.19 62.15±0.33 36.11±0.72 64.33
+TentAdapter 65.94±1.91 82.44±0.26 62.80±0.46 37.66±0.34 62.21
+TentClf 74.91±0.60 57.76±5.32 62.10±0.50 28.94±6.56 55.93
+SHOT 65.41±2.03 85.57±0.28 63.25±0.53 32.34±0.68 61.64
+SHOTIM 65.00±2.20 85.53±0.29 63.20±0.56 32.25±0.55 61.50
+PL 66.17±1.73 74.42±4.09 60.49±1.03 22.30±8.42 55.85
+PLClf 74.84±0.50 69.95±0.95 62.16±0.45 31.94±5.67 59.72
+T3A 77.28±0.45 82.52±0.53 63.34±0.55 37.40±1.86 65.14

+TAST (Ours) 76.21±0.79 83.29±0.26 63.49±0.49 38.12±2.47 65.28
+TAST-BN (Ours) 76.06±0.89 86.35±0.76 63.22±0.26 39.46±1.63 66.27

Table 32: Full results using classifiers trained by MMD for Table 31 on VLCS. We use ResNet-18
as a backbone network.

Method C L S V Avg

MMD 95.51±2.59 62.32±0.68 70.09±0.80 71.68±0.83 74.90
+Tent 97.20±0.55 61.53±0.60 69.32±2.58 70.33±0.92 74.59
+TentAdapter 80.71±5.21 54.94±2.31 61.88±0.30 66.25±1.58 65.94
+TentClf 95.71±2.16 61.87±1.02 70.15±0.91 71.90±0.82 74.91
+SHOT 88.10±8.59 48.99±2.74 57.14±1.13 67.43±0.47 65.41
+SHOTIM 86.93±8.90 48.71±2.70 56.98±1.17 67.37±0.48 65.00
+PL 95.63±1.07 51.75±2.10 59.89±11.04 57.40±6.85 66.17
+PLClf 95.69±2.19 61.65±0.85 70.14±0.86 71.87±0.79 74.84
+T3A 99.15±0.52 64.19±0.76 71.16±0.74 74.62±1.63 77.28

+TAST (Ours) 99.29±0.46 63.14±0.66 69.62±1.23 72.81±1.30 76.21
+TAST-BN (Ours) 99.14±0.48 61.54±2.74 65.03±1.95 78.53±0.35 76.06

25

Published as a conference paper at ICLR 2023

Table 33: Full results using classifiers trained by MMD for Table 31 on PACS. We use ResNet-18
as a backbone network.

Method A C P S Avg

MMD 79.52±0.50 74.66±1.28 93.46±0.95 76.60±2.62 81.06
+Tent 82.84±0.97 81.22±0.85 95.49±0.40 78.32±0.48 84.47
+TentAdapter 80.51±0.84 77.09±0.44 94.55±0.33 77.59±0.64 82.44
+TentClf 56.53±16.38 47.89±6.86 93.37±0.67 33.26±8.17 57.76
+SHOT 84.50±0.13 81.98±0.98 95.58±0.22 80.19±0.95 85.57
+SHOTIM 84.49±0.20 81.94±0.93 95.58±0.22 80.09±0.89 85.53
+PL 84.59±0.48 53.96±10.45 95.10±0.18 64.04±11.28 74.42
+PLClf 80.04±0.60 63.87±8.49 93.60±0.57 42.28±7.47 69.95
+T3A 81.92±0.41 75.35±1.11 94.99±0.36 77.81±1.62 82.52

+TAST (Ours) 81.76±0.31 77.13±0.51 95.37±0.70 78.91±1.12 83.29
+TAST-BN (Ours) 86.23±1.18 82.16±1.93 97.46±0.14 79.55±1.08 86.35

Table 34: Full results using classifiers trained by MMD for Table 31 on OfficeHome. We use
ResNet-18 as a backbone network.

Method A C P R Avg

MMD 54.39±0.86 49.71±1.02 71.95±0.59 72.74±0.41 62.20
+Tent 55.73±0.47 49.71±0.20 70.75±0.74 72.41±0.45 62.15
+TentAdapter 55.34±0.56 51.09±1.09 72.11±0.46 72.68±0.27 62.80
+TentClf 54.39±0.72 49.28±1.18 71.95±0.66 72.77±0.27 62.10
+SHOT 54.83±0.77 52.38±0.95 72.59±0.71 73.18±0.15 63.25
+SHOTIM 54.85±0.85 52.27±0.97 72.54±0.71 73.15±0.17 63.20
+PL 53.26±1.14 44.63±3.44 71.76±0.68 72.33±0.08 60.49
+PLClf 54.44±0.67 49.67±0.97 71.97±0.65 72.57±0.29 62.16
+T3A 54.43±1.26 51.25±0.83 73.86±0.57 73.84±0.47 63.34

+TAST (Ours) 55.17±1.04 50.80±1.14 74.20±0.57 73.78±0.51 63.49
+TAST-BN (Ours) 54.40±0.60 52.21±0.38 73.30±0.35 72.96±0.42 63.22

Table 35: Full results using classifiers trained by MMD for Table 31 on TerraIncognita. We use
ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg

MMD 34.57±3.77 26.57±6.18 46.08±2.85 35.72±1.17 35.73
+Tent 37.04±3.72 25.40±1.81 44.82±0.72 37.19±1.64 36.11
+TentAdapter 40.04±2.45 33.38±2.98 42.38±2.80 34.84±1.06 37.66
+TentClf 22.92±9.25 15.19±15.33 45.24±4.15 32.39±1.27 28.94
+SHOT 33.79±1.34 25.68±2.73 37.81±0.67 32.07±2.71 32.34
+SHOTIM 33.48±1.14 25.77±1.95 37.87±0.61 31.87±2.44 32.25
+PL 29.45±26.19 13.78±20.60 27.69±10.39 18.27±5.75 22.30
+PLClf 36.96±8.00 17.63±18.15 46.28±4.42 26.87±2.41 31.94
+T3A 35.16±2.74 34.41±2.73 43.83±4.22 36.19±1.79 37.40

+TAST (Ours) 44.70±1.82 31.97±4.96 42.30±4.83 33.50±4.40 38.12
+TAST-BN (Ours) 43.81±5.05 37.35±2.57 44.41±1.55 32.28±1.73 39.46

Table 36: Average accuracy(%) using classifiers trained by Mixup for Table 5 on the domain gener-
alization benchmarks, namely VLCS, PACS, OfficeHome, and TerraIncognita. We use ResNet-18
as a backbone network.

Method VLCS PACS OfficeHome TerraIncognita Avg

Mixup 74.97±0.86 78.29±0.88 61.83±0.88 41.04±1.01 64.03
+Tent 72.73±0.41 83.88±0.51 61.82±0.45 39.52±0.36 64.49
+TentAdapter 62.83±0.83 81.44±0.27 62.82±0.64 40.72±1.81 61.95
+TentClf 74.33±0.92 68.95±2.86 61.45±0.88 37.21±4.79 60.49
+SHOT 68.69±0.91 84.43±0.39 62.81±0.42 36.32±0.50 63.06
+SHOTIM 68.31±0.98 84.52±0.36 62.80±0.43 36.03±0.61 62.92
+PL 59.90±2.19 68.02±2.43 60.66±0.63 32.30±6.83 55.22
+PLClf 74.19±0.78 70.94±3.00 61.67±0.86 40.63±4.88 61.86
+T3A 78.43±0.76 81.91±0.54 63.49±0.86 39.89±0.90 65.93

+TAST (Ours) 77.19±0.80 82.85±0.36 63.83±0.74 41.44±1.67 66.33
+TAST-BN (Ours) 76.89±0.86 87.14±0.56 62.09±0.86 42.70±1.90 67.21

26

Published as a conference paper at ICLR 2023

Table 37: Full results using classifiers trained by Mixup for Table 36 on VLCS. We use ResNet-18
as a backbone network.

Method C L S V Avg

Mixup 94.73±1.35 62.52±0.79 69.70±0.89 72.93±1.27 74.97
+Tent 95.27±0.47 59.84±1.01 68.61±1.04 67.19±1.62 72.73
+TentAdapter 76.52±1.36 52.40±1.05 60.00±1.63 62.41±2.25 62.83
+TentClf 94.87±1.31 61.72±0.73 68.44±1.04 72.29±2.22 74.33
+SHOT 96.47±3.75 51.01±1.22 58.83±1.55 68.47±0.27 68.69
+SHOTIM 95.63±4.31 50.49±1.13 58.71±1.71 68.41±0.35 68.31
+PL 94.94±1.82 49.88±0.35 45.87±7.30 48.90±4.44 59.90
+PLClf 94.82±1.29 59.16±0.65 69.85±0.94 72.92±1.54 74.19
+T3A 99.11±0.76 64.75±1.02 72.69±2.16 77.16±0.79 78.43

+TAST (Ours) 98.97±0.87 63.19±0.77 71.04±1.80 75.56±1.03 77.19
+TAST-BN (Ours) 99.27±0.32 60.76±4.75 69.63±2.58 77.91±1.76 76.89

Table 38: Full results using classifiers trained by Mixup for Table 36 on PACS. We use ResNet-18
as a backbone network.

Method A C P S Avg

Mixup 80.28±2.31 70.69±1.19 94.26±0.85 67.94±0.73 78.29
+Tent 81.51±0.82 79.49±1.01 95.58±0.18 78.94±1.04 83.88
+TentAdapter 82.40±1.00 75.98±0.79 94.63±0.45 72.75±1.57 81.44
+TentClf 79.66±3.73 64.24±4.07 94.17±1.01 37.75±13.33 68.95
+SHOT 85.20±0.56 80.13±0.88 96.20±0.75 76.18±0.45 84.43
+SHOTIM 85.17±0.56 80.64±0.92 96.22±0.77 76.05±0.50 84.52
+PL 82.82±2.54 66.48±8.08 95.40±0.64 27.37±5.71 68.02
+PLClf 79.32±2.88 70.61±1.26 94.26±0.89 39.58±15.47 70.94
+T3A 83.06±1.31 75.92±0.58 95.87±0.66 72.80±2.09 81.91

+TAST (Ours) 83.93±0.99 76.75±1.32 96.34±0.63 74.39±1.69 82.85
+TAST-BN (Ours) 86.18±0.49 82.69±1.44 97.27±0.48 82.43±1.80 87.14

Table 39: Full results using classifiers trained by Mixup for Table 36 on OfficeHome. We use
ResNet-18 as a backbone network.

Method A C P R Avg

Mixup 53.92±1.21 49.17±1.49 71.66±0.52 72.56±0.82 61.83
+Tent 53.22±0.92 50.75±0.79 71.22±0.74 72.10±0.62 61.82
+TentAdapter 54.78±1.29 51.47±1.09 72.21±0.25 72.82±0.74 62.82
+TentClf 53.87±1.20 48.22±1.48 71.65±0.42 72.06±0.84 61.45
+SHOT 53.95±1.17 52.20±1.27 72.29±0.36 72.79±0.43 62.81
+SHOTIM 53.94±1.22 52.15±1.30 72.28±0.42 72.83±0.41 62.80
+PL 52.82±0.96 48.17±1.38 70.97±0.82 70.70±1.00 60.66
+PLClf 53.85±1.10 49.12±1.43 71.64±0.47 72.06±1.04 61.67
+T3A 54.83±1.49 50.97±1.51 74.14±0.63 74.00±0.31 63.49

+TAST (Ours) 54.97±0.96 51.31±1.84 74.88±0.66 74.16±0.22 63.83
+TAST-BN (Ours) 53.09±1.44 51.04±1.81 72.44±0.64 71.80±0.64 62.09

Table 40: Full results using classifiers trained by Mixup for Table 36 on TerraIncognita. We use
ResNet-18 as a backbone network.

Method L100 L38 L43 L46 Avg

Mixup 52.26±1.44 35.90±4.46 41.23±2.04 34.77±2.14 41.04
+Tent 41.35±2.74 33.05±2.75 44.17±1.50 39.51±1.83 39.52
+TentAdapter 45.35±2.22 44.17±2.15 42.25±1.98 31.11±2.43 40.72
+TentClf 49.62±7.17 37.29±12.05 37.45±2.99 24.48±0.73 37.21
+SHOT 42.78±3.48 31.04±2.88 39.58±1.29 31.86±3.47 36.32
+SHOTIM 42.14±3.38 30.71±3.18 39.37±1.34 31.89±3.51 36.03
+PL 52.56±0.16 34.80±21.65 23.33±4.85 18.51±6.10 32.30
+PLClf 53.30±1.59 35.52±18.76 40.68±1.15 33.04±2.57 40.63
+T3A 43.05±2.28 38.53±2.37 43.32±3.33 34.65±1.22 39.89

+TAST (Ours) 57.57±5.18 36.43±3.72 38.34±2.38 33.40±2.08 41.44
+TAST-BN (Ours) 56.81±4.34 42.44±2.03 41.01±2.50 30.54±1.52 42.70

27

Published as a conference paper at ICLR 2023

Table 41: Full results using classifiers trained by ERM for Table 2 of manuscript on VLCS. We use
ResNet-18 as a backbone network.

Method Ne C L S V Avg

ERM - 94.70±1.33 63.79±1.30 67.90±1.97 73.15±1.37 74.88
+T3A - 97.52±1.99 65.32±2.24 70.70±3.48 75.51±1.75 77.26
+TAST-N (Ours) - 95.31±4.33 65.62±1.79 68.9±3.22 74.96±1.66 76.20
+TAST (Ours) 1 98.62±1.06 62.61±1.90 66.84±3.01 72.73±1.17 75.20
+TAST (Ours) 5 99.15±0.68 65.58±3.08 67.53±1.49 74.46±1.87 76.68
+TAST (Ours) 10 99.22±0.45 66.21±1.36 68.62±2.39 75.66±2.03 77.43
+TAST (Ours) 20 99.17±0.60 65.87±1.90 68.13±1.76 75.92±1.75 77.27

Table 42: Full results using classifiers trained by ERM for Table 2 of manuscript on PACS. We use
ResNet-18 as a backbone network.

Method Ne A C P S Avg

ERM - 77.78±0.81 75.09±1.22 95.19±0.29 69.11±1.22 79.29
+T3A - 78.81±0.97 77.14±1.20 95.92±0.36 71.44±1.63 80.83
+TAST-N (Ours) - 80.18±0.88 77.34±1.38 96.57±0.27 72.38±0.77 81.62
+TAST (Ours) 1 80.21±0.80 77.06±1.44 96.13±0.53 71.51±1.22 81.23
+TAST (Ours) 5 80.85±0.86 77.91±0.71 96.49±0.37 72.00±1.16 81.81
+TAST (Ours) 10 79.95±1.42 78.12±0.98 96.51±0.25 71.65±2.32 81.56
+TAST (Ours) 20 80.56±0.53 78.26±0.99 96.44±0.20 72.52±0.77 81.94

Table 43: Full results using classifiers trained by ERM for Table 2 of manuscript on OfficeHome.
We use ResNet-18 as a backbone network.

Method Ne A C P R Avg

ERM - 55.19±0.49 47.76±1.02 72.22±0.53 73.21±0.89 62.10
+T3A - 55.10±0.74 49.56±1.14 74.10±0.55 74.07±1.18 63.21
+TAST-N (Ours) - 55.25±0.97 50.45±1.03 74.24±0.55 74.23±1.37 63.54
+TAST (Ours) 1 53.53±0.90 49.46±1.39 72.84±0.69 72.53±1.30 62.09
+TAST (Ours) 5 55.34±1.04 50.51±1.03 74.23±0.43 73.97±0.95 63.51
+TAST (Ours) 10 55.76±0.68 49.52±1.38 74.17±0.49 74.11±1.00 63.39
+TAST (Ours) 20 56.15±0.68 50.04±1.31 74.33±0.28 74.28±1.23 63.70

Table 44: Full results using classifiers trained by ERM for Table 2 of manuscript on TerraIncognita.
We use ResNet-18 as a backbone network.

Method Ne L100 L38 L43 L46 Avg

ERM - 37.18±2.46 36.12±4.20 53.18±1.27 36.02±1.37 40.62
+T3A - 36.22±1.89 40.08±1.98 50.72±1.02 33.79±1.25 40.20
+TAST-N (Ours) - 39.75±1.76 39.20±2.65 52.33±2.63 36.24±1.28 41.88
+TAST (Ours) 1 43.23±0.87 42.49±2.08 51.22±3.69 33.41±1.05 42.59
+TAST (Ours) 5 43.95±2.33 38.89±2.42 52.44±3.04 35.42±1.27 42.68
+TAST (Ours) 10 43.96±2.92 38.48±3.56 53.27±2.73 34.67±1.24 42.60
+TAST (Ours) 20 43.67±2.83 39.24±3.79 52.64±3.02 35.01±1.09 42.64

Table 45: Average error rate (%) on CIFAR-10C for the highest severe corruptions. Bold indicates
the best performance for each image corruption.

Method gauss brit contr defoc elast fog frost glass impul jpeg motn pixel shot snow zoom

No adaptation 48.73 7.01 13.27 11.84 23.38 29.41 28.24 50.78 57.00 19.46 23.38 47.88 44.00 21.93 10.84
+SHOT 17.09 8.64 8.57 9.83 19.53 19.72 13.93 25.60 27.15 13.98 14.01 11.68 16.02 15.89 8.22
+Tent 15.91 7.91 7.85 9.27 18.13 16.45 12.62 23.48 24.52 13.19 12.70 10.93 14.59 14.06 7.68
+PL 33.56 7.54 11.53 10.60 20.21 23.86 21.78 38.36 43.64 16.88 18.72 29.83 30.43 18.75 9.43
+T3A 41.87 7.30 13.61 11.99 22.06 28.52 27.13 44.10 54.26 18.71 22.54 37.53 37.84 21.97 10.72
+TAST (Ours) 42.02 7.34 13.55 11.86 21.38 28.58 26.51 44.99 54.19 18.96 22.55 37.08 37.62 21.84 10.64
+TAST-BN (Ours) 14.91 7.68 7.81 8.62 16.81 15.10 12.25 21.82 22.54 12.38 11.67 10.34 13.77 12.99 7.57
+TTT++ 16.25 7.27 7.46 9.12 18.17 17.72 12.36 25.74 26.43 13.13 12.85 11.38 15.02 14.40 7.59

28

Published as a conference paper at ICLR 2023

Table 46: Average error rate (%) on CIFAR-100C for the highest severe corruptions. Bold indicates
the best performance for each image corruption.

Method gauss brit contr defoc elast fog frost glass impul jpeg motn pixel shot snow zoom

No adaptation 80.77 28.86 50.93 39.62 59.54 68.11 60.19 54.79 82.26 87.75 49.96 54.22 72.27 77.84 54.58
+SHOT 45.95 30.14 31.93 32.81 46.19 49.49 40.65 54.79 57.02 37.99 39.22 37.57 44.33 44.08 30.97
+Tent 43.02 29.65 30.52 31.48 43.88 44.03 39.21 50.91 53.10 36.22 36.31 34.10 41.58 41.85 29.73
+PL 43.94 30.14 31.20 32.11 45.07 46.57 40.11 52.66 54.48 37.48 36.92 34.59 42.68 42.77 30.19
+T3A 76.95 29.54 48.02 39.64 55.68 65.90 58.45 78.23 86.39 48.82 53.46 66.31 74.14 55.01 37.68
+TAST (Ours) 80.13 29.40 50.86 40.43 58.13 69.24 60.89 81.94 88.94 50.44 57.26 70.58 77.47 56.98 38.46
+TAST-BN (Ours) 42.01 29.00 30.20 30.74 42.97 41.02 38.19 48.95 51.20 35.70 35.03 33.38 40.01 39.88 29.07
+TTT++ 47.10 29.99 31.10 32.61 47.73 51.74 41.37 57.36 60.40 38.93 39.01 37.17 45.34 44.53 31.31

29

	Introduction
	Preliminaries
	Methodology
	Adaptation module
	Self-training with nearest neighbor information

	Experiments
	Domain Generalization
	Experimental setup
	Experimental results

	Image Corruption
	Experimental setup
	Experimental results

	Related works
	Discussion
	Benchmark and Implementation Details
	Domain generalization benchmarks
	Implementation details on domain generalization benchmarks
	Implementation details on image corruption benchmarks
	Runtime comparison
	Details about adaptation modules

	Pseudocode for TAST-BN
	Additional Experiments
	Experimental results using classifiers trained by different learning algorithms
	Fine-tuning both adaptation modules and BN layers simultaneously
	Experimental results using different hyperparameters on CIFAR-10C
	Sensitivity analysis on hyperparameters

	TAST on ImageNet-C
	Full Results

