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Abstract
Observation-Oriented paradigm currently dominates relationship learning models, including
AI-based ones, which inherently do not account for relationships with temporally nonlinear
effects. Instead, this paradigm simplifies “temporal dimension” to be a linear observational
timeline, necessitating the prior identification of effects with specific timestamps. Such
constraints lead to identifiability difficulties for dynamical effects, thereby overlooking the
potentially crucial temporal nonlinearity of the modeled relationship. Moreover, the multi-
dimensional nature of Temporal Feature Space is largely disregarded, introducing inherent
biases that seriously compromise the robustness and generalizability of relationship models.
This limitation is particularly pronounced in large AI-based causal applications.
Examining these issues through the lens of a dimensionality framework, a fundamental
misalignment is identified between our relation-indexing comprehension of knowledge and
the current modeling paradigm. To address this, a new Relation-Oriented paradigm is
raised, aimed at facilitating the development of causal knowledge-aligned Artificial Gen-
eral Intelligence (AGI). As its methodological counterpart, the proposed Relation-Indexed
Representation Learning (RIRL) is validated through efficacy experiments.

1 Introduction
The current modeling paradigm requires prior identification of variables and outcomes as a prerequisite for
constructing the relationship over them, typically based on observational independent and identical distri-
butions (i.i.d.). With respect to the time evolution of these i.i.d.s, the Picard-Lindelof theorem, introduced
in the 1890s, established a logical timeline t for recording observational timestamps, thereby initiating the
xt+1 = f(xt) paradigm to depict the time evolution of variable X. Since then, this Observation-Oriented
principle has been a conventional approach to relationship learning.

To model a causal relationship X → Y , the AI-based RNN models act as state-of-the-art Shojaie & Fox
(2022), especially for capturing nonlinear features of the causes. They typically formulate as yt+m = f({xt}),
where {xt} = {x1, . . . , xt, xt+1, . . . , xT } denotes a time sequence of X of length T , with a predetermined
time progress m from X to Y . In this approach, the temporal distribution of cause X is explicitly included,
while outcome Y strictly presents as observational, associated with a specific timestamp. This way leaves all
potentially significant dynamics of effects entirely managed by f(·). However, whether the selected function
f(·) is linear or nonlinear influences only the dimensionality of Rd, where X ∈ Rd. Consequently, the time
evolution from t to t + m for the effect entity Y remains invariably linear.

Not due to specific models, such limitation on capturing temporal nonlinearities results from the prevailing
Observation-Oriented paradigm. Specifically, before modeling the relationship, it requires manual identifica-
tion of the effect in specific timestamps, thus posing difficulties when the effect presents diverse dynamical
features Zhang (2012). While the paradigm may have been adequate in the past, it no longer suffices given
the advancements in data collection and Artificial Intelligence (AI) methods. The reliance on i.i.d. observa-
tions, coupled with the growing necessity for capturing dynamics (i.e., temporal nonlinearities Granger
(1993)), underscores the need for a new modeling paradigm Scholkopf (2021).

Drawing inspiration from the relation-centric nature of human comprehension Pitt (2022), this study presents
a dimensionality framework. This offers a renewed perspective on the concept of “relationship” within the
modeling context, underscoring the vital indexing role of unobservable relations in capturing observable
entities, especially temporal linearities. The unique viewpoint uncovers a fundamental misalignment between
our intuitive understanding of knowledge and the prevailing relationship learning paradigm, resulting in
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inherent biases within models. This issue plays a significant role in several challenges, such as the difficulty
of generalizing causal models Scholkopf (2021), the limited effectiveness in leveraging causal knowledge within
AI Luo (2020), and certain phenomena associated with AI Alignment problems Christian (2020).

The remainder of this Introduction (subsection 1.1-1.3) lays the groundwork for the dimensionality framework
used throughout this study. Chapter I (Sections 2-4) examines the inherent limitations of Observation-
Oriented relationship learning, particularly its oversight of multi-dimensional dynamics in causal effects. The
chapter also introduces the Relation-Oriented paradigm, which is crafted to reflect human understanding.
Chapter II (Sections 5-7) concentrates on the Relation-Indexed Representation Learning (RIRL) method as
a practical realization of the proposed new paradigm, accompanied by efficacy experiments.

1.1 Dimensionality Framework

Consider a pairwise relationship comprised of three elements: two observable entities, and a relation derived
from our knowledge to connect them. These two entities can be featured as observational only (e.g., images,
spatial coordinates of a quadrotor, etc.), or observational-and-temporal (e.g., trends of stocks, a quadrotor’s
movement in one hour, etc.). However, the “relation” has to be unobservable to make this relationship
model informative, to be distinguished from mere statistical dependency between two observables.

This principle was initially introduced in the form of Common Cause Dawid (1979); Scholkopf (2021),
suggesting that any nontrivial conditional independence between two observables requires a third, mutual
cause (i.e., our unobservable “relation”). Take the relationship “Bob has a son named Jim” as an example.
The father-son relation is unobservable information that exists in our knowledge, which can also be seen as
the common cause that makes their connection unique rather than any random pairing of “Bob” and “Jim”.
Given sufficiently observed social activities, AI may deduce this pair of “Bob” and “Jim” are particularly
associated, but that does not equate to discerning the father-son relation between them.

Put simply, the information contained by a relationship model stems from unobservable knowledge (referred
to as “relation”) rather than associated direct observations. Consider model Y = f(X; θ) with θ indicating
the function parameter in demand. In the context of modeling, the term “relation” can be represented by θ.

Figure 1: Dimensionality Framework: splitting the Knowledge-Storing Cognitive Space according to the
features accommodated, i.e., Observational, Temporal, and Hyper-dimensional Feature Spaces.

Therefore, in modeling, a relationship can be interpreted as a joint distribution spanning multiple dimensions.
The observational and temporal dimensions include the entities (i.e., X and Y ), while the unobservable
relation (i.e., the modeling objective θ) manifests as an unseen distribution in a hyper-dimension. Figure 1
organizes our cognitive space, which stores knowledge, into three sections accordingly. The hyper-dimensional
space represents the aggregate of all unobservable relations in our knowledge. For a model to be practically
valuable, it must accurately reflect our understanding. Similarly, a successful AGI, to meet our expectations,
must be rooted in existing knowledge. Specifically, it should represent relations residing in the unobservable
Hyper-dimensional Space, through which reasonable interpretations of observable entities can be generated.

In this paper, “feature” refers to a variable fully representing a distribution of interest in any dimension,
while the observational-temporal joint space is sometimes called “observable data space”, contrasting with
“latent feature space”.
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1.2 Observational and Temporal Feature Spaces
Most relationship models function within the Observational Space, maybe incorporating a timeline to depict
the observational evolution over time. For example, Convolutional Neural Networks (CNNs) recognize pixel
associations in purely observational space; a quadrotor’s movement is identifiable in a sequence of spatial
coordinates; Large Language Models (LLMs) operate along a semantic timeline representing phrase order;
and patients’ vital signs are recorded chronologically. The latter three applications fall under the category of
“spatial-temporal” analysis Alkon (1988); Turner (1990); Andrienko (2003), where the “temporal dimension”
is often equated with the observational timeline within the data Wes (2023).

However, our cognitive understanding of “time”, serving as the foundation to construct knowledge, differs
from this approach Coulson (2009). Observational data timestamps are referred to as the absolute timeline
Wulf (1994), while in comprehension, multiple relative timelines can coexist. Each of these relative timelines
represents different causal effects and may exert mutual influences Shea (2001). Additionally, from a mod-
eling perspective, data timestamps are indistinguishable from other observational attributes Shea (2001).
Consequently, we categorize the absolute t-timeline as a dimension in the Observational Space (as depicted
in Figure 1); meanwhile, address knowledge-aligned temporal distributions separately in a distinct Temporal
Space, which naturally possesses multi-dimensions, defined by the potential relative timelines present.

A linear causal relationship implies a static effect that can be specified by a particular timestamp, e.g., in the
statement “rain leads to wet floors,” the effect of “wet floors” is static, captured at a specific moment. When
this effect has significant dynamical features - e.g., “floors becoming progressively wetter” is dynamic due to
its sequential temporal pattern - a temporal distribution must be considered, transforming the relationship
into a temporally nonlinear one Granger (1993).

Under the Observation-Oriented paradigm, prior identification of effects for dynamics is notably difficult
(see subsection 3.2 for further discussions). This neglect of temporal nonlinearity and oversight of relative
timelines can lead to inherent bias (as demonstrated in subsection 4.1), thereby compromising the general-
izability of causal models (see subsection 4.2). While such misalignments might have been subtle in the past,
the advent of AI enables large-scale models more efficiently, and its black-box nature allows these biases to
accumulate exponentially inside, eventually resulting in uninterpretable outputs.

1.3 Hyper-Dimensional Feature Space
In Hyper-dimensional Space (denoted as Rh), unobservable relations include not only the modeling objective
θ, but also other ones that play crucial roles for the model. Consider ⟨θ, ω⟩ to be jointly distributed in Rh,
connecting observables X and Y . While the model Y = f(X; θ) aims to obtain θ using given X and Y , the
unseen ω can imply various application scenarios that necessitate the model’s generalizability.

For instance, consider an examination of how family income levels (denoted as X) influence grocery shopping
frequencies (as Y ), with influence represented by θ. Underlying cultural factors (denoted as ω) also play a
role, such that the established model Y = f(X; θ) proves to be practically useful only when conditioned on
a specific country (represented by a particular ω value). In this context, there are two levels of objective
relation: a global-level θ without considering ω, and a local-level θ conditioned on a specified ω value.

To be generalizable is to traverse these levels effectively, thereby allowing lower-level learned relationships
to inform or be reusable for higher-level learnings Scholkopf (2021). This also encompasses the capability to
individualize inversely from higher to lower levels for different ω values. For simplicity, we refer to ω as the
hidden relation and the resulting unseen levels as the unobservable hierarchy.

Chapter I: Limitations of Current Observation-Oriented Paradigm

Human understanding inherently indexes through relations Pitt (2022), directing to mental representations
about observational and temporal entities. This intrinsic characteristic results in a fundamental misalignment
with the Observation-Oriented modeling paradigm, evident through various application issues.

Section 2 explores the impacts of hidden relations on relationship learning and introduces the relation-
indexing approach as a solution. Section 3 underscores the importance of effect dynamics and the challenges of

3



Under review as submission to TMLR

manual identification in causal learning. Finally, Section 4 highlights the profound implications of overlooking
multi-dimensional effect dynamics.

2 Impact of Hidden Relations

Hidden relations imply the existence of unobservable hierarchies. In strictly observational learning tasks,
features across various levels can be fully captured, setting off the hidden relations as distinct observable
misalignment (subsection 2.1). However, in relationship learning tasks characterized by temporal dimensions,
the complete range of temporal dynamics can hardly be covered (subsection 2.2), leading to observable
information loss and increased complexity in causal learning (subsection 2.3).

2.1 On Observational Learning
(a) AI-generated faces accompanied with hands (b) How human understand images of hands  

Observed Features 𝒀 Memorized Features 𝑿

Level 𝑰    Knuckles, Nails, …
Level 𝑰𝑰   Relative Positions
Level 𝑰𝑰𝑰 Gestures

Identification of Fingers
Left/Right & Gestures
Intentions  

𝜽

𝝎 ൝

 

Figure 2: AI associates observational features, thus treating hands as arbitrary mixtures of finger-like items.
Humans process hierarchically, indexed by relations: higher-level recognition relies on lower-level conclusions.

Figure 2(a) displays AI-generated hands with faithful colors but unrealistic shapes, while humans easily
recognize plausible hands from grayscale sketches in (b). Indeed, humans hierarchically decide based on
knowledge (represented as augmented feature vector ω = ⟨ω1, ω2, ω3⟩): I identifies fingers (set ω1 value); II
discerns gestures by finger positions (set ω2 value given ω1); III retrieves gesture meanings (set ω3 value
given ω1, ω2). However, the hierarchy information ω in our cognition is unseen to AI. Without guidance from
the indexing relations at each level (denoted by θ = {θ1, θ2, θ3}), AI discerns only associations, resulting in
basic dependencies between levels of entities (e.g., P(Y2 | Y1)) devoid of knowledgable insights (no ω, θ).

In associational learning tasks (concerning Y only), the hidden ω is not always essential. If entities across
levels are observationally distinct and non-overlapping, AI can accurately differentiate them. For instance,
AI can generate convincing faces because the appearance of eyes strongly indicates facial angle, removing
the need to distinguish “eyes” (Y2) from “faces” (Y1). When all observational levels are fully captured, AI
can uncover the hidden ω using methods such as inverse reinforcement learning Sutton (2018); Arora (2021).
For example, approvals of generated five-fingered hands may lead AI to identify fingers autonomously.

2.2 On Temporal Relationship Learning
Figure 3(a) shows an example from health informatics, depicting the causality from action do(A) to sequence
{Bt}, denoted as B. Then, B can be disentangled as two levels of dynamical features: I the standard sequence
of length 30 (do(A) θ1−→ B1 set ω = ∅ ); II individualized progress variation (E θ2−→ B2 set ω = Pi, Pj , . . .),
where the patient’s personal characteristics E is hidden. For simplicity, assume influence θ2 as linear, i.e., E
uniformly accelerates or decelerates the effective progress, and B2 simply interprets the individualized speed
for patients (ω = Pi, Pj , . . .). The modeling objective is to obtain B1, as the effectiveness evaluation of MA.

Conventionally, the clinical effectiveness of MA’s is estimated by averaging the performances of all patients
after 30 days, resulting in a correlation model Bt+30 = f(do(At)). It only captures the static feature Bt+30,
the final step of level I dynamic, neglecting the preceding 29 steps, as represented in Figure 3 (b).

Significantly, even when adopting a sequence to represent B1, as in the Granger causality model Granger
(1993), capturing the level I dynamic through such a “sequential static” variable remains challenging (refer to
subsection 3.2 for more discussions). To illustrate, obtaining an accurate estimation by averaging sequences
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from D1 to D30 for all patients necessitates meeting certain criteria: an exact 30-day span; near-linear
variations among individuals; and a normal distribution centered on D30; . . .. In essence, this method
involves manually defining the boundary of θ1 by exploring all possible ω values.

Hierarchical dynamical effects are commonly observed in various applications, including epidemic progression,
economic fluctuations, strategic decision-making, and so on. Traditional approaches to these challenges
typically involve a manual specification regarding the potential value of ω, to delimit a particular level of θ.
A typical example is the group-specific learning methodologies Fuller et al. (2007).

Timeline 𝒕 
(# of Days)

30 Days20 Days 40 Days

Population-Level 
Dynamical Effect 

Effect of 𝑷𝒊 

Specify the after-30-days 
Correlations for all patients

Daily Effect 
of 𝑑𝑜(𝑨)

 on 𝑩

0 Day

𝑑𝑜(𝑨)

Effect of 𝑷𝑗  

𝑨 = Dose of Medication 𝑀𝐴  𝑑𝑜(𝑨) = Event “𝑨 changes from 0 to 1”  𝑩 = Measured Blood Lipid

(a) Observational Time Sequences 

D1

(b) Complete Dynamical Features

(𝝎 = ∅)
(𝝎 =

 𝑃𝑖 , 𝑃𝑗 , …)

Figure 3: Medication MA treats high blood lipid, with do(A) denoting its initial use. It is given that the
population-level effect takes about 30 days to fully release (t = 30 at the elbow), depicted by the black curve
in (a). Patient Pi achieves this effect curve elbow in 20 days, while Pj takes 40 days.

2.3 The Elusive Hidden-Confounder
For patients Pi and Pj , the population-level last-day effect Bt+30 is inaccurate. To counter this individual-
level bias and improve model interpretation, statistical causal inference incorporates the “hidden confounder”
concept into Directed Acyclic Graphs (DAG), as node E in Figure 4 (a). However, this approach does not
necessitate collecting additional data for E, leading to an illogical implication: “The model bias stems
from unknown factors we don’t intend to explore.” This strategy indeed compensates for the overlooked
level II dynamic, which essentially transforms an observable dynamical feature of the effect into a hidden
observational variable, E, associated with the cause do(A).

As shown in Figure 4(b), the hidden associated cause do(A)∗E does not offer a modelable relationship to learn
{θ1, θ2}. That is, while introducing E enhances the interpretation, it does not certainly improve the model
to encompass further levels. Contrarily, a Relation-Oriented approach only treats relations {θ1, θ2} as indices
without additional modeling requirements. It allows AI to autonomously extract dynamical representations
for multi-levels, with the indices being any observed identifier for ω, like a patient ID, as shown in Figure 4(c).
Such hierarchical disentanglement is driven by knowledge, thereby enhancing model generalizability.

𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient

(a) DAG with Hidden Confounder

Correlation Model 𝑩𝒕+𝟑𝟎 = 𝑓(𝑑𝑜 𝑨𝒕 )

(b) Relation-Oriented Disentanglement (c) Latent Space Representation of (b)

𝑑𝑜 𝑨 ∗ 𝑬 = {𝑑𝑜 𝑨 ∗ 𝑬𝒊 , 𝑑𝑜 𝑨 ∗ 𝑬𝒋, … } Patient ID = {𝑖, 𝑗, … } 

Decode

Encode

ID Sequences

ID

Sequences

∗ →

Sequences

𝒇(𝒅𝒐(𝑨))  
𝑑𝑜(𝑨) 𝑬

ID
𝑬 = {𝑬𝒊, 𝑬𝒋, … }

Figure 4: (a) Traditional causal inference DAG. (b) Hierarchical disentanglement of dynamics using relations
as indices. (c) Autoencoder-based generalized and individualized reconstructions of the sequential data.
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3 Causality on Temporal Dimension

Causal learning serves as a gateway to access the distributions within the temporal dimension, extending
beyond the observational space. Under the prevailing Observation-Oriented paradigm, timestamps for both
causal and effectual events necessitate prior specifications. This approach diverges from our instinctive
understanding, where effects are identified by causes indexing through the objective causal relation.

Furthermore, timestamp specification relies exclusively on the absolute timeline, functioning merely as a
regular observational dimension within the modeling context. This approach, to a degree, diminishes the
temporal significance of causal relationships, rendering them indistinguishable from correlational ones from
a modeling perspective, thus necessitating reliance on interpretations for differentiation.

In response, this section reexamines causality from a frequently overlooked angle - learning dynamical features
of effects - with the goal of offering more intuitive insights into relevant theories and concepts. Subsection 3.1
revisits the definition of causality within the modeling context. Subsequently, subsection 3.2 distinguishes
between dynamical and static variables to elucidate the challenges in effect identification. Finally, subsection
3.3 explores the limitations present in current applications of causal learning.

3.1 Causality in Modeling Context

Traditional causal inference often highlights model interpretations, notably distinguishing them from mere
correlations, as these distinctions are not inherently embedded within the modeling context. Essentially,
causality mandates the incorporation of the timeline as a computational dimension, ensuring recognition of
significant distributions on it, ones that undeniably can exhibit temporal nonlinearity.

Observation-Oriented modeling fades out the causal significance of these relationships in two aspects: First,
manual specifications cannot completely identify dynamics of effects for each level; Second, these dynamics
might coexist in various relative timelines, which suggests multiple computational dimensions in the Temporal
Feature Space. Considering these points, we revisit the definition of causality from a modeling perspective:

Definition 1. Causality vs. Correlation in the modeling context.
• Causality = related Observational-Temporal features, including multi-dimensional dynamical ones.
• Correlation = related Observational features that are not dynamical.

In particular, causal modeling is vital because it facilitates the answering of counterfactual questions
Scholkopf (2021), such as, “What effect would ensue if the cause were altered?” This capability is akin
to fully capturing temporal dimensional distributions (i.e., all possible outcomes), thereby providing accu-
rate responses to conditional queries (i.e., “what if” scenarios).

Remark 1. Counterfactuals can be viewed as posterior distributions in the Temporal Feature Space.

In modeling, the directionality of the relationship (i.e., the roles of cause and effect, or the “causal direction”)
may not impose restrictions, even though it proves important in model interpretations. Specifically, when
selecting a model for the relationship X → Y , one could use Y = f(X; θ) to predict the effect Y , or
X = g(Y ; ϕ) to inversely infer the cause X. Both parameters, θ and ϕ, are obtained from the joint probability
P(X, Y ) without imposing modeling constraints. We refer to it as symmetric directionality for clarity.

In practice, concern for directionality mainly arises for two reasons: First, to maintain alignment with our
intuitive understanding of temporal progression; Second, while the current paradigm can facilitate dynamical
variables for the cause, it does not do so for the effect - A typical example is the RNN models.

3.2 Difficulty of Identifying Dynamical Effects

It is crucial to note that using a sequential variable does not necessarily capture the nonlinearity of the
represented entities. The distinction between “a sequence of static variables” and “a dynamical variable”
hinges on the model’s ability to feature the nonlinearity among the sequence’s elements.
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RNN models technically address the challenges of extracting temporal features from data sequences Xu et al.
(2020). Particularly, they transform the observable data sequences into a latent feature space, where the
featured distributions can be represented as a feature vector - including the temporal dimensional ones.

However, while this transformation effectively represents temporal dimensional features, the types of the
significant features being extracted - whether static linearity or dynamic nonlinearity - depend on the model.
Let’s simplify RNNs in the form of Y = f(X ; θ), where the variable X = ⟨X, t⟩ ∈ Rd+1 jointly represents
observational-temporal features of the cause X ∈ Rd. The optimization process of X is driven by the
observational Y through the relation θ. Consequently, it can capture dynamical temporal features in the
t-dimension if they are significant in predicting Y .

Remark 2. RNNs extract dynamic nonlinearity from the cause by indexing via the relation θ.

Despite their advantages, RNNs are not exempt from the identifiability difficulty Zhang (2012), primarily
because of the requirement to specify timestamps for effects. This challenge primarily stems from the
dynamical variations in the temporal dimension, brought by hidden ω. Moreover, the difficulty intensifies
when characterizing effects in comparison to causes. While it is feasible to organize sequential data around
a major causal event (e.g., days of heavy rain), pinpointing the precise onset of subsequent effects (e.g., the
exact day the flood initiated due to that rain) remains a complex task.

Given that the relation-indexing autonomous identification primarily targets dynamics of causes rather
than effects, the inverse learning methodology Arora (2021), which has been gaining increasing attention
recently, aspires to achieve the converse. It utilizes symmetric directionality to sidestep the challenge of
identifying dynamical effects and defining the objective function.

Remark 3. Autonomous indexing via objective relations θ can address the challenge of identifiability,
but is not embraced by the current Observation-Oriented paradigm regarding effects.

Before the advent of RNNs, traditional methods typically utilize an observational time sequence to capture
a set length of static features: Autoregressive models Hyvärinen (2010) are often formulated as Yt+m =
f({xt}; θ), while Granger causality Granger (1993); Maziarz (2015), a method widely recognized in economics,
introduces another sequence for the effect, as {yτ} = f({xt}; θ), where t and τ represent separate timelines
for cause and effect. As highlighted in the discussions surrounding Figure 3, this method relies heavily on
the precise specification regarding hidden relations ω, and can hardly achieve generalizability autonomously.

To avoid specifying time sequences for causes, do-calculus Pearl (2012); Huang (2012) targets identifiable
events, enabling a fluid transformation from dynamical cause to observational effect, but the identifiability
relies on non-experimental data (controllable θ). Given its inherently differential nature, which increases its
complexity, we provide a streamlined reinterpretation of its three core rules from an integral viewpoint.

Let do(xt) = {xt, xt+1} indicate the occurrence of an instantaneous event do(x) at time t, with the time
step ∆t sufficiently small to make this event’s interventional effect identifiable as a function of the resultant
distribution at t + 1. Meanwhile, a separate observational effect is provoked by the static xt. Then,

Given X → Y | θ, where X = ⟨X, t⟩ ∈ Rd+1 with augmented t-dimension residing a T -length sequence,

X =
∫ T

0
do(xt) · xt dt with


(do(xt) = 1) | θ, Observational only (Rule 1)
(xt = 1) | θ, Interventional only (Rule 2)
(do(xt) = 0) | θ, No interventional (Rule 3)
otherwise Associated observational and interventional

The effect of X can be derived as f(X ) =
∫ T

0
ft

(
do(xt) · xt

)
dt =

T −1∑
t=0

(yt+1 − yt) = yT − y0

Given a controllable θ, it addresses three criteria that preserve conditional independence between observa-
tional and interventional effects, completing the chain rule, but sidesteps more generalized cases. If one
depicts a dynamical effect as Y = ⟨Y, τ⟩, event specifications for do(y) remain necessary.
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3.3 Limitations in Application
Due to effect identification difficulties inherent within the Observation-Oriented paradigm, reliance on foun-
dational assumptions is often indispensable. For a more detailed exploration of these limitations, Figure 5
categorizes the applications into four distinct scenarios: the queries can be divided into Discovery and
Buildup, depending on whether the objective relation θ is known; they can also be further categorized by the
dynamical significance of the effect - For example, the causal relationship “raining→ wet floor” falls into area
4 , while “raining → floor becoming wetter” is in area 3 . They will be examined from two perspectives in

the following: the modeling objective Relation (i.e., θ), and the interpretational Directionality.

Modeled Relation Modeled Causal Direction

❶
Observational Only.

Undiscovered Dynamics covered 
by Faithfulness Assumption.

Observational Data Determined.
Not Logically Meaningful.

❷
Observational Only.

Aligned with Knowledge.
Observational Data Determined.

Maybe Logically Suggestive.

❸

Knowledge Determined.
Unmodeled Dynamics covered 

by Hidden Confounders or 
Sufficiency Assumption.

Knowledge Determined.

❹ Knowledge Determined. Knowledge Determined.

Relationship still 
Unknown

Relationship 
in Knowledge

No Dynamically 
Significant Effects

Include Dynamically 
Significant Effects

Causal Modeling 

Causal 
Discovery

Causal 
Buildup

Figure 5: An overview of the current Observation-Oriented causal learning applications. The left rectangle
cube represents all logical causal relationships, with the potentially modelable scope circled in blue.

(1) Modeled Relation
Knowledge primarily reflects a pre-determined causal model f(; θ) where the relation θ between observational
entities X and Y is already established. While certain conditions allow for the transformation of some
dynamics into observational forms - such as the independence in do-calculus - the model f(; θ) can still miss
notable dynamics, particularly those in effects. Leveraging knowledge can enhance model interpretation by
introducing hidden entities, such as E depicted in Figure 4 (a). Without such interventions, these dynamics
may be overlooked due to the causal sufficiency assumption, as seen with B2 in Figure 3 (b).

Data-driven causal discovery mainly investigates observational dependencies. When the true relationship of
interest does not necessarily involve dynamical entities, the discovered associations (or correlations) can offer
valuable insights. However, if such dynamics exist (especially within unobservable hierarchies), they may be
dismissed by the causal faithfulness assumption, positing that observables can fully represent causal reality.

(2) Modeled Causal Direction
Consider observational entities X and Y with potential directional models Y = f(X; θ) and X = g(Y ; ϕ),
where f(; θ) and g(; ϕ) are pre-determined. The causal direction X → Y would be preferred if L(θ̂) > L(ϕ̂).
Now, let I(θ) be a simplified form of IX,Y (θ), the Fisher information representing θ given P(X, Y ). If p(·)
is the density function, then

∫
X

p(x; θ)dx is constant in this context. Thus, we have:

I(θ) = E[( ∂

∂θ
log p(X, Y ; θ))2 | θ] =

∫
Y

∫
X

( ∂

∂θ
log p(x, y; θ))2p(x, y; θ)dxdy

= α

∫
Y

( ∂

∂θ
log p(y; x, θ))2p(y; x, θ)dy + β = αIY |X(θ) + β, with α, β constants.

Thus, θ̂ = arg max
θ

P(Y | X, θ) = arg min
θ
IY |X(θ) = arg min

θ
I(θ), and L(θ̂) ∝ 1/I(θ̂).

The inferred directionality depends on the extent to which the data informatively reflects the two opposing
relations. Therefore, in purely data-driven causal discovery - where I(θ) = I(ϕ) = 0 contains no unobservable
knowledge - the directionality is not logical but indicates the distributional dominance as determined by the
data collection process, with the predominant one deemed the “cause”. Even if θ and ϕ are knowledge-based,
they remain only observationally meaningful, unnecessarily inferring true causal relations among dynamics.
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4 The Overlooked Multi-Dimensional Temporal Space

As outlined in Definition 1, compared to our innate understanding of causal knowledge, an Observation-
Oriented viewpoint has two key oversights: 1) the dynamical features of effects, and 2) the multi-dimensional
nature of these dynamics. While the former still can be empirically addressed through inverse learning, the
latter poses more foundational challenges to structural relationship modeling, underscoring the need for
relation-indexing approaches in a new Relation-Oriented paradigm.

When understanding structural relationships within knowledge, our logic discerns not just the absolute time-
line but also various relative timelines Coulson (2009), with each capturing distinct effects Shea (2001). While
these effects may originate from a single cause, they possess unique dynamical features and interrelate with
one another Wulf (1994). Within unobservable hierarchies, such interconnected dynamics (i.e., dynamically
significant variables or features) can result in identical timestamps representing different effects across levels,
inherently making the manual timestamp specification inaccurate.

Consider a structural causal relationship Y θ←− X ϕ−→ Z comprising three dynamics {X ,Y,Z} and two distinct
effects on the relative timelines Tθ and Tϕ. Let’s assume a hidden relation, ω, introduces hierarchical levels.
While it’s feasible to model an individual effect on either Tθ or Tϕ by specifying a sequence of timestamps,
building a comprehensive structural model that encompasses {X ,Y,Z} would introduce inherent biases
if relying solely on any one timeline from either Tθ or Tϕ. Moreover, if ⟨θ, ϕ⟩ ∈ Rh are jointly distributed,
meaning Y and Z are interrelated, relying on a single timeline becomes unreliable even when considering
individual effects. Only autonomous identifications specific to each effect can sidestep the complications.

Traditional causal inference, apparently aware of these challenges, has employed various de-confounding
methods to circumvent these confounded dynamics, such as propensity score matching Benedetto (2018)
and backdoor adjustment Pearl (2009). However, these techniques fundamentally depend on manual identifi-
cation and have become impractical at present, given the black-box nature of AI models and their application
to large-scale tasks. Consequently, while still operating under the Observation-Oriented paradigm, AI-based
causal learning tends to default to the absolute timeline, which is the only directly observable one in the
data, to specify timestamps for all events. This method can lead to inherent biases accumulating over the
structural complexity, ultimately affecting the model’s robustness and generalizability.

Definition 2. The Temporal Dimension comprises all potential logical timelines, not a single dimension.
A multi-dimensional Temporal Feature Space is defined by the required timelines serving as axes.

This section will first demonstrate the inherent bias through an intuitive example (subsection 4.1), explore
its impact on the generalizability of structural causal models (subsection 4.2), and finally discuss the ad-
vancements and challenges on our path toward causal knowledge-aligned AI (subsection 4.3).

4.1 Scheme of the Inherent Bias

Timeline of Days

𝑡 𝑡 + 30𝑡 + 20 𝑡 + 40…

𝑩

𝑑𝑜(𝑨)

𝑩 𝑩

𝑷𝒊 is 1/3 Faster 𝑷𝒋 is 1/3 Slower𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient 𝑬 = {𝑬𝒊, 𝑬𝒋, … }

(a) (b)

Figure 6: (a) Initial DAG introducing hidden E. (b) Enhanced DAG (Directed Acyclic Graph).

Consider medical trial data from hospital patients. Vital signs and medication usage are recorded daily,
forming the chronological absolute timeline. However, to assess the effects of a specific medication, a relative
timeline is constructed, with time-zero marking a consistent action, such as do(A), for all patients. As a
result, events with different chronological timestamps can align on the relative timeline, and vice versa. For
instance, Figure 3 illustrates a relative timeline for the effects of do(A), while Figure 6(a) revisits its causal
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DAG, incorporating the introduced hidden confounder. For clearly represent hierarchical dynamical effects,
the causal DAG is enhanced as depicted in (b) through two steps:

1. Assume dynamically significant effects and integrate their relative timelines into the DAG space.
2. Use varying edge lengths to represent timespans required for the effects to reach an equivalent magnitude.

Timeline 
𝑇𝑋

Timeline 
𝑇𝑌

𝑩 𝑩𝑨 𝑩

𝑪

𝑩𝒕+𝟐𝟎𝑨𝒕 𝑩𝒕+𝟑𝟎

𝑪𝒕+𝟏𝟎

𝑩𝒕+𝟑𝟎 𝑩𝒕+𝟒𝟎𝑨𝒕

𝑪𝒕+𝟏𝟎

(b) (c)

20 30 400

𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) 𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) (a) Valid Individualization = Linear Transformation

Figure 7: (a) A two-timeline DAG space with valid individualization processes. (b) and (c) Violations of the
Markov condition in the SCM when specifying timestamps under the Observation-Oriented paradigm.

Figure 7(a) presents an extended scenario where A stands for do(A) for short. It features two distinct effects:
the primary effect −−→AB on B, and a side effect −→AC on vital sign C, which indirectly affects B through −−→CB.
The confounded nodes {A, B, C} form a triangle across timelines TX and TY , which should consistently
hold for all individuals or populations, based on the causal Markov condition requirement. The processes
of generalization and individualization operate as “stretching” this triangle along TX at different ratios,
conducting a homographic linear transformation within this DAG space, as depicted in Figure 7 (a).

For simplicity, assume dynamics on TX and TY are independent: fix the −→AC timespan at 10 days for all
patients, focusing on individualized variances only on TX . Structural Causal Models (SCMs) typically assign
a timespan for −−→AB, such as 30, to represent the population-level average effect. However, as shown in (b)
and (c), the SCM function Bt+30 = f(At, Ct+10) violates the Markov condition for either Pi or Pj .

Remark 4. The inherent bias may occur in SCM if it contains: 1) Confounded Dynamics across
Multiple logical timelines, and 2) Unobservable Hierarchy (represented by hidden ω).

In this simplified scenario, SCMs might still function given the independence between −−→AB and −→AC. How-
ever, it is impractical always to assume independence or a lack of confounding for all dynamical effects in
structural relationship learning. For broad causal AI applications, neglecting multiple relative timelines can
lead to accumulating biases, potentially compromising model robustness irrespective of the chosen model.
Consequently, current AI applications typically focus on tasks not involving relative timelines. For instance,
LLMs operate within a semantic space on a single timeline, consistently preserving word order.

A B
C

S

A’ B’

C’
A

B

CS A B C

S

A’ B’ C’

T2D: Type II Diabetes
LDL: Blood Lipid

Statin: Medicine to Reduce LDL
BP: Blood Pressure

Figure 8: A 3D temporal DAG space with two timelines TY and TZ . The specified SCM B′ = f(A, C, S)
evaluates Statin’s medical effect on reducing T2D risk. On TY , the step ∆t from t to (t + 1) allows A and C
to fully influence B. The step ∆τ on TZ , from (τ + 1) to (τ + 2), let Statin fully release to forward A to A′.
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4.2 Inherent Impact on SCM Generalizability

Unobservable hierarchies can imply varied scenarios with the same fundamental relationships. Traditional
SCMs, which necessitate timestamp specification along a singular t-timeline, compromise not only the ro-
bustness but also impede the generalizability of the formulated SCMs across these scenarios.

Consider the practical scenario depicted in Figure 8. Here, ∆t and ∆τ represent actual time spans. Yet, the
crux is not on determining their exact values, but on realizing their intended causal relationship: As each unit
of Statin’s effect is delivered on LDL via

−−→
SA′, it immediately impacts T2D through

−−−→
A′B′. Simultaneously,

the next unit effect begins generation. This dual action runs concurrently until S is fully administered. At
B′, the ultimate aim of this process is to evaluate the total cumulative influence stemming from S.

Given the relationship
−−→
SB′ =

−−→
SA′ +

−−−→
A′B′, specifying the

−−→
SB′ time span (= half of the

−−→
AB′ time span)

inherently sets the ∆t : ∆τ ratio, defining the ASB′ triangle’s shape in the DAG space. While the estimated
mean effect at B′ might be precise for the present population, the preset ∆t : ∆τ ratio’s universality is
questionable, potentially constraining the established SCM’s generalizability.

4.3 Toward Causal Knowledge-Aligned AI

In pursuit of causally interpretable AI, our modeling techniques expand beyond the purely observational
to encompass temporal dimensions, as summarized in Figure 9. At present, the challenge is to ensure the
generalizability of structural causal AI models. Recognizing multi-timeline dynamics is essential to avoid
biases that obscure AI interpretability. Given the impracticality of manually discerning all potential logical
timelines for observable data, it might be time to contemplate a new paradigm.

Model Principle Cause Relation & Direction Effect
Handle 

Unobservable 
Hierarchy

Capture 
Dynamics

Mechanistic or 
Physical

𝒴 = 𝑓(𝒳; 𝜃)
Observational-

Temporal 𝒳 = 𝑋, 𝑡
by Knowledge

Observational-
Temporal 𝒴 = 𝑌, 𝑡

Yes Yes

Relation-Indexing 
Methodology

Given 𝑷(𝒳,𝒴) & 𝒳 → 𝒴
Observational-

Temporal 𝒳 = 𝑋, 𝑡
by Representation 

𝒴 = 𝑓(𝒳; 𝜃)

Observational-

Temporal 𝒴 = 𝑌, 𝑡
Yes Yes

Structural Causal 
Learning

Given 𝑷(𝑋, 𝑌) & 𝑋 → 𝑌
𝑌 = 𝑓(𝑋; 𝜃)

Observational 
Sequence {𝑋𝑡}

𝑋 → 𝑌 via Relation  𝜃
by Knowledge

Observational and 
Static 𝑌𝑡

? ?

Graphical Causal 
Discovery

Given 𝑷(𝑋, 𝑌)
Find ℒ 𝑌 𝑋; 𝜃 > ℒ 𝑋 𝑌; 𝜃

Observational 𝑋
Observationally 

Associated 𝑋 and 𝑌
Observational 𝑌 ? No

Common Cause 
Model

Given 𝑷 𝑋, 𝑌 𝑍) Observational 𝑋 Related via 𝑍 Observational 𝑌 ? No

i.i.d Data Driven 
Model

Given 𝑷(𝑋, 𝑌) Observational 𝑋 None Observational 𝑌 No No

Figure 9: Simple taxonomy of models (adapted in part of Table 1 in Scholkopf (2021)), from more knowledge-
driven (top in purple) to more data-driven (bottom in green). Notations: θ = parameter derived from joint
or conditional distribution, ⟨X, t⟩ = augment t-dimension, “?” = depending on practice.

The initial models under i.i.d. assumption only approximate observational associations, proved unreliable
for causal reasoning Pearl et al. (2000); Peters et al. (2017). Correspondingly, the common cause principle
highlights the significance of the nontrivial conditional properties, to distinguish structural relationships from
statistical dependencies Dawid (1979); Geiger & Pearl (1993), providing a basis for effectively uncovering
the underlying structures in graphical models Peters et al. (2014).

Graphical causal models relying on conditional dependencies to construct Bayesian networks (BNs) often
operate in observational space and neglect temporal aspects, reducing their causal relevance Scheines (1997).
Causally significant models, such as Structural Equation Models (SEMs) and Functional Causal Models
(FCMs) Glymour et al. (2019); Elwert (2013), can address counterfactual queries Scholkopf (2021), with
respect to temporal distributions by leveraging prior knowledge, to construct causal DAGs accordingly.
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State-of-the-art deep learning applications on causality, which encode the DAG structural constraint into
continuous optimization functions Zheng et al. (2018; 2020); Lachapelle et al. (2019), undoubtedly enable
highly efficient solutions, especially for large-scale problems. However, larger question scales indicate more
underlying logical timelines, which may lead to snowballing temporal biases. It can be evident from the
limited successful applications of incorporating DAG structure into network architectures Luo (2020); Ma
(2018), e.g., neural architecture search (NAS).

Schölkopf Scholkopf (2021) summarized three key challenges impeding causal AI applications to achieving
generalizable success: 1) limited model robustness, 2) insufficient model reusability, and 3) inability to handle
data heterogeneity (caused by unobservable hierarchies in knowledge). There exists an intrinsic connection
between these challenges and the inherent bias highlighted in Remark 4.

On the other side, physical models, which explicitly integrate temporal dimensions in computation, and
are able to establish abstract concepts through relations, may provide insights into these challenges. The
relation-indexing approach is designed to bridge the gap between the Observational and Temporal Spaces.

Chapter II: Realization of Proposed Relation-Oriented Paradigm

This chapter delves into the realization of autonomously identifying causal effects via relation-indexing, and
its role in shaping structural models in the latent feature space. First, Section 5 details the technique for
extracting relation-indexed representations, to realize hierarchical disentanglement. Building on this, Section
6 presents the Relation-Indexed Representation Learning (RIRL) method, designed to instantiate structural
causal models within latent space. Lastly, Section 7 provides experimental validation of RIRL’s efficacy.

5 Relation-Indexed Hierarchical Disentanglement

In the relationship X → Y, we define dynamics X = ⟨X, t⟩ ∈ Rd+1 and Y = ⟨Y, τ⟩ ∈ Rb+1, given observational
variables, X ∈ Rd and Y ∈ Rb, respectively. For X , the data is stored as the time series {xt} = {x1, . . . , xTx

}
with a length of Tx, which can also be viewed as a vector −→x of dimensionality d ∗ Tx in the observable data
space. Similarly, Y is stored as the data sequence {yτ} = {y1, . . . , yTy} with a length of Ty, and can be
observed as a (b ∗ Ty)-dimensional vector −→y . Notably, t and τ are two separate timelines.

Relation-indexing begins with initializations of X and Y as the latent space features, H ∈ RL and V ∈ RL,
respectively. A relation model denoted as f(; θ), then refines H and V to minimize their distance in RL. So,
the dimensionality L of the latent feature space RL must be at least the rank of the augmented triplet, given
by L ≥ rank(⟨X , θ,Y⟩), raising a technical challenge to represent −→x and −→y in higher-dimensional features.

Remark 5. The variable initialization necessitates a higher-dimensional representation autoencoder.

The goal of relation-indexing is to obtain Ŷ, which is the component of Y that can be identifiable through its
relationship with X , accordingly represented as V̂ in the latent feature space. Moreover, for the relationship
models to be generalizable, V̂ must serve as a basis, which permits subsequent components of Y to build
upon it, representing its various other relationships, leading to the hierarchical disentanglement of Y.

5.1 Higher-Dimensional Autoencoder

Autoencoders are commonly used for dimensionality reduction, especially in applications involving multiple
observables formulating structural models Wang (2016). Our Relation-Oriented approach, in contrast, aims
to sequentially model individual relationships within a higher-dimensional space RL, and simultaneously
“stack” them to construct the structure within RL.

Figure 10 illustrates the autoencoder architecture designed for achieving this higher-dimensional representa-
tion. This architecture is featured by the symmetrical Expander and Reducer layers (source code is available
1). The Expander magnifies the input vector −→x by capturing its higher-order associative features, while the

1https://github.com/kflijia/bijective_crossing_functions/blob/main/code_bicross_extracter.py
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Reducer symmetrically diminishes dimensionality and reverts to its initial state. For precise reconstruction,
the invertibility of these processes is essential.

The Expander showcased in Figure 10 implements a double-wise expansion. Here, every duo of digits from
−→x is encoded into a new digit using an association with a random constant, termed the Key. This Key is
generated by the encoder and replicated by the decoder. Such pairwise processing of −→x expands its length
from (d∗Tx) to be (d∗Tx−1)2. By leveraging multiple Keys and concatenating their resultant vectors, −→x can
be considerably expanded, ready for the subsequent dimensionality-reduced representation extraction. The
four blue squares with unique grid patterns represent expansions by four distinct Keys, with the grid patterns
acting as their “signatures”. Each square symbolizes a (d ∗ Tx − 1)2 length vector. Similarly, higher-order
expansions, like triple-wise across three digits, can be achieved with adapted Keys.

Encoder Decoder

Fully 
Connect

Relu

…

Expander

Latent Space 
Representation

Copy

Input 

𝒙

Reducer

Output 

𝒙

Keys

Figure 10: Invertible autoencoder architecture for extracting higher-dimensional representations.

Figure 11 illustrates the encoding and decoding processes within the Expander and Reducer, targeting the
digit pair (xi, xj) for i ̸= j ∈ 1, . . . , d. The Expander function is defined as fθ(xi, xj) = xj⊗exp(s(xi))+t(xi),
which hinges on two elementary functions, s(·) and t(·). The Key parameter, θ, embodies their weights,
θ = (ws, wt). Specifically, the Expander morphs xj into a new digit yj utilizing xi as a chosen attribute.
In contrast, the Reducer symmetrically uses the inverse function f−1

θ , defined as (yj − t(yi))⊗ exp(−s(yi)).
This method avoids calculating s−1 or t−1, granting flexibility for nonlinear transformations to s(·) and t(·).
This design is inspired by the pioneering work of Dinh et al. (2016) on invertible neural network layers that
utilize bijective functions.

5.2 Relation-Indexed Representation

Consider x and y as the instances of X and Y, respectively, with their corresponding vector representations
h and v in RL. The latent dependency P(v|h) is utilized for training the relation function fθ = f(; θ), as
illustrated in Figure 12. During each iteration, the learning process undergoes three optimization steps:

𝑥𝑗 ⊗𝒆𝒙𝒑 𝒔 𝑥𝑖 + 𝒕(𝑥𝑖)
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𝒕

𝒔

+

×
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Decrypt

𝑦𝑖 𝑦𝑗

𝑥𝑗

𝒕

𝒔

−

÷

𝑥𝑖

Output 𝑥

𝑦𝑗 − 𝒕 𝑦𝑖 ⊗𝒆𝒙𝒑(−𝒔(𝑦𝑖))

Figure 11: Expander (left) and Reducer (right).
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Figure 12: Relationship model architecture.
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1. Optimizing the cause-encoder by P(h|x), the relation model by P(v|h), and the effect-decoder by
P(y|v) to reconstruct the relationship x→ y, represented as h→ v in RL.

2. Fine-tuning the effect-encoder P(v|y) and effect-decoder P(y|v) to accurately represent y.
3. Fine-tuning the cause-encoder P(h|x) and cause-decoder P(x|h) to accurately represent x.

During the learning process, the values of h and v are iteratively adjusted to reduce their distance in RL.
The relation function fθ = f(; θ) serves as a bridge to span this distance. It effectively represents the
hyper-dimensional variable θ ∈ Rh as an index, guiding the output of fθ to encapsulate the associated
representation ⟨Ĥ, θ, V̂⟩. From V̂, the effect component Ŷ can be reconstructed. Within the system, for
each effect, a series of such relation functions {fθ} is maintained, indexing diverse levels of causal inputs for
sequentially building the structural model.

5.3 Hierarchical Disentanglement of Effects

Consider Y = ⟨Y, t⟩ ∈ Rb+1 having an n-level hierarchy, with each level built using a representation function,
labeled as g(; ωi) for the i-th level. For clarity, just use ωi to represent the i-th level feature in the latent
feature space RL; its counterpart in the observable data space Rb+1 is denoted as Ωi (i.e., Ŷ at the i-th level).

Let the vector ωi in RL primarily spans a sub-dimensional space, RLi . This results in the hierarchical
disentanglement sequence {RL1 , . . . ,RLi , . . . ,RLn} that fully represent Y. Function gi maps from Rb+1 to
RLi , taking into account features from all previous levels as attributes. This gives us:

Y =
n∑

i=1
Ωi, where Ωi = gi

(
ωi; Ω1, . . . , Ωi−1

)
with Ωi ∈ Rd+1 and ωi ∈ RLi ⊆ RL (1)

The i-th component in the observable data space, denoted as Ωi ∈ Rd+1, is articulated through an obser-
vational data sequence with the length of Ty, along the absolute timeline t. However, in latent space, the
objective of ωi is to capture dynamics along a relative timeline, ti, which is autonomously determined by
the relation at the i-th level, not bound by the observational timestamps in Rd+1.

In the context of a purely observational hierarchy, with Y substituted by Y ∈ Rb, Figure 2 (b) can be
interpreted as follows: Consider three feature levels represented as ω1 ∈ RL1 , ω2 ∈ RL2 , and ω3 ∈ RL3 . For
simplicity, assume each subspace is mutually exclusive, so that L = L1 + L2 + L3. In the latent space, the
triplet ⟨ω1, ω2, ω3⟩ ∈ RL comprehensively depicts the image. Their observable counterparts, Ω1, Ω2, and Ω3,
are three distinct full-scale images, each showcasing different content. For example, Ω1 emphasizes finger
details, while the combination Ω1 + Ω2 reveals the entire hand.

6 RIRL: Building Structural Models in Latent Space

Causal Knowledge 
(e.g., DAGs)

Generated/Simulated/Imputed…
Observations

Traditional 
Causal Models

Relation-Defined 
Representations

Observed
Time Series Data

Encoding

Decoding

Causal Model 
Generalization/Individualization

Latent Feature 

Space

Originally Observed

Data Space

Reconstructed 

Data Space

Figure 13: How Relation-Indexed Representation Learning (RIRL) contributes to traditional models.

By sequentially stacking relation-indexed representations, causal structural models can be established as
aligned with causal knowledge. Figure 13 illustrates how the RIRL method seals the black-box nature of
AI within the latent space, while simultaneously generating interpretable observations that enhance existing
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Observation-Oriented models, such as conducting on-demand counterfactual simulations. These cryptic rep-
resentations, though opaque to humans, can internally promote model generalization and individualization,
managed exclusively within the AI’s latent space.

This Section first presents the method to construct structural relationship models in the latent space (sub-
section 6.1), and describes the technique for discovering structures within the latent space by identifying
potential relationships among initialized variable representations (subsection 6.2).

6.1 Stacking Hierarchical Representations

A structural relationship can be represented by a causal graph, denoted as G. To construct models in the
latent space, the latent dimensionality L must be sufficiently large to adequately represent G. Let’s denote
a data matrix augmented by all observational attributes in G as X. Given the need to include informative
relations {θ} for the edges in G, it is essential that L > rank(X)+1, where the +1 accounts for the t-timeline.

The PCA principle posits that the space RL learned by the autoencoder is spanned by the top principal
components of X Baldi (1989); Plaut (2018); Wang (2016). Hypothetically, reducing L below rank(X)
may yield a less adequate but causally more significant latent space through better alignment of dimensions
Jain (2021) (Further exploration in this direction is warranted). Bypassing a deep dive into dimensionality
boundaries, we rely on empirical fine-tuning for the experiments in this study (reducing L from 64 to 16).
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Figure 14: Stacking relation-indexed representations to construct hierarchy.

Consider the structural causal relationship among dynamically significant variables {X ,Y,Z}, each having
corresponding representations {H,V,K} ∈ RL initially derived from three autoencoders. Figure 14 illustrates
the hierarchical assembly of two modeled relationships associated with Y.

In Figure 14, two stacking scenarios are displayed based on varying causal directions. With the established
X → Y relationship in RL, the left-side architecture finalizes the X → Y ← Z structure, while the right-side
focuses on X → Y → Z. Through the addition of a representation layer, hierarchical disentanglement is
formed, allowing for various input-output combinations (denoted as 7→) according to specific requirements.

For example, on the left, P(v|h) 7→ P(α) represents the X → Y relationship, whereas P(α|k) implies Z → Y.
Conversely, on the right, P(v) 7→ P (β|k) denotes the Y → Z relationship with Y as input. Meanwhile,
P(v|h) 7→ P (β|k) captures the causal sequence X → Y → Z.

6.2 Causal Discovery in Latent Space

Algorithm 1 outlines the heuristic procedure for identifying edges among the initial variable representations.
We use Kullback-Leibler Divergence (KLD) as a metric to evaluate the strength of causal relationships.
Specifically, as depicted in Figure 12, KLD evaluates the similarity between the RNN output P(v|h) and the
prior P(v). Lower KLD values indicate stronger causal relationships due to closer alignment with the ground
truth. Conversely, while Mean Squared Error (MSE) is a frequently used evaluation metric, its sensitivity
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to data variances Reisach (2021); Kaiser & Sipos (2021) leads us to utilize it as a supplementary measure in
this study.

Algorithm 1: Latent Space Causal Discovery
Result: ordered edges set E = {e1, . . . , en}
E = {} ; NR = {n0 | n0 ∈ N, P arent(n0) = ∅} ;
while NR ⊂ N do

∆ = {} ;
for n ∈ N do

for p ∈ P arent(n) do
if n /∈ NR and p ∈ NR then

e = (p, n); β = {};
for r ∈ NR do

if r ∈ P arent(n) and r ̸= p then
β = β ∪ r

end
end
δe = K(β ∪ p, n) − K(β, n);
∆ = ∆ ∪ δe;

end
end

end
σ = argmine(δe | δe ∈ ∆);
E = E ∪ σ; NR = NR ∪ nσ ;

end

G = (N, E) graph G consists of N and E
N the set of nodes
E the set of edges
NR the set of reachable nodes
E the list of discovered edges
K(β, n) KLD metric of effect β → n
β the cause nodes
n the effect node
δe KLD Gain of candidate edge e
∆ = {δe} the set {δe} for e
n,p,r notations of nodes
e,σ notations of edges

Figure 15 illustrates the causal structure discovery process in latent space over four steps. Two edges, (e1
and e3), are sequentially selected, with e1 setting node B as the starting point for e3. In step 3, edge e2
from A to C is deselected and reassessed due to the new edge e3 altering C’s existing causal conditions. The
final DAG represents the resulting causal structure.
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Figure 15: An example of causal discovery in the latent space.

7 Efficacy Validation Experiments
The experiments aim to validate the efficacy of the RIRL method from three aspects: 1) the performance of
the proposed higher-dimensional representations, evaluated by reconstruction accuracy, 2) the construction
of a clear effect hierarchy through the stacking of relation-indexed representations, and 3) the identification of
DAG structures within the latent space through discovery. A full demonstration of the conducted experiments
is available online 2. The experiments in this study present two primary limitations, detailed as follows:

Firstly, the dataset used in the current experiments may not be optimal for assessing the efficacy of RIRL.
In particular, real-world causal data, such as clinical records, often contain inherent biases. While empirical
constraints limited our access to such data for this study, the synthetic data we utilized may not be ideal for
validating the improved model robustness conferred by RIRL. For experiments that validate the presence of
such inherent biases, readers are referred to prior research Li et al. (2020).

Secondly, the time windows designated for cause and effect, Tx and Ty, are consistently set at 10 and 1,
respectively. This constraint arose from an initial oversight in the experimental design, wherein the pivotal
role of dynamics was not fully recognized, leading to restrictions set by the RNN pattern. This limitation
manifests when constructing causal sequences, such as in X → Y → Z. While the model adeptly captures
single-hop effects, it struggles with two-hop information due to the dynamics in Y being segmented into

2https://github.com/kflijia/bijective_crossing_functions.git
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statics by the effect window Ty = 1, resulting in a loss of dynamic information. However, extending the
length of Ty does not pose a significant technical challenge to future works.

7.1 Hydrology Dataset

1st tier causality

2nd tier causality

3rd tier causality

A

B

C

D

E

F

G

H

I

J

ID Variable Name Explanation

A Environmental set I Wind Speed, Humidity, Temperature

B Environmental set II Temperature, Solar Radiation, Precipitation

C Evapotranspiration Evaporation and transpiration

D Snowpack The winter frozen water in the ice form

E Soil Water Soil moisture in vadose zone

F Aquifer Groundwater storage

G Surface Runoff Flowing water over the land surface

H Lateral Vadose zone flow

I Baseflow Groundwater discharge

J Streamflow Sensors recorded outputs

Figure 16: Hydrological causal DAG: routine tiers organized by descending causal strength.

The dataset chosen for our experiments is a widely-used synthetic resource in the field of hydrology, aimed
at enhancing streamflow predictions based on observed environmental conditions such as temperature and
precipitation. In hydrology, deep learning, particularly RNN models, has gained favor for extracting observa-
tional representations and predicting streamflow Goodwell (2020); Kratzert (2018). We focus on a simulation
of the Root River Headwater watershed in Southeast Minnesota, covering 60 consecutive virtual years with
daily updates. The simulated data is from the Soil and Water Assessment Tool (SWAT), a comprehensive
system grounded in physical modules, to generate dynamically significant hydrological time series.

Figure 16 displays the causal DAG employed by SWAT, complete with node descriptions. The hydrological
routines are color-coded based on their contribution to output streamflow. Surface runoff (1st tier) signif-
icantly impacts rapid streamflow peaks, followed by lateral flow (2nd tier). Baseflow dynamics (3rd tier)
have a subtler influence. Our causal discovery experiments aim to reveal these underlying tiers.

7.2 Higher-Dimensional Variable Representation Test
In this test, we have a total of ten variables (or nodes), each requiring a separate autoencoder for initializing a
higher-dimensional representation. Table 1 lists the statistics of their post-scaled (i.e., normalized) attributes,
as well as their autoencoders’ reconstruction accuracies. Accuracy is assessed in the root mean square error
(RMSE), where a lower RMSE indicates higher accuracy for both scaled and unscaled data.

The task is challenging due to the limited dimensionalities of the ten variables - maxing out at just 5 and
the target node, J , having just one attribute. To mitigate this, we duplicate the input vector to a consistent
12-length and add 12 dummy variables for months, resulting in a 24-dimensional input. A double-wise
extension amplifies this to 576 dimensions, from which a 16-dimensional representation is extracted via the
autoencoder. Another issue is the presence of meaningful zero-values, such as node D (Snowpack in winter),
which contributes numerous zeros in other seasons and is closely linked to node E (Soil Water). We tackle
this by adding non-zero indicator variables, called masks, evaluated via binary cross-entropy (BCE).

Despite challenges, RMSE values ranging from 0.01 to 0.09 indicate success, except for node F (the Aquifer).
Given that aquifer research is still emerging (i.e., the 3rd tier baseflow routine), it is likely that node F in
this synthetic dataset may better represent noise than meaningful data.

7.3 Hierarchical Disentanglement Test
Table 3 provides the performance comparison of stacking relation-indexed representations on each node. The
term “single-effect” is to describe the accuracy of a specific effect node when reconstructed from a single
cause node (e.g., B → D and C → D), and “full-effect” for the accuracy when all its cause nodes are stacked
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Table 1: Statistics of variable attributes and performances of the variable representation test.
Variable Dim Mean Std Min Max Non-Zero Rate% RMSE on Scaled RMSE on Unscaled BCE of Mask

A 5 1.8513 1.5496 -3.3557 7.6809 87.54 0.093 0.871 0.095
B 4 0.7687 1.1353 -3.3557 5.9710 64.52 0.076 0.678 1.132
C 2 1.0342 1.0025 0.0 6.2145 94.42 0.037 0.089 0.428
D 3 0.0458 0.2005 0.0 5.2434 11.40 0.015 0.679 0.445
E 2 3.1449 1.0000 0.0285 5.0916 100 0.058 3.343 0.643
F 4 0.3922 0.8962 0.0 8.6122 59.08 0.326 7.178 2.045
G 4 0.7180 1.1064 0.0 8.2551 47.87 0.045 0.81 1.327
H 4 0.7344 1.0193 0.0 7.6350 49.93 0.045 0.009 1.345
I 3 0.1432 0.6137 0.0 8.3880 21.66 0.035 0.009 1.672
J 1 0.0410 0.2000 0.0 7.8903 21.75 0.007 0.098 1.088

Table 2: Brief summary of the latent space causal discovery test.
Edge A→C B→D C→D C→G D→G G→J D→H H→J B→E E→G E→H C→E E→F F→I I→J D→I
KLD 7.63 8.51 10.14 11.60 27.87 5.29 25.19 15.93 37.07 39.13 39.88 46.58 53.68 45.64 17.41 75.57
Gain 7.63 8.51 1.135 11.60 2.454 5.29 25.19 0.209 37.07 -5.91 -3.29 2.677 53.68 45.64 0.028 3.384

(e.g., BC → D). To provide context, we also include baseline performance scores based on the initial variable
representations. During the relation learning process, the effect node serves two purposes: it maintains its
own accurate representation (as per optimization no.2 in 5.2) and helps reconstruct the relationship (as per
optimization no.1). Both aspects are evaluated in Table 3.

Figure 17: Reconstructed dynamical effects, via hierarchically stacked relation-indexed representations.
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Table 3: Effect Reconstruction Performances of RIRL sorted by effect nodes.
Variable Representation
(Initial)

Variable Representation
(in Relation Learning) Relationship Reconstruction

RMSE BCE RMSE BCE RMSE BCE KLDResult
Node on Scaled

Values
on Unscaled

Values Mask

Cause
Node on Scaled

Values
on Unscaled

Values Mask on Scaled
Values

on Unscaled
Values Mask (in latent

space)
C 0.037 0.089 0.428 A 0.0295 0.0616 0.4278 0.1747 0.3334 0.4278 7.6353

BC 0.0350 1.0179 0.1355 0.0509 1.7059 0.1285 9.6502
B 0.0341 1.0361 0.1693 0.0516 1.7737 0.1925 8.5147D 0.015 0.679 0.445
C 0.0331 0.9818 0.3404 0.0512 1.7265 0.3667 10.149
BC 0.4612 26.605 0.6427 0.7827 45.149 0.6427 39.750
B 0.6428 37.076 0.6427 0.8209 47.353 0.6427 37.072E 0.058 3.343 0.643
C 0.5212 30.065 1.2854 0.7939 45.791 1.2854 46.587

F 0.326 7.178 2.045 E 0.4334 8.3807 3.0895 0.4509 5.9553 3.0895 53.680
CDE 0.0538 0.9598 0.0878 0.1719 3.5736 0.1340 8.1360
C 0.1057 1.4219 0.1078 0.2996 4.6278 0.1362 11.601
D 0.1773 3.6083 0.1842 0.4112 8.0841 0.2228 27.879G 0.045 0.81 1.327

E 0.1949 4.7124 0.1482 0.5564 10.852 0.1877 39.133
DE 0.0889 0.0099 2.5980 0.3564 0.0096 2.5980 21.905
D 0.0878 0.0104 0.0911 0.4301 0.0095 0.0911 25.198H 0.045 0.009 1.345
E 0.1162 0.0105 0.1482 0.5168 0.0097 3.8514 39.886
DF 0.0600 0.0103 3.4493 0.1158 0.0099 3.4493 49.033
D 0.1212 0.0108 3.0048 0.2073 0.0108 3.0048 75.577I 0.035 0.009 1.672
F 0.0540 0.0102 3.4493 0.0948 0.0098 3.4493 45.648
GHI 0.0052 0.0742 0.2593 0.0090 0.1269 0.2937 5.5300
G 0.0077 0.1085 0.4009 0.0099 0.1390 0.4375 5.2924
H 0.0159 0.2239 0.4584 0.0393 0.5520 0.4938 15.930J 0.007 0.098 1.088

I 0.0308 0.4328 0.3818 0.0397 0.5564 0.3954 17.410

The KLD metrics in Table 3 indicate the strength of learned causality, with a lower value signifying stronger.
For instance, node J ’s minimal KLD values suggest a significant effect caused by nodes G (Surface Runoff),
H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting variable I using D
and F is challenging. For nodes D, E, and J , the “full-effect” are moderate compared to their “single-effect”
scores, suggesting a lack of informative associations among the cause nodes. In contrast, for nodes G and H,
lower “full-effect” KLD values imply capturing meaningful associative effects through hierarchical stacking.
The KLD metric also reveals the most contributive cause node to the effect node. For example, the proximity
of the C → G strength to CDE → G suggests that C is the primary contributor to this causal relationship.

Figure 17 showcases reconstructed time series, for the effect nodes J , G, and I, in the same synthetic year
to provide a straightforward overview of the hierarchical representation performances. Here, black dots
represent the ground truth; the blue line indicates reconstruction via the initial variable representation, and
the “full-effect” representation generates the red line. In addition to RMSE, we also employ the Nash–Sutcliffe
model efficiency coefficient (NSE) as an accuracy metric, commonly used in hydrological predictions. The
NSE ranges from -∞ to 1, with values closer to 1 indicating higher accuracy.

The initial variable representation closely aligns with the ground truth, as shown in Figure 17, attesting to
the efficacy of our proposed autoencoder architecture. As expected, the “full-effect” performs better than the
“single-effect” for each effect node. Node J exhibits the best prediction, whereas node I presents a challenge.
For node G, causality from C proves to be significantly stronger than the other two, D and E.

7.4 Latent Space Causal Discovery Test

The discovery test initiates with source nodes A and B and proceeds to identify potential edges, culminating
in the target node J . Candidate edges are selected based on their contributions to the overall KLD sum (less
gain is better). Table 6 shows the order in which existing edges are discovered, along with the corresponding
KLD sums and gains after each edge is included. Color-coding in the cells corresponds to Figure 16, indicating
tiers of causal routines. The arrangement underscores the efficacy of this latent space discovery approach.

A comprehensive list of candidate edges evaluated in each discovery round is provided in Table 4 in Appendix
A. For comparative purposes, we also performed a 10-fold cross-validation using the conventional FGES
discovery method; those results are available in Table 5 in Appendix A.
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8 Conclusions

The concept of Artificial General Intelligence (AGI) has sparked extensive discussions over the years Marcus
(2020). Recent debates have particularly focused on whether large language models (LLMs) edge us closer
to realizing AGI Schaeffer et al. (2023). A central question is whether symbols, as well as symbol-grounded
systems, such as AI, can represent our empirical understanding and inquiries Newell (2007); Pavlick (2023).

We posit that the core challenge is representing the “human understanding” process symbolically, particularly
in symbolizing those abstract, intangible concepts within our cognition. Specifically, we require a framework
that can intuitively formalize our essential appeals underlying learning inquiries.

This study introduces the concept of “hyper-dimension” to symbolize the abstract information (termed as
“relations”) present in our cognition, representing them as distributional variables, ⟨θ, ω⟩ ∈ Rh. This allows
them to interface directly with the conventional variables we are familiar with in modeling, which reside in
the “observational-temporal dimensions”, integrally denoted as Y = f(X ; θ) with ⟨θ, ω⟩ ∈ Rh.

The proposed dimensionality framework seeks to unify a range of learning inquiries, from traditional causal
inference to modern AI Alignment challenges. In doing so, it underscores two pivotal factors that the current
relationship learning paradigm frequently overlooks: the “dynamics” and the “relative timelines” they span.
Classical statistics recognize the intertwined timelines, focusing on manually identifying cut-off points (i.e.,
de-confounding), but lack the capability to handle inherent dynamics (i.e., temporal non-linearities). On
the other hand, mainstream AI approaches primarily concentrate on exploring non-linear associations in
the observational dimensions, often simplifying multiple potential timelines into a singular one. For certain
applications, such as LLMs, employing a singular timeline is suitable, enabling AI to discern meaningful
associations that shed light on the latent causal knowledge. However, while these associations over {X ,Y}
might align with the unobservable knowledge represented by ⟨θ, ω⟩ ∈ Rh, they do not truly encapsulate it,
leading to a perception that AI can generate intelligent responses without truly understanding the content.

While there have been attempts to address these issues (for instance, the introduction of hierarchical tempo-
ral memory in neuroscience Wu (2018)), we assert that human logic discerns timelines via relations. These
relations not only give shape to our logical structures but also infuse our models with the essence of knowl-
edge alignment. The journey to achieving AGI will undoubtedly be a historically extensive and complex
undertaking, necessitating a vast array of knowledge-aligned AI model constructions. This study aspires to
establish foundational insights for future developments in the field.
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