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Abstract

A two-sample hypothesis test is a statistical procedure used to determine whether the distri-
butions generating two samples are identical. We consider the two-sample testing problem
in a new scenario where the sample measurements (or sample features) are inexpensive to
access, but their group memberships (or labels) are costly. To address the problem, we de-
vise the first active sequential two-sample testing framework that not only sequentially but
also actively queries. Our test statistic is a likelihood ratio where one likelihood is found by
maximization over all class priors, and the other is provided by a probabilistic classification
model. The classification model is adaptively updated and used to predict where the (unla-
belled) features have a high dependency on labels; labeling the “high-dependency” features
leads to the increased power of the proposed testing framework. In theory, we provide the
proof that our framework produces an anytime-valid p-value. In addition, we characterize
the proposed framework’s gain in testing power by analyzing the mutual information be-
tween the feature and label variables in asymptotic and finite-sample scenarios. In practice,
we introduce an instantiation of our framework and evaluate it using several experiments;
the experiments on the synthetic, MNIST, and application-specific datasets demonstrate
that the testing power of the instantiated active sequential test significantly increases while
the Type I error is under control.

1 Introduction

The two-sample test is a statistical hypothesis test applied to data samples (or measurements) from two
distributions. The goal is to test if the data supports the hypothesis that the distributions are different. If
we consider each data point as a feature and label (which tells us which distribution the data is from) pair,
then the two-sample test is equivalent to the problem of testing the dependence between the features and
the labels. Viewed with this lens, the null hypothesis for the two-sample test states that the feature and

∗Work done when the author was at Arizona State University.
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label variables are independent, and the alternate hypothesis states the opposite. The analyst performing
the two-sample test needs to decide between the null and the alternative hypotheses with data from the two
distributions.

The analyst typically knows little about the difficulty of a two-sample testing problem before running the
test. Fixing the sample size a priori may result in a test that needs to collect additional evidence to arrive
at a final decision (if the problem is hard) or in an inefficient test with over-collected data (if the problem is
simple). To address this dichotomy, the research community has proposed sequential two-sample tests (Wald,
1992; Lhéritier & Cazals, 2018; Hajnal, 1961; Shekhar & Ramdas, 2021; Balsubramani & Ramdas, 2015) that
allow the analyst to sequentially collect data and monitor statistical evidence, i.e., a statistic is computed
from the data. The test can stop anytime when sufficient evidence has been accumulated to make a decision.

Existing sequential two-sample tests (Wald, 1992; Lhéritier & Cazals, 2018; Hajnal, 1961; Shekhar & Ramdas,
2021; Balsubramani & Ramdas, 2015) are devised to collect both sample features and sample labels simul-
taneously. In this paper, we consider the problem of sequential two-sample testing in a novel
and practical setting where the cost of obtaining sample labels is high, but accessing sample
features is inexpensive. As a result, the analyst can obtain a large collection of sample features without
labels; she will need to sequentially query the label of the sample features in the collection to perform the
two-sample testing while ensuring the query complexity (i.e., the number of queried labels) doesn’t exceed
a label budget. A motivation for this formulation comes from the field of digital health: Physicians seek
inexpensive digital measurements (e.g., gait, speech, typing speed measured using a patient’s smartphone)
to replace traditional biomarkers (e.g., the amyloid buildup that indicates Alzheimer’s progression) which
are often costly to access; hence they need to validate the dependency between the digital measurements
(feature variables) and traditional biomarkers (label variables). While validation studies can access large
registries to collect digital measurements remotely at scale, there is a fixed label budget for the expensive
biomarker measures. An efficient sequential design would reveal the dependency between the features and
the labels using only a reasonable label budget.

In this paper, we propose the active sequential testing framework shown in Figure 1. The framework
initializes a classifier to model probabilities of sample labels given features using an initial random sample;
next, depending on the classifier’s outputs, the framework queries the labels of features predicted to have
a high dependency with the labels and constructs a test statistic w. The framework rejects the null if w
is smaller than a pre-defined significance level α; otherwise, the framework stops and retains the null if the
label budget runs out or re-enters the label query and decision-making, enabling a sequential testing process.

Initialize the class-
probability predictor 

𝑸(𝒛|𝒔)

Query the labels of features 
predicted by 𝑸(𝒛|𝒔) to have 
high-dependency on labels

Update the 
testing 

statistic 𝒘

Update the 
predictor  
𝑸(𝒛|𝒔)
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𝛂 and the label 

budget ru
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the null 
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𝐰 > 𝛂 and the label 
budget hasn’t run 
out

Figure 1: The active sequential two-sample testing framework.

The test statistic w in the framework is based on the likelihood ratio between the likelihood constructed under
the null that feature and label variables are independent and the likelihood constructed under the alternative
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that the dependency between the feature and label variables exists. Such a likelihood ratio two-sample test
statistic has been first proposed in (Lhéritier & Cazals, 2018) to develop a non-active sequential two-sample
test capable of controlling the Type I error (i.e., the probability of a decision made on the alternative when
the null is true). We adapt the original test statistic by replacing the pre-defined label probability prior
with a maximum likelihood estimate to satisfy our considered setting that the label prior is unknown. More
importantly, our framework actively labels the features that are predicted to have a high dependency on
labels. We will characterize the benefits of the active query over the random query by the change of mutual
information between feature and label variables in the asymptotic and finite-sample scenarios. In practice,
we suggest using an active query scheme called bimodal query proposed in (Li et al., 2022), in which the
scheme labels samples with the highest class one or zero probabilities.

We summarize the main contributions of our work as follows:

• We introduce the first active sequential two-sample testing framework. We prove that the proposed
framework produces an anytime-valid p-value to achieve Type I error control. Furthermore, we provide
an information-theoretic interpretation of the proposed framework. We prove that, asymptotically, the
framework is capable of generating the largest mutual information (MI) between feature and label variables
under standard conditions (Györfi et al., 2002); and we also analyze the gain of the testing power for the
proposed framework over its passive query parallel in the finite-sample scenario through MI.

• We instantiate the framework using the bimodal query (Li et al., 2022) (i.e., queries the labels of the
samples that have the highest class one or zero probabilities) as the label query scheme. We perform
extensive experiments on synthetic data, MNIST, and an application-specific Alzheimer’s disease dataset
to demonstrate the effectiveness of the instantiated framework. Our proposed test exhibits a significant
reduction of the Type II error using fewer labeled samples compared with a non-active sequential testing
baseline.

2 Related Works

The author of (Student, 1908) developed the t-test, probably the simplest form of a two-sample test that
compares the mean difference of two samples of uni-variate data. Since then, the research community has
expanded the two-sample test to many other forms, e.g., the hotelling test (Hotelling, 1992), the Friedman-
Rafsky test (Friedman & Rafsky, 1979), the kernel two-sample test (Gretton et al., 2012) and the classifier
two-sample test (Lopez-Paz & Oquab, 2016) for the multi-variate case. These tests are constructed with
various statistics, including the Mahalanobis distance, the measurement over a graph, a kernel embedding,
or classifier accuracy, all in service of increasing testing power while controlling the Type I error. In partic-
ular, (Friedman & Rafsky, 1979; Gretton et al., 2012; Lopez-Paz & Oquab, 2016) test if the data from two
samples is distributionally different, which is a generalization of the hotelling and t−test (Student, 1908;
Hotelling, 1992) that only detect the mean difference of two samples. These two-sample tests are batch
tests that have been extensively used subject to a fixed-sample size: When the collection of experimental
data ends, an analyst performs the two-sample tests on the data and makes a decision; she is not allowed to
continue to collect and incorporate more data into the testing after a decision made, as that will inflate the
Type I error.

In contrast to the batch two-sample tests, the research community has developed a class of sequential two-
sample tests (Lhéritier & Cazals, 2018; Shekhar & Ramdas, 2021; Pandeva et al., 2022) that allow the
analyst to sequentially collect data and perform the two-sample test, enabling sequential decision-making.
These sequential tests rectify the inflated Type I that will happen in the batch test with different statistical
techniques such as Bonferroni correction (Dunn, 1961) and Ville’s maximal inequality (Doob, 1939).

There are also several works that consider the active setting in two-sample testing. The authors of (Li
et al., 2022) proposed a batch two-sample test combined with active learning when curated labeled data is
unavailable and querying the data labels is expensive. Several studies have also considered sequential testing
for developing active sequential hypothesis tests (Naghshvar & Javidi, 2013; Chernoff, 1959; Bessler, 1960;
Blot & Meeter, 1973; Keener, 1984; Kiefer & Sacks, 1963). However, these tests require a clear parametric
description of the statistical models of the hypotheses. The authors of (Duan et al., 2022) developed an
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interactive rank test, which is distribution-free and can similarly perform the sequential two-sample testing
in the active learning setting.

The work proposed herein uses the label query scheme in (Li et al., 2022) to develop the first multivariate
non-parametric sequential test for the active learning setting with a novel test statistic and theoretical results.
We demonstrate that the test controls the Type I error via Ville’s maximal inequality (See Theorem 5.1).
Ville’s maximal inequality results in higher testing power than the Bonferroni correction for sequential
testing (Shekhar & Ramdas, 2021; Ramdas et al., 2022).

While our framework in Figure 1 employs the label query scheme introduced in (Li et al., 2022), it offers
distinct advantages over (Li et al., 2022):

• Our proposed framework follows a sequential design. Upon accumulating sufficient evidence to reject the
null hypothesis, our design automatically stops label collection before exhausting the label budget. In
contrast, the batch design in (Li et al., 2022) invariably exhausts the label budget.

• Utilizing a different test statistic, our framework enables finite-sample analysis, which is not provided
in (Li et al., 2022).

3 Problem Statement and Preliminaries

3.1 Notations

We use a pair of random variables (S, Z) to denote a feature and its label variables whose realization is
(s, z) ∈ Rd × {0, 1}. The variable pair (S, Z) admits a joint distribution pSZ(s, z). Furthermore, we write
S to denote the support of pS(s). Formally, a two-sample testing problem consists of null hypothesis H0
that states pS|Z=0(s) = pS|Z=1(s) and an alternative hypothesis H1 that states pS|Z=0(s) ̸= pS|Z=1(s). An
analyst collects a sequence ((s, z)i)N

i=1 of N realizations of (S, Z) to test H0 against H1. The problem is
equivalent to testing the independency between S and Z. Therefore, we equivalently restate the hypothesis
test as follows:

H0 : pSZ(s, z) = pS(s)PZ(z), ∀s ∈ S
H1 : pSZ(s, z) ̸= pS(s)PZ(z), ∃s ∈ S (1)

Moving forward, we omit the subscripts in pSZ(s, z), PZ(z) and pS(s) and write them as p(s, z), P (z) and
p(s). In addition, we use sN , zN and (s, z)N to denote sequences of samples (si)N

i=1, (zi)N
i=1 and ((s, z)i)N

i=1
respectively. We use similar notation throughout the paper.

3.2 The problem

In the typical setting of a sequential two-sample test, an analyst does not have prior knowledge of sample
features. The analyst sequentially collects both sample features and their labels simultaneously with the
corresponding random variable pair (S, Z) i.i.d. generated from a data-generating process, i.e., p(s, z). We
consider a variant of the setting in which accessing sample features is free/inexpensive. Consequently, the
analyst collects a large set Su of sample features before performing a sequential test. However, accessing
the label of a feature in Su is costly. We assume the following fact throughout the paper: The
already-collected Su is the result of a sample feature collection process where all si ∈ Su are realizations of
random variables Si i.i.d. generated from p(s). There exists an oracle to return a label zi of si ∈ Su with
the corresponding random variable Zi and Si admitting the posterior probability P (zi|si). We consider the
following new sequential two-sample testing problem:
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An active sequential two-sample testing problem: Suppose Su is an unlabeled feature set,
there exists an oracle to return a label z of s ∈ Su, and Nq is a limit on the number of times the
oracle can be queried (e.g., the label budget). An analyst sequentially queries the oracle for the z
of s ∈ Su. After querying a new zn of sn, for 1 ≤ n ≤ Nq, the analyst needs to decide whether to
terminate the label querying process and make a decision (i.e., whether to reject H0) or continue with
the querying process if n < Nq.

An analyst actively labeling sn ∈ Su may result in non-i.i.d pairs of (S, Z); hence the distribution of (S, Z)
is shifted away from p(s, z). In contrast, an analyst passively (or randomly) labeling sn ∈ Su maintains
(S, Z) ∼ p(s, z).

3.3 Evaluation metrics for the problem

In the following, we introduce the evaluation metrics used throughout the paper.

• Type I error P0: The probability of rejecting H0 when H0 is true.

• Type II error P1: The probability of rejecting H1 when H1 is true.

• Testing power: The probability of rejecting H0 when H1 is true. In other words, Testing power = 1−P1.

Testing power and Type II error are interchangeably used in the methodology and experiment sections
(Section 5 and 6).

3.4 Attributes of an active two-sample test

As already generalized in many two-sample testing literature such as (Johari et al., 2022; Wald, 1992;
Lhéritier & Cazals, 2018; Shekhar & Ramdas, 2021; Welch, 1990), a conventional procedure for sequential
two-sample testing is to compute a p-value from sequentially observed samples and compare it to a pre-
defined significance level α ∈ [0, 1] anytime. The analyst rejects H0 and stops the testing if p ≤ α. For more
details, see (Wasserstein & Lazar, 2016). In addition, as the test proposed in what follows is endowed with
active querying to reduce the number of label queries, the active sequential test is anticipated to spend fewer
labels than a passive (random-query) test to reject H1 when H1 is true. In summary, an active sequential
two-sample test has the following four attributes:

• The test generates an anytime-valid p-value such that P0(p ≤ α) ≤ α holds at anytime of the sequential
testing process. P0 is exactly the Type I error and that implies the Type I is upper-bounded by α.

• The test has a high testing power P1(p ≤ α).

• The test is consistent such that P1(p ≤ α) = 1 under H1 when the test sample size goes to infinity.

• The test has higher P1 than the passive test given the same label budgets.

4 A Sequential Two-Sample Testing Statistic

We follow the well-known likelihood ratio test (Wilks, 1938) to construct a sequential testing statistic. We
use the statistical models that characterize the label generation processes conditional on the observed sample
features under H0 and H1. More precisely, under H0, we have P (z|s) = P (z), ∀s ∈ S; that is, when S and Z
are independent, the posterior probability P (z|s) is the same for any s in the support S of p(s). In contrast,
under H1, we have the following statistical model: ∃s ∈ S, P (z|s) ̸= P (z). We sequentially collect sample
data (s, z), and when a new observation (sn, zn) arrives, we construct a likelihood ratio wn: With w0 = 1,
wn = wn−1

P (zn)
P (zn|sn) =

∏n
i=1

P (zi)
P (zi|si) , n ≥ 1 to assess H0 against H1.
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The statistical models P (z) and P (z|s) are unknown. To formulate our two-sample test, we will use a
likelihood estimate P̂ (zn) that is maximized over all the class priors to replace P (zn)–the product of the class
prior. In addition, we build a class-probability predictor Qn(z | s) with the past observed sample sequence
(s, z)n−1 to model P (zn | sn)–the posterior probability of zn given newly observed sn; any probabilistic
classifier, such as a neural network and logistic function, can be used to build Qn(z | s). Additionally,
Q1(z | s) indicates an initialized class-probability predictor1. We formally present our sequential testing
statistic in the following:

A sequential two-sample testing statistic: Considering (s, z) is sequentially observed, and as a
new (sn, zn) arrives, then, for n = 1, 2, · · · , an analyst constructs

wn = P̂ (zn)
Q(zn | sn) =

n∏
i=1

P̂ (zi)
Qi(zi | si)

(2)

where P̂ (Z = 1) =
∑n

i=1
zi

n is a class prior chosen to maximize P̂ (zn) and Qi(zi | si) is the output of
a class-probability predictor built by the past observed sequence (s, z)i−1.

We accordingly use Wn to indicate a random variable of which wn is a realization. Our test statistic
in equation 2 is a generalization of the test statistic proposed in (Lhéritier & Cazals, 2018). In contrast to
that work, our test statistic does not require the prior class to be known. The analyst compares wn with α
at every step n starting from n = 1, stopping the test once encountering a step with wn ≤ α. As a result, a
small wn is favored under H1 to reject H0 for increasing testing power.

Algorithm 1 Bimodal Query Based Active Sequential Two-Sample Testing (BQ-AST)
1: Input: Su, A, N0, Nq, α
2: Output: Reject or fail to reject H0
3: Initialization: Initialize Q1(z | s) using A with N0 features uniformly sampled from Su without re-

placement and then labeled.
4: Active Sequential testing:
5: for n = 1 to Nq − N0 do
6: Sample a feature sn = sq0 or sq1 with fair chance where sq0 = arg maxs [Qn(Z = 0|s)] , ∀s ∈ Su and

sq1 = arg maxs [Qn(Z = 1|s)] , ∀s ∈ Su

7: Query the label zn of sn

8: Update wn in equation 3 with (sn, zn) and Qn(zn | sn)
9: if wn ≤ α then

10: Return Reject H0
11: else
12: Update Qn(z | s) with newly queried (sn, zn) and past training examples.
13: end if
14: end for
15: Return Retain H0

5 Active Sequential Two-Sample Testing

This section introduces the active sequential two-sample testing framework and its instantiation. We demon-
strate that the framework produces an anytime-valid p-value regardless of the selected query scheme. We
also provide the asymptotic and finite-sample performance of the framework with the testing power gain
measured by the change of the mutual information between feature and label variables.

1It is possible to set Q1(z|s) as a random guess class-probability predictor, and then sequentially gather (s, z) for training;
however, this would hurt the testing power. As suggested by Duan et al. (2022); Lhéritier & Cazals (2018), we initialize Q1(z|s)
with a small set of samples randomly labeled and start the sequential testing after that.

6



Published in Transactions on Machine Learning Research (June/2024)

5.1 An active sequential two-sample testing framework

A flow chart of the proposed framework is shown in Figure 1. Our framework starts by initializing the
class-probability predictor Qn(z | s) at n = 1 with a small set of sample features randomly selected from
Su and then labeled. Then, the framework enters the sequential testing stage that iteratively performs the
following: selects features in Su predicted by Qn to have a high dependency on their labels, update the
statistic wn, decide whether we can reject H0 and update Qn if the test has not stopped. We formally
introduce our active sequential two-sample testing framework as follows,

An active sequential two-sample testing framework: Suppose Nq is a label budget and α is
a significance level. An analyst uses the proposed framework to sequentially and actively query the
label zn of sn from an unlabelled feature set Su based on the predictions of Qn (z | s). As a new zn

of sn is queried, the analyst constructs the following statistic

wn =
n∏

i=1

P̂ (zi)
Qi (zi | si)

. (3)

The analyst evaluates wn and makes one of the following decisions: (1) rejects H0 if wn ≤ α; (2)
retains H0 if the label budget Nq is exhausted and (1) is not satisfied; and (3) continues the test and
updates Qn to Qn+1 if (1) and (2) are not satisfied.

Framework instantiation: We provide a framework instantiation called bimodal query based active
sequential two-sample testing (BQ-AST) described in Algorithm 1. The algorithm takes the following
input: an unlabelled feature set Su, a probabilistic classification algorithm A, the size N0 of an initialization
set used for A, a label budget Nq and a significance level α. Then, the algorithm initializes a class-probability
predictor Q using A with a small set of randomly labeled samples. In the sequential testing stage, the
algorithm uses bimodal query from Li et al. (2022) to sample sn with samples having the highest posteriors
from either class (e.g. a fair chance to select the highest Qn (Z = 0 | s) or Qn (Z = 1 | s)) from Su, queries
its label zn and updates the statistic wn. Next, the algorithm compares wn with α, and if H0 is not rejected,
update Qn with (sn, zn) and then re-enter the query labeling. The algorithm rejects H0 if wn ≤ α or fails
to reject H0 if the label budget is exhausted.

The label budget Nq in Algorithm 1 contains the labels for both initializing Q1(z | s) and constructing the
statistic wn. In what follows in this section, we simply use Nq to denote the “label budget” allowed to be
used after the initialization.

5.2 The proposed framework results in an anytime-valid p-value

Our framework rejects H0 if the statistic wn ≤ α.The following theorem states that under H0, wn is an
anytime-valid p-value.

Theorem 5.1. If an analyst uses the proposed framework to sequentially query the oracle for Z with S ∈ Su

resulting in (S, Z)n, then we have the following under H0,

P0

(
∃n ∈ [Nq] , Wn =

n∏
i=1

P̂ (Zi)
Qi (Zi | Si)

≤ α

)
≤ α (4)

where Nq is a label budget and α is the pre-specified significance level.

Theorem 5.1 implies the probability P0 (or Type I error) that our framework mistakenly rejects H0 is upper-
bounded by α. Briefly, we prove this by observing that the sequence

(
1

W1
, · · · , 1

Wn

)
is upper-bounded by a

martingale, and hence we use Ville’s maximal inequality Durrett (2019); Doob (1939) to develop Theorem 5.1.
See the Appendix for the complete proof.
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5.3 Asymptotic properties of the proposed framework

This section provides the theoretical conditions under which the proposed framework asymptotically gener-
ates the smallest normalized statistic (normalization of the statistic in equation 3), or equivalently, maximally
increases the mutual information between S and Z. Before that, we first define the consistent bimodal query
as follows,
Definition 5.2. (Consistent bimodal query) Let S be the support of p(s) that sample features are collected
from and added to an unlabeled set Su, and let P (z | s) denote the posterior probability of z given s ∈ S.
An analyst adopts a label query scheme, for every n ∈ [Nq], to query the label Zn of Sn ∈ Su such that Sn

admits a probability density function (PDF) pn(s). The label query scheme is a consistent bimodal query if
limn→∞ pn(s) = p∗(s) where

p∗(s) = 0, ∀s ∈ S \
(

Sq0

⋃
Sq1

)
, and p∗(s) > 0, ∀s ∈ Sq0

⋃
Sq1 , (5)

Sq0 =
{

sq0

∣∣∣∣P (Z = 0 | sq0) = max
s∈S

P (Z = 0 | s)
}

, (6)

Sq1 =
{

sq1

∣∣∣∣P (Z = 1 | sq1) = max
s∈S

P (Z = 1 | s)
}

. (7)

Remark 5.3. Def 5.2 considers a label query scheme that only queries the labels of s with the highest
p (Z = 0 | s) and p (Z = 1 | s) when n goes to infinity. As p (z | s) is not directly available, to construct the
consistent bimodal query, one can use nonparametric regressors to construct a class-probability predictor
Q (z | s) as nonparametric estimates of P (z | s) , ∀s ∈ S and implements the bimodal query to label s with
highest Q(Z = 0 | s) or highest Q(Z = 1 | s) after Q(z | s) converges to P (z | s). The authors of
(Györfi et al., 2002) prove that when Q (z | s) is a kernel, KNN or partition estimates with proper smoothing
parameters (e.g., bandwidth for the kernel) and labels are sufficiently revealed in the proximity of s, ∀s ∈ S,
then Q (z | s) converges to P (z | s).

To this end, we introduce the asymptotic property of our framework. We consider normalizing the test
statistic in equation 3 as follows,

W n = 1
n

n∑
i=1

log P̂ (Zi)
Qi (Zi | Si)

, (Si, Zi) ∼ pi (s, z) = p(z | s) pi (s) (8)

where (Si, Zi) denotes a feature-label pair returned by a label query scheme when querying the i-th label.
Next, we state the following theorem.
Theorem 5.4. Let S be the support of p (s) that sample features are collected from and added to an unlabeled
set Su, and let P (z | s) denote the posterior probability of z given s ∈ S. There exists a consistent bimodal
query scheme; when an analyst uses such a scheme in the proposed active sequential framework, then, under
H1, W n converges to the negation of mutual information (MI), and the converged negated MI lower-bounds
the negated MI generated by any p (s) subject to P (z | s) , ∀s ∈ S. Precisely, there exists a consistent bimodal
query leading to the following

lim
n→∞

W n = − (H∗(Z) − H∗ (Z | S)) = −I∗ (S; Z) ≤ −I (S; Z) . (9)

I∗ (S; Z) is the MI constructed with (S, Z) ∼ p∗ (s, z) = P (z | s) p∗ (s) (See equation 5 for p∗ (s)); I (S; Z)
is MI constructed with (S, Z) ∼ p (s, z) = P (z | s) p (s).

Recalling the null H0 is rejected when the test statistic wn in equation 3 is smaller than α; hence, the
proposed framework, when used with a consistent bimodal query to asymptotically minimize the normalized
wn in equation 3, favorably increases the testing power when |Su| is large and Q(z | s) is close to P (z | s).
In Section 5.4, we will analyze the finite-sample performance of the proposed framework considering the
approximation error of Q(z | s). Additionally, by characterizing the difficulty of a two-sample testing
problem with MI, Theorem 5.4 alludes that the proposed framework asymptotically turns the original hard
two-sample testing problem with low dependency between S and Z (low MI), to a simple one by increasing
the dependency between S and Z (high MI).
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Remark 5.5. Our testing framework is also consistent under H1 and the same conditions of Theorem 5.4
as limn→∞ P1

(∏n
i=1

P̂ (Zi)
Qi(Zi|Si) ≤ α

)
= limn→∞ P

(
W n ≤ 1

n log(α)
)

= P1(−I∗ (S, Z) ≤ 0) = 1. The last
equality holds due to I∗ (S, Z) > 0 under H1.

5.4 Finite-sample analysis for the proposed framework

This section analyzes the testing power of the proposed framework in the finite-sample case. Section 5.4.1
and Section 5.4.2 offer metrics that assess the approximation error of Q(z | s) and an irreducible Type II
error. These metrics together determine the finite-sample testing power. Furthermore, Section 5.4.3 presents
an illustrative example of using our framework. In Section 5.4.4, we conduct a finite-sample analysis for the
example, incorporating both the metrics that characterize the approximation error and the irreducible Type
II error.

5.4.1 Characterizing the approximation error of Q(z | s)

As our framework constructs the test statistic in equation 2 with the approximation Q(z | s), there arises
a need to establish a metric for assessing the approximation error of Q(z | s) for our finite-sample analysis.
To this end, we introduce KL2-divergence,
Definition 5.6. (KL2-divergence) Let p0 and q0 be two probability density functions on the same support
X . Let f(t) = log2(t). Then, the KL2-divergence between p0 and q0 is

DKL2 (q0∥p0) = EX∼p0(x)

[
f

(
q0(X)
p0(X)

)]
= EX∼p0(x)

[
log2

(
q0(X)
p0(X)

)]
. (10)

DKL2 (q0∥p0) is the second moment of the log-likelihood ratio and has been used (see, e.g., (3.1.14) in (Koga
et al., 2002)) to understand the behavior of the distribution of log

(
q0(x)
p0(x)

)
. We use DKL2 (q0||p0) to evaluate

the distance between p (s, z) = P (z | s) p (s) and q(s, z) = Q (z | s) p (s), which yields the following

DKL2 (q(s, z)∥p(s, z)) = E(S,Z)∼p(s,z)

[
log2

(
q (S, Z)
p (S, Z)

)]
= E(S,Z)∼p(s,z)

[
log2

(
Q (Z | S)
P (Z | S)

)]
. (11)

Remarkably, DKL2 (q(s, z)∥p(s, z)) in equation 11 also characterizes the discrepancy between P (z | s) and
Q (z | s) by averaging their log square distance over S; in our main result, we will see that the testing power
of the proposed framework depends on DKL2 (q(s, z)∥p(s, z)). Additionally, DKL2 (q(s, z)∥p(s, z)) is closely
related to the typical KL divergence DKL (P (z | s) ∥Q (z | s)) = E(S,Z)∼p(s,z)

[
log P (Z|S)

Q(Z|S)

]
. This can be seen

by expanding equation 11 using the formula Var [X] = E
[
X2]− E2 [X] resulting in,

DKL2 (q(s, z)∥p(s, z)) = Var(S,Z)∼p(s,z)

[
log
(

P (Z | S)
Q(Z | S)

)]
+ [DKL (P (z | s) ∥Q (z | s))] . (12)

equation 12 implies that DKL2 (q (s, z) ||p (s, z)) not only measures the expected distance between P (z | s)
and Q (z | s) over S but also the variance of that distance. Similarly, we write

DKL2 (p (s, z) ∥q (s, z)) = E(S,Z)∼q(s,z)

[
log2

(
P (Z | S)
Q (Z | S)

)]
(13)

to measure the discrepancy between p(s, z) and q(s, z) but with a reverse direction opposed to
DKL2 (q (s, z) ∥p (s, z)).

DKL2 (q (s, z) ∥p (s, z)) and DKL2 (p (s, z) ∥q (s, z)) both characterize the approximation error of Q(z |
s), and we will also see they jointly determine the testing power of the proposed framework
in Section 5.4.4.
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5.4.2 Characterizing the factor that leads to the irreducible Type II error in finite-sample case

We also introduce another factor influencing testing power, which persists even in the absence of approxi-
mation error, i.e., Q(z | s) = P (z | s). To see this, we recall the information spectrum introduced in (Han &
Verdú, 1993),

Definition 5.7. (Information spectrum (Han & Verdú, 1993)) Let (X, Y) be a pair of random
variables over the support X ×Y. Let pXY denote the joint distribution of (X, Y), and let pX and pY denote
the marginal distributions of X and Y. Suppose {(X, Y)}n

i=1 is a sequence of i.i.d random variables for
(X, Y) ∼ pXY(x, y). Then, the information spectrum is the probability distribution of the following random
variable,

Ī(Xn; Yn) = 1
n

n∑
i=1

log pXY (Xi, Yi)
pX(Xi)pY(Yi)

, (X, Y) ∼ pXY(x, y) (14)

It is easy to see the expectation of Ī(Xn; Yn) is the mutual information I(X; Y) for (X, Y) ∼ pXY (x, y).
Substituting (X, Y) ∼ pXY (x, y) in equation 14 with the feature-label variable pair (S, Z) ∼ p (s, z) in our
two-sample testing problem recovers the (negated) normalizing test statistic in equation 8 with P (z) and
P (z | s) inserted, i.e., in the absence of approximation error.

(Han, 2000) leverages the dispersion of the information spectrum (the distribution of Ī (Xn; Yn)) for
{(X, Y)}n

i=1 to quantify the rate that Type II error goes to zero with increasing n. Their underlying rationale
is that, for a larger variance of Ī(Xn; Yn), the probability of Ī(Xn; Yn) falling outside the acceptance region
for an alternative hypothesis also increases, thereby resulting in a slower convergence rate for the Type II
error. In our work, we will make use of the variance of the log-likelihood ratio between p(s, z) and p(s)p(z)

Var(S;Z)∼p(s,z)Ī(S, Z) = nVar(S;Z)n∼p((s,z)n)Ī(Sn, Zn) = Var(S,Z)∼p(s,z)

[
− log P (Z)

P (Z | S)

]
. (15)

Scaling Var(S,Z)∼p(s,z)Ī(S; Z) down by n is the variance of Ī (Sn; Zn), characterizing the the dispersion of the
information spectrum for {(S, Z)}n

i=1 given n. Var(S,Z)∼p(s,z)Ī(S; Z) is also known as the relative entropy
variance (See e.g., (2.29) in (Tan et al., 2014)). It remains present even in the absence of approximation
error (i.e., Q(z | s) = P (z | s)). As we will see in Section 5.4.4, the persistent Var(S,Z)∼p(s,z)Ī(S; Z)
leads to a non-zero Type II error in the finite-sample case.

5.4.3 An example of using the proposed framework

We first introduce the notation that will be used in the ensuing sections. We write P = {A1, · · · , Am} to
denote a partition of the support S of p(s) from which unlabeled sample features in Su are generated; in
other words,

⋃m
i=1 Ai = S. We compare an example of our proposed framework with the baseline, where

features are randomly sampled from Su and labeled. We quantitatively analyze the testing power of both
cases. Both the example and the baseline are detained as follows:

10
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(An example of using the proposed framework) Given a label budget Nq, α, an unlabeled set
Su, a partition P = {A1, · · · , Am}, and class priors {P (Z = 0 | A1), · · · , P (Z = 0 | Am)}, an analyst
initializes Q (z | s) with a set of labeled features randomly sampled from Su, then, she estimates
I (S; Z | Ai) by

Î (S; Z | Ai)
= H (Z | Ai) − Ĥ (Z | S, Ai)

= −
1∑

z=0
P (Z = z | Ai) log P (Z = z | Ai) +

∑
s∈Ai

⋂
Su

∑1
z=0 Q (Z = z | s) log Q (Z = z | s)

|Ai

⋂
Su|

, (16)

selects A∗ = arg maxA∈P Î (S; Z | A), and sequentially constructs the statistic wn =
∏n

i=1
P (zi)

Q(zi|si)
by labelling features randomly sampled from A∗⋂Su. The analyst rejects H0 whenever wn ≤ α or
retains H0 if the label budget runs out.
(Baseline test) Given a label budget Nq, α, an unlabeled set Su and the class prior P (Z = 0),
an analyst initializes Q(z | s) with a set of labeled features randomly sampled from Su, then, she
sequentially constructs the statistic wn =

∏n
i=1

P (zi)
Q(zi|si) by labelling features randomly sampled from

Su. The analyst rejects H0 whenever wn ≤ α or retains H0 if the label budget runs out.

In the example of using the proposed framework, the class priors {P (z | Ai)} are given to simplify our
analytical results; however, one can estimate these priors with labels in each Ai and use the prior estimates
to replace {P (z | Ai)}, and that will not change the main argument of our theorem. In addition, the
analyst chooses the partition A∗ predicted by Q (z | s) to have the highest dependency between S and Z
and only conducts sequential testing with the labeled points in A∗. In contrast, the baseline conducts the
sequential test entirely the same, except that the analyst queries the labels of features that are randomly
generated from Su. Both the proposed framework and the baseline assert the use of a stable Q (z | s) with
no updates in the sequential testing; that is sufficient for our analysis as we will see the testing power for
the above cases depend on DKL2 (q(s, z)||p(s, z)) in equation 11, DKL2 (p(s, z)||q(s, z)) in equation 12 and
Var(S,Z)∼p(s,z)Ī(S, Z) in equation 15

5.4.4 Finite-sample analysis for the example

We use ϵ1 = maxA∈P DKL2 (q (s, z) ∥p (s, z) | A) and ϵ2 = maxA∈P DKL2 (p (s, z) ∥q (s, z) | A) to cap-
ture the maximum approximation error of Q(z | s) over the partition P = {A1, · · · , Am}, and use
σ2 = max

{
maxA∈P Var(S,Z)∼p(s,z|A)Ī(S; Z), Var(S,Z)∼p(s,z)Ī(S; Z)

}
to capture the maximum irreducible

Type II error over the same partition P.

We will need to make the following assumptions before presenting our results.

Assumption 5.8. (Maximum mutual information gain) maxA∈P I (S; Z | A) − I(S; Z) = ∆ ≥ 0.

Assumption 5.8 characterizes the largest MI gain of the proposed framework in the example over the baseline;
that is the direct reason for the increased testing power of the proposed framework.

Assumption 5.9. (Sufficient number of unlabeled samples)
∑

s∈A∩Su
EZ∼Q(z|s)

[
log
(

Q(Z|s)
P (Z|s)

)]
|A∩Su| ≈

DKL (Q (z | s) ∥P (z | s) | A) , ∀A ∈ P.

Even though we typically have access to only a finite number of unlabeled samples in real-world scenarios,
this number is usually quite large and affordable for many applications. Hence, similar to (Hanneke &
Yang, 2015), Assumption 5.9 assumes a sufficient supply of unlabeled samples to simplify the analysis and
concentrate solely on the number of labels needed for the proposed framework in the example.

Now, we present our theorem to address the testing power of the framework in the example and the baseline
test in the finite-sample case.

11
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Theorem 5.10. Under Assumption 5.85.9, the proposed framework in the example with a label budget Nq

and α has a testing power of approximately at least

Φ

 log α√
Nq

+
√

Nq (I (S; Z) + ∆ − 2
√

ϵ1 −
√

ϵ2)(
ϵ1 + σ2 + 2σ

√
ϵ1
)1/2

 ; (17)

and the baseline test with features randomly sampled from Su and labeled has a testing power of approximately
at least

Φ

 log α√
Nq

+
√

Nq (I (S; Z) −
√

ϵ1)(
ϵ1 + σ2 + 2σ

√
ϵ1
)1/2

 . (18)

equation 17 and equation 18 state approximate testing power’s lower bounds for the proposed framework in
the example and the baseline test. We can observe that

• Given α, then, a large budget Nq, and small approximation errors characterized by ϵ1, increase the
two testing power’s lower-bounds of the proposed framework and the baseline, as structured similarly
in equation 17 and equation 18.

• Comparing equation 17 for the proposed framework to the equation 18 for the baseline, the extra ∆ is
ascribed to the maximum power gain, and √

ϵ1 +√
ϵ2 accounts for the diminishing of the maximum power

gain in selecting a A∗ ∈ P that does not have the highest MI over A ∈ P.

• When the approximation errors ϵ1 = 0 and/or ϵ2 = 0, both testing power’s lower-bounds are decreased
by a factor of σ, resulting in the irreducible Type II error.

• When the maximum MI gain ∆ can compensate the approximation error of Q (z | s) being larger than√
ϵ1 + √

ϵ2, our framework in the example has higher testing power’s lower bound than the baseline test
given the same label budget Nq and α.

6 Experimental Results

We have proposed a practical instantiation of the framework, and its algorithmic description BQ-AST is
presented in Algorithm 1. In this section, we compare the BQ-AST with a sequential testing baseline (Lhéri-
tier & Cazals, 2018) that uses the same statistic in equation 2, but the baseline labels features randomly
sampled from the unlabeled set Su. In addition, we build Q (z | s) for the test statistic in equation 2 using
logistic regression, SVM, or KNN classifiers; we set N0 = 10 for the number of label queries used to initialize
Q (z | s), and set significance level α = 0.05.

6.1 Experiments on Synthetic Datasets

Our first suite of experiment results is generated from synthetic data. We create synthetic datasets that
comprise two samples of data to simulate cases under the null hypothesis H0 and the alternative hypothesis
H1; the data for the first sample (Z = 0) is generated from p (s | Z = 0) ≡ N ((−δ, 0) , I) and the data for
the second sample (Z = 1) is generated from p (s | Z = 1) ≡ N ((δ, 0) , I). In addition, we set P (Z = 0)
from 0.5 to 0.8 to vary the ratio of the data sizes for two samples. For the simulations of the data under H0,
we set δ = 0, implying there is no difference between the distributions that generate the two samples; for
the simulations of the data under H1, we vary δ from 0.2 to 0.5 to simulate two samples from small to high
discrepancy under H1. Having constructed the data-generating process, we simulate 200 cases of data for each
pair of P (Z = 0) and δ under H1, and simulate 500 cases of data for each pair of P (Z = 0) and δ = 0 under
H0. Each case of data is of size 2000 with labels masked, resulting in an unlabeled set Su with |Su| = 2000.
The proposed test actively and sequentially labels feature in Su to test the difference between the two samples.
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Figure 2: Under H0 in which δ = 0, em-
pirical Type I errors of the proposed test
for different P (Z = 0) when using the lo-
gistic regression to build Q(z | s). All Type
I errors are smaller than α = 0.05, which
agrees with Theorem 5.1.

Figure 2 presents the empirical Type I errors: when H0 is true,
the probability of the proposed test mistakenly predicting the
two samples is generated under H1. As observed, the empirical
Type I errors are all smaller than α = 0.05 for using various
classifiers and label budgets in the experiments; this provides
empirical evidence for Theorem 5.1, which states that the Type
I error is controlled to be smaller than the significance level α.

Table-1 presents the empirical Type II errors: when H1 is true,
the probability of the proposed test and the baseline test mis-
takenly predicting the two samples are generated under H0.
Table 2 presents the average label queried spent to reject H0
when H1 is true. We can observe from Table-1 that the pro-
posed test produces lower Type II errors than that of the base-
line under different classifiers and label budgets; furthermore,
in Table 2, we observe the proposed test spends a smaller num-
ber of label queries than the baseline test. Additionally, we run
a two-sample t-test to assess the mean difference of label query
numbers generated by 200 runs using both methods. The resul-
tant p-values, truncated to the last 6 decimal places, all equate
to zero, indicating that the label spent by our framework is
statistically smaller than the baseline test. All these observations demonstrate that, under H1, the proposed
test labels the features that have a high dependency on labels to effectively decrease the Type II error and
reduce the number of label queries needed to reject H0.

Table 1: Under H1, Type II errors of conducting the proposed/baseline with various classifiers and label
budgets for the synthetic data generated by setting δ = 0.2 and different class priors P (Z = 0). Due to the
active query, our test produces lower Type II errors than the baseline for various label budgets.

P (Z = 0) Logistic KNN

0.5
Label budget 200 400 600 800 1000 200 400 600 800 1000

Baseline 0.82 0.53 0.29 0.11 0.04 0.95 0.77 0.50 0.28 0.14
Proposed 0.16 0.02 0.00 0.00 0.00 0.49 0.17 0.06 0.03 0.01

0.6 Baseline 0.80 0.50 0.23 0.12 0.06 0.95 0.77 0.48 0.29 0.14
Proposed 0.26 0.06 0.01 0.01 0.01 0.59 0.26 0.09 0.03 0.01

0.7 Baseline 0.81 0.56 0.34 0.22 0.10 0.96 0.81 0.58 0.36 0.28
Proposed 0.26 0.04 0.01 0.01 0.01 0.71 0.33 0.14 0.04 0.02

0.8 Baseline 0.88 0.73 0.56 0.35 0.21 0.98 0.90 0.77 0.59 0.48
Proposed 0.38 0.10 0.04 0.03 0.02 0.80 0.50 0.28 0.16 0.10

Table 2: Under H1, average number of label queries needed to reject H0 for the proposed/baseline test
using various classifiers and label budgets in the synthetic data generated by setting δ = 0.2 and different
class priors P (Z = 0). Due to the active query, our test spends fewer label queries to reject H0 than the
baseline for various label budgets.

P (Z = 0) Logistic KNN

0.5
Label budget 200 400 600 800 1000 200 400 600 800 1000

Baseline 183.5±41 319.7±113 399.1±183 438.1±233 451.4±257 198.1±10 374.4±61 500.4±132 578.1±201 619.5±254
Proposed 95.3±64 108.1±92 108.6±93 108.6±93 108.6±93 162.1±50 223.1±116 240.8±149 249.7±173 252.8±184

0.6 Baseline 182.3±41 312.4±116 386.0±184 419.7±231 439.0±266 196.7±16 373.7±66 499.3±134 578.9±206 619.7±256
Proposed 107.9±70 134.2±114 142.3±136 143.7±142 144.7±147 166.3±48 246.8±123 282.2±175 294.3±200 296.6±207

0.7 Baseline 184.0±41 323.3±113 415.5±188 472.2±252 505.0±299 198.3±11 378.5±58 520.0±127 613.4±199 678.1±268
Proposed 120.4±67 143.4±104 147.6±117 149.0±122 150.0±128 178.0±43 282.2±117 327.4±173 345.9±207 351.7±222

0.8 Baseline 190.8±31 351.7±96 479.6±172 571.1±245 628.0±306 199.0±8 386.6±47 555.0±106 689.5±175 798.4±253
Proposed 134.7±64 174.8±118 189.5±151 195.6±170 199.7±186 184.4±36 310.2±111 387.7±186 434.7±247 462.6±293
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We present the average number of label queries spent for two samples with small to big discrepancies under H1
in Table 3. A small discrepancy between two samples indicates a more difficult two-sample testing problem
than one with a large discrepancy between the two samples, as a two-sample test requires more data to test
the existence of the small discrepancy. Table 3 shows that the proposed active sequential test spends fewer
labels to reject H0 when increasing the mean discrepancy δ between two samples, which demonstrates the
proposed sequential test automatically adapts the number of label queries to the problem’s complexity.

Table 3: Under H1 and label budget Nq = 1000, the average number of label queries needed to reject
H0 for different δ. When the mean difference δ increases between two samples, both our active sequential
test and the baseline test reject H0 with a reduced number of label queries spent, exhibiting the sequential
test’s benefit that the tests adapt the label queries to the problem’s complexity. Due to the active query,
our test spends fewer label queries to reject H0 than the baseline for various δ.

P (Z = 0) Logistic KNN

0.5
δ 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

Baseline 451.4±257 178.3±105 101.0±58 63.9±32 619.5±254 287.8±129 167.4±70 116.8±43
Proposed 108.6±93 37.3±22 24.3±10 19.7±5 252.8±184 109.5±64 72.2±33 54.9±20

0.6 Baseline 439.0±266 175.3±118 96.9±65 65.5±40 619.7±256 289.8±130 170.2±72 116.2±47
Proposed 144.7±147 40.5±30 24.9±11 20.1±7 296.6±207 134.3±88 84.3±43 58.3±25

0.7 Baseline 505.0±299 223.6±145 115.7±70 75.7±47 678.1±268 349.3±178 198.2±93 133.3±56
Proposed 150.0±128 57.1±42 32.3±21 22.2±8 351.7±222 160.2±107 94.0±54 67.0±30

0.8 Baseline 628.0±306 278.1±177 149.3±95 94.8±56 798.4±253 470.3±223 268.7±126 176.3±81
Proposed 199.7±186 66.7±41 40.0±22 29.4±15 462.6±293 198.8±143 115.7±65 83.8±46

6.2 Experiments on MNIST

Figure 3: Empirical Type I errors of the
proposed test for different P (Z = 0) in the
MNIST experiment. SVM is used to build
Q(z | s). All Type I errors are smaller than
α = 0.05, which agrees with Theorem 5.1.

In addition to the synthetic datasets, We simulate the cases
of H0 and H1 with MNIST (LeCun, 1998). To create a case
for H0, we randomly pick one digit category from 0-9, then
randomly sample images from the selected digit category, and
lastly divide the images to sample zero (Z = 0) and one (Z = 1)
based on a pre-defined class prior P (Z = 0); for each case, the
two samples contain data from the same digit, but the digit
categories could be different over cases. To create a case for
H1, we randomly pick two different digit categories from 0-
9, then sample images from one digit category and place the
images to sample zero (Z = 0); to create sample one (Z = 1),
we sample images from the two digits, mix the sampled images,
and place them to sample one. We set the mixture ratio 0.7,
meaning there are roughly 30% data in sample one generated
from a distribution different from sample zero. We also adjust
P (Z = 0) to create cases with different ratios for the size of
sample zero over sample one for H1. We produce 500 cases for
H0 and 200 cases for H1 with the stated procedure for each
P (Z = 0) that ranges from 0.5 to 0.8; each case comprises
an unlabeled set Su with a size of 2000 and its corresponding
labels that are unknown to an analyst. Instead of using the raw data in the created cases, we projected the
MNIST data to a 28-dimensional space by a convolutional autoencoder before conducting the two-sample
testing.

We first present the empirical Type I errors in Figure 3. We use the support vector machine (SVM) to
build Q(z | s) to generate the results. As observed, all the Type I errors are smaller than α = 0.05, which
agrees with Theorem 5.1. In addition, we present the Type II errors, as shown in Table 4. The proposed
test generates smaller Type II errors than the baseline sequential test for various classifiers, label budgets,
and P (Z = 0), implying the proposed sequential testing combined with the active query is effective. This
is further corroborated by Table 5 that exhibits the average number of label queries needed to reject H0;
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the proposed test spent fewer label queries than the baseline test to reject H0. We additionally run a two-
sample t-test to statistically compare the mean difference between the label query numbers generated by
both methods. The resultant p-values, truncated to the last 6 decimal places, all equate to zero, indicating
that the label spent by our framework is statistically smaller than the baseline test in the MNIST experiment.

Table 4: Under H1, Type II errors of conducting the proposed/baseline with various classifiers and label
budgets for MNIST and different class priors P (Z = 0). Due to the active query, our test produces lower
Type II errors than the baseline for various label budgets.

P (Z = 0) Logistic SVM KNN

0.5
Label budget 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Baseline 0.65 0.21 0.02 0.01 0.01 0.59 0.07 0.00 0.00 0.00 0.84 0.43 0.15 0.07 0.03
Proposed 0.12 0.01 0.01 0.00 0.00 0.12 0.03 0.01 0.01 0.00 0.10 0.01 0.01 0.00 0.00

0.6 Baseline 0.59 0.16 0.02 0.01 0.01 0.55 0.04 0.00 0.00 0.00 0.89 0.43 0.15 0.06 0.03
Proposed 0.01 0.00 0.00 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.06 0.02 0.01 0.01 0.00

0.7 Baseline 0.58 0.21 0.04 0.01 0.00 0.67 0.15 0.01 0.00 0.00 0.91 0.58 0.29 0.10 0.04
Proposed 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.00 0.00 0.00 0.12 0.03 0.01 0.00 0.00

0.8 Baseline 0.66 0.24 0.04 0.01 0.01 0.77 0.32 0.10 0.01 0.01 0.95 0.71 0.47 0.27 0.12
Proposed 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.14 0.03 0.01 0.01 0.00

Table 5: Under H1, average number of label queries needed to reject H0 for the proposed/baseline test
using various classifiers and label budgets for MNIST and different class priors P (Z = 0). Due to the active
query, our test spends fewer label queries to reject H0 than the baseline for various label budgets.

P (Z = 0) Logistic SVM KNN

0.5
Label budget 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Baseline 165.3±56 251.7±126 267.9±150 270.7±158 271.7±162 175.4±39 229.9±93 233.0±99 233.0±99 233.0±99 187.0±30 311.3±93 359.1±141 376.8±167 384.6±185
Proposed 90.4±62 99.8±84 101.0±89 101.5±92 101.5±92 93.5±55 106.5±87 109.4±98 110.5±105 110.7±106 89.4±51 97.9±75 99.9±84 100.1±86 100.1±86

0.6 Baseline 160.8±59 233.2±125 247.5±148 249.3±154 250.3±158 173.5±39 226.8±95 229.8±101 229.8±101 229.8±101 187.5±31 315.1±93 363.9±142 379.8±166 385.4±178
Proposed 61.7±43 61.7±43 61.7±43 61.7±43 61.7±43 79.4±48 83.2±60 83.4±62 83.4±62 83.4±62 85.0±49 90.9±68 94.0±85 95.6±95 96.6±103

0.7 Baseline 160.3±59 234.8±128 255.2±161 257.8±167 258.0±168 174.6±45 252.1±109 264.6±130 265.4±133 265.4±133 188.4±31 330.7±94 415.7±162 451.8±206 463.2±225
Proposed 46.2±28 46.2±28 46.2±28 46.2±28 46.2±28 74.7±56 82.0±76 83.0±81 83.0±81 83.0±81 89.3±54 101.5±85 104.6±98 105.1±101 105.1±101

0.8 Baseline 163.9±58 243.3±126 268.1±163 273.1±175 275.3±183 92.6±16 148.5±52 167.3±76 171.7±85 172.6±88 192.8±25 357.3±76 471.8±146 540.7±210 575.4±255
Proposed 34.8±17 34.8±17 34.8±17 34.8±17 34.8±17 77.2±55 81.6±68 82.3±72 82.3±72 82.3±72 104.8±54 116.9±81 119.1±90 120.1±96 120.3±98

6.3 Experiments on An Alzheimer’s Disease Dataset

Table 6: Under H1, Type II errors of conducting the proposed/baseline with various classifiers and label
budgets for ADNI and different class priors P (Z = 0). Due to the active query, our test produces lower
Type II errors than the baseline for various label budgets.

P (Z = 0) Logistic SVM KNN

0.5
Label budget 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Baseline 0.32 0.06 0.01 0.00 0.00 0.67 0.17 0.02 0.00 0.00 0.72 0.49 0.25 0.13 0.04
Proposed 0.10 0.01 0.00 0.00 0.00 0.24 0.03 0.01 0.00 0.00 0.21 0.04 0.00 0.00 0.00

0.6 Baseline 0.35 0.04 0.00 0.00 0.00 0.62 0.15 0.01 0.00 0.00 0.73 0.25 0.06 0.01 0.00
Proposed 0.07 0.00 0.00 0.00 0.00 0.18 0.04 0.03 0.00 0.00 0.10 0.01 0.00 0.00 0.00

0.7 Baseline 0.40 0.10 0.01 0.00 0.00 0.65 0.21 0.06 0.00 0.00 0.81 0.36 0.12 0.04 0.02
Proposed 0.11 0.03 0.00 0.00 0.00 0.32 0.07 0.02 0.01 0.01 0.25 0.04 0.01 0.00 0.00

0.8 Baseline 0.52 0.23 0.07 0.01 0.00 0.89 0.53 0.27 0.07 0.02 0.90 0.59 0.28 0.16 0.07
Proposed 0.28 0.01 0.00 0.00 0.00 0.49 0.15 0.06 0.03 0.01 0.38 0.10 0.03 0.01 0.01

We demonstrate the utility of the proposed test in a clinical application using data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (Jack Jr et al., 2008). The ADNI study protocol was
approved by local institutional review boards (IRB). All the personal information in the data provided to
researchers has been removed. The motivation for applying the proposed test to Alzheimer’s disease research
is as follows. Amyloid has been linked to the development of Alzheimer’s disease; identifying the amount of
amyloid in the human brain is an important step in predicting the progression of Alzheimer’s disease. To
measure the amyloid level, an expensive CT scan is required used to assess the amyloid deposition in the
brain. A useful replacement would be an easy-to-measure and inexpensive replacement for the amyloid to
indicate the progression of Alzheimer’s disease. In the following experiments, we considered using digital
test results that include five cognition measurement scores of participants as a replacement. To verify if the
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digital test results are suitable replacements, clinicians are seeking an approach to test the independence
between the digital test results and the amyloid amount with a limited number of expensive CT scans to
measure the amyloid levels. We use a binary version of the amyloid level where Z = 0 and Z = 1 suggest
low and high amyloid depositions in the brain respectively; we can now formulate a two-sample test and use
the proposed scheme. As the results show, our proposed test is endowed with sequential decision-making
and active label query, resulting in fewer CT scans needed compared with the conventional sequential test.

Table 7: Under H1, average number of label queries needed to reject H0 for the proposed/baseline test
using various classifiers and label budgets for ADNI and different class priors P (Z = 0). Due to the active
query, our test spends fewer label queries to reject H0 than the baseline for various label budgets.

P (Z = 0) Logistic SVM KNN

0.5
Label budget 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Baseline 68.1±29 83.7±52 85.5±57 85.6±57 85.6±57 87.0±22 127.2±55 135.4±69 136.1±70 136.1±70 86.2±26 145.8±66 181.8±100 199.5±124 207.3±138
Proposed 43.9±29 47.1±36 47.1±37 47.1±37 47.1±37 64.0±28 75.1±47 76.5±51 76.6±52 76.6±52 69.3±22 76.6±37 77.8±41 77.8±41 77.8±41

0.6 Baseline 68.4±29 84.0±51 86.1±57 86.1±57 86.1±57 85.0±23 121.0±55 127.5±67 127.5±67 127.5±67 92.7±15 140.3±51 153.0±69 156.0±77 156.3±78
Proposed 43.9±29 45.3±32 45.3±32 45.3±32 45.3±32 61.3±26 70.0±44 72.9±54 74.5±61 74.5±61 60.8±20 64.4±30 64.4±30 64.4±30 64.4±30

0.7 Baseline 72.3±29 95.6±58 100.9±70 101.1±70 101.1±70 86.5±23 126.7±57 139.0±76 141.3±82 141.3±82 94.7±13 153.5±49 176.5±77 183.7±90 186.1±97
Proposed 50.6±29 56.6±43 57.1±45 57.1±45 57.1±45 68.8±29 85.1±53 89.0±63 90.0±67 90.5±69 68.6±24 78.5±42 79.9±47 79.9±47 79.9±47

0.8 Baseline 78.1±28 115.4±65 128.5±86 132.5±95 132.9±96 95.9±13 166.9±47 204.8±81 219.6±101 222.8±108 97.6±8 171.0±43 215.3±79 235.8±106 247.6±126
Proposed 63.6±32 72.0±44 72.2±45 72.2±45 72.2±45 80.1±26 108.6±57 118.1±75 121.9±86 124.0±93 80.7±21 98.3±46 102.4±57 103.9±63 104.9±68

The obtained ADNI data contains both digital test results and the amyloid amount of participants. We use
the cut-off value suggested by ADNI and binarize the amyloid amount to create two-sample cases where
s denote a vector of cognition measurement scores and z denotes low or high amyloid amount for the
participants. We create 200 data cases for each P (Z = 0) that ranges from 0.5 to 0.8; these cases are
simulations for H1, and each case comprises an unlabeled set Su with a size of 1000 and its corresponding
labels that are unknown to an analyst.

Table 6 and Table 7 present the results of empirical Type II errors and the average number of label queries
needed to reject H0. Our proposed test has Type II errors decreased by 58% and saves on label queries
by 62% at most compared with the baseline test with the same label budgets. Additionally, we run a
two-sample t-test to statistically compare the mean difference between the label query numbers generated
by both methods. The resultant p-values, truncated to the last 6 decimal places, all equate to zero; this
indicates that the label savings are statistically significant.

7 Conclusion

We propose an active sequential two-sample testing framework that sequentially and actively labels the
data to increase the testing power and adapt the number of label queries to the problem’s complexity. We
provide both finite-sample and asymptotic analysis of the proposed framework; the framework’s benefit is
characterized by the change of the mutual information between feature and label variables over a random
labeling scheme in both finite-sample and asymptotic cases. Moreover, we suggest an instantiation of the
framework, in which we adopt the bimodal query that labels the features predicted by a classifier to have
the highest class one or zero probabilities. Our experiments on synthetic data, MNIST, and an Alzheimer’s
Disease dataset demonstrate the effectiveness of the suggested instantiation of the proposed framework.
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A Proof of Theorem 5.1 and Its Preliminaries

A.1 Some statistical preliminaries

In probability theory, a sequence {X0, · · · , Xn} of random variables is called martingale if at a particular
time, the expectation of the next random variable is equivalent to the present observation; this is formally
defined as follows,
Definition A.1. (Martingale) A sequence of random variables {X0, · · · , Xn} is a martingale if, for any
n ≥ 0,

E [|Xn|] ≤ ∞ (19)
E [Xn+1|X0, · · · , Xn] = Xn (20)

We refer interested readers to (Aaditya Ramdas, 2018) for a complete introduction to the martingale and
its related properties.

Next, we state Ville’s maximal inequalityVille (1939), which will be applied to prove Theorem 5.1.

18



Published in Transactions on Machine Learning Research (June/2024)

Theorem A.2. (Ville’s Maximal Inequality Ville (1939)): If {Xn} is a nonnegative martingale, then for
any c > 0, we have

P

(
sup
n≥0

Xn > c

)
≤ E [X0]

c
(21)

Ville’s maximal inequality gives a probability upper bound for the event that the martingale crosses a
threshold c; it is a sequential extension of Markov’s inequality.

A.2 Proof of Theorem 5.1

Proof. Our proof comprises proving the following two ordered parts:
(1) The first part is to demonstrate that, under the null hypothesis H0, the independence between unqueried
label random variables and the corresponding feature random variables still holds following the adaptive
label query. In particular, Under H0, the feature and label variables Si and Zi used to construct the test
statistic in equation 3 in the proposed framework are independent ∀i ∈ [Nq].
(2) In the second part, we consider W̃n =

∏n
i=1

P (Zi)
Qi(Zi|Si) , which is the test statistic in equation 2 with true

class prior P (z) plugged in. Moving forward, the second part is to demonstrate the following inequalities
under H0

P0

(
∃n ∈ [Nq] , Wn =

n∏
i=1

P̂ (Zi)
Qi (Zi | Si)

≤ α

)
≤ P0

(
∃n ∈ [Nq] , W̃n =

n∏
i=1

P (Zi)
Qi(Zi | Si)

≤ α

)
≤ α . (22)

equation 22 immediately implies that the Type I error of our proposed framework is upper-bounded by α.

• Proof for the first part
We write Su and Zu to denote the sets of original unlabeled feature variables on an analyst’s hand and
unrevealed label variables provided by an oracle. We write Sl

i and Z l
i to denote the sets of the labeled

feature and the corresponding label variables after including the i-th (Si, Zi) to construct the statistic
in equation 3. We use Su

i = Su \ Sl
i and Zu

i = Zu \ Z l
i to denote their complements that comprise

unlabeled feature and unrevealed label variables. In particular, we use Sl
0 and Z l

0 to denote the feature
and label variable sets used to initialize Q1 (z | s) in the first place; Su

0 = Su \ Sl
0 and Zu

0 = Zu \ Z l
0 are

their complements that comprise unlabeled feature and unrevealed label variables. H0 being true implies
Su ⊥⊥ Zu. In our setting, an analyst randomly samples features and labels them to build Sl

0 and Z l
0,

implying Sl
0 ⊥⊥ Z l

0 and Su
0 ⊥⊥ Zu

0 when H0 is true. In the following, we employ the induction method to
prove Si and Zi are independent ∀i ∈ [Nq].
Base case (i = 1): Under H0, we have Sl

0 ⊥⊥ Z l
0 and Su

0 ⊥⊥ Zu
0 . The analyst first initializes Q1(z | s) with

Sl
0 ⊥⊥ Z l

0 before starting the sequential testing. Subsequently, the analyst makes a query on a label based
on the prediction of Q1(z | s) and includes the first variable pair (S1, Z1) to construct the test statistic.
That immediately implies S1 ⊥⊥ Z1, Sl

1 ⊥⊥ Z l
1 and Su

1 ⊥⊥ Zu
1 .

Induction step: Suppose Su
i ⊥⊥ Zu

i and Sl
i ⊥⊥ Z l

i , the analyst updates Qi−1 (z | s) to Qi (z | s) with
Su

i ⊥⊥ Zu
i and Sl

i ⊥⊥ Z l
i , makes a query on a label based on the prediction of Qi(z | s) and includes

the (i+1)-th variable pair (Si+1, Zi+1) to update the statistic. That immediately implies Si+1 ⊥⊥ Zi+1,
Su

i+1 ⊥⊥ Zu
i+1, and Sl

i+1 ⊥⊥ Z l
i+1.

Combining the base step and the induction step leads to Si ⊥⊥ Zi, ∀i ∈ [Nq] under H0.

• Proof for the second part
Suppose ((s, z)i)

n
i=1 is a sequence of realizations of ((S, Z)i)

n
i=1 collected under H0 and the proposed

framework. We use ϕ to denote a class-one prior probability parameter, and hence P (z1, · · · , zn | ϕ) is a
likelihood function of ϕ. Maximizing P (z1, · · · , zn | ϕ) over the prior parameter ϕ leads to the solution
ϕ∗ =

∑n

i=1
zi

n . In other words, P (z1, · · · , zn | ϕ∗) =
∏n

i=1 P̂ (zi) is a maximized likelihood obtained from
(zi)n

i=1, where ϕ∗ = P̂ (Z = 1). We use P (Z = 1) to denote the true prior-one probability under H0,
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and plugging P (Z = 1) to ϕ leads to the true likelihood
∏n

i P (zi) for (zi)n
i=1 under H0. It is easy to see∏n

i=1 P̂ (zi) ≥
∏n

i P (zi) thus
∏n

i=1
P̂ (zi)

Qi(zi|si) ≥
∏n

i=1
P (zi)

Qi(zi|si) for any realization (zi)n
i=1 of (Zi)n

i=1 under H0.

As a result, we have P0

(
∃n ∈ [Nq] , Wn =

∏n
i=1

P̂ (Zi)
Qi−1(Zi|Si) ≤ α

)
≤ P0

(
∃n, W̃n =

∏n
i=1

P (Zi)
Qi−1(Zi|Si) ≤ α

)
.

Lastly, we prove P0

(
∃n, W̃n =

∏n
i=1

P (Zi)
Qi−1(Zi|Si) ≤ α

)
≤ α. We let W̃ ′

n ≡ 1
W̃n

. Therefore, W̃ ′
n ≡

W̃ ′
n−1

Qn(Zn|Sn)
P (Zn) with W̃ ′

0 ≡ 1 for n ∈ [Nq]. The sequence (W̃ ′
i )n

i=1 is a non-negative martingale
under H0 given

.E
[
W̃ ′

n

∣∣ W̃ ′
1, · · · , W̃ ′

n−1] ≡ E
[
W̃ ′

n−1
Qn(Zn | Sn)

P (Zn)

∣∣∣∣ W̃ ′
1, · · · , W̃ ′

n−1

]
(23)

≡ W̃ ′
n−1 E

[
Qn(Zn | Sn)

P (Zn)

∣∣∣∣ W̃ ′
1, · · · , W̃ ′

n−1

]
(24)

= W̃ ′
n−1 E

[ 1∑
z=0

P (Zn = z)Qn−1(Zn = z | Sn)
P (Zn = z)

]
(25)

= W̃ ′
n−1 (26)

Using Ville’s maximal inequality in Theorem A.2 leads to the following: For any α > 0, we have

P

(
sup

n∈[Nq ]
W̃ ′

n >
1
α

)
≤ α

E[W̃ ′
0]

= α (27)

≡ P

(
sup

n∈[Nq ]

1
W̃n

>
1
α

)
≤ α

E
[

1
W̃0

] = α (28)

≡ P

(
inf

n∈[Nq ]
W̃n ≤ α

)
≤ α (29)

Therefore, we have P0

(
∃n ∈ [Nq] , Wn =

∏n
i=1

P̂ (Zi)
Qi(Zi|Si) ≤ α

)
≤ P0

(
∃n ∈ [Nq] , W̃n =

∏n
i=1

P (Zi)
Qi(Zi|Si) ≤ α

)
≤

α.

B Proof of Theorem 5.4

Proof. In the following, we formulate an optimization problem that seeks an arbitrary marginal distribution
g(s) to maximize the mutual information (MI) between S and Z, where (S, Z) ∼ g(s)p (z | s). Solving this
optimization problem leads to a consistent bimodal query (see Definition 5.2), asymptotically minimizing
the test statistic in equation 2.

• Constructing an optimization problem that maximizes MI
We write g (s) to denote an arbitrary probability distribution of s. Recall P (z | s) and p(s) that indicate
the class probability given s and a marginal probability distribution of s for the two-sample testing
problem on the analyst’s hand; we write g (s, z) = g(s)P (z | s) and G(z) =

∫
g (s, z) ds to denote the joint

probability distribution and the class prior for a new two-sample testing problem with the original p(s)
replaced by g(s). The mutual information (MI) that characterizes the new two-sample testing problem is
as follows

MI = −
1∑

z=0
(G(z)) log (G(z)) +

∫ ( 1∑
z=0

P (z | s) log (P (z | s))
)

g(s)ds (30)

We expand equation 30 and consider the following optimization problem,

max
g(s)

−
1∑

z=0

(∫
p(z | s)g(s)ds

)
log
(∫

p(z | s)g(s)ds
)

+
∫ ( 1∑

z=0
P (z | s) log (P (z | s))

)
g(s)ds (31)
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In other words, equation 31 is seeking an g(s) to maximize the MI of a new two-sample testing problem
with p(z | s) provided by the original two-sample testing problem. In what follows, we will see that
solving 31 leads to a probability distribution in which a consistent bimodal query (see Definition 5.2)
results, proving the asymptotic property in Theorem 5.4. Instead of directly solving equation 31, we fix
G(Z = 0) =

∫
P (Z = 0 | s)g(s)ds = u, and resort to finding the solution of the following,

min
g(s)

−
∫ ( 1∑

z=0
P (z | s) log (P (z | s))

)
g(s)ds (32)

s.t.
∫

P (Z = 0 | s)g(s)ds = u, (33)∫
g(s)ds = 1, (34)

g(s) ≥ 0, ∀s ∈ S. (35)

Then, we approximate equation 32 with a discrete version of the same by partitioning the sample space S
into L balls {B (si, r)}L

i=1; in addition, L > 2. Each B (s, r) ∈ {B (si, r)}L
i=1 has a radius r centering at s

leading to an approximation P̂ (Z = 0|s) =
∫

P (Z = 0|s)p (s | B(s, r)) ds, and a probability mass function
G(s) =

∫
s∈B(s,r) g(s)ds. Hence, we approximate equation 32 by the following linear programming (LP):

min
G(s)

L∑
i=1

Hi(Z)G(si) (36)

s.t.
L∑

i=1
P̂ (Z = 0 | si)G(si) = u, (37)

L∑
i=1

G(si) = 1, (38)

G(si) ≥ 0, ∀i ∈ [L] . (39)

where Hi(Z) = −
∑1

z=0 P̂ (z | si) log
(

P̂ (z | si)
)

, ∀i ∈ [L] indicates constant coefficients in the LP in equa-
tion 36.

• Solving the optimization problem
The constraints in equation 37 and equation 38 construct a region of feasible so-
lutions to the considered LP in equation 36; we write this region U = {s |
s is non-negative and s satisfies equation 37 and equation 38.}. In addition, we need to make one
more definition of one kind of solution to the system of linear equations, which is well-known in linear
algebra.

Definition B.1. (Basic solutions) Let Ax = b be a system of linear equations. Let {xj1 , · · · , xjk
} be

positive and other entries be zero in x. Then, if the corresponding columns Aj1 , · · · , Ajk
are linearly

independent, then x is a basic solution to the system.

Moreover, we will need to apply the following Theorems to derive the optimal feasible solution for the
LP.

Theorem B.2. If the feasible region of an LP is bounded, then at least one optimal solution occurs at a
vertex of the corresponding polytope (or the feasible region).

Theorem B.3. Let U be the feasible region of a linear program. Then, x ∈ U is a basic feasible solution
if and only if x is a vertex of U .

Theorem B.2 and Theorem B.3 are well-known in LP; we refer interested readers to (Miller, 2007) for the
elaboration on their proofs. Theorem B.2 and B.3 suggests one optimal solution of equation 36 is a vector
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(G (s1) , · · · , G (sL)) with at most two non-zero entries. Herein, we write G(sq0) and G(sq1) to denote the
two non-zero entries. That reduces the LP in equation 36 to the following:

max
q0,q1

(( 1∑
z=0

P̂ (z | sq0) log P̂ (z | sq0)
)

G (sq0) +
( 1∑

z=0
P̂ (z | sq1) log P̂ (z | sq1)

)
G (sq1)

)
(40)

s.t. P̂ (Z = 0 | sq0) G (sq0) + P̂ (Z = 0 | sq1) G (sq1) = u, (41)
G(sq0) + G(sq1) = 1, (42)
G(sq0) ≥ 0, G(sq1) ≥ 0. (43)

For the sake of simplifying the expressions in what follows, we write

T0 = P̂ (Z = 0 | sq0) log P̂ (Z = 0 | sq0) +
(

1 − P̂ (Z = 0 | sq0)
)

log
(

1 − P̂ (Z = 0 | sq0)
)

, (44)

T1 = P̂ (Z = 0 | sq1) log P̂ (Z = 0 | sq1) +
(

1 − P̂ (Z = 0 | sq1)
)

log
(

1 − P̂ (Z = 0 | sq1)
)

, (45)

T2 = P̂ (Z = 0 | sq1) log P̂ (Z = 0 | sq0) +
(

1 − P̂ (Z = 0 | sq1)
)

log
(

1 − P̂ (Z = 0 | sq0)
)

, (46)

T3 = P̂ (Z = 0 | sq0) log P̂ (Z = 0 | sq1) +
(

1 − P̂ (Z = 0 | sq0)
)

log
(

1 − P̂ (Z = 0 | sq1)
)

. (47)

Then, equation 40 is re-expressed by the following,

max
q0,q1

T0

(
u − P̂ (Z = 0 | sq1)

)
P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)

+
T1

(
P̂ (Z = 0 | sq0) − u

)
P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)

(48)

s.t. P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1) > 0, (49)
P̂ (Z = 0 | sq1) ≤ u, (50)
P̂ (Z = 0 | sq0) ≥ u. (51)

equation 48 is an optimization problem that finds
{

P̂ (z | sq0) , P̂ (z | sq1)
}

⊂ {P̂ (z | si)}L
i=1 to maximize

the objective function. Herein, we write

A = T0

P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)
, (52)

B = u − P̂ (Z = 0 | sq1) , (53)

C = T1

P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)
, (54)

D = P̂ (Z = 0 | sq0) − u. (55)
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Now, we analyze the derivatives of equation 48 by checking the partial derivatives of A, B, C and D with
respect to P̂ (Z = 0 | sq0) and P̂ (Z = 0 | sq1):

∂A

∂P̂ (Z = 0 | sq0)
= −T2(

P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)
)2 > 0, (56)

∂A

∂P̂ (Z = 0 | sq1)
= T0(

P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)
)2 < 0, (57)

∂B

∂P̂ (Z = 0 | sq1)
= −1, (58)

∂C

∂P̂ (Z = 0 | sq0)
= −T1(

P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)
)2 > 0, (59)

∂C

∂P̂ (Z = 0 | sq1)
= T3

(P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1))2
< 0, (60)

∂D

∂P̂ (Z = 0 | sq0)
= 1. (61)

Therefore, equation 48 is a function that monotonically increases with increasing P̂ (Z = 0 | sq0) and
decreasing P̂ (Z = 0 | sq1), implying that the optimal solution to equation 36 has the following probability
mass function G∗,

G∗ (sq0) = u − P̂ (Z = 0 | sq1)
P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)

, sq0 = arg max
s

P̂ (Z = 0 | s) , (62)

G∗ (sq1) = P̂ (Z = 0 | s0) − u

P̂ (Z = 0 | sq0) − P̂ (Z = 0 | sq1)
, sq1 = arg max

s
P̂ (Z = 1 | s) (63)

G∗(s) = 0, ∀s ∈ {si}L
i=1 \ {sq0 , sq1}. (64)

Recall that LP in equation 36 approximates the continuous optimization problem in equation 32 by
partitioning the sample space S to {B(si, r)}L

i=1. Hence, by shrinking the radius r infinitely close to zero,
we get the optimal solution p∗(s) of equation 32 as follows,

p∗ (sq0)
p∗ (sq1) = u − P (Z = 0 | sq1)

P (Z = 0 | sq0) − u
, sq0 = arg max

s
P̂ (Z = 0 | s) , sq1 = arg max

s
P̂ (Z = 1 | s) , (65)

p∗(s) = 0, ∀s ∈ S \ {sq0 , sq1}. (66)

Varying u leads to the optimal solution with the same form that p∗(s) = 0, ∀s ∈ S \ {sq0 , sq1}
and p∗ (sq0) > 0, p∗ (sq1) > 0, but different ratio p∗(sq0)

p∗(sq1) . Furthermore, there could exist a set
Sq0 = {sq0 | P (Z = 0 | sq0) = maxs∈S P (Z = 0 | s)} with identical P (z | sq0), and so does Sq1 =
{sq1 | P (Z = 1 | sq1) = maxs∈S P (Z = 1 | s)} for the case of sq1 . Hence, the optimal solution to the
original optimization problem in equation 31 has the following form

p∗ (s) = 0, ∀s ∈ S \
(

Sq0

⋃
Sq1

)
, and p∗ (s) > 0, ∀s ∈ Sq0

⋃
Sq1 , (67)

Sq0 =
{

sq0

∣∣∣∣P (Z = 0 | sq0) = max
s∈S

P (Z = 0 | s)
}

, (68)

Sq1 =
{

sq1 | P

(
Z = 1 |sq1) = max

s∈S
P (Z = 1 | s)

}
. (69)

Therefore, there exists a consistent bimodal query resulting in an asymptotic distribution of the labeled
feature variables admitting p∗ (s) (equation 67 to equation 69) to maximize MI and hence minimize the
negated MI with P (z | s) provided by the original two-sample testing problem.
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C Proof of Theorem 5.10

Proof. Testing power of the baseline case: As the baseline case randomly samples features from Su and
queries their labels, then the resulting variable pair (Sn, Zn) collected by the analyst admits p (s, z) , ∀n ∈
[Nq], in which p (s, z) is the joint distribution that characterizes the original two-sample testing problem. In
addition, Q (z | s) is initialized and stable, and the class-prior P (Z = 0) is provided in the case study. Given
the label budget Nq and the significance level α, we have the following inequalities for the testing power in
the case study:

P1

(
∃n ∈ [Nq] , Wn =

n∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

)
≥ P1

WNq =
Nq∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

 , (Sn, Zn) ∼ p (s, z) (70)

The inequality in equation 70 is derived from sequentially comparing wn with α, ∀n ∈ [Nq] leading to a higher
testing power than only comparing wn with α at n = Nq. We subsequently convert RHS of equation 70 as
follows,

P1

WNq =
Nq∏
i=1

P (Zi)
Q0 (Zi | Si)

≤ α

 = P1

 log
(
WNq

)
Nq

=

∑Nq

i=1 log
(

P (Zi)
Q(Zi|Si)

)
Nq

≤ log (α)
Nq

 (71)

Since {(Si, Zi)}
Nq

i=1 is an i.i.d. sequence, we skip i in (Si, Zi) and analyze E
[

P (Z)
Q(Z|S)

]
and Var

[
P (Z)

Q(Z|S)

]
for

(S, Z) ∼ p (s, z) in the following,

E
[
log P (Z)

Q (Z | S)

]
= E

[
log P (Z)

P (Z | S) + log P (Z | S)
Q (Z | S)

]
(72)

= −I (S; Z) + DKL (P (z | s) ∥Q (z | s)) (73)
≤ −I (S; Z) +

√
ϵ1; (74)

Var
[

P (Z)
Q (Z | S)

]
= Var

[
log P (Z)

P (Z | S) + log P (Z | S)
Q (Z | S)

]
(75)

≤ Var
[
log P (Z)

P (Z | S)

]
+ Var

[
log P (Z | S)

Q (Z | S)

]
+ 2

√
Var

[
log P (Z)

P (Z | S)

]
Var

[
log P (Z | S)

Q (Z | S)

]
(76)

≤ σ2 + ϵ1 + 2σ
√

ϵ1. (77)

The inequalities in equation 74 and equation 77 are results of the following facts: ϵ1 =
maxA∈P DKL2 (q (s, z) ∥p (s, z) | A) and σ2 = max

{
maxA∈P Var(S,Z)∼p(s,z|A)Ī(S; Z), Var(S,Z)∼p(s,z)Ī(S; Z)

}
over the partition P = {A1, · · · , Am}.

It is observed that, in equation 71, log(WNq )
Nq

=
∑Nq

i=1
log
(

P (Zi)
Q(Zi|Si)

)
Nq

is a sample mean of
{

log P (Zi)
Q(Zi|Si)

}Nq

i=1
,

hence we use the central limit theorem to approximate the distribution of log(WNq )
Nq

leading to the following,

P1

(
∃n ∈ [Nq] , Wn =

n∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

)
≥ P1

WNq
=

Nq∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

 (78)

≂ Φ

 log α√
Nq

+
√

Nq

(
I (S; Z) − √

ϵ1
)

(
σ2 + √

ϵ1 + 2√
ϵ1σ
) 1

2

 . (79)

24



Published in Transactions on Machine Learning Research (June/2024)

Testing power of the proposed framework in the case study: The analyst selects a region A∗ from
a partition P = {Ai}m

i=1, in which A∗ is predicted to have highest I (S; Z | A∗); then the analyst conducts
the sequential testing with (Sn, Zn) i.i.d. generated from p (s, z | A∗). We first quantify I (S; Z | A∗). Recall
that the approximated MI

{
Î (S; Z | Ai)

}m

i=1
used to find A∗ ∈ P is provided in equation 16 in the case

study; given Assumption 5.9, the discrepancy between true and approximate MI for any A ∈ P is as follows

I (S; Z | A) − Î (S; Z | A) = ES∼p(s|A)
[
EZ∼Q(z|S) [log Q (Z | S)] − EZ∼P (z|S) [log P (Z | S)]

]
(80)

Furthermore, given ϵ2 = maxA∈P DKL2 (p (s, z) ∥q (s, z) | A) over the partition P = {A1, · · · , Am}, we eval-
uate the upper bound of equation 80 for any A ∈ P in the following,

ES∼p(s|A)
[
EZ∼Q(z|S) [log Q (Z | S)] − EZ∼P (z|S) [log P (Z | S)]

]
(81)

≤ES∼p(s|A)
[
EZ∼Q(z|S) [log Q (Z | S)] − EZ∼Q(z|S) [log P (Z | S)]

]
(82)

=DKL (Q (z | s) ∥P (z | s) | A) (83)
≤

√
ϵ2. (84)

Similarly, we evaluate the lower bound of equation 80 for any A ∈ P in the following,

ES∼p(s|A)
[
EZ∼Q(z|S) [log Q (Z | S)] − EZ∼P (z|S) [log P (Z | S)]

]
(85)

≥ES∼p(s|A)
[
EZ∼P (z|S) [log Q (Z | S)] − EZ∼Q(z|S) [log P (Z | S)]

]
(86)

= − DKL (P (z | s) ∥Q (z | s) | A) (87)
≥ −

√
ϵ1. (88)

Assumption 5.8 suggests that the maximum MI over P is I (S; Z) + ∆. Combining equation 84 and equa-
tion 88, we get the lower bound of I (S; Z | A∗) as follows,

I (S; Z | A∗) ≥ I (S; Z) + ∆ − (
√

ϵ1 +
√

ϵ2) . (89)

The analyst conducts the sequential testing in the selected A∗ with sample features randomly sampled from
A∗⋂Su and labeled, leading to the following testing power lower bound

P1

(
∃n ∈ [Nq] , Wn =

n∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

)
≥ P1

WNq =
Nq∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

 , (Sn, Zn) ∼ p (s, z | A∗) .

(90)

The quantification of the RHS in equation 90 is identical to the one in the baseline case, except the sample
space is constrained to A∗. Hence, we skip the derivation process and obtain the following result,

P1

(
∃n ∈ [Nq] , Wn =

n∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

)
≥ P1

WNq
=

Nq∏
i=1

P (Zi)
Q (Zi | Si)

≤ α

 (91)

≂ Φ

 log α√
Nq

+
√

Nq

(
I (S; Z) + ∆ − 2√

ϵ1 − √
ϵ2
)

(
σ2 + √

ϵ1 + 2√
ϵ1σ
) 1

2

 . (92)
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