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ABSTRACT

Even a slight perturbation in the graph structure can cause a significant drop in the
accuracy of graph neural networks (GNNs). Most existing attacks leverage gradient
information to perturb edges. This relaxes the attack’s optimization problem from
a discrete to a continuous space, resulting in solutions far from optimal. It also
prevents the adaptability of the attack to non-differentiable objectives. Instead,
we introduce a few simple, yet effective, enhancements of an evolutionary-based
algorithm to solve the discrete optimization problem directly. Our Evolutionary
Attack (EvA) works with any black-box model and objective, eliminating the
need for a differentiable proxy loss. This allows us to design two novel attacks
that reduce the effectiveness of robustness certificates and break conformal sets.
EvA uses sparse representations to significantly reduce memory requirements
and scale to larger graphs. We also introduce a divide and conquer strategy that
improves both EvA and existing gradient-based attacks. Among our experiments,
EvA shows ∼11% additional drop in accuracy on average compared to the best
previous attack, revealing significant untapped potential in designing attacks.

1 INTRODUCTION

Given the widespread applications of graph neural networks (GNNs), it’s crucial to study their
robustness to natural and adversarial noise. In node classification, GNNs leverage the edge information
to improve their performance. However, adding or removing a few edges can drastically decrease
their accuracy, even below the performance of an MLP that ignores the graph structure entirely. The
vast majority of adversarial attacks on the graph structure are gradient-based. However, gradient-
based attacks face several challenges in this setting: (i) To tackle the original discrete combinatorial
optimization problem we have to relax the domain from {0, 1} to [0, 1]; (ii) The gradients only
provide local information and cannot accurately reflect the actual loss landscape when edges are
flipped (see Fig. 1 [Left]); (iii) Similarly, the gradient only reflects the effect of flipping a single
edge at a time, but the effect on the loss can be different (even opposite) when two or more edges
are flipped simultaneously (see Fig. 1 [Middle]); (iv) We need a differentiable proxy loss function
since the original attack objective is often not differentiable (e.g. accuracy). A common choice is
cross-entropy which is suboptimal as a proxy (Geisler et al., 2023); (v) White-box access to the
model is necessary, which limits the applicability or requires surrogate models; (vi) Defense against
such attacks might carry a false sense of security by only obfuscating gradients (Athalye et al., 2018;
Geisler et al., 2023); (vii) Although the adjacency matrix is often sparse, the gradients w.r.t. it are not.
Therefore, the memory complexity of these attacks grows quadratically w.r.t the number of nodes, for
which tricks like block coordinate descent are needed (Geisler et al., 2021).

These challenges suggest that we should try to directly solve the original (combinatorial discrete)
optimization problem, and not to rely on differentiation. A natural alternative is search. Indeed, Dai
et al. (2018a) implemented a baseline genetic-based search for attacking the edges. However, their
approach was not competitive with gradient-based attacks, largely due to poor design choices in the
loss function and mutation strategies. While search-based attacks have been promptly forgotten since,
we show that by carefully designing the components of a meta-heuristic pipeline we can outperform
state-of-the-art gradient-based attacks by a significant margin. As shown in Fig. 1[Right], EvA not
only outperforms the previous method based on a genetic algorithm, but also outperforms PRBCD, the
previous state-of-the-art, by a large margin. Our model-agnostic evolutionary attack (EvA) explores
the space of possible perturbations with a genetic algorithm (GA) without gradient information. We
avoid domain relaxation by directly minimizing the (non-differentiable) accuracy over the space
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Figure 1: We compute Lmargin(A+∆A) where ∆A = eie
⊤
j ∆ij + eue

⊤
v ∆uv and ei is the i-the

cannonical vector. [Left] The loss landscape is non-linear, and the gradient does not always indicate
the loss direction when we flip an edge (e.g. gradient suggests decrease, but loss increases). [Middle]
Due to non-convexity, the effect of flipping each edge separately (e.g. loss decreases) can differ from
flipping both edges simultaneously (e.g. loss increases). This happens for many edges (§ B). [Right]
EvA does not suffer from this issue and outperforms both PRBCD and search-based GA attacks.

of binary matrices. Our attack easily extends to other objectives. We show this by defining two
novel attacks on graphs that break conformal guarantees or reduce the effectiveness of robustness
certificates (see § 4). Importantly, this extension is automatic, we only need black-box access to the
objective, making our attack adaptive Mujkanovic et al. (2023). In contrast, gradient-based attacks
for these new objectives require substantial additional effort (e.g. to tailor the right relaxations).

Our implementation requires O(ϵ · E · P ) memory complexity where ϵ is the perturbation budget, E
is the number of edges and P is the population size. Since P is a (small) constant, we can simplify
this to O(ϵ · E). Given more time or more memory we can increase our performance due to the
open-ended nature of the search. This is a missing characteristic in SOTA attacks such as PRBCD
Geisler et al. (2021). For larger graphs where the search space is considerably larger, we apply a
divide and conquer strategy that improves both PRBCD and EvA, with EvA still outperforming.

To summarize our contributions: (i) We carefully design the components of the GA, including a
targeted adaptive mutation strategy and a better encoding, which leads to serious improvements
(∼11% additional drop in accuracy on average compared to the SOTA attack and up to ∼40%
additional drop compared to the baseline GA attack); (ii) We broaden the scope of graph adversarial
evaluation by attacking post-hoc guarantees such as conformal prediction and robustness certificates;
(iii) To scale to larger graphs, we introduce a divide and conquer strategy that benefits both EvA
and gradient-based attacks; (iv) We extend our attack to support local (per node) constraints with
an efficient local projection. Our results caution against over-reliance on gradient-based attacks and
show that search-based strategies remain a powerful and practical attack paradigm.

2 BACKGROUND AND RELATED WORK

Problem setup. We focus on attacking the semi-supervised node classification task via perturbing
a small number of edges. We are given a graph G = (X,A,y) where X is the features matrix
assigning a feature vector xi to each node vi in the graph, A is the adjacency matrix (often sparse)
representing the set of edges E , and y is the partially observable vector of labels. Nodes are partitioned
into labeled and unlabeled sets V = Vl ∪ Vu. The GNN is trained on a clean initial subgraph Gtr that
includes the labeled nodes. Following Gosch et al. (2024) we avoid the transductive setup (Gtr = G)
since perfect robustness can be achieved there by only memorizing the clean graph during training.
They show that adversarial and self training also show a false sense of robustness in that setup for
the same reason. Instead, we focus on inductive learning where a model f is trained on an induced
subgraph Gtr ⊆ G, validated on Gval ⊆ G and tested on Gtest where Gtr ⊂ Gval ⊂ Gtest = G.

Threat model. Our goal is to find a perturbation matrix P ∈ {0, 1}n×n that flips entities of the
adjacency matrix Ã = A ⊕ P , where n = |V|, and ⊕ is the element-wise XOR operator. We
optimize over P to decrease the accuracy. For a given function f as the GNN model, and any generic
loss function L, the objective is

P = argmax
P

L(f(G(X,A⊕ P ))att,yatt) s.t. 1NP1⊤
N ≤ ϵ · |E [Vatt : V]| (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Here f(·)att is the vector of predictions for the subset of nodes Vatt that are under attack. In
“targeted” attacks Vatt is a singleton. To keep the perturbations imperceptible, we assume that the
adversary can only perturb up to δ := ϵ · |E [Vatt : V]| edges where E [A : B] is the subset of edges
between nodes in A and B. Eq. 1 can include more constraints like the local constraint from Gosch
et al. (2023) restricting perturbations not to increase node degrees by more than a fraction (e.g
eloc = 0.5) of their original value.

Related Work. We study evasion attacks with both global and targeted objectives, where perturbations
are introduced only at test time. The goal is either to reduce the model’s overall accuracy or to induce
the misclassification of a specific node. Among gradient-based methods, PRBCD (Geisler et al.,
2021) and LRBCD (Gosch et al., 2024) represent the current state of the art. Both attacks compute
gradients of the tanh-margin loss with respect to the adjacency matrix, employing block-coordinate
descent. Perturbation edges are then sampled based on these gradients. To handle local degree
constraints, LRBCD incorporates a local projection step, greedily selecting edges (in descending
order of gradient score) while ensuring that the constraints are not violated.

Beyond gradient-based methods, alternative approaches have also been explored. For example, Dai
et al. (2018a) proposed a simple evolutionary attack as a baseline for their reinforcement learning-
based method. However, these early strategies have since been surpassed by gradient-based techniques.
Building on this progress, we redesign key components of the search process, achieving significant
improvements over prior evolutionary attacks. Moreover, our method, EvA, scales effectively to large
graphs and naturally extends to novel attack objectives. Other heuristic-based attacks, relying on
node degree, centrality, or related metrics (Zhang et al., 2024; 2023; Wang et al., 2023), have also
been proposed, but they similarly fail to outperform the current state-of-the-art methods. A more
detailed discussion of related work can be found in § A.

3 EVA: EVOLUTIONARY ATTACK

Components of EvA. As shown in Fig. 1 gradients can be misleading which motivates us to explore
search-based attacks. We employ a genetic algorithm (GA) (Holland, 1984) that starts with an initial
population of candidate solutions that we iteratively refine. The improvement is driven by the fitness
function, and the crossover and mutation operators. Here we provide a brief overview. For the
detailed technical description see § D. Each individual in the population specifies a set of edges to
be flipped. We implement an efficient O(1) mapping from a 1D index to 2D edges, while ensuring
undirected flips. The fitness function that evaluates each individual should correlate with the objective
in Eq. 1 and provide sufficient sensitivity across candidates. For global attacks, we use the model’s
accuracy on the perturbed graph. In § 4 we explore better alternatives for local and targeted attacks.
We generate new candidates from two individuals via a crossover operator, which concatenates parent
segments. Parents are chosen through tournament selection (ntour random samples from which the
two fittest are retained). The baseline mutation operator randomly replaces each index with some
probability. We design significantly better mutations below.

Sparse encoding of the attack. A simple way to represent a perturbation is a boolean vector of size
N2 encoding which edges are flipped. It costs O(|S|N2) space from memory where S is the popula-
tion. This representation is not aware of the sparsity in A. Instead we represent each candidate as a list
of indices to be toggled in the adjacency matrix, we store sparse representation of P . With this we ac-
count for the sparsity and reduce the complexity to O(|S|·δ) where δ = ⌊ϵ·|E [Vatt : V]|⌋ – candidates
in the population z ∈ S are vectors of δ dimensions with each entity as an index in adjacency matrix
z[i] ∈ {1, · · · , n(n− 1)/2} with n = |V|. Our mapping Π (as discussed in § D) is a diagonal enu-
meration of an upper triangular n× n matrix. For simplicity, we let the perturbation vector to contain
repeated elements. During the evaluation of the vector, we transform it to a perturbation matrix Pz ,
with which we compute Ã = A⊕ Pz . We compute all steps with sparse representation, where each
candidate takes O(δ) space. Moreover, with this encoding, we directly enforce the global budget since
the size of each individual in the population is at most the number of allowed perturbations by design.

Accuracy vs alternative surrogate losses. To understand the effect of the loss on the attack, we
conducted an ablation study to compare accuracy and common surrogate objectives (cross-entropy,
and margin-based loss) as the fitness function in EvA. As in Fig. 2 (left), cross-entropy does not
use the attack budget effectively, while margin-based loss shows to be well-correlated. Intuitively,
since the goal is to misclassify as many nodes as possible, the aggregated cross-entropy loss can
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Figure 2: [Left] EvA’s performance with different objective functions and [Middle left] mutation
strategies. [Middle right] Effect of D&C on the performance of EvA for different datasets. [Right]
The number of violations from local constraints by EvA, and PRBCD (ϵloc = 0.5).

waste perturbation budget by overly focusing on already misclassified nodes, rather than maximizing
new misclassifications. This effect was studied in depth by Geisler et al. (2023), which motivated
them to introduce the tanh-margin loss which mitigates this issue. Still among all fitness functions,
accuracy itself performs better. Since PRBCD uses the tanh-margin loss, the large gap between EvA,
and PRBCD suggests that the quality of loss is not the only reason behind EvA’s effectiveness. We
hypothesise that EvA, leveraging the exploratory capabilities of GA, can explore the search space
more effectively and avoid local optima, while PRBCD gets stuck.

Drawbacks. The mentioned setup is the baseline variant of EvA. Combined with cross-entropy as
the fitness it is similar to a parallel and efficient implementation for Dai et al. (2018a) which is by far
less effective (see Fig. 1). While the baseline (with accuracy) already outperforms SOTA Fig. 2, we
enhance the search by introducing a better initial population and a mutation function that discards
edges outside of the target’s receptive field.

Enhancing the search. To enhance EvA, the key insight is that by restricting the search space to
the receptive field of Vatt (instead of the entire n

2 (n − 1) edges), we eliminate less effective (or
ineffective) perturbations from the search space. Perturbations that have both endpoints in the training
subgraph can be easily reverted by memorization. Additionally, flipping edges outside of the receptive
field of Vatt is a waste of budget since they do not affect the prediction of Vatt. Similarly, we restrict
the initial population to have at least one endpoint in Vatt. This is easily done by randomly sampling
both endpoints, one inside Vatt and one in V , then mapping the edges back to the indices via Π. For
larger graphs, as the search space increases quadratically to the number of nodes, we can apply a
divide and conquer strategy by splitting Vatt and running EvA on each chunk.

Targeted and adaptive mutation. Mutation is applied by selecting a set of perturbation indices
(uniformly at random with probability p) from the population and changing them to another index.
A naive implementation (the uniform mutation (UM)), adds random indices from anywhere in the
entire graph. Similar to the initialization, we define the “targeted mutation (TM)” by restricting the
new mutated edge to have at least one end-point in Vatt. Furthermore, when the attack succeeds in
altering a node’s label, perturbing its connections does not increase the performance anymore. Hence,
we exclude the already flipped nodes from the endpoint that was restricted to Vatt. Importantly, we
still let those nodes to connect with other nodes in Vatt as they can contribute to the misclassification
risk of other nodes. We refer to this approach as “adaptive targeted mutation” (ATM). Remarkably, as
shown in Fig. 2 (right), these modifications improve the effectiveness of EvA by a noticeable margin.

Stacking perturbations. EvA requires a forward pass per each candidate (each candidate of
population). While maintaining the sparse representation of the graphs during all steps, we can use
the remaining memory to combine k candidates in form of a large graph of k parts and evaluate all k
in a single forward pass. In practice, we can easily fit the entire population in one forward pass per
iteration as one large graph.

Effect of scaling. The population size has a considerable impact on the performance of EvA by
introducing diversity among the solutions, thus increasing exploration. To observe this effect, we do
an ablation study on the population size and the number of iterations. For a fair comparison, we scale
PRBCD separately by increasing the number of steps and the size of the block coordinate subspace.
We exponentially increased the block size, starting from 0.5M up to 4 million Fig. 3[Left]. As
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shown in Fig. 3 [middle], increasing the population size, and then increasing the number of iterations
improves EvA. In contrast, PRBCD does not achieve noticeable improvement by increasing the block
size or the number of training steps (Fig. 3 (left,right)). This means that EvA leverages additional
computational resources (either time or memory) while PRBCD does not show a considerable use
of it. As a supplement to Fig. 2, in Fig. 3 [Middle] we show that using a better mutation function
(here adaptive targeted mutation) consistently enhances performance across all population sizes and
outperforms the uniform approach. Finally, in Fig. 3[Right], we compare the number of forward
passes used in EvA with the number of forward and backward passes applied in PRBCD, and show
their performance under approximately equal memory usage. Initially, PRBCD converges faster and
outperforms EvA, but at larger scales EvA significantly surpasses PRBCD. We also compare EvA
and SOTA for wall-clock time and memory in § D.2 showing similar results. In general, we see that
EvA is more often Pareto optimal, and a broader range of time-memory-performance trade-offs.

Divide and Conquer. PRBCD uses the coordinate gradient descent to scale efficiently for larger
graphs. Similarly we introduce a divide-and-conquer (D&C) approach to EvA. Here instead of
attacking the entire Vatt at once, we divide it into smaller subsets and sequentially attack each subset
with a budget relative to the portion of the edges connected to it. After attacking a subset, we treat
the modified graph as a starting point for the next one. The result for the final subset includes
perturbations in all previous steps. At the end we re-evaluate the final graph with all perturbations
combined. Our divide and conquer approach relies on a relaxation. For a budget of δ = δ1+ δ2 over a
set Vatt = V1 ∪V2, the standard attack searches in the space of

(
n
2

)δ
possible perturbations aiming to

decrease the accuracy over Vatt. However, with the divide and conquer approach, the attack searches
among

(
n
2

)δ1
+

(
n
2

)δ2 possible perturbations each aiming to attack V1, and V2 separately - first
searching for optimal attack with a budget δ1 on V1 and then with δ2 on V2 given the attack applied
on V1. Therefore, D&C explores an exponentially smaller subset of the search space. This calculation
is for the uniform mutation, employing targeted mutation narrows the search space explored by the
algorithm further. Since it also reduce the choices from

(
n
2

)δ
to ( |Vatt|(2n−|Vatt|−1)

2 )δ. In practice
we divide Vatt to kdc subsets (see hyper-paramters in § E.4). Applying the D&C approach poses
a trade-off: in smaller spaces EvA finds better solutions, while the relaxation in D&C can lead to
solutions further from optimum. As shown in Fig. 2 (right) when the size of the graph and the budget
δ grow, adding D&C to EvA helps substantially. As in Fig. 2 (right) it improves the result for large
Ogbn-Arxiv by at least ∼ 8% while the same approach is ineffective for smaller CoraML dataset.
We further show that on large graphs D&C similarly helps PRBCD. Indeed, applying D&C for
PRBCD helps to increase the performance while maintaining the same block-size (not increasing the
required memory; see § D.3). A comparable block for 1-step PRBCD exceeds the memory limit. It is
noteworthy that the randomized block-coordinate computation of gradients is also a relaxation.

4 LOCAL ANDTARGETED ATTACKS & ATTACKING OTHER OBJECTIVES

Local attacks. Gosch et al. (2024) extend PRBCD to support additional “local” constraints where
a perturbation is not allowed to increase the degree of a node more than a fraction of its original
value. We need local constraints to enforce imperceptibility of the attack. For example, a perturbation
might increase the degree of a node more than twice its original value while staying within the global
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budget. Therefore, even within the global budget the structure of the graph (and therefore graph’s
structural semantics) can change drastically. They introduce the LRBCD attack which adds a local
projection to PRBCD. In short, they sort edges in a decreasing order of probability (gradients), and
iteratively add perturbations while the local constraint for both end-points of the modified edge is not
violated. This continues until the global budget is exhausted. Even without enforcing this restriction,
as shown in Fig. 2 (right) EvA introduces fewer degree violations compared to PRBCD, meaning
that the perturbations added by EvA are more spread-out in the graph. We apply a local projection
to EvA similar to LRBCD. Here, instead of using gradients for ranking, we use the frequency of the
edge within the current population. We define s(e) =

∑
s∈S I[e ∈ s]/|S|+ u as the frequency score

where u is a small uniform random value in [0, 0.05]. Here u is added to break ties and introduce
additional randomness, and S is the population at the current iteration. Our insight is that if an
edge appears frequently within the population, it is likely to be useful for an attack, increasing the
chance of candidates containing it to be selected as elite. After our local projection all constraints
are guaranteed to be satisfied. For more diversity at initial iterations, we apply a random projection
removing edges with a probability proportional to total degree violations on both sides. We apply
this random removal for twarm iterations (a hyper-parameter discussed in § E.4).

Node-targeted attacks. Here the objective is to misclassify a specific node with as minimal change
to the structure as possible. Using EvA with the global setup does not work in this case. On a single
node the accuracy has only two values 0 or 1 – small changes in the solution do not result in (even
minor) changes in the fitness score. With the 0-1 accuracy objective, random search and GA are
practically equivalent as there is no indication of what combination of edges are closer to breaking
the prediction of a particular node – all non-successful combinations are equally evaluated with
1. Instead we use the proxy tanh-margin loss as the fitness function. This loss function changes
as we perturb the receptive field of the targeted node. Note, for general (non-targeted) attacks the
tanh-margin loss improves performance over the cross-entropy loss, however, using accuracy (for
larger |Vatt|) as fitness is slightly better as shown on Fig. 2 (left). Fig. 4 compares EvA, and the
state-of-the art attack PRBCD on targeted attacks.

Other objectives. For non-differentiable objectives (e.g. accuracy), gradient-based attacks need a
differentiable surrogate approximating it. As discussed in § 3, for accuracy (common setup) several
works proposed various surrogates. This is similarly challenging to propose gradient-based attacks for
novel objectives that are complicated and include several non-differentiable components (e.g., quantile
computation or majority voting from Monte Carlo samples). Since our method nullifies the need for
information from gradients, we can easily optimize for novel complex objectives as long as they are
sensitive to small changes in the search space. We define three new attacks on graphs: reducing the
certified ratio of a smoothing-based model, decreasing the coverage, and the increasing set size of
conformal sets. A detailed explanation of randomized smoothing-based certificates and conformal
prediction, which underpin the certified ratio objective and conformal prediction, is provided in § A.1
and § A.2 respectively.

Attacking smoothing-based certificate. Assuming the certified ratio is a notion of a trustworthy
prediction, one possible adversarial objective is to reduce the number of nodes that are certified
(a.k.a. certified ratio) while maintaining the same clean accuracy. While the operations include
non-differentiable steps we can directly set the certified ratio (fraction of nodes that are certified
within a determined threat model) as the objective of EvA. Whether a node is certified reduces to
whether the smooth classifier returns a probability above p where minx̃∈B(x) g(x) ≥ 0.5 constrained
to g(x) = p. Many smoothing-based certificates are computed at canonical points (they are only a
function of probability not the input) and they are non-decreasing to p. Hence, we find p via binary
search. Thus, our objective is to decrease the number of vertices with smooth probability above
p. A naive implementation of EvA for this objective is to compute the certified ratio given new
MC samples for each candidate. This increases the runtime of our algorithm by a factor of nMC,
as each perturbation requires nMC forward passes. Inside the attack, statistical rigor is not crucial.
Therefore, we employ an efficient sampling strategy where we start with initial samples from clean
A, and for each perturbation, we only resample for the edges in Ã⊕A. We use the stacked inference
technique (see § 3) on MC samples which ultimately reduces the computation to one inference per
each perturbation Ã.

Attacking conformal prediction. A common threat model for CP is to decrease the empirical
coverage (far from the guarantee) by perturbing the test input. We propose a similar attack where the
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adversary changes the edge structure of the graph in order to decrease the coverage. This process
is again not directly differentiable (for steps like computing the quantile and comparison of values)
which is not a problem for EvA. In our experimental setup, the defender calibrates on a random
subset of Vu (besides the test, this is the only set with labels unseen by the model). Assuming that the
unlabeled and test nodes are originally exchangeable (node-exchangeability), the conformal guarantee
is valid in the inductive setup upon recalibration on the clean graph. By perturbing the edge structure
we can easily break this guarantee. Therefore our objective is to change the edge structure such that
the coverage is minimized. Intuitively, this requires maximizing the distribution shift between the test
and calibration scores. As we know that the calibration set is an exchangeable (random) subset of
Vu, we set the entire Vu as the calibration set during the attack. Due to exchangeability we expect a
similar effect from our perturbation for any random subset as well (Berti and Rigo, 1997). Finally,
the objective is to decrease the coverage over Vatt given Vu as the calibration set. To the best of
our knowledge, so far this is the only adversarial attack on the graph structure to break conformal
inductive GNNs. Similarly, by changing the objective to the negative average set size, we can attack
the usability of prediction sets (see Fig. 6).

5 EMPIRICAL RESULTS

With our empirical evaluations we show that current gradient-based attacks are still very far from
optimal since EvA outperforms them by a notable margin. EvA inherently results in attacks with
a smaller local change in each node’s degree (even without posing local constraints)Fig. 2[right].
And further we can apply EvA to attacks with local constraints as well. With divide and conquer,
EvA is able to scale to larger graphs (e.g. Ogbn-Arxiv) and outperform SOTA for those graphs as
well. With the black-box nature of the attack we easily extend the score of EvA to novel objectives
introducing the first attack to reduce the certified ratio or break conformal sets on graphs.

Experimental setup. We evaluate EvA on common graph datasets: CoraML (McCallum et al.,
2004), Citeseer (Sen et al., 2008), and Pubmed (Namata et al., 2012). Shchur et al. (2018) show
that GNN evaluation is sensitive to the initial train/val/test split. Therefore, we averaged our results

Table 1: Performance of different attack meth-
ods under varying budgets on CoraML dataset.

Attack 0.01 0.02 0.05 0.10 0.15
DICE 80.93 80.93 80.78 80.57 80.07
PGA 79.58 76.92 70.94 64.62 60.46
PGD 78.22 75.37 67.18 59.14 53.09
GRPCD 78.07 75.08 66.76 58.29 54.80
PRBCD 76.44 73.17 66.48 58.51 52.67
EvA 74.80 68.97 52.95 41.99 37.65

Table 2: Performance of different defense mod-
els under various attack strengths on CoraML.

Defense Attack 0.01 0.02 0.05 0.10
GCNSVD EvA 0.70 0.64 0.54 0.41

PRBCD 0.76 0.75 0.73 0.70

GNNGuard EvA 0.71 0.67 0.55 0.45
PRBCD 0.74 0.72 0.70 0.66

GNNJaccard EvA 0.76 0.74 0.64 0.57
PRBCD 0.76 0.74 0.70 0.65

Robust-GCN EvA 0.75 0.70 0.59 0.52
PRBCD 0.77 0.73 0.68 0.63

Soft-Median EvA 0.75 0.72 0.69 0.62
PRBCD 0.77 0.76 0.73 0.68

for each dataset/model over five different data splits.
In contrast with common GNN attacks, Gosch et al.
(2024) shows that the transductive setup carries a
false sense of robustness. In other words, trivially
one can gain perfect robustness just by memorizing
the clean graph which is available before the attack;
models with robust and self-training also show how
to exploit this flaw. Following them, we report our
results in an inductive setting. We divide graph
nodes into four subsets: training, validation, and
testing, each with 10% of the nodes and we leave
the remaining 60% as unlabeled data. Following
Lingam et al. (2023), we sample the train, validation
and test nodes in exchangeably since it provides a
more realistic setup compared to commonly used
methods, such as sampling for training and valida-
tion with the same count for each class (i.e. stratified
sampling). For completeness, in § C we compare
attacks in the transductive setup and various sam-
pling approaches. In all cases again EvA shows a
more effective attack. Further information about the
model and hyperparameters are in § E.

Attacking vanilla and robust models. As shown in
Fig. 5 and extensively in § C, EvA outperforms the
SOTA attack PRBCD by a significant margin con-
sistently across various datasets and models (vanilla
and robust). Interestingly, we show that on many vanilla and robust models, for a very small budget
ϵ ∼ 0.05, EvA drops the accuracy below the level of the MLP model. This is a condition where
the model leveraging the structure works worse than a model that completely ignores edges. The
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Figure 5: (Left to right) Performance on CoraML on Vanila GCN, adversarially trained GCN using
PRBCD, Soft-Median-GDC model. The right-most figure is GCN on Ogbn-Arxiv.

SoftMedian model seems to show an inherent robustness to both EvA and PRBCD. Therefore, to
break the model below the accuracy of MLP, we require ≥ 0.2 perturbation budget. Even in the
SoftMedian model, our attack is significantly more effective in comparison to PRBCD. Table 1
compares EvA with other attacks, showing that our attack outperforms all previous methods. We also
provide additional results on different defense mechanisms in Table 2, which demonstrate that our
attack can break them all. We also provide additional result with adversarial training. Table 14 (§ C)
compares attacks against models with different adversarial training. We study the characteristics of
the perturbed edges in § D.1.

Scaling to larger graphs. In Fig. 5, we also show that the EvA applied with our divide and conquer
approach outperforms PRBCD for Ogbn-Arxiv dataset. Interestingly similar divide and conquer
approach can significantly improve PRBCD as well; while still EvA is more effective. In § D.3, we
compared PRBCD with block size 3M, 10M, alongside PRBCD and EvA with divide and conquer in
a fair comparison. Notably PRBCD with the highest block size fitting in one GPU is still significantly
less effective compared to any of the attacks combined with D&C.

Additional datasets. To
show that EvA generalizes
beyond citation graphs we
compare it with PRBCD on
the AMAZON-PHOTO and
AMAZON-COMPUTERS graph
(Shchur et al., 2018) in Table 3.
EvA is still better.

Table 3: Performance on non-citation graphs.

Dataset Attack ϵ = 0.01 ϵ = 0.02 ϵ = 0.05 ϵ = 0.10

photo
PRBCD 84.28 ± 0.99 81.12 ± 1.45 75.86 ± 1.81 71.58 ± 1.80

EvA 80.43 ± 1.47 77.99 ± 2.04 72.73 ± 1.90 67.01 ± 1.76

computers
PRBCD 77.28 ± 0.68 73.56 ± 0.55 66.92 ± 0.63 61.99 ± 0.59

EvA 72.94 ± 1.26 70.10 ± 1.85 65.70 ± 2.89 60.13 ± 3.72

Local attacks. Similarly, as shown in Fig. 5, and § C, EvA is consistently better than LRBCD. In § 4
discussed that we apply local projection as a mutation function. Interestingly as in Fig. 11 (right)
even without local projection, EvA results in less violations of the local constraint.

Targeted attack. We performtargeted attacks on each node separately, with varying budgets from
one to a maximum of 10 edges, until the prediction changes. We discussed in § 4, that here we used
tanh-Margin proxy loss since accuracy on one node is not sensitive to small changes. Fig. 4 compares
EvA and PRBCD in tagetted attack. Our results show that PRBCD performs better with a budget
of one, but is outperformed by EvA for budgets of two and higher. For instance, on the CoraML
dataset PRBCD fails to modify 16 nodes with a maximum of 10 changes (NA, black), whereas this
number is reduced to only 2 nodes for EvA. This result is expected due to the combinatorial nature
of the problem: for budgets up to two, a greedy approach can find the optimal solution, but as the
budget increases beyond three, the problem becomes significantly more complex. This is also in line
with our first motivation that the gradient ignores the interaction effect of flipping multiple edges
simultaneously. Fig. 1 [middle] is an instance when the gradient direction individually has the same
direction, but the loss when flipping both is in the opposite direction. This effect can become even
more problematic when one flips more edges.

Attacking novel objectives. In Fig. 6 (mid-right and right) we performance of EvA with the objective
to reduce the certified ratio. The plots are for certificate on A (mid-right) with (p+ = 0.001, p− =
0.4), and X (right) with (p+ = 0.01, p− = 0.6) with sparse smoothing (Bojchevski et al., 2020).
Here p+, and p− are Bernoulli parameters of flipping a zero or one. In both plots we report the
result for B0,3 which means 0 additions and 3 deletions. While we aim to decrease the certified
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Figure 6: (From left to right) conformal coverage, and conformal set size on vanilla and adversarially
trained GCN. The certificate attack for certified ratio on A and X evaluated on GPRGNN adversari-
ally trained using PRBCD. All plots are for CoraML.

ratio, a direct outcome is that the certified accuracy drops. For a 5% budget, the certified accuracy
drops below MLP. MLP is a baseline model with full robustness to edge perturbations (since it
discards the adjacency information completely). While reducing the certified ratio, interestingly the
smooth model’s accuracy remains the same. Hence, evaluating the model on a holdout labeled set
does not reveal that the input graph is attacked. We report the first structure attack on an inductive
conformal GNN. As shown in Fig. 6 (right) the coverage drops quickly as we increase the perturbation
budget. As expected, in an adversarially trained model, we observe a slower decrease in the empirical
coverage. Alternatively in Fig. 6 (middle) we increase the average set size since showing that that
both vanilla and robust models are vulnerable to this attack.

Ablation study on the effect of our different GA extensions. To emphasize the effects of our simple
yet effective enhancements, we provide the following ablation studies. In Table 4, we show the effect
of each enhancement individually and then together (EvA) on the CoraML dataset. Furthermore, in
Table 5, we report the effect of our sparse encoding (SE) and D&C on the larger Ogbn-Arxiv dataset.
As shown, all of our simple enhancements provide a significant effect (individually and jointly).

Table 4: The effect of our adaptive targeted muta-
tion (ATM) and the fitness function on CoraML.

ϵ 0.01 0.02 0.05 0.10 0.15
(∗) Dai et al. 80.71 80.28 78.86 76.86 75.08
(∗) + ATM 78.50 76.65 72.52 68.75 65.33
(∗) + Lacc 75.08 69.39 54.02 48.32 44.41
EvA (+ both) 74.80 68.96 52.95 41.99 37.65

Table 5: Effect of our sparse encoding and
D&C on the large Ogbn-Arxiv dataset.

ϵ 0.01 0.02 0.05 0.10
Dai et al. OOM OOM OOM OOM
Dai et al. + SE 69.79 69.56 68.81 67.77
EvA 66.86 66.80 65.18 63.51
EvA + D&C 61.08 56.31 51.60 47.56

6 CONCLUSION

We introduce EvA, an adversarial attack on the graph structure using a genetic algorithm. Unlike
gradient-based methods, our black-box approach directly optimizes the adversary’s objective (e.g.
the model’s accuracy). This flexibility allows for more complex adversarial goals – we demonstrate
successful attacks that decrease certified robustness and degrade conformal prediction performance.
To ensure scalability, we propose an efficient encoding that ties memory complexity to the perturbation
budget and a divide-and-conquer strategy that improves performance on large graphs for both our
method and baselines like PRBCD. We also show that due to the open-ended characteristic of the
search, for more computational resources (time and memory) we can always improve our results.
Given the significant decrease in the model’s accuracy by applying EvA, we highlight that even
SOTA gradient-based attacks are far from optimal. Our main message is that search-based attacks are
underexplored yet powerful as shown by our results.

Limitations. We use an off-the-shelf genetic algorithm. Surely, there is room for designing search
algorithms specific to the domain of the problem beyond our extensions, or even hybrids of gradient
and evolutionary search. EvA uses many forward passes through the model which can be unrealistic
in some attack scenarios. We leave the design of a further query-efficient variant for the future.
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A SUPPLEMENTARY TO RELATED WORK

We focus on evasion attacks where perturbations are made after the model’s training. Based on the
domain, (evasion) attacks can be further be categorized to global (aiming to flip the prediction of a
subset of nodes) and targeted attacks (aiming at a single node). Our attack applies on edge-structure
similar to Xu et al. (2019); Zügner et al. (2018); Geisler et al. (2023; 2021); Gosch et al. (2024).
Orthogonal to this scope, various other grpah attacks are proposed in the literature including node-
injection attacks (Ju et al., 2023), poisoning (Zügner et al., 2020; Lingam et al., 2023; Zügner et al.,
2018), and attacking attributes (Zügner et al., 2018). Inspired by techniques used on continuous
data, Xu et al. (2019); Zügner et al. (2018); Geisler et al. (2023) utilize gradients to approximate
perturbations on inherently discrete edges. As the adjacency matrix can grow significantly larger than
images, applying a PGD-like attack becomes challenging for larger graphs. To remedy that Geisler
et al. (2021) proposes a block-coordinate computation of the derivatives, and Gosch et al. (2024)
applies a greedy projection to apply local constraints.

Orthogonally, Dai et al. (2018b) use reinforcement learning to refine their attack and disrupt the
learning process of GNNs Sun et al. (2023). They also introduce a genetic algorithm attack as
a baseline; however, they did not design the components of GA carefully. In § 3 we design GA
components (mutation, local projection, etc) which outperform recent gradient based attacks. Recently
new attacks relying on heuristics such as node degree, centrality, etc have been proposed (e.g. Zhang
et al. (2024; 2023); Wang et al. (2023)), however they don’t outperform the SOTA.

Gradient-based attacks. A common class of attacks compute the gradient of the objective w.r.t. A.
This requires a relaxation on the domain of A from {0, 1}n×n to [0, 1]n×n. For non-differentiable
objectives like accuracy differentiable surrogates like the categorical cross entropy or tanh-margin
(Geisler et al., 2023) are used instead. The algorithm is to iteratively compute the gradients and
update the perturbation matrix. Finally, based on the continuous perturbation matrix edges are either
sampled or rounded to the binary domain.

Black-Box attack. The literature on black-box attacks on graphs remains relatively underexplored.
Some existing works focus on poisoning attacks (Chang et al., 2020). Other studies, such as Waniek
et al. (2018) and Xu et al. (2019), propose heuristic attacks based on the graph’s topology, but
their performance is significantly lower than that of white-box methods like PRBCD. Mu et al.
(2021) approximate gradients by measuring changes with small perturbations, but even under ideal
conditions, their method can at best match the performance of PRBCD, which directly utilizes exact
gradients. Furthermore, their approach does not scale well to graphs with even a few thousand nodes.

A.1 RANDOMIZED SMOOTHING-BASED CERTIFICATES

A robustness certificate guarantees that the prediction of the classifier remains the same within a
specified threat model. For any black-box model, one way to obtain such a guarantee is through
randomized smoothing. A smoothing scheme ξ is a random function mapping an input x to a nearby
point x′ (e.g. additive isotropic Gaussian noise x′ = ξ(x) = x + ϵ, where ϵ ∼ N (0, σ2I) for
images). The smooth classifier is defined as the convolution of the smoothing scheme and the black-
box classifier g(x) = Pr[f(x+ ϵ) = y] – majority vote or the probability that the classifier predicts
the top class for randomized x′ ∼ ξ(x). Regardless of the baseline classifier f , smooth classifier g
changes slowly around x and allows us to bound the worst-case minimum of the smooth prediction
probability within B. For a radius around x in which the minimum g(x̃) remains above 0.5, we can
certify that the smooth model returns the same label (see § D for further details). In many smoothing
schemes, exact computation of the smooth classifier is intractable. The probabilistic computation of
it is also expensive as it involves many Monte-Carlo (MC) samples and later accounting for finite
sample correction.

A.2 CONFORMAL PREDICTION

Instead of label prediction, conformal prediction (CP) returns prediction sets that are guaranteed
to include the true label with adjustable 1− α probability. This post-hoc method treats the model
as a black-box and requires only a calibration set of labeled points whose labels were not used during
model’s training. CP is applicable in both inductive and transductive Graph Neural Networks (GNNs)
under the assumption of node-exchangeability (Zargarbashi and Bojchevski, 2024). To compute
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prediction sets we need to compute a quantile from the set of true calibration conformity scores and
compare the scores (e.g. softmaxes) of the test node to the quantile threshold. For i.i.d. data (e.g.
images), after computation of the quantile, the task of decreasing the softmax score towards 0 aligns
with the goal of decreasing the same value below a conformal threshold (which is by definition above
0). In graphs however this task is more complicated since calibration and test nodes communicate
with message passing.

B ISSUES WITH GRADIENT-BASED METHODS

To motivate the introduction of a search-based method, we first need to understand the shortcomings
of using gradients for optimizing the discrete space of the adjacency matrix. Therefore, we study
how the margin loss Lmargin changes when perturbing the adjacency matrix A by flipping edges. The
perturbation is defined as

∆A = eie
⊤
j ∆ij + eue

⊤
v ∆uv,

where ei is the i-th canonical basis vector, and ∆ij ,∆uv ∈ {−1,+1} denote edge additions or
removals. This formulation allows us to examine the combined effect of flipping two edges simulta-
neously. To analyze these effects, we introduce a continuous interpolation parameter α ∈ [0, 1], and
compute Lmargin(A+ α∆A). This corresponds to partially adding or removing the selected edges,
giving a smooth trajectory from the original graph (α = 0) to the fully perturbed graph (α = 1). By
searching over edge pairs, we obtain the loss landscape associated with individual and joint edge flips.
Finally, we filter out those edge pairs that exhibit non-additive behavior: cases where flipping both
edges together leads to a qualitatively different outcome compared to flipping either edge individually.

We highlight two main problems with gradient-based methods. First, the gradient is a local measure,
since it quantifies the behavior of the function under infinitesimal changes. However, we are interested
in the behavior of the function when flipping an edge in the discrete space {0, 1}, e.g. from 0 to 1.
So, flipping an edge could increase the loss even though the gradient suggests that the loss would
decrease (and the other way around). This issue was also discussed and illustrated in Zügner et al.
(2018) (see their Fig. 4). Second, even if we assume that the gradient correctly indicates the effect on
the loss, it still only reflects the impact of individual changes and ignores the effects of interactions
between edges. There are cases where flipping each individual edge would suggest a certain direction
of change in the loss (e.g. increase), but flipping both edges together would reverse the direction (e.g.
decrease).

We designed an experiment to demonstrate that these phenomena are not rare. Since the search
space is very large, we start with a specific node and then randomly sample towards the other side
of its edges. Specifically, we are looking for the edges (i, j) and (i, v) with u = i. We chose this
approach because it ensures that the changed edge remains within the first-hop neighborhood of the
node. Since our GCN is a two-layer network, the probability that this edge interacts with the two-hop
neighborhood of the graph also increases. We found several cases of these two events for each node in
the CoraML dataset. Fig. 7 visualizes a random subset of these cases based on Tanh-Margin loss.
The same phenomena also occurs with Cross-Entropy loss. Fig. 8 visualize a random subset of
these cases using Cross-Entropy loss.

C SUPPLEMENTARY EXPERIMENTS

Transductive Setting. In § 5, we argued that transductive setup carreis a false sence of robustness.
In this setup, trivial robustness can be gained just by memorization of the clean graph (Gosch et al.,
2024). For completeness, here we report the results in the transductive setup as well. As in Table 6
EvA outperforms SOTA consistent with other experiments in the inductive setup.

Stratified sampling. Although unrealistic, in Table 7, we compare attacks in case the models are
trained train/val/test sampled with the same number of nodes across different classes. Consistent with
other results, EvA shows to be better here as well.
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Figure 7: In some cases the gradient fails to measure the effect of flipping an edge on the
Tanh-Margin loss. Flipping edges individually vs. jointly has a different effect on loss.

Figure 8: In some cases the gradient fails to measure the effect of flipping and edge on the
Cross-Entropy loss. Flipping edges individually vs. jointly has a different effect on loss.

C.1 INDUCTIVE SETTING, NON-STRATIFIED SAMPLING

Vanilla models. Here, we present additional results specifically for the inductive setting. With the
discussion in § 5 our main experimental setup is for inductive GNNs. In this section, we detail
the effectiveness of our method compared to other approaches. We show the results for CoraML,
Pubmed, and Citeseer datasets and vanilla models in tables 8, 9, 10, 11, 12, and 13. For each
dataset we compare our attack with SOTA on four models: GCN, GAT, APPNP, and GPRGNN. We
further compare the local variant of EvA with LRBCD under local-degree constraint for GCN, and
GPRGNN.

Models with robust training. Table 14 compares EvA and SOTA for models training with robust
training. During training of these models, we use an adversarial attack at each step to attack Gtr,
and then we retrain the model on the adversarially perturbed graph. The robust budget (ϵrobust) for
adversarial attack during training was 0.2. This process repeats in each epoch of training until the
model converges. Gosch et al. (2023) shows that models with adversarial and self training carry a
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Table 6: Classification accuracy (%) on the CoraML dataset in the transductive setting under
adversarial attacks. Results are reported for two GNN models subjected to three different attack
methods across varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN
LRBCD 79.88±1.52 77.66±1.84 72.61±1.38 65.84±1.44 60.80±1.82 56.86±1.92

PRBCD 79.48±1.70 77.26±1.59 71.85±1.80 65.49±1.73 60.49±2.29 56.07±2.36

EvA 77.38±1.87 74.12±1.99 65.68±1.97 60.49±2.31 58.72±2.57 57.41±2.51

GPRGNN
LRBCD 79.24±3.04 77.09±3.25 71.66±4.43 62.74±7.28 55.01±11.96 49.04±15.66

PRBCD 78.67±3.20 75.86±3.69 69.83±5.09 62.15±7.47 55.15±10.17 50.13±12.63

EvA 76.53±3.46 72.74±4.53 63.78±6.19 56.83±9.98 53.00±13.01 50.04±15.53

Table 7: Classification accuracy (%) on the CoraML dataset in the inductive setting under adversarial
attacks. Results are reported for two GNN models subjected to three different attack methods across
varying perturbation budgets ϵ. Training, validation, and test sets are stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN
LRBCD 80.00±2.70 77.43±2.58 71.43±2.72 65.50±3.91 61.21±4.25 57.64±4.54

PRBCD 78.71±2.80 75.29±3.42 67.86±3.43 59.50±3.50 53.00±4.14 48.43±3.73

EvA 77.00±2.86 71.36±3.29 54.36±4.73 44.29±3.28 40.86±3.73 37.29±3.73

GPRGNN
LRBCD 76.21±7.94 73.14±7.88 66.07±11.50 60.79±11.74 56.43±12.43 53.36±12.90

PRBCD 74.36±9.60 70.71±9.96 63.79±10.44 56.14±11.14 49.29±11.44 45.07±11.04

EvA 71.86±10.37 65.00±11.44 50.14±11.44 41.79±14.02 37.21±14.58 35.21±15.67

false sense of robustness in transductive setup, therefore same as other experiments we evaluate in
inductive setup. Similar to vanilla models, EvA outperforms all previous attacks.

C.2 COMPARING OUR METHOD WITH OTHER ATTACKS

In the main paper, we mainly focus on comparing EvA with PRBCD since it is the SOTA white-box
attack. Here, we provide a more comprehensive comparison with other attacks including DICE
(Zügner et al., 2018), FGSM (Xu et al., 2019), PGD (Zügner et al., 2018), and GRBCD (Geisler et al.,
2023). We compare all these methods on the CoraML and Pubmed dataset in Fig. 1, Table 15. As
shown, EvA outperforms all other attacks by a significant margin.

C.3 OGBN-ARXIV DATASET

To show the scalability of our attack on larger graphs, we present results on the large Ogbn-Arxiv
dataset. We compare EvA and PRBCD on the same setup as other experiments. In the main paper
and § D.3, we used arxiv with divide an concur and show it can outperform PRBCD. Further
we propose two other setups where the attack is more realistic: (i) Smaller perturbation budgets:
perturbing the Ogbn-Arxiv dataset with the same budget as an smaller graph like CoraML is
unrealistic. Therefore we can decrease ϵ, by one order of magnitude and evaluate both methods on
ϵ ∈ {0.1%, 0.5%, 1.0%}. The results for these budgets are summarized in Table 16. (ii) Simialrly
another realistic setup is that on a large graph, the adversary can access a smaller subset of control
nodes (e.g. 1000 nodes) with the objective to perturb a set of target nodes. As an example in a social
network, an attacker could purchase 1,000 user accounts and use them to influence the performance
of other subgroups. Here, we randomly sampled 1,000 nodes as control and 1,500 nodes as target for
5 rounds. We compared EvA without D&C and PRBCD and reported the average results in Table 17.
Our method outperforms PRBCD in this scenario as well.
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Table 8: Classification accuracy (%) on the CoraML dataset in the inductive setting under adversarial
attacks. Results are reported for four GNN models subjected to two different attack methods across
varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

APPNP EvA 76.65±1.32 71.03±1.44 56.51±1.60 49.32±1.84 44.77±2.04 41.42±1.41

PRBCD 78.65±0.99 75.30±1.27 68.75±1.22 61.57±1.65 55.44±1.58 49.96±2.42

GAT EvA 64.20±1.89 58.51±2.45 40.99±1.60 15.30±4.47 9.40±6.83 8.11±6.65

PRBCD 70.07±2.82 66.55±2.21 58.58±3.33 49.61±6.55 39.86±6.78 36.94±7.09

GCN EvA 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

PRBCD 76.44±1.64 73.17±1.39 66.48±2.13 58.51±1.77 52.67±2.09 47.19±2.02

GPRGNN EvA 72.53±4.11 66.83±4.54 51.53±5.57 42.21±8.52 37.01±9.83 34.52±9.83

PRBCD 74.95±3.08 71.67±2.76 64.84±4.18 57.94±4.55 53.24±5.20 48.68±6.52

Table 9: Classification accuracy (%) on the CoraML dataset in the inductive setting under adversarial
attacks. Results are reported for two GNN models subjected to five different attack methods across
varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN

EvA 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

EvaLocal 75.09±1.73 69.82±1.96 60.21±2.04 56.09±1.93 54.16±2.48 52.88±1.79

LRBCD 78.51±1.56 75.94±1.54 71.10±1.16 64.41±1.65 60.14±1.73 57.37±1.45

PRBCD 76.44±1.64 73.17±1.39 66.48±2.13 58.51±1.77 52.67±2.09 47.19±2.02

PGA 79.58±1.61 76.92±1.73 70.94±1.89 64.62±1.92 60.46±2.25 57.54±2.46

GPRGNN

EvA 72.53±4.11 66.83±4.54 51.53±5.57 42.21±8.52 37.01±9.83 34.52±9.83

EvaLocal 73.31±3.30 67.26±4.17 58.29±7.96 53.38±11.42 51.10±12.66 49.96±13.63

LRBCD 77.51±1.81 74.80±1.41 68.83±1.90 62.56±1.71 59.07±1.53 55.66±1.71

PRBCD 74.95±3.08 71.67±2.76 64.84±4.18 57.94±4.55 53.24±5.20 48.68±6.52

PGA 78.55±3.03 75.33±3.69 68.63±5.11 61.55±6.97 56.60±8.52 54.91±7.46

Table 16: Comparison of classification accuracy
(%) on the Ogbn-Arxiv dataset under EvA and
PRBCD across varying perturbation budgets ϵ.

Attack Clean 0.1% 0.5% 1%
PRBCD 70.53 69.83 68.64 66.27
EvA 70.53 69.21 67.59 66.86

Table 17: Comparison of classification accuracy
(%) on the Ogbn-Arxiv dataset under EvA and
PRBCD across varying perturbation budgets ϵ
using control nodes.

Attack Clean 1% 5%
PRBCD 64.89 54.7
EvA 59.3 53.92

In addition to both realistic cases, we compared EvA (with divide and conqure) to PRBCD in the
same setup as we evaluated for other datasets. The summarized result is illusterated in Fig. 5.

C.4 COMPARISON WITH (DAI ET AL., 2018B)

(Dai et al., 2018b) proposed a practical black-box attack (PBA), dividing it into PBA-C (with access
to logits - continuous) and PBA-D (access only to the labels - discrete). As stated in (Dai et al.,
2018b), a genetic algorithm for global attacks requires PBA-C because it relies on logits, with the
fitness function being the negative log-likelihood. We demonstrate that EvA not only eliminates
the need for logits but also performs even better by directly optimizing for accuracy rather than
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Table 10: Classification accuracy (%) on the PubMed dataset in the inductive setting under adversarial
attacks. Results are reported for four GNN models subjected to two different attack methods across
varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

APPNP EvA 73.85±2.35 69.64±2.16 57.07±2.32 47.03±2.18 43.94±1.83 41.93±2.18

PRBCD 75.54±2.34 72.44±2.28 65.14±2.26 57.15±2.59 51.04±2.79 45.75±2.60

GAT EvA 69.15±1.83 64.62±1.81 52.17±1.71 33.62±2.05 26.62±3.74 24.21±4.27

PRBCD 71.33±1.53 67.78±1.79 59.73±2.10 49.87±1.36 42.04±1.57 35.94±1.66

GCN EvA 72.60±2.19 68.35±2.41 56.15±1.92 42.93±2.64 40.46±2.76 39.11±2.98

PRBCD 74.99±1.99 71.90±2.03 64.16±2.32 55.54±2.79 49.32±2.66 43.90±3.09

GPRGNN EvA 72.01±4.18 67.61±4.28 55.95±4.32 51.49±7.51 49.18±7.83 42.39±9.63

PRBCD 74.37±3.40 71.66±3.55 64.51±4.94 56.21±6.46 50.26±7.41 45.81±8.47

Table 11: Classification accuracy (%) on the PubMed dataset in the inductive setting under adversarial
attacks. Results are reported for two GNN models subjected to four different attack methods across
varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN

EvA 72.60±2.18 68.35±2.41 56.15±1.92 42.93±2.64 40.46±2.76 39.11±2.98

EvaLocal 74.12±2.19 69.99±2.04 63.43±2.76 61.51±2.64 61.01±2.79 60.54±2.64

LRBCD 74.89±2.04 71.48±2.49 65.68±2.90 60.24±3.15 56.81±3.02 54.07±2.99

PRBCD 74.99±1.99 71.90±2.03 64.16±2.32 55.54±2.79 49.32±2.66 43.90±3.09

GPRGNN

EvA 72.01±4.18 67.61±4.28 55.95±4.32 51.49±7.51 49.18±7.83 42.39±9.63

EvALocal 73.01±4.18 69.10±3.83 62.77±6.59 60.51±8.10 59.72±8.91 59.31±9.50

LRBCD 74.50±3.66 71.57±4.10 65.88±6.12 60.33±5.70 56.75±7.74 53.75±8.18

PRBCD 74.37±3.40 71.66±3.55 64.51±4.94 56.21±6.46 50.26±7.41 45.81±8.47

using log-likelihood. To compare our method with (Dai et al., 2018b), we modified the algorithm’s
fitness function and mutation mechanism to replicate the results reported in (Dai et al., 2018b). This
implementation retains scalability benefits, as it is also built upon our sparse encoded representation.
Note here we re-implement Dai et al. (2018b) in our sparse and parallelized framework. Their
original implementation uses dense adjacency matrices and sequential evaluation and would achieve
a significantly worse result within the same memory/run-time constraint. Even with our efficient
re-implementation Dai et al. (2018b) is significantly worse than ours. Table 18 provides the results
for the CoraML dataset using the GCN architecture. EvA also significantly outperforms (Dai et al.,
2018b).

Additionally, since our method is independent of gradients, we established the first attack on conformal
prediction and certification. For conformal prediction, we attack coverage and set size where the latter
criteria are not yet explored (to the best of our knowledge). Attacks tending to decrease certificate
effectiveness are also under-explored in GNNs. In this work, we aim to achieve both attack on
certified accuracy and certified ratio.

D TECHNICAL DETAILS OF EVA

Rigorous definition for components in EvA. We define a genetic solver with of four main compo-
nents. (i) Population: a set of feasible answers to the problem that gradually improve over iterations.
Here, each candidate is a perturbation to the original graph, a vector of indices at which an edge will
flip; formally si ∈ [n2 (n− 1)]δ . Indices are calculated via a mapping Π : [n]2 7→ [n2 (n− 1)] that is
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Table 12: Classification accuracy (%) on the Citeseer dataset in the inductive setting under
adversarial attacks. Results are reported for four GNN models subjected to two different attack
methods across varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

APPNP EvA 86.90±1.11 83.93±0.94 74.29±0.88 65.00±1.15 59.76±2.33 54.76±1.19

PRBCD 87.26±0.90 85.48±1.49 81.79±1.08 76.55±0.68 72.44±1.66 69.29±1.69

GAT EvA 81.54±1.39 76.78±2.22 67.14±3.65 51.19±4.21 37.74±4.94 27.62±9.49

PRBCD 84.52±2.27 82.62±2.20 76.55±5.59 70.00±6.09 67.02±4.27 63.15±4.19

GCN EvA 86.67±1.71 82.86±2.12 72.74±2.74 58.33±3.01 49.76±3.22 44.29±3.33

PRBCD 87.38±1.81 85.83±2.43 80.95±2.06 74.29±4.22 69.76±4.34 67.62±4.96

GPRGNN EvA 87.26±2.75 83.81±2.50 73.45±3.17 61.43±4.66 55.48±3.84 50.12±4.86

PRBCD 88.45±2.29 86.31±2.45 82.02±2.61 77.14±2.84 73.93±3.89 69.64±3.47

Table 13: Classification accuracy (%) on the Citeseer dataset in the inductive setting under
adversarial attacks. Results are reported for two GNN models subjected to four different attack
methods across varying perturbation budgets ϵ. Training, validation, and test sets are non-stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN

EvA 86.67±1.71 82.86±2.12 72.74±2.74 58.33±3.01 49.76±3.22 44.29±3.33

EvaLocal 87.38±1.65 83.57±2.17 78.21±3.17 76.43±2.62 75.00±3.23 74.52±3.16

LRBCD 88.45±2.17 86.43±2.71 83.69±2.48 80.12±3.30 78.45±3.89 75.36±4.81

PRBCD 87.38±1.81 85.83±2.43 80.95±2.06 74.29±4.22 69.76±4.34 67.62±4.96

GPRGNN

EvA 87.26±2.75 83.81±2.50 73.45±3.17 61.43±4.66 55.48±3.84 50.12±4.86

EvaLocal 87.50±2.27 84.29±2.04 80.48±3.96 77.86±4.56 76.43±5.06 75.12±6.57

LRBCD 89.76±2.50 87.98±2.48 85.12±2.76 81.90±2.83 79.64±4.08 78.45±4.92

PRBCD 88.45±2.29 86.31±2.45 82.02±2.61 77.14±2.84 73.93±3.89 69.64±3.47

an enumeration on the upper triangle of the n× n adjacency matrix (see § D). The corresponding
perturbation matrix Pi is simply defined as Pi[pt, qt] = Pi[qt, pt] = 1 where (pt, qt) = Π−1(si[t])
for every index t. The initial population is selected randomly. (ii) Fitness: is a notion of how close to
optimal each candidate is. For any loss function L we define the fitness function fit : [n2 (n−1)]δ 7→ R,
as fit(si) = L(X,A⊕Pi,y). Regardless of differentiability, as long as the loss function has enough
sensitivity to contrast between various individuals, we use it directly to compute the fitness (special
case in § 4). (iii) Crossover: is an operation to generate new population candidate via combining
two existing ones. The (single joint) crossover operation at joint j defines a new candidate vector
snew = crossj(s1, s2) := s1[: j] •s2[j+1 :] where • is the concatenation of two vectors. Crossover
operation with kcross > 1 joints is defined recursively in the order of joints. The number of crossovers
is a hyperparameter (see § E), and their locations is chosen randomly in the range of canididates’
length. The candidates for cross-over are chosen through a “tournament”. In each tournament, ntour

random candidates are compared, and the parent candidates are selected based on their fitness. This
process repeats for t generations. (iv) Mutation: introduces further exploration to the new population.
The function mutate : [n2 (n− 1)]δ 7→ [n2 (n− 1)]δ is a random mapping of a candidate to another. A
simple example of mutation is to changes each index with some mutation probability p to any random
index in the range. We propose better mutation operators later.

Mapping function: enumeration over A. For enumerating over A, instead of using the row and
column indices of the node to select, we introduced indexing. For a directed graph, the indexing
starts from 0 to n2 − 1. However, in an undirected graph, we only need the upper triangular part of
the matrix A. To achieve this, we use the following algebraic solution to find the row and column of
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Table 14: Classification accuracy (%) on the CoraML dataset in the inductive setting under adversarial
attacks. Results are reported for two GNN models with or without adversarial training subjected to
three different attack methods across varying perturbation budgets ϵ. Training, validation, and test
sets are stratified.

Model Adv. Tr. Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

G
C

N

None
LRBCD 78.51±1.56 75.94±1.54 71.10±1.16 64.41±1.65 60.14±1.73 57.37±1.45

PRBCD 76.44±1.64 73.17±1.39 66.48±2.13 58.51±1.77 52.67±2.09 47.19±2.02

EvA 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

LRBCD
LRBCD 79.64±1.77 77.51±2.41 73.10±1.54 68.19±1.11 64.84±1.92 62.35±3.00

PRBCD 78.79±1.88 75.87±1.41 69.75±1.81 62.35±2.70 56.80±3.04 54.23±4.71

EvA 76.80±1.29 71.10±1.64 56.30±1.66 48.40±2.91 43.06±2.43 40.85±2.70

PRBCD
LRBCD 80.71±1.16 77.86±0.81 73.81±0.54 69.40±0.91 66.48±1.08 63.77±1.73

PRBCD 78.93±1.27 76.30±1.27 70.25±1.74 64.06±1.83 59.50±2.84 56.58±4.53

EvA 76.80±0.77 71.53±1.65 57.44±2.13 49.11±3.05 44.70±2.96 41.92±3.32

EvA
LRBCD 80.85±1.36 78.58±0.99 74.66±1.11 69.89±0.93 66.98±0.92 65.05±1.08

PRBCD 79.79±1.80 76.51±1.31 71.25±1.54 64.34±1.97 60.43±1.32 58.22±2.26

EvA 77.22±1.87 71.96±2.38 57.94±3.08 50.04±3.29 44.91±3.44 42.63±2.33

G
PR

G
N

N

None
LRBCD 77.51±2.81 74.80±3.08 68.83±4.20 62.56±4.69 59.07±5.98 55.66±6.99

PRBCD 74.95±3.08 71.67±2.76 64.84±4.18 57.94±4.55 53.24±5.20 48.68±6.52

EvA 72.53±4.11 66.83±4.54 51.53±5.57 42.21±8.52 37.01±9.84 34.52±9.83

LRBCD
LRBCD 81.57±2.58 79.72±2.22 75.59±2.31 71.32±2.20 68.97±2.10 66.69±2.25

PRBCD 80.71±2.61 78.51±2.29 72.88±2.38 66.90±1.95 61.78±1.99 57.51±3.72

EvA 78.79±2.69 72.95±2.67 63.42±3.15 56.58±4.68 52.88±5.61 49.96±5.75

PRBCD
LRBCD 80.43±2.01 78.01±1.91 73.74±1.66 69.96±2.14 67.19±2.51 64.84±3.20

PRBCD 80.21±2.43 77.30±2.63 71.53±2.67 65.12±3.21 60.07±4.10 55.37±3.85

EvA 78.79±2.45 73.10±2.54 62.85±4.93 56.94±6.64 53.74±7.65 51.60±8.10

EvA
LRBCD 79.64±0.89 76.44±0.68 72.95±1.04 69.04±1.26 67.05±1.46 65.48±1.88

PRBCD 78.51±0.60 75.87±1.32 70.32±0.89 64.91±1.14 59.57±1.75 56.16±1.62

EvA 76.51±0.44 70.96±0.41 60.85±3.07 54.73±3.99 50.25±5.57 48.83±5.95

Table 15: Performance of different attack methods under varying budgets on Pubmed dataset.

Attack 0.01 0.02 0.05 0.10 0.15
DICE 79.00 78.76 78.69 78.06 77.90
PGA 74.61 70.20 58.44 48.18 47.37
GRBCD 76.14 73.56 64.51 54.63 49.37
PRBCD 74.99 71.90 64.16 55.54 49.32
EvA 72.60 68.35 56.15 42.93 40.46

Table 18: Comparison of classification accuracy (%) on the CoraML dataset under EvA and (Dai
et al., 2018b) across varying perturbation budgets ϵ.

Attack Clean 0.01 0.02 0.05 0.1 0.15 0.2

(Dai et al., 2018b) 81.07±2.07 78.50±1.66 76.66±2.22 72.53±1.91 68.75±1.45 65.34±1.20 63.27±2.47

EvA 81.07±2.07 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

the perturbation by referencing only the upper triangular indexing.

r = n− 2−

⌊√
−8l + 4n(n− 1)− 7
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The advantage of this solution is that it can also be implemented in a vectorized way, making
everything parallelizable.

Attacking robustness certificates. We define a randomized model as a convolution of the original
model and a smoothing scheme. Namely the procedure or smooth inference is to add a noise (defined
by the smoothing scheme) to the input, and evalute the model on the noisy input. The output of the
smooth classifier is the probability of the top class over realizations of the noise (this is the output of
the smooth classifier binary certificate; for confidence certificate the output is the expected softmax
scores). The smoothing scheme ξ : X 7→ X is a randomized function mapping the given input to
a random nearby point. For graph structure, we use the sparse smoothing certificate (Bojchevski
et al., 2020), which certifies whether within Bra,rd the prediction of the smooth model remains the
same. Here ra is the maximum number of possible additions, and rd is the maximum number of edge
deletions. The smoothing function is defined by two Bernoulli parameters p+, and p−; i.e. for each
entity of A, if it is zero, it will be toggled with p+ probability and otherwise with p−. The same
smoothing scheme (and threat model) can be defined for features if the feature space is also binary
and sparse. Setting p+ = p− reduces the certificate to uniform smoothing certificate for ℓ1 ball.

Smoothing certificates require black-box access to the model f . As described above the smooth
classifier is defined as f̄y(x) = E[I[f(ξ(x)) = y]] - each random sample x′ is one vote for class
f(x′) and f̄y is the proportion of votes for class y. Regardless of the model f , the smooth model f̄
changes slowly around the input. Let p = f̄y(x); for the smooth classifier we can find a lower bound
probability p ≥ minx̃∈B(x) f̄y(x̃) and define the certificate as a decision function I[y ≥ 0.5]. This
decision function ensures that the predicted class still remains the top-class for any point within the
threat model. For details including the optimization function and how to compute certified lower
bound see (Bojchevski et al., 2020).

Whether a node (an input in general) is certified reduces to whether the smooth prediction probability
for the input is above a threshold p̄. This is due to the non-decreasing property of the certified ratio
with respect to p̄. Additionally since the certificate is only a function of the probability and not the
input, we can find this value easily via binary search. Therefore our objective is to decrease the
probability of the smooth classifier below p̄ for as many node as possible.

Adaptive sampling for certificate attack. Statistical rigor is not a necessity while attacking the
certificate. Therefore, we can reduce the sampling rate to a low number while finding the perturbation.
Later to ensure that our attack has reduces the certified ratio we again follow the proper certificate
configuration. During the attack, we can reduce the cost of resampling by only resampling the subset
of the graph that was perturbed. In other words, we initialize the search by computing and storing
samples A1, . . . ,Am from the clean graph, and for each perturbation Ã we only need to resample
the edges in A△Ã. Specifically for any edge removed from the graph during perturbation we update
original sample A1, . . . ,Am with p+ Bernoulli samples in the same index of the added edge. Similar
process is done with p− random edge removals for edges added in the perturbation. We substitute
those samples in the same entry of A1, . . . ,Am, and by running this process |δ| times, we assume
that Ã1, · · · Ãm are representative as a new set of m samples for Ã. This adaptive sampling reduces
the number of random computations from m · n2 to m · |δ|, which is significantly lower. Surely,
to evaluate the final perturbation (the reported effectiveness), we don’t use this approach, as it is
statistically flawed and only applicable to reduce the computation during the attack.

D.1 LABEL DIVERSITY

We further conduct an ablation study on the solutions found by EvA and PRBCD under a specific
budget of 10%. In this experiment, we keep all hyperparameters of EvA and PRBCD fixed and run
them across 10 different seeds. We then compare the average solutions generated by each adversary.
The left figure in Fig. 9 shows the number of connections across different labels. In both cases, the
methods focus more on label 5 than on the others, but EvA distributes the connections more uniformly
compared to PRBCD. The middle figure illustrates the nodes with original degrees ranging from 1 to
greater than 8. The results indicate that, in both attacks, most of the budget is spent connecting to
low-degree nodes. However, compared to PRBCD, EvA allocates more of the budget to higher-degree
nodes. Additionally, we calculate the margin loss for each node in the original graph and discretize
them into eight levels. As shown in the right figure of Fig. 9, EvA allocates more of the budget to
higher-margin nodes, resulting in a non-trivial solution that achieves a better optimum. Finally, it
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seems that EvA identifies solutions that differ from greedy-based heuristic, which usually only targets
low-degree or low-margin nodes.

D.2 TIME ANALYSIS

We run an ablation study comparing PRBCD, and EvA for wall clock time and memory. In EvA, the
number of steps controls the time and the size of the population (assuming all population is evaluated
at once using stacked inference) controls the memory. Similarly for PRBCD, time is controlled by
the number of epochs controls the time and memory is a function of block size. We evaluate EvA
with different numbers of steps, population sizes, and parallel evaluations, and PRBCD with varying
numbers of epochs and block sizes on the Pubmed dataset. Fig. 10 (left) shows the results for EvA
and PRBCD in terms of memory usage, wall clock time and method performance. Our method
demonstrates comparable performance within the same level of wall clock time (less than a minute).
Moreover, by increasing the wall clock time—through and memory either by a larger population size
or more steps— EvA enhances in performance. This is while PRBCD an almost constant trend given
more time or memory.

Additionally, in Fig. 10, we highlight how our framework provides a trade-off between time and
memory for achieving the same level of accuracy by varying the number of parallel evaluations. For
each point in the figure, we observe roughly the same performance; however, the methods differ in
memory usage due to different number of parallel evaluation, leading to variations in wall clock time.

D.3 DIVIDE AND CONQUER

Computing gradients w.r.t. all elements in matrix A is computationally intensive. And as the graph
grows the elements for which we should compute and store gradient increases quadratically. As a
remedy PRBCD applies a block-coordinate gradient descent where in each iteration the gradients
are computed over a subset of indices in A. Intuitively PRBCD works under this assumption that a
relaxation from A to a (random) subset of adjacency matrix does change the optimal solution by a
high margin. In Fig. 11 for Ogbn-Arxiv dataset, we increased the block size of PRBCD, from the
suggested 3M to 10M, and still the result is far from EvA. Beyond that block size could not fit into
the memory.

While EvA works with sparse representation of A still the search space (2|A|) grows exponentially
with the number of nodes. Via divide and conquer (D&C) we apply relaxation where we assume
a sequential search for optimal attack targeting disjoint subsets of Vatt does not result far from the
optimal solution for the entire Vatt. Therefore we divide this set into k disjoint subsets and run the
attack over each subset separately. Our attack applies on subsets in a sequential order meaning that
after attacking one subset, the attacked graph is assumed to be the clean baseline to attack the other
set. At the final round, the attack carries all the perturbations applied on Vatt. To ensure the validity
of the result, we divide the budget according to the edges connected to each subset.
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Figure 9: The upper triangle of each heatmap represents the perturbation connections for PRBCD,
the lower triangle corresponds to the same for EvA, and the diagonal is set to zero.
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Figure 10: Comparing the memory usage between EvA and PRBCD.

As our D&C approach is applicable regardless of the attack algorithm we can similarly apply it to
PRBCD. Although it does not outperform EvA, we show that adding D&C to PRBCD increases the
performance by a significant margin.
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Figure 11: Effect of Divide on Conquer on EvA and PRBCD.

E DATASETS AND MODELS, AND HYPERPARAMETERS

E.1 STATISTICS OF DATASETS

In our experiments, we mainly conduct experiments on the commonly used graph datasets: CoraML,
Citeseer, and Pubmed, which are all representative academic citation networks. Their specific
characteristics are as follows:

CoraML. The CoraML dataset contains 2,810 papers as nodes, with citation relationships between
them as edges, resulting in 7,981 edges. Each paper is categorized into one of 7 classes corresponding
to different subfields of machine learning. Each node is represented by a 1,433-dimensional bag-of-
words (BoW) feature vector derived from the words in the titles and abstracts of the papers.

Citeseer. The Citeseer dataset is also an academic citation network dataset consisting of 3,312
papers from 6 subfields of computer science and a total of 4,732 citation edges. Similar to CoraML,
each paper as a node is represented by a BoW feature vector with a dimensionality of 3,703.

Pubmed. The Pubmed dataset is derived from a citation network of biomedical literature that
contains 19,717 papers as nodes and 44,338 citation edges. Each paper is categorized into one of 3
classes based on its topic. The node features in Pubmed are 500-dimensional vectors.

Amazon-Computers and Amazon-Photo. The Amazon-Computers and Amazon-Photo
datasets consists of two networks of Amazon Computers and Amazon Photo. In these networks,
nodes represent individual goods sold on Amazon, and edges indicate that two products are frequently
purchased together. Each node is accompanied by bag-of-words features derived from product
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reviews, providing a textual representation of the item’s description and customer feedback. The task
is predicting the product category.

Table 19: Dataset statistics.

Dataset Nodes Edges Features Classes
CoraML 2,810 7,981 1,433 7
Citeseer 3,312 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 491,722 767 10
Amazon-Photo 7,650 238,162 745 8

E.2 DETAILS OF MODELS

In the following sections, we detail the hyperparameters and architectural details for the models
performed in this paper.

GCN. We utilize a two-layer GCN with 64 hidden units. A dropout rate of 0.5 is applied during
training.

GAT. Our GAT model consists of two layers with 64 hidden units and a single attention head.
During training, we apply a dropout rate of 0.5 to the hidden units, but no dropout is applied to the
neighborhood.

APPNP. We use a two-layer MLP with 64 hidden units to encode the node attributes. We then
apply generalized graph diffusion, using a transition matrix and coefficients γK = (1 − α)K and
γl = α(1− α)l for l < K.

GPRGNN. Similar to APPNP, we employ a two-layer MLP with 64 hidden units for the predictive
part. We use the symmetric normalized adjacency matrix with self-loops as the transition matrix and
randomly initialize the diffusion coefficients. We consider a total of K = 10 diffusion steps, with α
set to 0.1. During training, we apply a dropout rate of 0.2 to the MLP, while no dropout is applied
to the adjacency matrix. Unlike the method in Chien et al. (2021), we always learn the diffusion
coefficients with weight decay, which acts as a regularization mechanism to prevent the coefficients
from growing indefinitely.

SoftMedian GDC. We follow the default configuration from Geisler et al. (2023), using a temperature
of T = 0.2 or the SoftMedian aggregation, with 64 hidden dimensions and a dropout rate of 0.5.
We fix the Personalized PageRank diffusion coefficient to α = 0.15 and apply a top k = 64
sparsification. During the attacks, the model remains fully differentiable, except for the sparsification
of the propagation matrix.

MLP. We design the MLP following the prediction module of GPRGNN and APPNP, incorporating
two layers with 64 hidden units. During training, we apply a dropout rate of 0.2 to the hidden layer.

E.3 HYPERPARAMETER SETUP

In EvA we set the capacity of the computation to the same as the population, this means that all
perturbations within a population are in one combined inference. However, in some cases where the
graph is large (e.g. Pubmed), we reduce this number.

Table 20 shows the hyper-parameter selection in almost all experiments. We only change the
population number in some experiments, like certificate attacks, to reduce the computation. E.g., in
the certificate attack, the population is reduced by a factor of 10. Finally, all of the experiments has
been run in one Nvidia H100 gpu.

E.4 ATTACK HYPERPARAMETERS

To assess the robustness of GNNs, we utilize the following attacks and hyperparameters. Based on
Geisler et al. (2023), we also select the tanh-margin loss as the attack objective.
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Table 20: Hyper-parameters for PRBCD, LRBCD, and EvA.

Hyper-parameter PRBCD LRBCD Hyper-parameter EvA
Epochs 500 500 No. Steps 500
Fine-tune Epochs 100 0 Mutation Rate 0.01
Keep Heuristic WeightOnly WeightOnly Tournament Size 2
Search Space Size 500,000 500,000 Population Size 1,024
Loss Type tanhMargin tanh-Margin No. Crossovers 30
Early Stopping N/A False Mutation Method Adaptive

PRBCD. We closely adhere to the setup outlined by Geisler et al. (2023). A block size of 500,000 is
used with 500 training epochs. Afterward, the model state from the best epoch is restored, followed
by 100 additional epochs with a decaying learning rate and no block resampling. Additionally, the
learning rate is scaled according to δ and the block size, as recommended by Geisler et al. (2023).

LRBCD. The same block size of 500,000 is used with 500 training epochs. The learning rate is
scaled based on δ and the block size, following the same approach as PRBCD. The local budget is
consistently set as 0.5.

EvA. We set the population size to 1024 in most cases. Our mutation rate is 0.01, and increasing this
number breaks the balance between exploration and exploitation, leading to less effective attacks.
We run each attack for 500 iterations in most cases. In cases like certificate attacks, which are
time-consuming, we reduce this number to 100. The details are summarized in Table 20.

For Ogbn-Arxiv dataset we divide the Vatt to kdc = 98 subsets where each division includes
500 vertices. There we set the population size to 45 candidates. The δi for subset i is set to
ϵi = ϵ · |E [Vi : V|. We also reduce the number of iterations for EvA to 300 for each subset while for
PRBCD this number remains 500.

EvA-Local. All hyper-parameters are the same as EvA. An additional hyper parameter is twarm

which is the number of initial steps where the random local projection is applied instead of the
frequency score-based local projection. This number is set to 50 for Pubmed dataset. Interestingly
even without this projection, EvALocal outperforms LRBCD for Citeseer and CoraML datasets.
There we only remove random matchings from the nodes with degree violation until the total violation
reaches 0. This approach does not work on the Pubmed dataset. The intuition is that since Pubmed
larger and more dense compared to other datasets, for each candidate there are a lot of edges that has
at least one endpoint violating the local constraint. Therefore removing many edges from a candidate,
and replacing them by random edge adds a large random noise to each condidate at each iteration.
Therefore the search is done over a very noisy setup.

PGA. For the PGA, we adopt the same setting as in Zhu et al. (2023). We use GCN as the surrogate
model and tanhMarginMCE-0.5 as the loss type. The attack is configured with 1 greedy step, a
pre-selection ratio of 0.1, and a selection ratio of 0.6. Additionally, the influence ratio is set to 0.8,
with the selection policy based on node degree and margin.
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