

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 RESOLVING THE DUPLICATE-FEATURE PARADOX WITH RESHAP: A REDUNDANCY-WEIGHTED GEN- ERALIZATION OF SHAPLEY ATTRIBUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Shapley-value-based feature attribution methods are widely used to explain machine learning model predictions. However, these methods suffer from a critical flaw, often observed when features are duplicated, its total contribution to the model prediction is unfairly inflated, diminishing the attribution of other important features. This paradox arises because traditional Shapley-based methods allocate joint contributions equally across all participating features, regardless of redundancy or informational overlap.

In this work, we propose ReSHAP, a redundancy-aware generalization of Shapley attribution that systematically resolves the duplicate-feature paradox. ReSHAP adjusts the allocation of credit within feature coalitions by down-weighting features that contribute redundant information. We begin by proving that no attribution method can simultaneously satisfy equal division and duplication-invariance, even in instances without redundant features. This reveals a fundamental trade-off in designing fair attribution methods. Building on this insight, ReSHAP redefines how Shapley values are computed by redistributing interaction terms across feature subsets using a recursive weighting scheme, using only the standard value function without additional distributional assumptions. We support our theoretical findings with illustrative examples and experiments, highlighting the practical effectiveness of ReSHAP.

1 INTRODUCTION

The indisputable and growing impact of artificial intelligence (AI) on various areas of human life comes hand in hand with growing concerns about the lack of understanding of how these methods make decisions. Although the algorithms used to train such models are well understood, the outcomes of the training process often remain opaque. The lack of transparency and control over the inner workings of AI systems, combined with the massive complexity of models that often exceed human cognitive capacity, raises significant concerns about the explainability of their results. This, in turn, has sparked growing interest in Explainable AI (XAI) techniques, which aim to clarify and interpret AI model outputs Dazeley et al. (2021); Adadi & Berrada (2018); Linardatos et al. (2021); Gunning et al. (2019); Saeed & Omlin (2023). In fact, a wide range of XAI methods have emerged, reflecting the multi-faceted nature of the explainability problem. One of the most popular and widely used approaches applies the game-theoretic concept of Shapley values Shapley (1953) to the field of XAI. Shapley values originated in cooperative game theory and have been adapted to attribute an AI model’s prediction to its input features in a principled way.

Shapley values offer significant explanatory power for interpreting model predictions. The method has a solid theoretical foundation that ensures a fair allocation of importance to features. These properties have made Shapley-value-based explanations highly attractive. However, the applicability of exact Shapley values remains limited due to the computational overhead of evaluating all 2^n feature subsets. To address this, various methods have been introduced to overcome the computational challenges. Some approaches approximate Shapley values, such as SHAP (SHapley Additive exPlanations) and Kernel SHAP, introduced in Lundberg & Lee (2017), which use a linear approximation to estimate the model output based on subsets of input features. Other methods exploit structural properties of specific model classes to compute Shapley values exactly and efficiently,

such as TreeSHAP Lundberg et al. (2020), which is tailored for tree-based models. For neural networks, DeepSHAP Lundberg et al. (2020) leverages the connection between SHAP and DeepLIFT to efficiently approximate Shapley values by backpropagating contribution scores.

Despite the explanatory power offered by Shapley values and their widespread adoption in the machine learning community, several limitations of the framework are well documented. The work Kumar et al. (2020) presents both mathematical and human-centric issues associated with the method. Some concerns, such as the fact that Shapley values only apply to decompose the difference between the model prediction and its expected value, arise from how the method is applied. These can be addressed, for example, by comparing the model output to an alternative reference value Merrick & Taly (2020), or by decomposing other types of values; see, e.g., Owen & Prieur (2017). However, other limitations, such as the *duplicate-feature paradox*, remain valid criticisms of Shapley value-based methods. The duplicate-feature paradox concerns a situation in which, for a model function $f(x_1, \dots, x_n)$ with n features, a proxy function $f'(x_1, x_1, \dots, x_n)$ is constructed by duplicating an input feature (e.g., x_1), resulting in a model with $n + 1$ features. In such a case, the contribution of the remaining features $\{x_j : j \in [n] \setminus \{1\}\}$ can be significantly diminished. This is not merely a contrived pathological example; similar effects arise when features are highly correlated, for instance, when one feature is a statistical proxy of another. This simple case, which we adopt as a running example in this paper, illustrates a broader issue: subsets of features can interact with other subsets in more intricate ways, leading to distorted attributions of individual feature contributions as computed by Shapley values.

Various methods have been proposed to address the duplicate-feature paradox. Aas et al. (2021) modify the background distribution in Kernel SHAP to better approximate Shapley values under Gaussian assumptions, but this doesn't resolve the core issue in the Shapley framework. Similar background-modulating approaches, like Merrick & Taly (2020), and modeling-intensive methods such as Frye et al. (2020), reweight permutations to improve attribution, yet lack a universal principle for selecting weights. Kwon & Zou (2022) propose learning these weights from data. Basu & Maji (2022) take a different approach, decorrelating features via linear projections before computing Shapley values. Meanwhile, Owen (1977) propose a group-based method, computing Shapley values first across feature groups and then within them, effective for exact duplicates, but not subtle or cross-group dependencies. Finally, KL-divergence-based methods, such as Watson et al. (2023) and Ay et al. (2020), redefine the value function underlying Shapley attributions, offering alternatives in contexts like precedence constraints or information decomposition, posing a computational challenge to get additional information about the probability distributions.

Contribution. We propose a novel framework to resolve the duplicate-feature paradox. First, we prove that no attribution method can satisfy both the equal division property and resolve the paradox, even when no redundant features are present (see Theorem 9). This result is of independent interest to cooperative game theory. Building on our first result, we propose an intuitive and efficient method that resolves the duplicate-feature paradox at both individual and subset levels (see Theorem 11). It adjusts Shapley values by accounting for feature redundancy, with small computational overhead. We supplement this with examples demonstrating how redundant features distort standard Shapley values and how the ReSHAP method resolves these cases. Finally, using the real-world AMES dataset, we illustrate that for an MLP model, adding duplicated features leaves ReSHAP attributions of non-duplicated features largely unchanged, while standard Shapley values show significant shifts in their relative importance.

2 PRELIMINARIES

We start by defining the Shapley values more formally. For $n \in \mathbb{N}$, let $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{Y} \subseteq \mathbb{R}$. Let Ω be a sample space, define a family of random variables $X_i : \Omega \mapsto \mathcal{R}$ for $i \in [n]$ and a random vector $X : \Omega \mapsto \mathcal{X}$, given by $X = (X_1, \dots, X_n)$. We consider a model function $f : \mathcal{X} \mapsto \mathcal{Y}$, such that $f(X) : \Omega \mapsto \mathcal{Y}$ is a real-valued random variable obtained by composing f with X .

Let (x_1, \dots, x_n) be a realization of the random vector X . For any subset $S \subseteq [n]$, let $\bar{S} := [n] \setminus S$. We assume that for every $S \subseteq [n]$, the conditional distribution of $X_{\bar{S}}$ given X_S is well defined. Thus, we can define:

$$\nu(S) := \mathbb{E}[f(x_S, X_{\bar{S}}) \mid X_S = x_S]. \quad (1)$$

108 Note that the function ν should, in principle, also be parameterized by f and x , as it depends on
 109 the model and the input point. However, for the sake of readability, we omit these extra parameters,
 110 since throughout the paper we will compute values for a fixed model f and sample point x . In case
 111 parameters f and x are needed they appear in superscript, e.g., $\nu^{f,x}(S)$. A similar convention is
 112 applied to the Shapley values, defined as follows:

113 **Definition 1** (Shapley values). *For $i \in [n]$, the marginal contribution of feature i , called the Shapley
 114 value, is defined as:*

$$115 \quad \psi_i := \sum_{S \subseteq [n] \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (\nu(S \cup \{i\}) - \nu(S)).$$

119 3 REFORMULATION OF SHAPLEY VALUES

121 Let $\mu : 2^{[n]} \mapsto \mathbb{R}$ be a signed set function for $T \subseteq [n]$ defined via the Möbius inversion of the value
 122 function ν :

$$123 \quad \mu(T) := \sum_{[n] \setminus T \subseteq S \subseteq [n]} (-1)^{|T|-|[n] \setminus S|+1} (\nu(S) - \nu(\emptyset)). \quad (2)$$

126 The value $\mu(S)$, for $S \subseteq [n]$, represents the portion of the total contribution that arises uniquely
 127 from the joint interaction among the features in S , excluding contributions from any of the features
 128 outside S . In other words, it captures the pure interaction effect attributable to the combination of
 129 features in S . The signed measure μ can be seen as obtained by lifting ν via the Radon–Nikodym
 130 derivative. Note that the values $\mu(S)$ for $S \subseteq [n]$ form a basis that is distinct from the one derived
 131 via unanimity games, also known as Harsanyi dividends van den Brink & Funaki (2025). While the
 132 Harsanyi basis is more commonly used in the context of Shapley values, the basis induced by the
 133 μ values proves to be more convenient for the types of derivations and decompositions we aim to
 134 perform in this work.

135 Alternatively, one can think of μ as a partition of the space into disjoint regions such that for every
 136 $S \subseteq [n]$ we have $\nu(S) - \nu(\emptyset) = \sum_{T \cap S \neq \emptyset} \mu(T)$. Lemma 2 proves this more formally.

137 **Lemma 2.** *For every $S \subseteq [n]$*

$$138 \quad \nu(S) - \nu(\emptyset) = \sum_{T \cap S \neq \emptyset} \mu(T),$$

141 *if and only if for every $T \subseteq [n]$, $T \neq \emptyset$*

$$143 \quad \mu(T) := \sum_{[n] \setminus T \subseteq S \subseteq [n]} (-1)^{|T|-|[n] \setminus S|+1} (\nu(S) - \nu(\emptyset)).$$

145 *Proof.* We start by proving the 'only if' direction. It holds:

$$147 \quad \nu(S) - \nu(\emptyset) = \sum_{T \cap S \neq \emptyset} \mu(T) = \sum_{T \subseteq [n]} \mu(T) - \sum_{T \subseteq [n] \setminus S} \mu(T).$$

150 Let M be equal to $\sum_{T \subseteq [n]} \mu(T)$. For the change of variables $A = [n] \setminus S$, let $F(A) = \sum_{T \subseteq A} \mu(T)$
 151 which gives

$$153 \quad \nu([n] \setminus A) - \nu(\emptyset) = M - \sum_{T \subseteq A} \mu(T) = M - F(A). \quad (3)$$

155 We can use a general inclusion-exclusion formula based on Möbius inversion and zeta transforma-
 156 tion for the function $F(A)$ Graham et al. (1996) which yields that

$$157 \quad F(A) = \sum_{T \subseteq A} \mu(T),$$

160 *if and only if*

$$161 \quad \mu(T) = \sum_{A \subseteq T} (-1)^{|T|-|A|} F(A). \quad (4)$$

162 Transforming Equation 3 for $F(A)$ and plugging into Equation 4 yields
 163

$$\begin{aligned} 164 \quad \mu(T) &= \sum_{A \subseteq T} (-1)^{|T|-|A|} (M - \nu([n] \setminus A) + \nu(\emptyset)) \\ 165 \\ 166 \quad &= M \sum_{A \subseteq T} (-1)^{|T|-|A|} - \sum_{A \subseteq T} (-1)^{|T|-|A|} (\nu([n] \setminus A) - \nu(\emptyset)) \\ 167 \\ 168 \quad &= \sum_{A \subseteq T} (-1)^{|T|-|A|+1} (\nu([n] \setminus A) - \nu(\emptyset)), \\ 169 \\ 170 \end{aligned}$$

171 where the last equality holds for $T \neq \emptyset$ because of the identity $\sum_{A \subseteq T} (-1)^{|T|-|A|} = (1-1)^{|T|} = 0$.
 172 Changing the variables back to $S = [n] \setminus A$ yields
 173

$$\begin{aligned} 174 \quad \mu(T) &= \sum_{[n] \setminus S \subseteq T} (-1)^{|T|-|[n] \setminus S|+1} (\nu(S) - \nu(\emptyset)) = \sum_{[n] \setminus T \subseteq S \subseteq [n]} (-1)^{|T|-|[n] \setminus S|+1} (\nu(S) - \nu(\emptyset)), \\ 175 \\ 176 \end{aligned}$$

177 which finishes the only if implication. To prove the ‘if’ direction, it suffices to reverse the steps. \square
 178

179 As a result, we can redefine the Shapley values through the measure μ .
 180

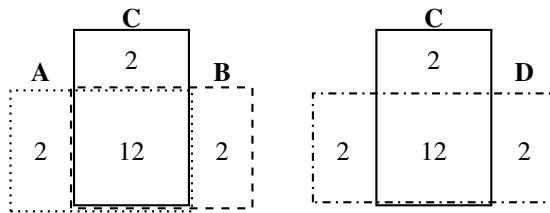
Lemma 3. *For $i \in [n]$, the Shapley value of feature i can be expressed in the form*

$$\begin{aligned} 181 \quad \psi_i &:= \sum_{T \supseteq \{i\}} \frac{1}{|T|} \mu(T). \\ 182 \\ 183 \end{aligned}$$

184 *Proof.* Proof in Appendix A.
 185

186 **Observation 4** (Equal division). *The alternative formulation of Shapley values given in Lemma 3*
 187 *gives rise to the equal division property van den Brink & Funaki (2025), which can also be derived*
 188 *from the four Shapley Axioms. Although this property is classically stated with respect to the una-*
 189 *nimity game (Harsanyi) basis, it also holds for our basis defined by the values $\mu(S)$ for $S \subseteq [n]$.*
 190 *Specifically, the equal division property asserts that each atomic contribution $\mu(S)$ is equally di-*
 191 *vided among all features $i \in S$.*
 192

193 The equal division property is visualized in Figure 1.



201 Figure 1: Venn diagrams showing μ values for examples of two functions, with 3 features on the left
 202 and 2 features on the right. The equal division property implies that in the left case $\mu(\{A, B, C\}) =$
 203 12 is split equally among 3 features, A , B and C , while in the right case $\mu(\{C, D\}) = 12$ is split
 204 equally among 2 features, C and D .
 205

207 4 DUPLICATE-FEATURE PARADOX

209 Building upon the Shapley values reformulation introduced in the *Reformulation of Shapley values*
 210 section, we more formally introduce the duplicate-feature paradox in this section and present con-
 211 crete examples that highlight its impact on standard Shapley values. The *duplicate-feature paradox*
 212 refers to the phenomenon where duplicating an input feature leads to a decrease in the Shapley value
 213 of the unduplicated feature(s), while the total attribution to the duplicated features increases. This
 214 contradicts the intuitive expectation that duplicating identical information should not affect the re-
 215 sulting attribution. The paradox extends to the case when, instead of simply duplicating features, we
 add redundant features. We start with the definition of a redundant feature.

216 **Definition 5** (Redundant feature). Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a model function, and let ν be a corresponding
 217 value function (e.g., as defined in Equation 1). A feature $j \in [n]$ is called redundant if there
 218 exists a subset $S \subseteq [n] \setminus \{j\}$ such that

$$219 \quad 220 \quad \nu(S \cup \{j\}) = \nu(S).$$

221 **Lemma 6.** Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a model function, and let ν be a corresponding value function (e.g.,
 222 as defined in Equation 1). Define a new model function $f' : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ by

$$223 \quad 224 \quad f'(x_1, \dots, x_n, x_{n+1}) := f(x_1, \dots, x_n) \quad \text{for all } x \in \mathbb{R}^{n+1}.$$

225 Then, f' satisfies this identity if and only if there exists a set $S \subseteq [n]$ such that

$$226 \quad 227 \quad \nu^{f'}(S \cup \{n+1\}) = \nu^f(S).$$

228 *Proof.* We prove the only if direction. Assume that for every $x \in \mathbb{R}^{n+1}$

$$229 \quad 230 \quad f'(x_1, \dots, x_n, x_{n+1}) := f(x_1, \dots, x_n) \quad \text{for all } x \in \mathbb{R}^{n+1}.$$

231 Since by definition of value function ν , Equation 1, it holds that

$$232 \quad 233 \quad \nu^{f,x}([n]) = f(x_1, \dots, x_n) \text{ and} \\ 234 \quad \nu^{f',x}([n+1]) = f'(x_1, \dots, x_n, x_{n+1}),$$

235 the claim holds for $S = [n]$. To prove the if direction, it is enough to reverse the steps.

□

238 **Definition 7** (Duplication-invariance). Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a model function, let $f' : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$
 239 be any extended model function in which the feature x_{n+1} is redundant. Let $\nu : 2^{[n+1]} \rightarrow \mathbb{R}$ be a
 240 value function (e.g., as defined in Equation 1). A feature attribution function $\phi_i \in \mathbb{R}$ for $i \in [n+1]$,
 241 computed from ν , is said to be duplication-invariant if the following holds:

$$242 \quad 243 \quad \phi_i^{f'} = \phi_i^f \quad \text{for all } i \in [n] \setminus S, \\ 244 \quad 245 \quad \sum_{k \in S \cup \{n+1\}} \phi_k^{f'} = \sum_{k \in S} \phi_k^f,$$

247 where $S \subseteq [n]$ is a minimal set satisfying the condition in Definition 5.

249 The cornerstone of this research is the fact that Shapley values are not *duplication-invariant*, as we
 250 demonstrate with the following examples.

252 **Example 8.** Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a model function that estimates the value of real estate based
 253 on a random vector with two components: the property size X_S and property location X_L (both
 254 understood as real numbers). Let x_S and x_L be the specific values of size and location for which
 255 the model predicts the price.

256 Assume that the conditional expectations have been computed, yielding the following ν values:

$$257 \quad 258 \quad \nu(\emptyset) = 500, \quad \nu(\{S\}) = 850, \quad \nu(\{L\}) = 850, \quad \nu(\{S, L\}) = 900.$$

259 From these, the Möbius coefficients can be computed via Lemma 2:

$$261 \quad \mu(\{S\}) = 50, \quad \mu(\{L\}) = 50, \quad \mu(\{S, L\}) = 300.$$

262 This leads to the following Shapley values (via Lemma 3):

$$264 \quad 265 \quad \psi_S = \mu(\{S\}) + \frac{1}{2}\mu(\{S, L\}) = 200, \quad \psi_L = \mu(\{L\}) + \frac{1}{2}\mu(\{S, L\}) = 200.$$

266 Now consider a modified model $f' : \mathbb{R}^3 \rightarrow \mathbb{R}$, where the size feature is duplicated, resulting in X_{S_1}
 267 and X_{S_2} . The new model is defined as $f'(x_{S_1}, x_{S_2}, x_L) := f(x_S, x_L)$, where $x_{S_1} = x_{S_2} = x_S$,
 268 which leads to the following ν values (all the other are zero):

$$269 \quad \nu(\emptyset) = 500, \nu(\{S_1\}) = \nu(\{S_2\}) = \nu(\{L\}) = \nu(\{S_1, S_2\}) = 850, \nu(\{S_1, L\}) = \nu(\{S_2, L\}) = \nu(\{S_1, S_2, L\}) = 900.$$

270 which leads to the Möbius coefficients via Lemma 2 (all the other are zero):
 271

$$272 \quad \mu(\{S_1, S_2\}) = 50, \quad \mu(\{L\}) = 50, \quad \mu(\{S_1, S_2, L\}) = 300.$$

274 As before, we compute the Shapley values for model f' . Lemma 3 gives:
 275

$$276 \quad \psi_{S_1} = 125, \quad \psi_{S_2} = 125, \quad \psi_L = 150.$$

278 Adding a duplicate variable, which introduces no new information, causes the contribution of the
 279 location feature to decrease from 200 to 150. Moreover, further duplication of the size variable
 280 can reduce the location attribution even more, potentially down to 50. In such a case, the original
 281 entire joint contribution $\mu(\{S, L\})$ would be allocated exclusively to the duplicated size variables,
 282 marginalizing the location feature entirely. This paradox illustrates a fundamental flaw in standard
 283 Shapley-based explanations: duplicating a feature (without adding any new information) can un-
 284 fairly inflate its contribution at the expense of others. Notably, this effect is not limited to perfect
 285 copies of features; it can also occur when adding statistical proxies or correlated duplicates. More-
 286 over, while detecting perfect duplicates, statistical proxies, or correlated features is possible, the
 287 paradox can be present in more intricate cases involving redundancy of information across subsets
 288 of features, where detection is not easy, but still leads to problematic cases, as illustrated with the
 289 next example. Another example of this type, where a feature is redundant but a duplicate is pre-
 290 sented, is presented in Appendix B.

291 5 EQUAL DIVISION VS DUPLICATE-FEATURE PARADOX

294 Equal division is a fundamental property that is often desirable for feature attribution methods.
 295 While many approaches, including Shapley values, successfully satisfy this property, most fail to sat-
 296 isfy duplication-invariance. As highlighted in Definition 7, any method that resolves the duplicate-
 297 feature paradox in the presence of redundant variables, violates equal division by enforcing un-
 298 changed attributions for other features. An ideal attribution method would preserve equal division
 299 in instances that do not contain redundant features, and permit its violation only in the presence of
 300 redundant variables. In the following theorem, we show that no attribution method can satisfy equal
 301 division on all non-redundant instances while also satisfying duplication-invariance. In other words,
 302 these two properties are fundamentally incompatible.

303 **Theorem 9.** *There does not exist a duplication-invariant attribution method that satisfies the equal*
 304 *division property even for instances that do not contain redundant features.*

306 *Proof.* For contradiction, assume that there exists a duplicate invariance attribution method ψ that
 307 satisfies equal division also on instances without redundant variables. Consider the two instances
 308 described in Observation 4. By construction, both instances contain no redundant features.
 309

310 In the first instance (with features A , B , and C), the equal division property yields

$$312 \quad \psi_C = \mu(\{C\}) + \frac{1}{3}\mu(\{A, B, C\}) = 2 + 4 = 6.$$

314 In the second instance (with features C , D), the same property gives

$$316 \quad \psi_C = \mu(\{C\}) + \frac{1}{2}\mu(\{C, D\}) = 2 + 6 = 8.$$

318 Now imagine extending the first instance by adding the feature D from the second instance, and ex-
 319 tends the second instance by adding features A and B from the first. This results in both extended
 320 instances being identical. By duplication-invariance, the attribution for feature C must remain un-
 321 changed in both instances. However, ψ_C in the first instance and in the second are different, which
 322 is a contradiction. Thus, the only way to reconcile this contradiction is to allow that at least one of
 323 the instances violated the equal division property, even though both contained no redundant features.
 324 This contradicts our assumption, completing the proof. \square

324 **6 RESHAP: A REDUNDANCY-WEIGHTED GENERALIZATION OF SHAPLEY
325 ATTRIBUTION**

328 Several approaches have been proposed in the literature to address redundancy limitations of Shapley
329 values, many of which involve modifying the weight vector, either directly in the form presented in
330 Definition 1, or through its equivalent formulation using permutations; see, e.g., Frye et al. (2020);
331 Kwon & Zou (2022). In this section, we build upon the reformulation of Shapley values presented
332 in the *Reformulation of Shapley values* section.

333 The Shapley values introduced in Lemma 3 provide an explicit decomposition of contributions
334 across all interaction terms between features. Compared to the standard permutation-based defi-
335 nition, this formulation allows us to precisely localize contributions to specific subsets of features.
336 Leveraging this, we propose a new approach to compute redundancy-invariant Shapley values by
337 introducing custom weight vectors at the level of the Möbius coefficients μ , which operate directly
338 on the atomic intersection structure of feature subsets. Since it introduces modifications directly at
339 the level where the equal division property originates, this enables us to approach a solution to the
340 duplicate-feature paradox; see Theorem 9.

341 Here, we propose a method that satisfies the redundancy-invariant property. From Theorem 9 we
342 know that such a method must reconsider the equal division of atomic intersections of features even
343 for the most basic instances like the one in Example 8. To better translate the theoretical results in
344 Example 8 into a concrete attribution method, recall from Definition 5 that for any redundant feature
345 j , there exists a set $S \subseteq [n] \setminus \{j\}$ such that $\nu(S \cup \{j\}) = \nu(S)$. According to duplication-invariance
346 (Definition 7), we require that the attributions assigned to features outside of S remain unchanged
347 after adding the redundant feature j and that the total attribution mass assigned to features in S must
348 remain the same before and after adding j . Intuitively, in the Venn diagram interpretation, adding
349 feature j does not increase the overall volume associated with the region defined by S ; it only
350 subdivides it into smaller regions that now include j . Our approach is to assign attribution to each of
351 these subregions proportionally, based on their contribution to the original volume associated with
352 S .

353 Compared to correlation-based approaches (see Appendix C), this method accounts for interactions
354 between feature subsets of arbitrary cardinality. Redundancy is measured by comparing the volume
355 of specific atomic regions in the Venn diagram to the overall volume of the region. More precisely to
356 compute the fraction of attribution from $\mu(T)$ that is assigned to $i \in T$ we compute the independent
357 contribution of i for T but also contributions of subsets of T containing i for T . Such subsets
358 then further divide these contributions among their features until the final contribution for each
359 individual feature is computed. For clarity of presentation, we describe our method recursively,
360 highlighting how attribution within intersecting regions is progressively reallocated among features
361 as redundancy is introduced.

362 We are ready to present the final definition of ReSHAP. Note that the computational complexity of
363 ReSHAP is presented in Appendix F and the comparison with other methods is in Appendix G.

364

365 **Definition 10** (ReSHAP). *The ReSHAP method assigns to each feature $i \in [n]$ an attribution score*

366

$$\phi_i := \sum_{T \subseteq [n]} w_i(T) \cdot \mu(T),$$

367 where for every $T \subseteq [n]$, $w_i(T) \in [0, 1]$ are feature-specific redistribution weights satisfying:
368 $\sum_{i \in T} w_i(T) = 1$ where $w_i(T) = 0$ for $i \notin T$ and $w_i(T)$ for $i \in T$ are computed by the recursive
369 redistribution procedure described in Algorithm 1.

370

371

372

373

374

375

376 **Theorem 11.** *Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a model function, and let $f' : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a model extension in
377 which the feature x_{n+1} is redundant. A ReSHAP feature attribution function $\phi_i \in \mathbb{R}$ for $i \in [n+1]$,
378 is duplication-invariant.*

378 **Algorithm 1** Recursive Redistribution of Möbius Mass for ReSHAP

```

379 1: For a fixed  $T$ , initialize  $w_i(T) := 0$  for all  $i \in [n]$ 
380 2: call Distribute( $S = T, \mu(T)$ )
381 3: procedure DISTRIBUTE( $S$ , mass)
382 4:   if  $|S| = 1$  then
383 5:     let  $i$  be the unique element of  $S$ 
384 6:      $w_i(T) \leftarrow w_i(T) + \text{mass}$ 
385 7:     return  $w_i(T)$ 
386 8:   else
387 9:     if  $\sum_{\emptyset \neq V \subset S} |\mu(V)| = 0$  then
388 10:      for all  $i \in S$  do
389 11:         $\xi(\{i\}) \leftarrow \frac{1}{|S|}$ 
390 12:        DISTRIBUTE( $\{i\}, \xi(\{i\}) \cdot \text{mass}$ )
391 13:      end for
392 14:    else
393 15:      for all non-empty  $U \subset S$  do
394 16:         $\xi(U) \leftarrow \frac{|\mu(U)|}{\sum_{\emptyset \neq V \subset S} |\mu(V)|}$ 
395 17:        DISTRIBUTE( $U, \xi(U) \cdot \text{mass}$ )
396 18:      end for
397 19:    end if
398 20:  end if
399 21: end procedure
400
401
402 Proof. We want to prove that
403
404
405
406
407
408
409
410 where  $S \subseteq [n]$  is a minimal set satisfying the condition in Definition 5.
411
412 We start with proving the second one. Indeed, note that, since for the redundant feature  $n + 1$  we
413 have  $\nu(S \cup \{n + 1\}) = \nu(S)$  it implies that  $\mu(\{n + 1\}) = 0$  (it provides no new information
414 to the system). Thus in the recursive redistribution, if  $\sum_{V \subset T} \mu(V) \neq 0$  feature  $n + 1$  gets no
415 mass assigned, that is  $\xi(\{n + 1\})$  is always zero since the numerator  $\mu(\{n + 1\})$  is zero. On the
416 other hand if  $\sum_{\emptyset \neq V \subset S} |\mu(V)| = 0$  the mass is equally distributed among the features in  $S$  so the
417 redundant feature gets mass only at the cost of other features from  $S$ . This implies that all the
418 mass from features in  $S$  after adding redundant feature  $n + 1$  goes again to features in  $S$  so it is
419 preserved. To prove the first condition, given that the second one holds, it suffices to argue that for
420 all  $T \subseteq [n]$  every recursive step in Algorithm 1 redistributes mass  $\mu(T)$  only among features  $i \in T$ ,
421 and preserves it. So the remaining mass for features outside  $S$  goes with the same amount before
422 and after adding feature  $n + 1$  and it is redistributed proportionally to their individual mass  $\mu$  thus
423 stays unchanged after adding feature  $n + 1$ . □
424
425
426 

## 7 ANALYSIS AND EMPIRICAL EVALUATION


427
428 

### 7.1 CASE STUDIES ON SYNTHETIC EXAMPLES


429
430 We revisit the two running examples introduced earlier in Example 8 and B (In Appendix D) and
431 compute ReSHAP attributions alongside standard Shapley values. This illustrates how the recursive
432 redistribution alters feature importance in the presence of duplicates and redundant features.

```

432 We start with Example 8. Recall that after adding a duplicate feature of S we had the following
 433 values of μ (all others = 0):

$$434 \quad \mu(\{L\}) = 50, \mu(\{S_1, S_2\}) = 50, \mu(\{S_1, S_2, L\}) = 300.$$

435 Now for every nonzero value of $\mu(T)$ we call Algorithm 1 to compute weights $w_i(T)$ for all features.

437

- 438 • We start with $T = \{L\}$: since T is a singleton, Algorithm 1 assigns $w_L(\{L\}) = 50$.
- 439 • For $T = \{S_1, S_2\}$, since $\mu(S_1) = \mu(S_2) = 0$, the algorithm splits equally $\mu(\{S_1, S_2\})$,
 440 yielding $w_{S_1}(\{S_1, S_2\}) = w_{S_2}(\{S_1, S_2\}) = 25$.
- 441 • Finally, for $T = \{S_1, S_2, L\}$ the algorithm proportionally splits the mass of 300 with
 442 $\xi(\{S_1, S_2\}) = \xi(\{L\}) = 0.5$, which in the recursive call gives $w_{S_1}(\{S_1, S_2, L\}) =$
 443 $w_{S_2}(\{S_1, S_2, L\}) = 75$ and $w_L(\{S_1, S_2, L\}) = 150$.

444 This, by Definition 10, leads to ReSHAP values:

$$445 \quad \phi_{S_1} = \phi_{S_2} = 100, \quad \phi_L = 200,$$

446 which coincides with the distribution of ψ values before adding a duplicate, where contribution of
 447 S was split between S_1 and S_2 .

448 ReSHAP performance for the second example from Appendix B is presented in Appendix D.

452 7.2 SMALL-SCALE REAL DATA EXPERIMENT

453 To provide a proof of concept, we conducted a small experiment (the full experiment can be found in
 454 Appendix E) on the well-known *Ames Housing* dataset, which contains detailed information on 79
 455 explanatory variables related to residential properties. The dataset includes both numerical and cat-
 456 egorical variables, covering a broad range of structural and qualitative characteristics of the houses.
 457 The target variable is the *SalePrice*, representing the sale price of the properties. For our exper-
 458 iment, we focus on three key features that are both meaningful and highly predictive: the above-
 459 ground living area (*Gr Liv Area*), the overall quality of the house (*Overall Qual*), and the
 460 total number of rooms above grade (*TotRms AbvGrd*).

461 A Multi-Layer Perceptron (MLP) model was trained on this dataset. Feature attribution was per-
 462 formed using both standard SHAP values and our proposed ReSHAP values, which distribute pre-
 463 dictions contributions across input features. To evaluate explanation robustness, we conducted con-
 464 trolled experiments in which we introduced redundancy either by duplicating an existing feature
 465 or by including a correlated feature. The goal was to examine how stable SHAP and ReSHAP at-
 466 tributions remain when redundancy is present. Stability was quantified using diagnostic measures
 467 P and R , which capture the change in relative importance of a non-redundant feature before and
 468 after introducing redundancy, measured respectively with SHAP and ReSHAP values. Their ratio
 469 P/R serves as a stability indicator: values close to one indicate similar behavior between SHAP and
 470 ReSHAP, whereas larger values reveal instability in SHAP that ReSHAP successfully mitigates.

471 The results, summarized in Table 3, show clear differences between the two modes. In the duplicate-
 472 feature setting (*dup_qual1*), SHAP exhibited more instability compared to ReSHAP, with a mean
 473 $|P/R|$ of 5.49 across 100 test points, reflecting large shifts in feature importance. In the correlated-
 474 feature setting (*totrms*), the instability was smaller but still present, with a mean $|P/R|$ of 2.53.
 475 Once again, ReSHAP produced more consistent explanations. These findings confirm that ReSHAP
 476 provides a more robust and reliable attribution framework, even in real-world data.

478 8 CONCLUSIONS AND FUTURE WORK

480 In this paper, we introduced ReSHAP, a redundancy-aware generalization of Shapley attribution that
 481 resolves the duplicate-feature paradox while retaining the canonical value function and compati-
 482 bility with existing SHAP frameworks. There are many promising avenues for future work. A first
 483 direction is to optimize the computation of exact and approximate ReSHAP values, for example
 484 by leveraging TreeSHAP and KernelSHAP techniques to accelerate the underlying Shapley evalua-
 485 tions. Further experimental validation on larger benchmarks, as well as extensions to other domains
 such as time series data, also represent important directions for future research.

486 REFERENCES
487

488 Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions when features are
489 dependent: More accurate approximations to shapley values. *Artificial Intelligence*, 298:103502,
490 2021.

491 Abdelrahman Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explain-
492 able artificial intelligence (xai). *IEEE Access*, 6:52138–52160, 2018. doi: 10.1109/ACCESS.
493 2018.2870052.

494 Nihat Ay, Daniel Polani, and Nathaniel Virgo. Information decomposition based on cooperative
495 game theory. *Kybernetika*, 56(5):979–1014, 2020. doi: 10.14736/KYB-2020-5-0979. URL
496 <https://doi.org/10.14736/kyb-2020-5-0979>.

497 Indranil Basu and Subhadip Maji. Multicollinearity correction and combined feature effect in
498 shapley values. *arXiv preprint arXiv:2011.01661*, 2021. URL <https://arxiv.org/abs/2011.01661>. Version 1, submitted on 3 Nov 2020.

499 Indranil Basu and Subhadip Maji. Multicollinearity correction and combined feature effect in shap-
500 ley values. In *Australasian Joint Conference on Artificial Intelligence*, pp. 79–90. Springer, 2022.

501 Richard Dazeley, Peter Vamplew, Cameron Foale, Courtney Young, Santosh Aryal, and Fernando
502 Cruz. Levels of explainable artificial intelligence for human-aligned conversational explanations.
503 *Artificial Intelligence*, 299:103525, 2021. doi: 10.1016/j.artint.2021.103525.

504 Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley values: incorporating causal
505 knowledge into model-agnostic explainability. *Advances in neural information processing sys-
506 tems*, 33:1229–1239, 2020.

507 R. L. Graham, M. Grötschel, and L. Lovász (eds.). *Handbook of combinatorics (vol. 2)*. MIT Press,
508 Cambridge, MA, USA, 1996. ISBN 0262071711.

509 David Gunning, Mark Stefk, Jill Choi, Timothy Miller, Simone Stumpf, and G-Z. Yang.
510 Xai—explainable artificial intelligence. *Science Robotics*, 4(37):eaay7120, 2019. doi: 10.1126/
511 scirobotics.aaay7120.

512 I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler. Prob-
513 lems with shapley-value-based explanations as feature importance measures. In *International
514 conference on machine learning*, pp. 5491–5500. PMLR, 2020.

515 Yongchan Kwon and James Y Zou. Weightedshap: analyzing and improving shapley based feature
516 attributions. *Advances in Neural Information Processing Systems*, 35:34363–34376, 2022.

517 Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable ai: A review of
518 machine learning interpretability methods. *Entropy*, 23(1):18, 2021. doi: 10.3390/e23010018.

519 Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In *Advances
520 in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017. URL <https://doi.org/10.48550/arXiv.1705.07874>.

521 Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit
522 Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
523 understanding with explainable ai for trees. *Nature machine intelligence*, 2(1):56–67, 2020.

524 Luke Merrick and Ankur Taly. The explanation game: Explaining machine learning models using
525 shapley values. In *Machine Learning and Knowledge Extraction: 4th IFIP TC 5, TC 12, WG 8.4,
526 WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland,
527 August 25–28, 2020, Proceedings 4*, pp. 17–38. Springer, 2020.

528 Art B Owen and Clémentine Prieur. On shapley value for measuring importance of dependent inputs.
529 *SIAM/ASA Journal on Uncertainty Quantification*, 5(1):986–1002, 2017.

530 Guillermo Owen. Values of games with a priori unions. In *Mathematical economics and game
531 theory: Essays in honor of Oskar Morgenstern*, pp. 76–88. Springer, 1977.

540 Wasif Saeed and Christian Omlin. Explainable ai (xai): A systematic meta-survey of cur-
541 rent challenges and future opportunities. *Knowledge-Based Systems*, 263:110273, 2023. doi:
542 10.1016/j.knosys.2023.110273.

543 Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker (eds.),
544 *Contributions to the Theory of Games II*, pp. 307–317. Princeton University Press, Princeton,
545 1953.

547 René van den Brink and Yukihiko Funaki. Combining the Shapley value and the equal division
548 solution: an overview. *Theory and Decision*, July 2025. ISSN 1573-7187. doi: 10.1007/
549 s11238-025-10050-2. URL <https://doi.org/10.1007/s11238-025-10050-2>.

550 David S. Watson, Joshua O’Hara, Niek Tax, Richard Mudd, and Ido Guy. Explaining pre-
551 dictive uncertainty with information theoretic shapley values. In Alice Oh, Tristan Nau-
552 mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances
553 in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
554 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
555 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/16e4be78e61a3897665fa01504e9f452-Abstract-Conference.html.

557 Zhenyu Zhao, Radhika Anand, and Mallory Wang. Maximum relevance and minimum redun-
558 dancy feature selection methods for a marketing machine learning platform. *arXiv preprint
559 arXiv:1908.05376*, 2019. URL <https://arxiv.org/abs/1908.05376>.

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **USAGE OF LLMs IN PAPER**
595

596 During the preparation of this work, we made use of the large language model ChatGPT (OpenAI,
597 GPT-5) to support two aspects of the research. First, it was employed to improve the readability
598 and style of the manuscript by rephrasing draft passages into clearer, more concise academic text.
599 Second, it was used to assist in the implementation of the computational experiments, for example
600 by suggesting code fragments, debugging strategies, and formatting options for tables and figures.
601 All conceptual contributions, experimental design decisions, and interpretation of the results remain
602 the responsibility of the authors. The use of ChatGPT was limited to supporting tasks, and the
603 scientific content, analysis, and conclusions of this paper were produced entirely by the authors.

604 **A PROOF OF LEMMA 3**
605

606 We start with plugging in formulation from Lemma 2 into the definition of Shapley values to get
607

$$610 \quad \psi_i = \sum_{S \subseteq [n] \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} \sum_{\substack{T \supseteq \{i\} \\ T \cap S = \emptyset}} \mu(T) = \sum_{S \subseteq [n] \setminus \{i\}} \sum_{\substack{T \supseteq \{i\} \\ T \cap S = \emptyset}} \frac{|S|!(n-|S|-1)!}{n!} \mu(T)$$

$$614 \quad = \sum_{T \supseteq \{i\}} \sum_{\substack{S \subseteq [n] \setminus \{i\} \\ S \cap T = \emptyset}} \frac{|S|!(n-|S|-1)!}{n!} \mu(T) = \sum_{T \supseteq \{i\}} \mu(T) \sum_{k=0}^{n-|T|} \binom{n-|T|}{k} \frac{k!(n-k-1)!}{n!}$$

618 where, after the change of variables $r = n - |T| - k$ we get
619

$$620 \quad \sum_{k=0}^{n-|T|} \binom{n-|T|}{k} \frac{k!(n-k-1)!}{n!} = \frac{(n-|T|)!}{n!} \sum_{k=0}^{n-|T|} \frac{(n-k-1)!}{(n-|T|-k)!} = \frac{(n-|T|)!}{n!} \sum_{r=0}^{n-|T|} \frac{(r+|T|-1)!}{r!},$$

624 which is equal to $\frac{1}{|T|!}$, see Lemma 12.
625

626 **Lemma 12.** *For every $n \in \mathbb{N}$ and $m \leq n$ it holds:*

$$628 \quad \sum_{r=0}^{n-m} \frac{(r+m-1)!}{r!} = \frac{n!}{(n-m)!} \frac{1}{m}.$$

631 *Proof.* Indeed, using the Pascal identity for binomial coefficients we know that
632

$$633 \quad \binom{r+m}{r} = \binom{r+m-1}{r-1} + \binom{r+m-1}{r},$$

636 which implies the following identity

$$637 \quad \frac{(r+m)!}{r!} - \frac{(r+m-1)!}{(r-1)!} = m \frac{(r+m-1)!}{r!}.$$

640 Plugging into the original summation yields

$$642 \quad \sum_{r=0}^{n-m} \frac{(r+m-1)!}{r!} = \frac{1}{m} \sum_{r=0}^{n-m} \left(\frac{(r+m)!}{r!} - \frac{(r+m-1)!}{(r-1)!} \right) = \frac{1}{m} \frac{n!}{(n-m)!}$$

645 where the last equality holds since the expression in the summation is a telescopic sum where all the
646 elements cancel out except of the term $\frac{(r+m)!}{r!}$ for $r = n - m$.
647

□

648 **B EXAMPLE FOR SHAPLEY VALUES FOR REDUNDANT NONDUPLICATED
649 FEATURE**
650

651 Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be a model function that estimates the risk of credit default based on a random
652 vector with three components: annual income X_A , debt-to-income ratio X_B , and credit score X_C
653 (all understood as real numbers). Let x_A , x_B , and x_C be specific values under which the model
654 predicts the risk.

655 Assume the following values of the ν function, for the sake of simplicity we assume $\nu(\emptyset) = 0$:

656
$$\begin{aligned} \nu(\{A\}) &= 14 & \nu(\{C\}) &= 14 & \nu(\{A, B\}) &= 16 & \nu(\{A, B, C\}) &= 18 \\ \nu(\{B\}) &= 14 & \nu(\{A, C\}) &= 16 & \nu(\{B, C\}) &= 16 \end{aligned}$$

657 The Möbius coefficients can be computed via Lemma 2 (all others= 0), see also Figure 2 on the left:

658
$$\mu(\{A\}) = 2, \quad \mu(\{B\}) = 2, \quad \mu(\{C\}) = 2, \quad \mu(\{A, B, C\}) = 12.$$

659 This leads to the Shapley values (via Lemma 3):

660
$$\begin{aligned} \psi_A &= \mu(\{A\}) + \frac{1}{3}\mu(\{A, B, C\}) = 2 + \frac{1}{3} \cdot 12 = 6, \\ \psi_B &= \mu(\{B\}) + \frac{1}{3}\mu(\{A, B, C\}) = 2 + \frac{1}{3} \cdot 12 = 6, \\ \psi_C &= \mu(\{C\}) + \frac{1}{3}\mu(\{A, B, C\}) = 2 + \frac{1}{3} \cdot 12 = 6. \end{aligned}$$

661 Now consider a modified model $f' : \mathbb{R}^4 \rightarrow \mathbb{R}$, where a new feature, total monthly loan payment
662 X_D , is added. This feature is partially determined by X_A and X_B , lying in their algebraic span, but
663 it is neither a copy of X_A nor of X_B . It adds information to X_A and X_B individually but adds no
664 new information beyond their joint contribution.

665 In this case, suppose the value function ν takes the following values:

666
$$\begin{aligned} \nu(\{A\}) &= 14 & \nu(\{D\}) &= 14 & \nu(\{A, D\}) &= 15 & \nu(\{C, D\}) &= 16 & \nu(\{A, C, D\}) &= 17 \\ \nu(\{B\}) &= 14 & \nu(\{A, B\}) &= 16 & \nu(\{B, C\}) &= 16 & \nu(\{A, B, C\}) &= 18 & \nu(\{B, C, D\}) &= 17 \\ \nu(\{C\}) &= 14 & \nu(\{A, C\}) &= 16 & \nu(\{B, D\}) &= 15 & \nu(\{A, B, D\}) &= 16 & \nu(\{A, B, C, D\}) &= 18 \end{aligned}$$

667 The corresponding Möbius coefficients are (all others= 0), see also Figure 2 on the right:

668
$$\begin{aligned} \mu(\{A\}) &= 1 & \mu(\{C\}) &= 2 & \mu(\{B, D\}) &= 1 \\ \mu(\{B\}) &= 1 & \mu(\{A, D\}) &= 1 & \mu(\{A, B, C, D\}) &= 12 \end{aligned}$$

669 As before, using Lemma 3, the Shapley values for f' are:

670
$$\begin{aligned} \psi_A &= \mu(\{A\}) + \frac{1}{2}\mu(\{A, D\}) + \frac{1}{4}\mu(\{A, B, C, D\}) = 4.5, \\ \psi_B &= \mu(\{B\}) + \frac{1}{2}\mu(\{B, D\}) + \frac{1}{4}\mu(\{A, B, C, D\}) = 4.5, \\ \psi_C &= \mu(\{C\}) + \frac{1}{4}\mu(\{A, B, C, D\}) = 5, \\ \psi_D &= \frac{1}{2}\mu(\{A, D\}) + \frac{1}{2}\mu(\{B, D\}) + \frac{1}{4}\mu(\{A, B, C, D\}) = 4. \end{aligned}$$

671 Again, we observe that adding a new variable, although not a copy of any existing variable or a
672 subset thereof, and contributing no new information, leads to a decline in the value of feature C
673 from 6 to 5. Further addition of similar variables could reduce the attribution of C even further,
674 potentially down to its standalone contribution of 2.

675 **C POTENTIAL OF USING CORRELATIONS TO ADDRESS REDUNDANCY**
676

677 In this subsection, we consider simpler measures for feature dependence such as correlation. For
678 instance, if two features have a high Pearson correlation, we might consider them partly redundant

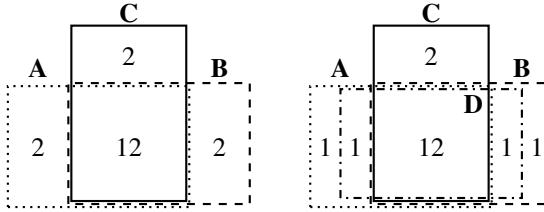


Figure 2: Venn diagrams showing μ values for Example B for models with 3 features (left) and 4 features (right).

and reduce the individual attributions accordingly. Indeed, some earlier heuristics for feature importance recommend grouping or discounting highly correlated features Zhao et al. (2019). However, using correlations alone to *solve* for the duplicate-feature problem has its limitations.

First, correlation typically measures pairwise dependency, capturing relationships between two variables at a time. However, feature redundancy can involve higher-order interactions that pairwise correlations miss. For instance, two features may be uncorrelated with the target individually but informative together (e.g., XOR). Similarly, features may appear uncorrelated yet exhibit redundancy when considered with a third variable (see Example B). Thus, pairwise correlation is insufficient to detect such dependencies.

Secondly, even with pairwise relationships, correlation is symmetric and offers no guidance on attribution between correlated features. For example, if features A and B correlate at 0.9, how should their Shapley values be split? Arbitrary adjustments risk violating Shapley axioms or producing inconsistent explanations. That said, some recent works have implicitly used correlation information to refine explanations. For example, Merrick & Taly (2020) use cohort clustering to reduce feature dependence by grouping instances with lower within-group correlations. Another exception is Aas et al. (2021), who generalize Kernel SHAP by replacing independence assumptions with data-driven conditional sampling, implicitly leveraging feature correlations for more accurate attributions. Finally, Basu & Maji (2021) apply a linear adjustment using the covariance matrix to account for feature dependencies via linear correlations. These approaches indicate that incorporating correlation can improve attribution fairness, but they also reveal the limitations we discussed: the linear adjustment proposed by Basu & Maji (2021), for example, guarantees that attributions no longer depend on feature correlations in a linear sense, but it assumes the relationships are well-modeled by covariance (a Gaussian assumption) and doesn't directly extend to non-linear dependencies.

D RESHAP PERFORMANCE FOR EXAMPLE B

For Example B (four features after adding D), the nonzero Möbius values are (all others = 0):

$$\mu(\{A\}) = \mu(\{B\}) = 1, \mu(\{C\}) = 2, \mu(\{A, D\}) = \mu(\{B, D\}) = 1, \mu(\{A, B, C, D\}) = 12.$$

Apply Algorithm 1 to each nonempty T .

- For all the singletons we get directly $w_A(\{A\}) = 1, w_B(\{B\}) = 1, w_C(\{C\}) = 2$.
- For $T = \{A, D\}$, since $|\mu(\{A\})| = 1$ and $|\mu(\{D\})| = 0$, the mass $\mu(\{A, D\}) = 1$ goes to A , so $w_A(\{A, D\}) = 1, w_D(\{A, D\}) = 0$.
- Analogously for $T = \{B, D\}$ we get $w_B(\{B, D\}) = 1, w_D(\{B, D\}) = 0$.
- For $T = \{A, B, C, D\}$, the proper nonempty subsets with nonzero μ are $\{A\}, \{B\}, \{C\}, \{A, D\}, \{B, D\}$ with magnitudes 1, 1, 2, 1, 1 (sum = 6), hence $\xi(\{A\}) = \xi(\{B\}) = \xi(\{A, D\}) = \xi(\{B, D\}) = \frac{1}{6}$ and $\xi(\{C\}) = \frac{2}{6}$.

Recurse: mass $12 \cdot \frac{1}{6} = 2$ to A and similarly adds 2 to B . Mass $12 \cdot \frac{2}{6} = 4$ adds 4 to C ; mass $12 \cdot \frac{1}{6} = 2$ to $\{A, D\}$ all goes to A ; and $12 \cdot \frac{1}{6} = 2$ to $\{B, D\}$ all goes to B .

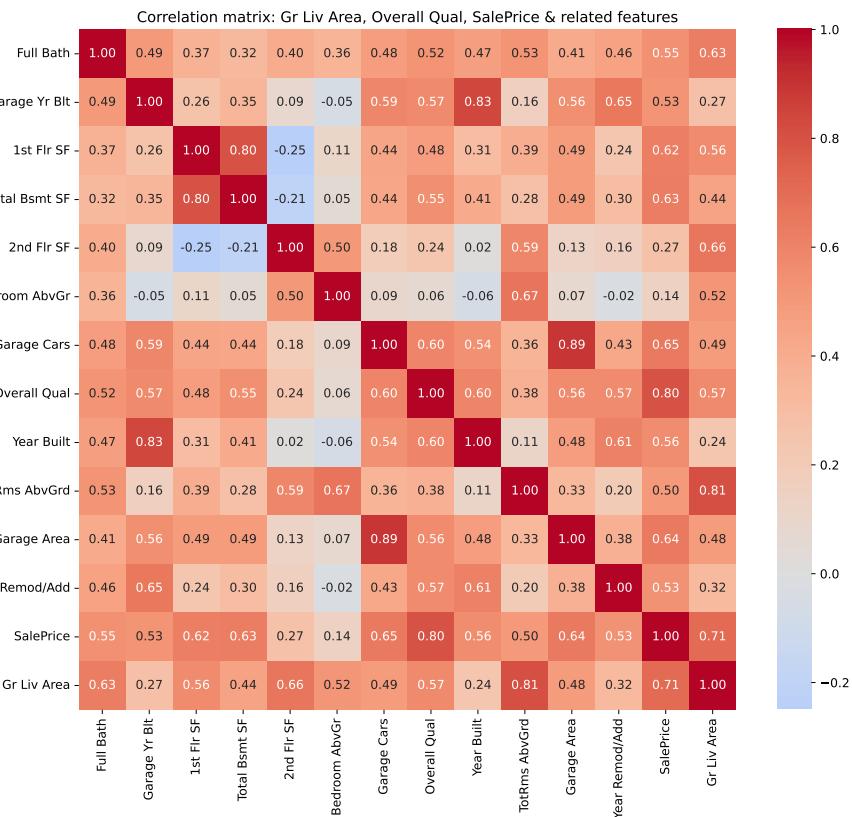
Thus $w_A(\{A, B, C, D\}) = 4, w_B(\{A, B, C, D\}) = 4, w_C(\{A, B, C, D\}) = 4, w_D(\{A, B, C, D\}) = 0$.

756 By Definition 10, the ReSHAP attributions are: $\phi_A = 1 + 1 + 4 = 6$, $\phi_B = 1 + 1 + 4 = 6$, $\phi_C = 2 + 4 = 6$, $\phi_D = 0$, which is the same the original attribution before adding feature D . Note that feature D gets zero attribution as it not only does not bring any new information, but is a strict subset of features $A \cup B$.

761 E SMALL-SCALE REAL DATA EXPERIMENT

763 To provide a proof of concept, we include a small experiment on a real-world dataset¹ In this ex-
 764 periment, we investigate whether SHAP explanations align with established economic intuition and
 765 how correlated features influence interpretability. Our contribution in this experiment is the option
 766 to benchmark SHAP against ReSHAP. While not exhaustive, this demonstrates the practical fea-
 767 sibility of ReSHAP and its behavior compared to baseline methods. Key features in this experiment
 768 include:

- 770 • Gr Liv Area: Above-ground living area in square feet.
- 771 • Overall Qual: Overall material and finish quality of the house.
- 772 • TotRms AbvGrd: Total rooms above grade.
- 773 • SalesPrice: Target variable.



802 Figure 3: Correlation matrix in the Ames Housing dataset including Gr Liv Area, Overall
 803 Qual, SalePrice, and related features.

804 We train a Multi-Layer Perceptron (MLP) model on the housing dataset with the hyperparameters
 805 given in Table 1.

806 ¹The Ames Housing dataset provides a dataset with 79 explanatory variables related to properties (see
 807 Figure 3 for an overview of some of the features in the dataset). The target variable in the dataset is the
 808 SalePrice, representing the sale price of the houses. The features include both numerical and categorical
 809 variables, covering a wide range of aspects such as lot size, number of rooms, location, construction, and more.

810

811

Table 1: MLP model and its hyperparameters.

812

813

Model	Hyperparameters
MLP Regressor	Pipeline: ("scaler", StandardScaler()) → ("model", MLPRegressor(...)). hidden_layer_sizes = (64, 32), activation = "relu", solver = "adam", max_iter = 5000, early_stopping = True, n_iter_no_change = 20, tol = 1e-4, learning_rate_init = 1e-3, alpha = 1e-4, random_state = 42.

821

822

Feature attribution is performed using SHAP and ReSHAP values, which distribute prediction contributions across input features. To evaluate the differences between both algorithms, we conduct controlled experiments by introducing duplicate or correlated features. Our evaluation follows four steps:

823

1. Correlation analysis to identify strongly related features.
2. Computation of predictive performance of the MLP model used (e.g., RMSE and R^2)
3. Computation of both SHAP and ReSHAP attributions.
4. Analysis of SHAP and ReSHAP attributions, with special focus on the duplicate or correlated feature.

824

To study explanation robustness, we randomly select 10 test points (N_RANDOM_POINTS=10) and compute SHAP and ReSHAP values for each point. The baseline for $f(\emptyset)$ is chosen as the training-set mean prediction, ensuring that all contributions are measured relative to an intuitive baseline. For each model and test point, we compute:

825

826

- *Subset predictions* for all feature subsets,
- *SHAP values* (ϕ) per feature,
- *Lattice functions* $f(S)$ for subsets S ,
- *Interaction indices* (μ), and
- *ReSHAP values*, obtained via recursive attribution.

827

This evaluation allows us to assess not only global feature importance but also how explanations behave under redundancy and multicollinearity. In particular, duplicate-feature scenarios (dup_grliv, dup_qual) reveal whether SHAP splits contributions equally or arbitrarily, while the correlated-feature scenario (totrms) tests the method's ability to extract overlapping effects. The experimental settings are shown in Table 2. The mode gives us the option to vary within modes. For this experiment, dup_qual and totrms are chosen.

828

829

830

831

832

833

834

835

836

837

839

840

841

842

843

844

845

846

847

848

849

850

851

Table 2: Key experiment settings used in the pipeline.

852

853

Setting	Value
Feature mode (MODE)	"two", "dup_grliv", "dup_qual", "totrms": uses either a duplicate of <i>Gr Liv Area</i> or <i>Overall Qual</i> , or a correlated feature <i>TotRms AbvGrd</i> .
Baseline for $f(\emptyset)$	"mean"
Test-point selection	PICK_RANDOM_POINT=True
# test points assessed	N_RANDOM_POINTS=100
Model(s) enabled	MLP

854

855

856

857

858

859

860

861

862

863

To evaluate the stability of feature attributions under redundancy, we introduce diagnostic measures P , R , and their ratio P/R . The measure P is defined as the difference (in percentage points) between the absolute relative importance of a non-redundant feature before adding a redundant feature and

864 the absolute relative importance of the same non-redundant feature after the redundant feature has
 865 been added, both computed using standard Shapley values. In other words, P captures how much
 866 the attribution of a non-redundant feature changes under SHAP when redundancy is introduced. The
 867 measure R is defined in the same way, but using ReSHAP values: it is the difference (in percentage
 868 points) between the absolute relative importance of a non-redundant feature before and after adding
 869 a redundant feature, computed with ReSHAP. Thus R quantifies the stability of ReSHAP under
 870 redundancy.

871 The ratio P/R serves as a comparative stability indicator: values close to one suggest that SHAP
 872 and ReSHAP behave similarly, whereas values significantly larger than one highlight cases where
 873 SHAP attributions fluctuate strongly after adding a redundant feature while ReSHAP remains stable.
 874

875 SUMMARY OF RESULTS

878 Table 3: Overview of mean absolute $|P/R|$ values for the MLP model across two selected experimental
 879 modes. Higher values indicate greater instability of SHAP relative to ReSHAP. Results are
 880 averaged over multiple random test points.

881 Experimental mode	882 mean(P/R)	883 Number of test points
883 Duplicate-feature mode (dup_qual)	5.49	100
884 Correlated-feature mode (totrms)	2.53	100

886 **Duplicate-feature mode.** When a duplicate of the *Overall Quality* feature is introduced in the
 887 dup_qual setting, SHAP becomes highly unstable in how it allocates importance between the
 888 original and the duplicate. This is reflected in a large mean $|P/R|$ value of 5.49 across 100 random
 889 test points, indicating that the change in relative importance under duplication is far greater for
 890 SHAP than for ReSHAP. In other words, ReSHAP maintains more stable attributions for the non-
 891 redundant feature, while SHAP exhibits larger deviations. This finding highlights the corrective role
 892 of ReSHAP in the presence of duplicated variable.

894 **Correlated-feature mode.** When including *TotRms AbvGrd*, which is correlated with *Gr Liv Area*
 895 (as seen in Figure 3), the instability of SHAP is reduced compared to the duplication case, but is
 896 still notable. The mean $|P/R|$ value of 2.53 across 100 test points indicates that SHAP explanations
 897 shift substantially in response to correlation, while ReSHAP again provides more stable attributions.
 898 Although the divergence is smaller than in the duplicate-feature setting, the results confirm that
 899 correlation alone is sufficient to destabilize SHAP attributions, whereas ReSHAP mitigates this
 900 effect.

902 F COMPUTATIONAL COMPLEXITY AND PRACTICAL CONSIDERATIONS

904 Although the results in the paper contribute on the fundamental side of cooperative game theory
 905 and its connection to Shapley values, below we analyze the computational cost of ReSHAP relative
 906 to standard Shapley estimation. We also discuss implementation aspects, including compatibility
 907 with approximation schemes such as KernelSHAP and TreeSHAP, and potential speed-ups. The
 908 computational complexity of computing Shapley values exactly in the worst case is known to be
 909 exponential, i.e., $O(n2^n)$. Since our work makes a contribution on the fundamental principle of
 910 how the Shapley values are constructed, solving the duplicate feature paradox, its exact computation
 911 should not be expected to be smaller than Shapley values itself. In fact, it is very comparable from
 912 a computational complexity perspective.

913 Indeed, the algorithm to compute ReSHAP requires first computation of Shapley values ν in time
 914 $O(2^n)$. Then given ν computing value $\mu(T)$ for subset T of cardinality k , naively, requires sum-
 915 ming up 2^k elements, thus total number of operations required to compute μ for all $T \subseteq [n]$ is
 916 $\sum_{i=0}^k \binom{n}{k} 2^k = O(3^n)$. Using zeta/Möbius transform drops it to $O(n2^n)$. Finally, the computational
 917 complexity of computing ReSHAP requires computing weights $w_i(T)$. Note that for a fixed subset
 918 $T \subseteq [n]$, Algorithm 1 computes all values $w_i(T)$ for all $i \in [n]$ by recursively calling procedure

DISTRIBUTE. For fixed T of cardinality k the procedure recurses on its subsets in a way that each of subsets $S \subseteq T$ of cardinality ℓ is called $2^{k-\ell}$ times. In each recursion the only computationally heavy component is computing $\sum_{\emptyset \neq U \subset S} |\mu(U)|$ in time $O(2^\ell)$. Thus computational complexity of recurring the procedure DISTRIBUTE for a fixed set T of cardinality k is $\sum_{\ell=0}^k \binom{k}{\ell} 2^{k-\ell} 2^\ell = O(4^k)$. Since we call it for each subset the overall complexity is $\sum_{k=0}^n \binom{n}{k} O(4^k) = O(5^n)$. The combined complexity of computing ReSHAP is $O(2^n + n2^n + 5^n) = O(5^n)$, which can be written as $O(2^{n \log 4}) = O(2^{2.33n})$. Although increased compared to the exact computation of Shapley values, still both are exponential time and differ by a small multiplicative constant in the exponent.

It is worth pointing out that several speed-ups are possible, both for computing exact ReSHAP values and its approximations. First, caching the values of $\sum_{\emptyset \neq U \subset S} |\mu(U)|$ instead of recomputing them every time the subset is called could already improve the computational complexity of recurring the procedure DISTRIBUTE. Moreover, Algorithm 1 can be optimized by computing weights for all subsets simultaneously, by first distributing the mass of $[n]$ into its subsets, but then recursively calling only subsets of cardinality one less, which also distribute their mass to their subsets of cardinality one less, etc. This could further reduce the overall complexity to $O(2^n)$, leading to an overall complexity of ReSHAP to $O(3^n)$. Finally, it is important to point out that this research does not aim to provide an optimized method for practical use, rather provides contribution on a fundamental level where the exponential time procedure of computing Shapley values is replaced with another exponential time procedure, ReSHAP, that has provably better behaviour in the presence of duplicate or redundant features. However, we would like to point out that several methods readily available to speed up exact and approximate computation of Shapley values could be applied to speed up computation of ReSHAP, mostly because its core is based solely on values ν and does not need extra knowledge of probability distributions or other statistics of the data. This includes techniques like TreeSHAP Lundberg et al. (2020) for tree based models, or Kernel SHAP Lundberg & Lee (2017).

G COMPARISON WITH EXISTING APPROACHES

In this section, we give a short comparison of the ReSHAP method for solving the Duplicate-feature paradox with other existing methods, such as Frye et al. (2020); Kwon & Zou (2022); Watson et al. (2023); Ay et al. (2020).

Although results such as those in Frye et al. (2020); Kwon & Zou (2022) can resolve the duplicate feature paradox for certain choices of weight vectors, they lack a universal principle for selecting weights. In contrast, our method provides a provable procedure to compute a vector of weights that resolves the duplicate feature paradox. On the other hand, unlike approaches in Watson et al. (2023) and Ay et al. (2020), which use KL divergence and mutual information to define new value functions, we retain the standard value function in the first step and subsequently apply redundancy measure to account for feature dependencies. Moreover, although modifying the value function in Watson et al. (2023); Ay et al. (2020) accounts for feature correlations, they do not modify the permutation weight vector, thus not guaranteeing a solution to the duplicate-feature paradox. Finally, their methods assume extra information about probability distributions to compute KL measures, which limits the practical applicability of the methods. Instead, our method builds upon the canonical value function, a cornerstone of Shapley value formulations, thus our approach is directly compatible with existing approximation techniques such as KernelSHAP: one can incorporate our redundancy-aware weighting into those algorithms, benefiting from their efficiency while fixing the credit allocation issue. To our knowledge, this is the first technique that fully addresses feature redundancy in Shapley explanations without altering the model or requiring heavy computations beyond the standard Shapley values estimation.