
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RESOLVING THE DUPLICATE-FEATURE PARADOX
WITH RESHAP: A REDUNDANCY-WEIGHTED GEN-
ERALIZATION OF SHAPLEY ATTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Shapley-value–based feature attribution methods are widely used to explain ma-
chine learning model predictions. However, these methods suffer from a critical
flaw, often observed when features are duplicated, its total contribution to the
model prediction is unfairly inflated, diminishing the attribution of other impor-
tant features. This paradox arises because traditional Shapley-based methods al-
locate joint contributions equally across all participating features, regardless of
redundancy or informational overlap.
In this work, we propose ReSHAP, a redundancy-aware generalization of Shapley
attribution that systematically resolves the duplicate-feature paradox. ReSHAP
adjusts the allocation of credit within feature coalitions by down-weighting fea-
tures that contribute redundant information. We begin by proving that no attribu-
tion method can simultaneously satisfy equal division and duplication-invariance,
even in instances without redundant features. This reveals a fundamental trade-off
in designing fair attribution methods. Building on this insight, ReSHAP redefines
how Shapley values are computed by redistributing interaction terms across fea-
ture subsets using a recursive weighting scheme, using only the standard value
function without additional distributional assumptions. We support our theoreti-
cal findings with illustrative examples and experiments, highlighting the practical
effectiveness of ReSHAP.

1 INTRODUCTION

The indisputable and growing impact of artificial intelligence (AI) on various areas of human life
comes hand in hand with growing concerns about the lack of understanding of how these methods
make decisions. Although the algorithms used to train such models are well understood, the out-
comes of the training process often remain opaque. The lack of transparency and control over the
inner workings of AI systems, combined with the massive complexity of models that often exceed
human cognitive capacity, raises significant concerns about the explainability of their results. This,
in turn, has sparked growing interest in Explainable AI (XAI) techniques, which aim to clarify and
interpret AI model outputs Dazeley et al. (2021); Adadi & Berrada (2018); Linardatos et al. (2021);
Gunning et al. (2019); Saeed & Omlin (2023). In fact, a wide range of XAI methods have emerged,
reflecting the multi-faceted nature of the explainability problem. One of the most popular and widely
used approaches applies the game-theoretic concept of Shapley values Shapley (1953) to the field
of XAI. Shapley values originated in cooperative game theory and have been adapted to attribute an
AI model’s prediction to its input features in a principled way.

Shapley values offer significant explanatory power for interpreting model predictions. The method
has a solid theoretical foundation that ensures a fair allocation of importance to features. These
properties have made Shapley-value-based explanations highly attractive. However, the applicabil-
ity of exact Shapley values remains limited due to the computational overhead of evaluating all 2n
feature subsets. To address this, various methods have been introduced to overcome the computa-
tional challenges. Some approaches approximate Shapley values, such as SHAP (SHapley Additive
exPlanations) and Kernel SHAP, introduced in Lundberg & Lee (2017), which use a linear approx-
imation to estimate the model output based on subsets of input features. Other methods exploit
structural properties of specific model classes to compute Shapley values exactly and efficiently,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

such as TreeSHAP Lundberg et al. (2020), which is tailored for tree-based models. For neural net-
works, DeepSHAP Lundberg et al. (2020) leverages the connection between SHAP and DeepLIFT
to efficiently approximate Shapley values by backpropagating contribution scores.

Despite the explanatory power offered by Shapley values and their widespread adoption in the ma-
chine learning community, several limitations of the framework are well documented. The work Ku-
mar et al. (2020) presents both mathematical and human-centric issues associated with the method.
Some concerns, such as the fact that Shapley values only apply to decompose the difference between
the model prediction and its expected value, arise from how the method is applied. These can be
addressed, for example, by comparing the model output to an alternative reference value Merrick
& Taly (2020), or by decomposing other types of values; see, e.g., Owen & Prieur (2017). How-
ever, other limitations, such as the duplicate-feature paradox, remain valid criticisms of Shapley
value–based methods. The duplicate-feature paradox concerns a situation in which, for a model
function f(x1, . . . , xn) with n features, a proxy function f

′
(x1, x1, . . . , xn) is constructed by du-

plicating an input feature (e.g., x1), resulting in a model with n + 1 features. In such a case, the
contribution of the remaining features {xj : j ∈ [n] \ {1}} can be significantly diminished. This
is not merely a contrived pathological example; similar effects arise when features are highly cor-
related, for instance, when one feature is a statistical proxy of another. This simple case, which we
adopt as a running example in this paper, illustrates a broader issue: subsets of features can inter-
act with other subsets in more intricate ways, leading to distorted attributions of individual feature
contributions as computed by Shapley values.

Various methods have been proposed to address the duplicate-feature paradox. Aas et al. (2021)
modify the background distribution in Kernel SHAP to better approximate Shapley values under
Gaussian assumptions, but this doesn’t resolve the core issue in the Shapley framework. Similar
background-modulating approaches, like Merrick & Taly (2020), and modeling-intensive methods
such as Frye et al. (2020), reweight permutations to improve attribution, yet lack a universal princi-
ple for selecting weights. Kwon & Zou (2022) propose learning these weights from data. Basu &
Maji (2022) take a different approach, decorrelating features via linear projections before comput-
ing Shapley values. Meanwhile, Owen (1977) propose a group-based method, computing Shapley
values first across feature groups and then within them, effective for exact duplicates, but not subtle
or cross-group dependencies. Finally, KL-divergence-based methods, such as Watson et al. (2023)
and Ay et al. (2020), redefine the value function underlying Shapley attributions, offering alterna-
tives in contexts like precedence constraints or information decomposition, posing a computational
challenge to get additional information about the probability distributions.

Contribution. We propose a novel framework to resolve the duplicate-feature paradox. First, we
prove that no attribution method can satisfy both the equal division property and resolve the paradox,
even when no redundant features are present (see Theorem 9). This result is of independent interest
to cooperative game theory. Building on our first result, we propose an intuitive and efficient method
that resolves the duplicate-feature paradox at both individual and subset levels (see Theorem 11). It
adjusts Shapley values by accounting for feature redundancy, with small computational overhead.
We supplement this with examples demonstrating how redundant features distort standard Shapley
values and how the ReSHAP method resolves these cases. Finally, using the real-world AMES
dataset, we illustrate that for an MLP model, adding duplicated features leaves ReSHAP attributions
of non-duplicated features largely unchanged, while standard Shapley values show significant shifts
in their relative importance.

2 PRELIMINARIES

We start by defining the Shapley values more formally. For n ∈ N, let X ⊆ Rn and Y ⊆ R. Let
Ω be a sample space, define a family of random variables Xi : Ω 7→ R for i ∈ [n] and a random
vector X : Ω 7→ X , given by X = (X1, . . . , Xn). We consider a model function f : X 7→ Y , such
that f(X) : Ω 7→ Y is a real-valued random variable obtained by composing f with X .

Let (x1, . . . , xn) be a realization of the random vector X . For any subset S ⊆ [n], let S̄ := [n] \ S.
We assume that for every S ⊆ [n], the conditional distribution of XS̄ given XS is well defined.
Thus, we can define:

ν(S) := E
[
f(xS , XS̄)

∣∣XS = xS
]
. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Note that the function ν should, in principle, also be parameterized by f and x, as it depends on
the model and the input point. However, for the sake of readability, we omit these extra parameters,
since throughout the paper we will compute values for a fixed model f and sample point x. In case
parameters f and x are needed they appear in superscript, e.g., νf,x(S). A similar convention is
applied to the Shapley values, defined as follows:
Definition 1 (Shapley values). For i ∈ [n], the marginal contribution of feature i, called the Shapley
value, is defined as:

ψi :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(ν(S ∪ {i})− ν(S)) .

3 REFORMULATION OF SHAPLEY VALUES

Let µ : 2[n] 7→ R be a signed set function for T ⊆ [n] defined via the Möbius inversion of the value
function ν:

µ(T) :=
∑

[n]\T⊆S⊆[n]

(−1)|T |−|[n]\S|+1 (ν(S)− ν(∅)) . (2)

The value µ(S), for S ⊆ [n], represents the portion of the total contribution that arises uniquely
from the joint interaction among the features in S, excluding contributions from any of the features
outside S. In other words, it captures the pure interaction effect attributable to the combination of
features in S. The signed measure µ can be seen as obtained by lifting ν via the Radon–Nikodym
derivative. Note that the values µ(S) for S ⊆ [n] form a basis that is distinct from the one derived
via unanimity games, also known as Harsanyi dividends van den Brink & Funaki (2025). While the
Harsanyi basis is more commonly used in the context of Shapley values, the basis induced by the
µ values proves to be more convenient for the types of derivations and decompositions we aim to
perform in this work.

Alternatively, one can think of µ as a partition of the space into disjoint regions such that for every
S ∈ [n] we have ν(S)− ν(∅) =

∑
T∩S ̸=∅ µ(T). Lemma 2 proves this more formally.

Lemma 2. For every S ⊆ [n]

ν(S)− ν(∅) =
∑

T∩S ̸=∅
µ(T),

if and only if for every T ⊆ [n], T ̸= ∅

µ(T) :=
∑

[n]\T⊆S⊆[n]

(−1)|T |−|[n]\S|+1 (ν(S)− ν(∅)) .

Proof. We start by proving the ’only if’ direction. It holds:

ν(S)− ν(∅) =
∑

T∩S ̸=∅
µ(T) =

∑
T⊆[n]

µ(T)−
∑

T⊆[n]\S

µ(T).

Let M be equal to
∑

T⊆[n] µ(T). For the change of variables A = [n]\S, let F (A) =
∑

T⊆A µ(T)

which gives

ν([n] \A)− ν(∅) =M −
∑
T⊆A

µ(T) =M − F (A). (3)

We can use a general inclusion-exclusion formula based on Möbius inversion and zeta transforma-
tion for the function F (A) Graham et al. (1996) which yields that

F (A) =
∑
T⊆A

µ(T),

if and only if
µ(T) =

∑
A⊆T

(−1)|T |−|A|F (A). (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Transforming Equation 3 for F (A) and plugging into Equation 4 yields

µ(T) =
∑
A⊆T

(−1)|T |−|A| (M − ν([n] \A) + ν(∅))

=M
∑
A⊆T

(−1)|T |−|A| −
∑
A⊆T

(−1)|T |−|A| (ν([n] \A)− ν(∅))

=
∑
A⊆T

(−1)|T |−|A|+1 (ν([n] \A)− ν(∅)) ,

where the last equality holds for T ̸= ∅ because of the identity
∑

A⊆T (−1)|T |−|A| = (1−1)|T | = 0.
Changing the variables back to S = [n] \A yields

µ(T) =
∑

[n]\S⊆T

(−1)|T |−|[n]\S|+1 (ν(S)− ν(∅)) =
∑

[n]\T⊆S⊆[n]

(−1)|T |−|[n]\S|+1 (ν(S)− ν(∅)) ,

which finishes the only if implication. To prove the ‘if’ direction, it suffices to reverse the steps.

As a result, we can redefine the Shapley values through the measure µ.
Lemma 3. For i ∈ [n], the Shapley value of feature i can be expressed in the form

ψi :=
∑

T⊇{i}

1

|T |
µ(T).

Proof. Proof in Appendix A.

Observation 4 (Equal division). The alternative formulation of Shapley values given in Lemma 3
gives rise to the equal division property van den Brink & Funaki (2025), which can also be derived
from the four Shapley Axioms. Although this property is classically stated with respect to the una-
nimity game (Harsanyi) basis, it also holds for our basis defined by the values µ(S) for S ⊆ [n].
Specifically, the equal division property asserts that each atomic contribution µ(S) is equally di-
vided among all features i ∈ S.

The equal division property is visualized in Figure 1.

2 2

2

12

A B

C
2

122 2

C

D

Figure 1: Venn diagrams showing µ values for examples of two functions, with 3 features on the left
and 2 features on the right. The equal division property implies that in the left case µ({A,B,C}) =
12 is split equally among 3 features, A, B and C, while in the right case µ({C,D}) = 12 is split
equally among 2 features, C and D.

4 DUPLICATE-FEATURE PARADOX

Building upon the Shapley values reformulation introduced in the Reformulation of Shapley values
section, we more formally introduce the duplicate-feature paradox in this section and present con-
crete examples that highlight its impact on standard Shapley values. The duplicate-feature paradox
refers to the phenomenon where duplicating an input feature leads to a decrease in the Shapley value
of the unduplicated feature(s), while the total attribution to the duplicated features increases. This
contradicts the intuitive expectation that duplicating identical information should not affect the re-
sulting attribution. The paradox extends to the case when, instead of simply duplicating features, we
add redundant features. We start with the definition of a redundant feature.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 5 (Redundant feature). Let f : Rn → R be a model function, and let ν be a correspond-
ing value function (e.g., as defined in Equation 1). A feature j ∈ [n] is called redundant if there
exists a subset S ⊆ [n] \ {j} such that

ν(S ∪ {j}) = ν(S).

Lemma 6. Let f : Rn → R be a model function, and let ν be a corresponding value function (e.g.,
as defined in Equation 1). Define a new model function f ′ : Rn+1 → R by

f ′(x1, . . . , xn, xn+1) := f(x1, . . . , xn) for all x ∈ Rn+1.

Then, f ′ satisfies this identity if and only if there exists a set S ⊆ [n] such that

νf
′
(S ∪ {n+ 1}) = νf (S).

Proof. We prove the only if direction. Assume that for every x ∈ Rn+1

f ′(x1, . . . , xn, xn+1) := f(x1, . . . , xn) for all x ∈ Rn+1.

Since by definition of value function ν, Equation 1, it holds that

νf,x([n]) = f(x1, . . . , xn) and

νf
′,x([n+ 1]) = f ′(x1, . . . , xn, xn+1),

the claim holds for S = [n]. To prove the if direction, it is enough to reverse the steps.

Definition 7 (Duplication-invariance). Let f : Rn → R be a model function, let f ′ : Rn+1 → R
be any extended model function in which the feature xn+1 is redundant. Let ν : 2[n+1] → R be a
value function (e.g., as defined in Equation 1). A feature attribution function ϕi ∈ R for i ∈ [n+1],
computed from ν, is said to be duplication-invariant if the following holds:

ϕf
′

i = ϕfi for all i ∈ [n] \ S,∑
k∈S∪{n+1}

ϕf
′

k =
∑
k∈S

ϕfk ,

where S ⊆ [n] is a minimal set satisfying the condition in Definition 5.

The cornerstone of this research is the fact that Shapley values are not duplication-invariant, as we
demonstrate with the following examples.

Example 8. Let f : R2 → R be a model function that estimates the value of real estate based
on a random vector with two components: the property size XS and property location XL (both
understood as real numbers). Let xS and xL be the specific values of size and location for which
the model predicts the price.

Assume that the conditional expectations have been computed, yielding the following ν values:

ν(∅) = 500, ν({S}) = 850, ν({L}) = 850, ν({S,L}) = 900.

From these, the Möbius coefficients can be computed via Lemma 2:

µ({S}) = 50, µ({L}) = 50, µ({S,L}) = 300.

This leads to the following Shapley values (via Lemma 3):

ψS = µ({S}) + 1

2
µ({S,L}) = 200, ψL = µ({L}) + 1

2
µ({S,L}) = 200.

Now consider a modified model f ′ : R3 → R, where the size feature is duplicated, resulting in XS1

and XS2 . The new model is defined as f ′(xS1 , xS2 , xL) := f(xS , xL), where xS1 = xS2 = xS ,
which leads to the following ν values (all the other are zero):

ν(∅) = 500, ν({S1}) = ν({S2}) = ν({L}) = ν({S1, S2}) = 850, ν({S1, L}) = ν({S2, L}) = ν({S1, S2, L}) = 900.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which leads to the Möbius coefficients via Lemma 2 (all the other are zero):

µ({S1, S2}) = 50, µ({L}) = 50, µ({S1, S2, L}) = 300.

As before, we compute the Shapley values for model f ′. Lemma 3 gives:

ψS1 = 125, ψS2 = 125, ψL = 150.

Adding a duplicate variable, which introduces no new information, causes the contribution of the
location feature to decrease from 200 to 150. Moreover, further duplication of the size variable
can reduce the location attribution even more, potentially down to 50. In such a case, the original
entire joint contribution µ({S,L}) would be allocated exclusively to the duplicated size variables,
marginalizing the location feature entirely. This paradox illustrates a fundamental flaw in standard
Shapley-based explanations: duplicating a feature (without adding any new information) can un-
fairly inflate its contribution at the expense of others. Notably, this effect is not limited to perfect
copies of features; it can also occur when adding statistical proxies or correlated duplicates. More-
over, while detecting perfect duplicates, statistical proxies, or correlated features is possible, the
paradox can be present in more intricate cases involving redundancy of information across subsets
of features, where detection is not easy, but still leads to problematic cases, as illustrated with the
next example. Another example of this type, where a feature is redundant but a duplicate is pre-
sented, is presented in Appendix B.

5 EQUAL DIVISION VS DUPLICATE-FEATURE PARADOX

Equal division is a fundamental property that is often desirable for feature attribution methods.
While many approaches, including Shapley values, successfully satisfy this property, most fail to sat-
isfy duplication-invariance. As highlighted in Definition 7, any method that resolves the duplicate-
feature paradox in the presence of redundant variables, violates equal division by enforcing un-
changed attributions for other features. An ideal attribution method would preserve equal division
in instances that do not contain redundant features, and permit its violation only in the presence of
redundant variables. In the following theorem, we show that no attribution method can satisfy equal
division on all non-redundant instances while also satisfying duplication-invariance. In other words,
these two properties are fundamentally incompatible.

Theorem 9. There does not exist a duplication-invariant attribution method that satisfies the equal
division property even for instances that do not contain redundant features.

Proof. For contradiction, assume that there exists a duplicate invariance attribution method ψ that
satisfies equal division also on instances without redundant variables. Consider the two instances
described in Observation 4. By construction, both instances contain no redundant features.

In the first instance (with features A, B, and C), the equal division property yields

ψC = µ({C}) + 1

3
µ({A,B,C}) = 2 + 4 = 6.

In the second instance (with features C, D), the same property gives

ψC = µ({C}) + 1

2
µ({C,D}) = 2 + 6 = 8.

Now imagine extending the first instance by adding the feature D from the second instance, and ex-
tending the second instance by adding features A and B from the first. This results in both extended
instances being identical. By duplication-invariance, the attribution for feature C must remain un-
changed in both instances. However, ψC in the first instance and in the second are different, which
is a contradiction. Thus, the only way to reconcile this contradiction is to allow that at least one of
the instances violated the equal division property, even though both contained no redundant features.
This contradicts our assumption, completing the proof.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 RESHAP: A REDUNDANCY-WEIGHTED GENERALIZATION OF SHAPLEY
ATTRIBUTION

Several approaches have been proposed in the literature to address redundancy limitations of Shapley
values, many of which involve modifying the weight vector, either directly in the form presented in
Definition 1, or through its equivalent formulation using permutations; see, e.g., Frye et al. (2020);
Kwon & Zou (2022). In this section, we build upon the reformulation of Shapley values presented
in the Reformulation of Shapley values section.

The Shapley values introduced in Lemma 3 provide an explicit decomposition of contributions
across all interaction terms between features. Compared to the standard permutation-based defi-
nition, this formulation allows us to precisely localize contributions to specific subsets of features.
Leveraging this, we propose a new approach to compute redundancy-invariant Shapley values by
introducing custom weight vectors at the level of the Möbius coefficients µ, which operate directly
on the atomic intersection structure of feature subsets. Since it introduces modifications directly at
the level where the equal division property originates, this enables us to approach a solution to the
duplicate-feature paradox; see Theorem 9.

Here, we propose a method that satisfies the redundancy-invariant property. From Theorem 9 we
know that such a method must reconsider the equal division of atomic intersections of features even
for the most basic instances like the one in Example 8. To better translate the theoretical results in
Example 8 into a concrete attribution method, recall from Definition 5 that for any redundant feature
j, there exists a set S ⊆ [n]\{j} such that ν(S∪{j}) = ν(S). According to duplication-invariance
(Definition 7), we require that the attributions assigned to features outside of S remain unchanged
after adding the redundant feature j and that the total attribution mass assigned to features in S must
remain the same before and after adding j. Intuitively, in the Venn diagram interpretation, adding
feature j does not increase the overall volume associated with the region defined by S; it only
subdivides it into smaller regions that now include j. Our approach is to assign attribution to each of
these subregions proportionally, based on their contribution to the original volume associated with
S.

Compared to correlation-based approaches (see Appendix C), this method accounts for interactions
between feature subsets of arbitrary cardinality. Redundancy is measured by comparing the volume
of specific atomic regions in the Venn diagram to the overall volume of the region. More precisely to
compute the fraction of attribution from µ(T) that is assigned to i ∈ T we compute the independent
contribution of i for T but also contributions of subsets of T containing i for T . Such subsets
then further divide these contributions among their features until the final contribution for each
individual feature is computed. For clarity of presentation, we describe our method recursively,
highlighting how attribution within intersecting regions is progressively reallocated among features
as redundancy is introduced.

We are ready to present the final definition of ReSHAP. Note that the computational complexity of
ReSHAP is presented in Appendix F and the comparison with other methods is in Appendix G.

Definition 10 (ReSHAP). The ReSHAP method assigns to each feature i ∈ [n] an attribution score

ϕi :=
∑

T⊆[n]

wi(T) · µ(T),

where for every T ⊆ [n], wi(T) ∈ [0, 1] are feature-specific redistribution weights satisfying:∑
i∈T wi(T) = 1 where wi(T) = 0 for i /∈ T and wi(T) for i ∈ T are computed by the recursive

redistribution procedure described in Algorithm 1.

Theorem 11. Let f : Rn → R be a model function, and let f ′ : Rn+1 → R be a model extension in
which the feature xn+1 is redundant. A ReSHAP feature attribution function ϕi ∈ R for i ∈ [n+1],
is duplication-invariant.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 Recursive Redistribution of Möbius Mass for ReSHAP
1: For a fixed T , initialize wi(T) := 0 for all i ∈ [n]
2: call Distribute(S = T , µ(T))
3: procedure DISTRIBUTE(S, mass)
4: if |S| = 1 then
5: let i be the unique element of S
6: wi(T)← wi(T)+ mass
7: return wi(T)
8: else
9: if

∑
∅̸=V⊂S |µ(V)| = 0 then

10: for all i ∈ S do
11: ξ({i})← 1

|S|
12: DISTRIBUTE({i}, ξ({i})· mass)
13: end for
14: else
15: for all non-empty U ⊂ S do

16: ξ(U)← |µ(U)|∑
∅̸=V⊂S |µ(V)|

17: DISTRIBUTE(U, ξ(U)· mass)
18: end for
19: end if
20: end if
21: end procedure

Proof. We want to prove that

ϕf
′

i = ϕfi for all i ∈ [n] \ S∑
k∈S∪{n+1}

ϕf
′

k =
∑
k∈S

ϕfk

where S ⊆ [n] is a minimal set satisfying the condition in Definition 5.

We start with proving the second one. Indeed, note that, since for the redundant feature n + 1 we
have ν(S ∪ {n + 1}) = ν(S) it implies that µ({n + 1}) = 0 (it provides no new information
to the system). Thus in the recursive redistribution, if

∑
V⊂T µ(V) ̸= 0 feature n + 1 gets no

mass assigned, that is ξ({n + 1}) is always zero since the numerator µ({n + 1}) is zero. On the
other hand if

∑
∅̸=V⊂S |µ(V)| = 0 the mass is equally distributed among the features in S so the

redundant feature gets mass only at the cost of other features from S. This implies that all the
mass from features in S after adding redundant feature n + 1 goes again to features in S so it is
preserved. To prove the first condition, given that the second one holds, it suffices to argue that for
all T ⊆ [n] every recursive step in Algorithm 1 redistributes mass µ(T) only among features i ∈ T ,
and preserves it. So the remaining mass for features outside S goes with the same amount before
and after adding feature n + 1 and it is redistributed proportionally to their individual mass µ thus
stays unchanged after adding feature n+ 1.

7 ANALYSIS AND EMPIRICAL EVALUATION

7.1 CASE STUDIES ON SYNTHETIC EXAMPLES

We revisit the two running examples introduced earlier in Example 8 and B (In Appendix D) and
compute ReSHAP attributions alongside standard Shapley values. This illustrates how the recursive
redistribution alters feature importance in the presence of duplicates and redundant features.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We start with Example 8. Recall that after adding a duplicate feature of S we had the following
values of µ (all others = 0):

µ({L}) = 50, µ({S1, S2}) = 50, µ({S1, S2, L}) = 300.

Now for every nonzero value of µ(T) we call Algorithm 1 to compute weightswi(T) for all features.

• We start with T = {L}: since T is a singleton, Algorithm 1 assigns wL({L}) = 50.

• For T = {S1, S2}, since µ(S1) = µ(S2) = 0, the algorithm splits equally µ({S1, S2}),
yielding wS1

({S1, S2}) = wS2
({S1, S2}) = 25.

• Finally, for T = {S1, S2, L} the algorithm proportionally splits the mass of 300 with
ξ({S1, S2}) = ξ({L}) = 0.5, which in the recursive call gives wS1

({S1, S2, L}) =
wS2

({S1, S2, L}) = 75 and wL({S1, S2, L}) = 150.

This, by Definition 10, leads to ReSHAP values:
ϕS1

= ϕS2
= 100, ϕL = 200,

which coincides with the distribution of ψ values before adding a duplicate, where contribution of
S was split between S1 and S2.

ReSHAP performance for the second example from Appendix B is presented in Appendix D.

7.2 SMALL-SCALE REAL DATA EXPERIMENT

To provide a proof of concept, we conducted a small experiment (the full experiment can be found in
Appendix E) on the well-known Ames Housing dataset, which contains detailed information on 79
explanatory variables related to residential properties. The dataset includes both numerical and cat-
egorical variables, covering a broad range of structural and qualitative characteristics of the houses.
The target variable is the SalePrice, representing the sale price of the properties. For our exper-
iment, we focus on three key features that are both meaningful and highly predictive: the above-
ground living area (Gr Liv Area), the overall quality of the house (Overall Qual), and the
total number of rooms above grade (TotRms AbvGrd).

A Multi-Layer Perceptron (MLP) model was trained on this dataset. Feature attribution was per-
formed using both standard SHAP values and our proposed ReSHAP values, which distribute pre-
diction contributions across input features. To evaluate explanation robustness, we conducted con-
trolled experiments in which we introduced redundancy either by duplicating an existing feature
or by including a correlated feature. The goal was to examine how stable SHAP and ReSHAP at-
tributions remain when redundancy is present. Stability was quantified using diagnostic measures
P and R, which capture the change in relative importance of a non-redundant feature before and
after introducing redundancy, measured respectively with SHAP and ReSHAP values. Their ratio
P/R serves as a stability indicator: values close to one indicate similar behavior between SHAP and
ReSHAP, whereas larger values reveal instability in SHAP that ReSHAP successfully mitigates.

The results, summarized in Table 3, show clear differences between the two modes. In the duplicate-
feature setting (dup qual), SHAP exhibited more instability compared to ReSHAP, with a mean
|P/R| of 5.49 across 100 test points, reflecting large shifts in feature importance. In the correlated-
feature setting (totrms), the instability was smaller but still present, with a mean |P/R| of 2.53.
Once again, ReSHAP produced more consistent explanations. These findings confirm that ReSHAP
provides a more robust and reliable attribution framework, even in real-world data.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced ReSHAP, a redundancy-aware generalization of Shapley attribution that
resolves the duplicate-feature paradox while retaining the canonical value function and compatibil-
ity with existing SHAP frameworks. There are many promising avenues for future work. A first
direction is to optimize the computation of exact and approximate ReSHAP values, for example
by leveraging TreeSHAP and KernelSHAP techniques to accelerate the underlying Shapley evalua-
tions. Further experimental validation on larger benchmarks, as well as extensions to other domains
such as time series data, also represent important directions for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions when features are
dependent: More accurate approximations to shapley values. Artificial Intelligence, 298:103502,
2021.

Abdelrahman Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explain-
able artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018. doi: 10.1109/ACCESS.
2018.2870052.

Nihat Ay, Daniel Polani, and Nathaniel Virgo. Information decomposition based on cooperative
game theory. Kybernetika, 56(5):979–1014, 2020. doi: 10.14736/KYB-2020-5-0979. URL
https://doi.org/10.14736/kyb-2020-5-0979.

Indranil Basu and Subhadip Maji. Multicollinearity correction and combined feature effect in
shapley values. arXiv preprint arXiv:2011.01661, 2021. URL https://arxiv.org/abs/
2011.01661. Version 1, submitted on 3 Nov 2020.

Indranil Basu and Subhadip Maji. Multicollinearity correction and combined feature effect in shap-
ley values. In Australasian Joint Conference on Artificial Intelligence, pp. 79–90. Springer, 2022.

Richard Dazeley, Peter Vamplew, Cameron Foale, Courtney Young, Santosh Aryal, and Fernando
Cruz. Levels of explainable artificial intelligence for human-aligned conversational explanations.
Artificial Intelligence, 299:103525, 2021. doi: 10.1016/j.artint.2021.103525.

Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in neural information processing sys-
tems, 33:1229–1239, 2020.

R. L. Graham, M. Grötschel, and L. Lovász (eds.). Handbook of combinatorics (vol. 2). MIT Press,
Cambridge, MA, USA, 1996. ISBN 0262071711.

David Gunning, Mark Stefik, Jill Choi, Timothy Miller, Simone Stumpf, and G-Z. Yang.
Xai—explainable artificial intelligence. Science Robotics, 4(37):eaay7120, 2019. doi: 10.1126/
scirobotics.aay7120.

I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler. Prob-
lems with shapley-value-based explanations as feature importance measures. In International
conference on machine learning, pp. 5491–5500. PMLR, 2020.

Yongchan Kwon and James Y Zou. Weightedshap: analyzing and improving shapley based feature
attributions. Advances in Neural Information Processing Systems, 35:34363–34376, 2022.

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable ai: A review of
machine learning interpretability methods. Entropy, 23(1):18, 2021. doi: 10.3390/e23010018.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems (NeurIPS), volume 30, 2017. URL https://doi.
org/10.48550/arXiv.1705.07874.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit
Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
understanding with explainable ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

Luke Merrick and Ankur Taly. The explanation game: Explaining machine learning models using
shapley values. In Machine Learning and Knowledge Extraction: 4th IFIP TC 5, TC 12, WG 8.4,
WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland,
August 25–28, 2020, Proceedings 4, pp. 17–38. Springer, 2020.

Art B Owen and Clémentine Prieur. On shapley value for measuring importance of dependent inputs.
SIAM/ASA Journal on Uncertainty Quantification, 5(1):986–1002, 2017.

Guilliermo Owen. Values of games with a priori unions. In Mathematical economics and game
theory: Essays in honor of Oskar Morgenstern, pp. 76–88. Springer, 1977.

10

https://doi.org/10.14736/kyb-2020-5-0979
https://arxiv.org/abs/2011.01661
https://arxiv.org/abs/2011.01661
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wasif Saeed and Christian Omlin. Explainable ai (xai): A systematic meta-survey of cur-
rent challenges and future opportunities. Knowledge-Based Systems, 263:110273, 2023. doi:
10.1016/j.knosys.2023.110273.

Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker (eds.),
Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton,
1953.

René van den Brink and Yukihiko Funaki. Combining the Shapley value and the equal division
solution: an overview. Theory and Decision, July 2025. ISSN 1573-7187. doi: 10.1007/
s11238-025-10050-2. URL https://doi.org/10.1007/s11238-025-10050-2.

David S. Watson, Joshua O’Hara, Niek Tax, Richard Mudd, and Ido Guy. Explaining pre-
dictive uncertainty with information theoretic shapley values. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
16e4be78e61a3897665fa01504e9f452-Abstract-Conference.html.

Zhenyu Zhao, Radhika Anand, and Mallory Wang. Maximum relevance and minimum redun-
dancy feature selection methods for a marketing machine learning platform. arXiv preprint
arXiv:1908.05376, 2019. URL https://arxiv.org/abs/1908.05376.

11

https://doi.org/10.1007/s11238-025-10050-2
http://papers.nips.cc/paper_files/paper/2023/hash/16e4be78e61a3897665fa01504e9f452-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/16e4be78e61a3897665fa01504e9f452-Abstract-Conference.html
https://arxiv.org/abs/1908.05376

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

USAGE OF LLMS IN PAPER

During the preparation of this work, we made use of the large language model ChatGPT (OpenAI,
GPT-5) to support two aspects of the research. First, it was employed to improve the readability
and style of the manuscript by rephrasing draft passages into clearer, more concise academic text.
Second, it was used to assist in the implementation of the computational experiments, for example
by suggesting code fragments, debugging strategies, and formatting options for tables and figures.
All conceptual contributions, experimental design decisions, and interpretation of the results remain
the responsibility of the authors. The use of ChatGPT was limited to supporting tasks, and the
scientific content, analysis, and conclusions of this paper were produced entirely by the authors.

A PROOF OF LEMMA 3

We start with plugging in formulation from Lemma 2 into the definition of Shapley values to get

ψi =
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!

∑
T⊇{i}
T∩S=∅

µ(T) =
∑

S⊆[n]\{i}

∑
T⊇{i}
T∩S=∅

|S|!(n− |S| − 1)!

n!
µ(T)

=
∑

T⊇{i}

∑
S⊆[n]\{i}
S∩T=∅

|S|!(n− |S| − 1)!

n!
µ(T) =

∑
T⊇{i}

µ(T)

n−|T |∑
k=0

(
n− |T |
k

)
k!(n− k − 1)!

n!

where, after the change of variables r = n− |T | − k we get

n−|T |∑
k=0

(
n− |T |
k

)
k!(n− k − 1)!

n!
=

(n− |T |)!
n!

n−|T |∑
k=0

(n− k − 1)!

(n− |T | − k)!
=

(n− |T |)!
n!

n−|T |∑
r=0

(r + |T | − 1)!

r!
,

which is equal to 1
|T | , see Lemma 12.

Lemma 12. For every n ∈ N and m ≤ n it holds:

n−m∑
r=0

(r +m− 1)!

r!
=

n!

(n−m)!

1

m
.

Proof. Indeed, using the Pascal identity for binomial coefficients we know that(
r +m

r

)
=

(
r +m− 1

r − 1

)
+

(
r +m− 1

r

)
,

which implies the following identity

(r +m)!

r!
− (r +m− 1)!

(r − 1)!
= m

(r +m− 1)!

r!
.

Plugging into the original summation yields

n−m∑
r=0

(r +m− 1)!

r!
=

1

m

n−m∑
r=0

(
(r +m)!

r!
− (r +m− 1)!

(r − 1)!

)
=

1

m

n!

(n−m)!

where the last equality holds since the expression in the summation is a telescopic sum where all the
elements cancel out except of the term (r+m)!

r! for r = n−m.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B EXAMPLE FOR SHAPLEY VALUES FOR REDUNDANT NONDUPLICATED
FEATURE

Let f : R3 → R be a model function that estimates the risk of credit default based on a random
vector with three components: annual income XA, debt-to-income ratio XB , and credit score XC

(all understood as real numbers). Let xA, xB , and xC be specific values under which the model
predicts the risk.

Assume the following values of the ν function, for the sake of simplicity we assume ν(∅) = 0:

ν({A}) = 14 ν({C}) = 14 ν({A,B}) = 16 ν({A,B,C}) = 18

ν({B}) = 14 ν({A,C}) = 16 ν({B,C}) = 16

The Möbius coefficients can be computed via Lemma 2 (all others= 0), see also Figure 2 on the left:

µ({A}) = 2, µ({B}) = 2, µ({C}) = 2, µ({A,B,C}) = 12.

This leads to the Shapley values (via Lemma 3):

ψA = µ({A}) + 1

3
µ({A,B,C}) = 2 +

1

3
· 12 = 6,

ψB = µ({B}) + 1

3
µ({A,B,C}) = 2 +

1

3
· 12 = 6,

ψC = µ({C}) + 1

3
µ({A,B,C}) = 2 +

1

3
· 12 = 6.

Now consider a modified model f ′ : R4 → R, where a new feature, total monthly loan payment
XD, is added. This feature is partially determined by XA and XB , lying in their algebraic span, but
it is neither a copy of XA nor of XB . It adds information to XA and XB individually but adds no
new information beyond their joint contribution.

In this case, suppose the value function ν takes the following values:

ν({A}) = 14 ν({D}) = 14 ν({A,D}) = 15 ν({C,D}) = 16 ν({A,C,D}) = 17

ν({B}) = 14 ν({A,B}) = 16 ν({B,C}) = 16 ν({A,B,C}) = 18 ν({B,C,D}) = 17

ν({C}) = 14 ν({A,C}) = 16 ν({B,D}) = 15 ν({A,B,D}) = 16 ν({A,B,C,D}) = 18

The corresponding Möbius coefficients are (all others= 0), see also Figure 2 on the right:

µ({A}) = 1 µ({C}) = 2 µ({B,D}) = 1

µ({B}) = 1 µ({A,D}) = 1 µ({A,B,C,D}) = 12

As before, using Lemma 3, the Shapley values for f ′ are:

ψA = µ({A}) + 1

2
µ({A,D}) + 1

4
µ({A,B,C,D}) = 4.5,

ψB = µ({B}) + 1

2
µ({B,D}) + 1

4
µ({A,B,C,D}) = 4.5,

ψC = µ({C}) + 1

4
µ({A,B,C,D}) = 5,

ψD =
1

2
µ({A,D}) + 1

2
µ({B,D}) + 1

4
µ({A,B,C,D}) = 4.

Again, we observe that adding a new variable, although not a copy of any existing variable or a
subset thereof, and contributing no new information, leads to a decline in the value of feature C
from 6 to 5. Further addition of similar variables could reduce the attribution of C even further,
potentially down to its standalone contribution of 2.

C POTENTIAL OF USING CORRELATIONS TO ADDRESS REDUNDANCY

In this subsection, we consider simpler measures for feature dependence such as correlation. For
instance, if two features have a high Pearson correlation, we might consider them partly redundant

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

2 2

2

12

A B

C

1 1

2

121 1

A B

C

D

Figure 2: Venn diagrams showing µ values for Example B for models with 3 features (left) and 4
features (right).

and reduce the individual attributions accordingly. Indeed, some earlier heuristics for feature impor-
tance recommend grouping or discounting highly correlated features Zhao et al. (2019). However,
using correlations alone to solve for the duplicate-feature problem has its limitations.

First, correlation typically measures pairwise dependency, capturing relationships between two vari-
ables at a time. However, feature redundancy can involve higher-order interactions that pairwise
correlations miss. For instance, two features may be uncorrelated with the target individually but in-
formative together (e.g., XOR). Similarly, features may appear uncorrelated yet exhibit redundancy
when considered with a third variable (see Example B). Thus, pairwise correlation is insufficient to
detect such dependencies.

Secondly, even with pairwise relationships, correlation is symmetric and offers no guidance on at-
tribution between correlated features. For example, if features A and B correlate at 0.9, how should
their Shapley values be split? Arbitrary adjustments risk violating Shapley axioms or producing in-
consistent explanations. That said, some recent works have implicitly used correlation information
to refine explanations. For example, Merrick & Taly (2020) use cohort clustering to reduce feature
dependence by grouping instances with lower within-group correlations. Another exception is Aas
et al. (2021), who generalize Kernel SHAP by replacing independence assumptions with data-driven
conditional sampling, implicitly leveraging feature correlations for more accurate attributions. Fi-
nally, Basu & Maji (2021) apply a linear adjustment using the covariance matrix to account for
feature dependencies via linear correlations. These approaches indicate that incorporating correla-
tion can improve attribution fairness, but they also reveal the limitations we discussed: the linear
adjustment proposed by Basu & Maji (2021), for example, guarantees that attributions no longer
depend on feature correlations in a linear sense, but it assumes the relationships are well-modeled
by covariance (a Gaussian assumption) and doesn’t directly extend to non-linear dependencies.

D RESHAP PERFORMANCE FOR EXAMPLE B

For Example B (four features after adding D), the nonzero Möbius values are (all others = 0):

µ({A}) = µ({B}) = 1, µ({C}) = 2, µ({A,D}) = µ({B,D}) = 1, µ({A,B,C,D}) = 12.

Apply Algorithm 1 to each nonempty T .

• For all the singletons we get directly wA({A}) = 1, wB({B}) = 1, wC({C}) = 2.

• For T = {A,D}, since |µ({A})| = 1 and |µ({D})| = 0, the mass µ({A,D}) = 1 goes to
A, so wA({A,D}) = 1, wD({A,D}) = 0.

• Analogously for T = {B,D} we get wB({B,D}) = 1, wD({B,D}) = 0.

• For T = {A,B,C,D}, the proper nonempty subsets with nonzero µ are
{A}, {B}, {C}, {A,D}, {B,D} with magnitudes 1, 1, 2, 1, 1 (sum = 6), hence ξ({A}) =
ξ({B}) = ξ({A,D}) = ξ({B,D}) = 1

6 and ξ({C}) = 2
6 .

Recursing: mass 12 · 16 = 2 to adds 2 to A and similarly adds 2 to B. Mass 12 · 26 = 4 adds
4 to C; mass 12 · 16 = 2 to {A,D} all goes to A; and 12 · 16 = 2 to {B,D} all goes to B.

Thus wA({A,B,C,D}) = 4, wB({A,B,C,D}) = 4, wC({A,B,C,D}) =
4, wD({A,B,C,D}) = 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

By Definition 10, the ReSHAP attributions are: ϕA = 1 + 1 + 4 = 6, ϕB = 1 + 1 + 4 = 6, ϕC =
2 + 4 = 6, ϕD = 0, which is the same the original attribution before adding feature D. Note that
featureD gets zero attribution as it not only does not bring any new information, but is a strict subset
of features A ∪B.

E SMALL-SCALE REAL DATA EXPERIMENT

To provide a proof of concept, we include a small experiment on a real-world dataset1 In this ex-
periment, we investigate whether SHAP explanations align with established economic intuition and
how correlated features influence interpretability. Our contribution in this experiment is the option
to benchmark SHAP against ReSHAP. While not exhaustive, this demonstrates the practical feasi-
bility of ReSHAP and its behavior compared to baseline methods. Key features in this experiment
include:

• Gr Liv Area: Above-ground living area in square feet.
• Overall Qual: Overall material and finish quality of the house.
• TotRms AbvGrd: Total rooms above grade.
• SalesPrice: Target variable.

Fu
ll

Ba
th

Ga
ra

ge
 Y

r B
lt

1s
t F

lr
SF

To
ta

l B
sm

t S
F

2n
d

Fl
r S

F

Be
dr

oo
m

 A
bv

Gr

Ga
ra

ge
 C

ar
s

Ov
er

al
l Q

ua
l

Ye
ar

 B
ui

lt

To
tR

m
s A

bv
Gr

d

Ga
ra

ge
 A

re
a

Ye
ar

 R
em

od
/A

dd

Sa
le

Pr
ice

Gr
 L

iv
 A

re
a

Full Bath

Garage Yr Blt

1st Flr SF

Total Bsmt SF

2nd Flr SF

Bedroom AbvGr

Garage Cars

Overall Qual

Year Built

TotRms AbvGrd

Garage Area

Year Remod/Add

SalePrice

Gr Liv Area

1.00 0.49 0.37 0.32 0.40 0.36 0.48 0.52 0.47 0.53 0.41 0.46 0.55 0.63

0.49 1.00 0.26 0.35 0.09 -0.05 0.59 0.57 0.83 0.16 0.56 0.65 0.53 0.27

0.37 0.26 1.00 0.80 -0.25 0.11 0.44 0.48 0.31 0.39 0.49 0.24 0.62 0.56

0.32 0.35 0.80 1.00 -0.21 0.05 0.44 0.55 0.41 0.28 0.49 0.30 0.63 0.44

0.40 0.09 -0.25 -0.21 1.00 0.50 0.18 0.24 0.02 0.59 0.13 0.16 0.27 0.66

0.36 -0.05 0.11 0.05 0.50 1.00 0.09 0.06 -0.06 0.67 0.07 -0.02 0.14 0.52

0.48 0.59 0.44 0.44 0.18 0.09 1.00 0.60 0.54 0.36 0.89 0.43 0.65 0.49

0.52 0.57 0.48 0.55 0.24 0.06 0.60 1.00 0.60 0.38 0.56 0.57 0.80 0.57

0.47 0.83 0.31 0.41 0.02 -0.06 0.54 0.60 1.00 0.11 0.48 0.61 0.56 0.24

0.53 0.16 0.39 0.28 0.59 0.67 0.36 0.38 0.11 1.00 0.33 0.20 0.50 0.81

0.41 0.56 0.49 0.49 0.13 0.07 0.89 0.56 0.48 0.33 1.00 0.38 0.64 0.48

0.46 0.65 0.24 0.30 0.16 -0.02 0.43 0.57 0.61 0.20 0.38 1.00 0.53 0.32

0.55 0.53 0.62 0.63 0.27 0.14 0.65 0.80 0.56 0.50 0.64 0.53 1.00 0.71

0.63 0.27 0.56 0.44 0.66 0.52 0.49 0.57 0.24 0.81 0.48 0.32 0.71 1.00

Correlation matrix: Gr Liv Area, Overall Qual, SalePrice & related features

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Correlation matrix in the Ames Housing dataset including Gr Liv Area, Overall
Qual, SalePrice, and related features.

We train a Multi-Layer Perceptron (MLP) model on the housing dataset with the hyperparameters
given in Table 1.

1The Ames Housing dataset provides a dataset with 79 explanatory variables related to properties (see
Figure 3 for an overview of some of the features in the dataset). The target variable in the dataset is the
SalePrice, representing the sale price of the houses. The features include both numerical and categorical
variables, covering a wide range of aspects such as lot size, number of rooms, location, construction, and more.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 1: MLP model and its hyperparameters.

Model Hyperparameters

MLP Regressor Pipeline: ("scaler", StandardScaler()) → ("model",
MLPRegressor(...)).
hidden layer sizes = (64, 32), activation = "relu", solver =
"adam",
max iter = 5000, early stopping = True, n iter no change = 20,
tol = 1e-4, learning rate init = 1e-3, alpha = 1e-4,
random state = 42.

Feature attribution is performed using SHAP and ReSHAP values, which distribute prediction con-
tributions across input features. To evaluate the differences between both algorithms, we conduct
controlled experiments by introducing duplicate or correlated features. Our evaluation follows four
steps:

1. Correlation analysis to identify strongly related features.
2. Computation of predictive performance of the MLP model used (e.g., RMSE and R2)
3. Computation of both SHAP and ReSHAP attributions.
4. Analysis of SHAP and ReSHAP attributions, with special focus on the duplicate or corre-

lated feature.

To study explanation robustness, we randomly select 10 test points (N RANDOM POINTS=10) and
compute SHAP and ReSHAP values for each point. The baseline for f(∅) is chosen as the training-
set mean prediction, ensuring that all contributions are measured relative to an intuitive baseline.
For each model and test point, we compute:

• Subset predictions for all feature subsets,
• SHAP values (ϕ) per feature,
• Lattice functions f(S) for subsets S,
• Interaction indices (µ), and
• ReSHAP values, obtained via recursive attribution.

This evaluation allows us to assess not only global feature importance but also how explana-
tions behave under redundancy and multicollinearity. In particular, duplicate-feature scenarios
(dup grliv, dup qual) reveal whether SHAP splits contributions equally or arbitrarily, while
the correlated-feature scenario (totrms) tests the method’s ability to extract overlapping effects.
The experimental settings are shown in Table 2. The mode gives us the option to vary within modes.
For this experiment, dup qual and totrms are chosen.

Table 2: Key experiment settings used in the pipeline.

Setting Value

Feature mode (MODE) "two", "dup grliv", "dup qual", "totrms": uses either a dupli-
cate of Gr Liv Area or Overall Qual, or a correlated feature TotRms AbvGrd.

Baseline for f(∅) "mean"
Test-point selection PICK RANDOM POINT=True
test points assessed N RANDOM POINTS=100
Model(s) enabled MLP

To evaluate the stability of feature attributions under redundancy, we introduce diagnostic measures
P ,R, and their ratio P/R. The measure P is defined as the difference (in percentage points) between
the absolute relative importance of a non-redundant feature before adding a redundant feature and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the absolute relative importance of the same non-redundant feature after the redundant feature has
been added, both computed using standard Shapley values. In other words, P captures how much
the attribution of a non-redundant feature changes under SHAP when redundancy is introduced. The
measure R is defined in the same way, but using ReSHAP values: it is the difference (in percentage
points) between the absolute relative importance of a non-redundant feature before and after adding
a redundant feature, computed with ReSHAP. Thus R quantifies the stability of ReSHAP under
redundancy.

The ratio P/R serves as a comparative stability indicator: values close to one suggest that SHAP
and ReSHAP behave similarly, whereas values significantly larger than one highlight cases where
SHAP attributions fluctuate stronglyafter adding a redundant feature while ReSHAP remains stable.

SUMMARY OF RESULTS

Table 3: Overview of mean absolute |P/R| values for the MLP model across two selected experi-
mental modes. Higher values indicate greater instability of SHAP relative to ReSHAP. Results are
averaged over multiple random test points.

Experimental mode mean(|P/R|) Number of test points

Duplicate-feature mode (dup qual) 5.49 100
Correlated-feature mode (totrms) 2.53 100

Duplicate-feature mode. When a duplicate of the Overall Quality feature is introduced in the
dup qual setting, SHAP becomes highly unstable in how it allocates importance between the
original and the duplicate. This is reflected in a large mean |P/R| value of 5.49 across 100 random
test points, indicating that the change in relative importance under duplication is far greater for
SHAP than for ReSHAP. In other words, ReSHAP maintains more stable attributions for the non-
redundant feature, while SHAP exhibits larger deviations. This finding highlights the corrective role
of ReSHAP in the presence of duplicated variable.

Correlated-feature mode. When including TotRms AbvGrd, which is correlated with Gr Liv Area
(as seen in Figure 3), the instability of SHAP is reduced compared to the duplication case, but is
still notable. The mean |P/R| value of 2.53 across 100 test points indicates that SHAP explanations
shift substantially in response to correlation, while ReSHAP again provides more stable attributions.
Although the divergence is smaller than in the duplicate-feature setting, the results confirm that
correlation alone is sufficient to destabilize SHAP attributions, whereas ReSHAP mitigates this
effect.

F COMPUTATIONAL COMPLEXITY AND PRACTICAL CONSIDERATIONS

Although the results in the paper contribute on the fundamental side of cooperative game theory
and its connection to Shapley values, below we analyze the computational cost of ReSHAP relative
to standard Shapley estimation. We also discuss implementation aspects, including compatibility
with approximation schemes such as KernelSHAP and TreeSHAP, and potential speed-ups. The
computational complexity of computing Shapley values exactly in the worst case is known to be
exponential, i.e., O(n2n). Since our work makes a contribution on the fundamental principle of
how the Shapley values are constructed, solving the duplicate feature paradox, its exact computation
should not be expected to be smaller than Shapley values itself. In fact, it is very comparable from
a computational complexity perspective.

Indeed, the algorithm to compute ReSHAP requires first computation of Shapley values ν in time
O(2n). Then given ν computing value µ(T) for subset T of cardinality k, naively, requires sum-
ming up 2k elements, thus total number of operations required to compute µ for all T ⊆ [n] is∑k

i=0

(
n
k

)
2k = O(3n). Using zeta/Möbius transform drops it to O(n2n) Finally, the computational

complexity of computing ReSHAP requires computing weights wi(T). Note that for a fixed subset
T ⊆ [n], Algorithm 1 computes all values wi(T) for all i ∈ [n] by recursively calling procedure

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

DISTRIBUTE. For fixed T of cardinality k the procedure recurses on its subsets in a way that each
of subsets S ⊆ T of cardinality ℓ is called 2k−ℓ times. In each recursion the only computationally
heavy component is computing

∑
∅̸=U⊂S |µ(U)| in time O(2ℓ). Thus computational complexity of

recurring the procedure DISTRIBUTE for a fixed set T of cardinality k is
∑k

ℓ=0

(
k
ℓ

)
2k−ℓ2ℓ = O(4k).

Since we call it for each subset the overall complexity is
∑n

k=0

(
n
k

)
O(4k) = O(5n). The com-

bined complexity of computing ReSHAP is O(2n + n2n + 5n) = O(5n), which can be written as
O(2n log 4) = O(22.33n). Although increased compared to the exact computation of Shapley values,
still both are exponential time and differ by a small multiplicative constant in the exponent.

It is worth pointing out that several speed-ups are possible, both for computing exact ReSHAP val-
ues and its approximations. First, caching the values of

∑
∅̸=U⊂S |µ(U)| instead of recomputing

them every time the subset is called could already improve the computational complexity of recur-
ring the procedure DISTRIBUTE. Moreover, Algorithm 1 can be optimized by computing weights
for all subsets simultaneously, by first distributing the mass of [n] into its subsets, but then recur-
sively calling only subsets of cardinality one less, which also distribute their mass to their subsets
of cardinality one less, etc. This could further reduce the overall complexity to O(2n), leading to
an overall complexity of ReSHAP to O(3n). Finally, it is important to point out that this research
does not aim to provide an optimized method for practical use, rather provides contribution on a
fundamental level where the exponential time procedure of computing Shapley values is replaced
with another exponential time procedure, ReSHAP, that has provably better behaviour in the pres-
ence of duplicate or redundant features. However, we would like to point out that several methods
readily available to speed up exact and approximate computation of Shapley values could be applied
to speed up computation of ReSHAP, mostly because its core is based solely on values ν and does
not need extra knowledge of probability distributions or other statistics of the data. This includes
techniques like TreeSHAP Lundberg et al. (2020) for tree based models, or Kernel SHAP Lundberg
& Lee (2017).

G COMPARISON WITH EXISTING APPROACHES

In this section, we give a short comparison of the ReSHAP method for solving the Duplicate-feature
paradox with other existing methods, such as Frye et al. (2020); Kwon & Zou (2022); Watson et al.
(2023); Ay et al. (2020).

Although results such as those in Frye et al. (2020); Kwon & Zou (2022) can resolve the duplicate
feature paradox for certain choices of weight vectors, they lack a universal principle for selecting
weights. In contrast, our method provides a provable procedure to compute a vector of weights that
resolves the duplicate feature paradox. On the other hand, unlike approaches in Watson et al. (2023)
and Ay et al. (2020), which use KL divergence and mutual information to define new value functions,
we retain the standard value function in the first step and subsequently apply redundancy measure
to account for feature dependencies. Moreover, although modifying the value function in Watson
et al. (2023); Ay et al. (2020) accounts for feature correlations, they do not modify the permuta-
tion weight vector, thus not guaranteeing a solution to the duplicate-feature paradox. Finally, their
methods assume extra information about probability distributions to compute KL measures, which
limits the practical applicability of the methods. Instead, our method builds upon the canonical value
function, a cornerstone of Shapley value formulations, thus our approach is directly compatible with
existing approximation techniques such as KernelSHAP: one can incorporate our redundancy-aware
weighting into those algorithms, benefiting from their efficiency while fixing the credit allocation
issue. To our knowledge, this is the first technique that fully addresses feature redundancy in Shap-
ley explanations without altering the model or requiring heavy computations beyond the standard
Shapley values estimation.

18

	Introduction
	Preliminaries
	Reformulation of Shapley values
	Duplicate-feature paradox
	Equal division vs Duplicate-feature paradox
	ReSHAP: A Redundancy-Weighted Generalization of Shapley Attribution
	Analysis and Empirical Evaluation
	Case Studies on Synthetic Examples
	Small-Scale Real Data Experiment

	Conclusions and Future Work
	Proof of Lemma 3
	Example for Shapley values for redundant nonduplicated feature
	Potential of using correlations to address redundancy
	ReSHAP performance for Example B
	Small-Scale Real Data Experiment
	Computational Complexity and Practical Considerations
	Comparison with Existing Approaches

