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Abstract
Benchmarking and establishing proper statistical
validation metrics for reinforcement learning (RL)
remain ongoing challenges, where no consensus
has been established yet. The emergence of quan-
tum computing and its potential applications in
quantum reinforcement learning (QRL) further
complicate benchmarking efforts. To enable valid
performance comparisons and to streamline cur-
rent research in this area, we propose a novel
benchmarking methodology, which is based on a
statistical estimator for sample complexity and a
definition of statistical outperformance. Further-
more, considering QRL, our methodology casts
doubt on some previous claims regarding its su-
periority. We conducted experiments on a novel
benchmarking environment with flexible levels of
complexity. While we still identify possible ad-
vantages, our findings are more nuanced overall.
We discuss the potential limitations of these re-
sults and explore their implications for empirical
research on quantum advantage in QRL.

1. Introduction
Reinforcement learning (RL) is a powerful algorithmic prim-
itive increasingly applied across multiple domains (Arulku-
maran et al., 2017; François-Lavet et al., 2018). Quantum
reinforcement learning (QRL) (Meyer et al., 2022) is a col-
lection of RL algorithms developed for quantum computers,
an emergent paradigm of computing that exploits the laws
of quantum mechanics (Nielsen & Chuang, 2010). While
some QRL algorithms with provable advantage over tra-
ditional (classical) algorithms have been proposed (Wang
et al., 2021; Cherrat et al., 2023; Dunjko et al., 2016), these
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Figure 1. Comparison of empirical sample complexities Ŝ of dou-
ble deep Q-learning and a quantum version of the algorithm (lower
is better). Sample complexity is the number of environment-agent
interactions to surpass a performance threshold 1−ε with probabil-
ity δ. The figure shows the result for the BeamManagement6G
environment introduced in this work. In order of decreasing sam-
ple complexity: a small classical neural network with 2 hidden
layers of width 16, i.e., 387 parameters; a small quantum circuit
with 4 layers on 14 qubits, i.e., 437 variational parameters, inte-
grated between fully connected classical layers with additional 101
parameters; a large classical neural network with 2 hidden layers
of width 64, i.e., 4611 parameters; The hybrid quantum model
consistently outperforms the similar-sized classical network, and
is also competitive with the 10-fold larger classical model.

algorithms are currently far out of reach for any existing
quantum computing hardware. Hence, most of the work has
focused on hybrid algorithms in which the deep neural net-
work of a traditional RL algorithm – either approximating
the policy, the value function, or both – is replaced by a vari-
ational quantum circuit (VQC) (Bharti et al., 2022; Chen
et al., 2020). However, they (while being less hardware-
intensive) are heuristic in nature. Hence, there is no proof of
intrinsic advantage of the quantum version of the algorithm.

In the search for heuristic quantum advantage in QRL, we
encounter issues similar to classical RL: sensitivity to hyper-
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parameter choices, various randomness sources, and even
random seed and codebase (Henderson et al., 2018; Jordan
et al., 2024). QRL faces similar, if not more severe, repro-
ducibility issues than traditional RL (Bowles et al., 2024;
Franz et al., 2023) due to additional randomness. Therefore,
any claim of QRL’s superiority over classical RL should be
taken with great care.

“How do we meaningfully assess if a QRL agent outper-
forms its classical counterpart and what does outperform
mean in the context of quantum advantage?” We adopt
sample complexity, i.e., the number of interactions between
the agent and the environment to achieve a certain perfor-
mance (Kearns & Singh, 1999; Kakade, 2003), as the central
benchmarking metric due to its inherent costly implications
in real-world applications. As classical RL is notorious for
its sample inefficiency (François-Lavet et al., 2018), a po-
tential quantum advantage in sample complexity presents
an intriguing prospect of QRL.

In addition to common sources of randomness known in
RL (Henderson et al., 2018), such as random weight ini-
tialization, randomness in the environment, etc., QRL is
subject to additional sources of randomness such as shot
noise or hardware imperfections due to current limitations.
Therefore, performance comparisons need to be based on a
sound statistical evaluation. However, most studies perform
only a small, potentially insufficient number of training runs
for robust inferences under stochasticity. As a result, state-
ments are potentially misleading or insignificant. Figure 2
exemplifies the comparison of two RL algorithms w.r.t some
threshold on the evaluated return. It illustrates common
flaws prevalent in the QRL literature, e.g., averaging learn-
ing curves over only 5 seeds, inconsistency in statistical
ranges, etc. Figure 2 indicates that algorithm 1 is more
sample-efficient. However, the interquartile ranges (shaded
areas) estimated with a much larger sample size of 100 runs
rather support the opposite statement.

This paper strongly advocates robust stochastic modeling
backed by significance testing to meet reproducibility crite-
ria (Henderson et al., 2018). The main contributions of this
paper are as follows. (1) We propose a formal evaluation
procedure by a statistical estimator for sample complexity,
complemented by a robust notion of outperformance based
on statistical significance. Importantly, both are designed
for the benchmarking of heuristic algorithms. (2) We design
and implement a fast and flexible benchmarking suite based
on a problem inspired by real-world wireless communica-
tion tasks. While community benchmarks (Brockman et al.,
2016; Tassa et al., 2018b) are widely used, benchmarking
quantum algorithms requires the option to flexibly scale
difficulty and instance size of the task to allow extrapolation
beyond classical simulatability of quantum algorithms. The
task we introduce belongs to a potentially significant prob-
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Figure 2. Inadequate reporting of two (Q)RL agents’ performance
can lead to false conclusions about sampling complexity. Although
the curves may seem exaggerated, it is common practice in QRL
studies to benchmark with such a limited number of runs.

lem class for quantum computing, characterized by small
input and output dimensions of classical data (Hoefler et al.,
2023). Therefore, we opt for a new benchmark environment
to better suit the specific needs of quantum algorithm eval-
uation. (3) We perform the most extensive computational
analysis of classical RL vs. QRL done so far to the authors’
knowledge. In our study, we compare different problem and
algorithm configurations of different scales and complexity.
Statistically robust results are obtained by performing 100
training runs per configuration, by far the largest population
size found in the quantum computing literature.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work. Section 3 provides background
on (Quantum) RL. Next, Section 4 introduces our statistical
estimator. Section 5 describes the experimental setup and
introduces a novel environment with flexible complexity.
Section 6 evaluates QRL using our statistical estimator. We
discuss the implications on quantum advantage in Section 7.

2. Related Work
For classical deep RL, in general, no rigorous analysis of al-
gorithms is possible, necessitating a computational approach
to algorithmic comparison and representative benchmark-
ing environments (Brockman et al., 2016; Todorov et al.,
2012; Tassa et al., 2018a) for mature implementations of
widely-used deep RL algorithms (Hill et al., 2018; Duan
et al., 2016; Fujimoto et al., 2019; Wang et al., 2019b).
However, benchmarking results are heavily influenced by
(sometimes seemingly trivial) implementation details (En-
gstrom et al., 2019; Andrychowicz et al., 2021; Huang et al.,
2022), as well as randomness in environment transitions
and network initialization (Henderson et al., 2018). Re-
search has focused on determining the necessary number of
seeds for robust comparison (Agarwal et al., 2021; Colas
et al., 2018) and on adopting statistical analysis over simple
point estimates (Agarwal et al., 2021; Colas et al., 2018;
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Patterson et al., 2024; Huang et al., 2024) (e.g., reporting
the interquartile mean instead of the average performance).
However, benchmarking algorithms with increased number
of seeds (Laskin et al., 2019; Gorsane et al., 2022; Bettini
et al., 2024) can quickly become a bottleneck (Jordan et al.,
2024), especially for computationally-intense algorithms,
like model-based (Wang et al., 2019b) or safe RL (Zhao
et al., 2024). In addition, (Jordan et al., 2020) emphasizes
that standard evaluations often overlook the difficulty of
hyperparameter tuning, which can obscure the true usability
of an algorithm in real-world applications.

QRL can solve artificial tasks (without practical relevance)
with exponentially smaller sample complexity compared to
any known classical algorithm. Recently, (Jerbi et al., 2021;
Liu et al., 2021) constructed artificial problems which are
widely believed to be classically intractable. When the type
of the algorithm is fixed to e.g. policy iteration, quantum
versions exist with polynomially reduced sample complexity
(Wang et al., 2021; Ganguly et al., 2023; Zhong et al., 2024;
Wiedemann et al., 2023). However, these algorithms require
resources that far exceed the capabilities of current quantum
hardware. An alternative line of research (Chen et al., 2020;
Skolik et al., 2022; Lockwood & Si, 2020), more aligned
with the limitations of current hardware, substitutes the
classical neural network used as a function approximator
for policy and value function in classical RL algorithms
by a variational quantum circuit VQC (Bharti et al., 2022).
Here, Jerbi et al. (2021) construct artificial problems based
on the same VQC architecture later used by the learner. The
superiority found empirically for the QRL algorithm can
then be attributed to the inductive bias introduced in the
problem. Several studies have compared classical RL and
QRL on toy problems inspired by real-world tasks. Some
of these studies (Chen et al., 2020; Drǎgan et al., 2024;
Reers, 2023; Hohenfeld et al., 2024; Eisenmann et al., 2024)
have documented empirical superiority of QRL on metrics
closely related to sample complexity. This work proposes a
robust methodology to compare these types of algorithms.

3. (Quantum) Reinforcement Learning
RL is a framework for solving complex time-dependent
decision-making problems. It relies on a Markov Decision
Process (MDP), represented as a 5-tuple (S,A, R, p, γ),
where S is the set of states and A is the set of actions. The
reward function R : S ×A×S 7→ R assigns a scalar value
to performing action a in state s and transitioning to state s′.
The dynamics are governed by p : S×S×A 7→ [0, 1], which
gives the probability of transitioning from state s to state s′

after taking action a. The discount factor γ, ranging between
0 and 1, determines the importance of immediate versus fu-
ture rewards. The objective is to find a policy π(s) = a
that maximizes the discounted long-term reward Gt ←
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Figure 3. Hybrid classical-quantum neural network for an exem-
plary 4-qubit quantum layer. The dimensionality of the observation
is mapped to the number of qubits in the quantum circuit using a
fully-connected layer. The variational quantum circuit – for details
on the ansatz see Figure 18 in Appendix D – acts as a hidden
layer, and all qubits are measured individually in the Pauli-Z basis.
These measurement results are post-processed using another fully-
connected layer, mapping to the number of actions.

∑∞
t′=t γ

t′−trt′ from time step t onwards. With the state-
action value function Qπ(s, a) := Eπ [Gt|st = s, at = a],
the optimal policy is given by π∗(s) = argmaxaQ

∗(s, a).
The optimal Q-value function is the unique solu-
tion to the Bellman optimality equation Q∗(s, a) =∑

s′ p(s
′|s, a) [R(s, a, s′) + γ ·maxa′ Q∗(s′, a′)], for all

s ∈ S, a ∈ A (Sutton & Barto, 2018).

The state-action value function is typically represented using
some type of function approximator, as tabular approaches
are only suitable for small problem instances. Reinforce-
ment learning based on classical deep neural networks
(DNNs) has been first successfully realized in the deep
Q-networks (DQN) algorithm (Mnih et al., 2015). In our
work, we employ an extension of this concept, i.e. double
deep Q-networks (DDQN) (Van Hasselt et al., 2016). This
algorithm employs function approximators Qθ, Qθ′ , and
performs updates of the parameters towards following loss:

L(θ) = [r + γ ·Qθ(s
′, argmaxbQθ′(s′, b))−Qθ(s, a)]

2
,

where target parameters θ′ are synchronized after a
hyperparameter-dependent number of update steps.

It is also possible to additionally parameterize the policy
(i.e. the actor), in addition to the value function (i.e. the
critic), and train the respective function approximators with
proximal policy optimization (PPO) (Schulman et al., 2017).
Details on both the algorithm and the hyperparameter tuning
performed can be found in Appendix C.

We compare two function approximation approaches in
these algorithms: (i) the standard version with a classical
DNN and (ii) the quantum version, which has a variational
quantum circuit between two small classical fully-connected
layers. This structure is called hybrid classical-quantum, as
depicted in Figure 3. As discussed in Appendix D.2, the clas-
sical layers have few trainable parameters, and small fully
classical DNNs are not competitive, so the hybrid models’
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Figure 4. The figure exemplarily shows two learning curves gener-
ated by two different algorithms or algorithmic settings (algorithm
1 and algorithm 2). While algorithm 2 exhibits lower sample
complexity with respect to threshold V ∗

2 than algorithm 1 (for
this particular training run), the converse is true for threshold V ∗

1 ,
which algorithm 2 may even never reach. Consequently, if con-
vergence to optimality cannot be proved for the algorithm, sample
complexity is well defined only with respect to a given threshold.

performance originates from the quantum sub-module. The
VQC acts like a quantum counterpart to a classical DNN,
with trainable weights parameterizing unitary operations,
usually single-qubit rotations (Bharti et al., 2022). The
quantum state is measured to approximate complex func-
tions. Past research suggests VQCs may have advantages
over DNNs, including better accuracy for certain tasks (Liu
et al., 2021) and smaller model size (Chen et al., 2020).
More details on VQCs and the ansatz used here are shown
in Appendix D.1. Such models have been used in value-
based (Chen et al., 2020; Skolik et al., 2022) and policy-
based (Jerbi et al., 2021; Meyer et al., 2023a) RL routines.

4. Sample Complexity Estimator
The sample complexity S of an RL algorithm is the number
of samples s′ ∼ p(·|s, a) required to meet a specified per-
formance criterion (Kearns & Singh, 1999; Kakade, 2003)
with high probability. When S is expressed by relevant
problem parameters such as state- and action-space size,
discount factor etc., it serves as an effective instrument to
compare different learning algorithms with performance
guarantees (Lazaric et al., 2012; Lattimore et al., 2013; Liu
et al., 2024). However, assessing sample complexity of
heuristic RL algorithms requires empirical evaluation pro-
cedures. In particular, as illustrated in Figure 4, sample
complexity for algorithms without performance guarantees
has to be defined with respect to a given threshold V ∗. In
the following, we introduce a statistical estimator for sam-
ple complexity. To this end, for a given algorithm, we view
each training run as the realization of a stochastic process
{Vt, t = 1, ..., T}. In our setting, we choose Vt to be the

evaluated expected return. In case of our environment, the
maximal value of Vt can be calculated, thus without loss
of generality, we constrain Vt ∈ [0, 1]. We generalize the
definition of the estimator in Appendix B to environments
for which the optimal value of the expected return is un-
known. We fix δ ∈ (0, 1] and ε ∈ [0, 1], and define sample
complexity as

S =

T∑
t=1

I [Pt < δ] , (1)

where I[·] is the indicator function which is 1 exactly if
the probability Pt = P (Vt ≥ 1 − ε) is smaller than δ
and otherwise 0. In words, Pt is the probability that the
algorithm performs better than the threshold 1− ε at time
step t. Since Pt is unknown, we model N training runs by a
collection of stochastic processes {V (i)

t , t = 1, ..., T} with
i = 1, ..., N , where V

(i)
t i.i.d. for given t. Next, we replace

Pt by its unbiased estimator

P̂t =
1

N

N∑
i=1

I
[
V

(i)
t ≥ 1− ε

]
. (2)

Now the empirical sample complexity can be defined as:

Definition 4.1 (Estimator empirical sample complexity).
Given N training runs {V (i)

t , t = 1, ..., T} with i =

1, ..., N and V
(i)
t i.i.d. for given t, a probability thresh-

old δ ∈ (0, 1] and a performance threshold value ε ∈ [0, 1],
we call

Ŝ =

T∑
t=1

I
[
P̂t < δ

]
, (3)

where P̂t is defined in Equation (2), the empirical sample
complexity.

Appendix B provides more details on the intuition of this
definition. Additionally, we prove consistency, that is
limN→∞ P

(
|Ŝ − S| > η

)
= 0 for η > 0. Moreover,

using the central-limit theorem, it is shown that Ŝ is asymp-
totically unbiased. Based on the analysis in the appendix
we choose N = 100 throughout this work. To the author’s
knowledge, this number far exceeds the population size
used in any other study on QRL benchmarking. Based on
Definition 4.1 we define:

Definition 4.2 (Significant Outperformance). We say that
algorithm 1 outperforms algorithm 2 [on a task], if (i) it
has significantly lower sample complexity (with respect to
a definition of significance) for some error threshold ε and
probability threshold δ. (ii) Algorithm 1 must not have a
significantly higher sample complexity than Algorithm 2
for any ε-δ-configuration.

In this work, we consider a difference in sample complexity
to be significant, if the respective 5th and 95th percentile

4



Benchmarking Quantum Reinforcement Learning

ranges do not overlap (i.e., extended interdecile ranges (De-
Groot, 2005)). To guarantee robustness, we perform 100
runs for each setup and use cluster re-sampling (Cameron
et al., 2008) for estimating the quantiles.

5. Experimental Setup
As QRL algorithms exhibit some robustness against hard-
ware noise (Skolik et al., 2023) (which is expected to further
decrease in the future (Kim et al., 2023; Acharya et al.,
2025)) we decided to perform all experiments in a noise-
free simulation. We reduced the impact of parameter initial-
ization by considering 100 random seeds per environment
and model configuration. We initialized the classical neural
networks using He initialization and the VQC parameters
uniformly at random within [0, 2π]. We tuned the hyperpa-
rameters, see Appendix C, before running the actual exper-
iments. The configurations of the models are reported in
terms of three metrics: (i) model width, i.e., the number of
neurons in hidden layers for classical DNNs, and in case
of quantum architectures the number of qubits; (ii) model
depth, i.e., the number of hidden layers for classical net-
works, and the number of layers of the quantum models;
and (iii) model complexity, parameterized by the number of
trainable parameters, which will be justified further below.
The reported configurations were chosen by an extensive
ablation study, see Appendix D.

BeamManagement6G Environment. Solutions to ‘in-
dustrial use cases’ with quantum machine learning (QML)
(Dunjko & Briegel, 2018) and QRL (Meyer et al., 2022)
are currently limited to toy problems, far from generating
commercial value. This limitation is due to constraints of
current hardware (i.e., the number and quality of qubits) and
the input-output bottleneck (Hoefler et al., 2023).

We propose a novel benchmarking environment that fo-
cuses on beam management in wireless communication.
Next-generation communication networks feature anten-
nas capable of forming directional beams to serve mobile
phones (Enescu, 2020). Beam management is the task of se-
lecting the antenna and beam direction that maximize beam
quality (its intensity) at the position of a moving phone. The
(discretized) antennas and beam directions are precoded
into a codebook.

Promising solutions to beam management are based on RL
(Wang et al., 2019a; Yammine et al., 2023). Without explicit
knowledge of the specific trajectory of the mobile phone,
the RL agent is trained to select optimal antenna index and
codebook element, only given the selections of previous
time steps. This describes the RL state space as

S = Antenna × Codebook × Intensity,

where Antenna is the set of antenna indices, and Codebook
is the set of codebook elements. As input to the model,

previous
trajectory

position

antenna
with beams

intensity It−1

previous
position

intensity It?

beam Bt−1

antenna At−1

Figure 5. The BeamManagement6G environment consists of a
set of antennas A ∈ Antenna, for which at any point in time only
one is active. Furthermore, each antenna is equipped with multi-
ple beams, also referred to as codebook element B ∈ Codebook,
which are selected automatically. A user moves through the en-
vironment, is targeted by one of the antennas, and receives some
intensity I ∈ Intensity. Based on this observation, i.e., the active
antenna At−1, beam Bt−1, and intensity It−1 at the previous time
step t − 1, the task is to select the optimal antenna for the next
timestep t, i.e., the At providing the greatest intensity value It to
the user. The objective is to maximize the sum of received intensi-
ties over the entire trajectory. Note, that the spatial position of the
user is unknown, as localization induces unreasonable real-world
overhead, and furthermore collides with user privacy concerns.

both antenna and codebook indices are re-scaled, and the
intensity value is in [0, 1] by construction in our model.
Following this paradigm, we developed a fast simulator that
allows flexible placement of multiple antennas and to sample
random movement trajectories of varying complexity. For
simplicity we task the agent to select the base station (i.e.
the antenna) but assume the optimal codebook element to
be found automatically by the antenna, i.e.,

A = Antenna.

Selecting a (close to) optimal beam can be solved via effi-
cient beam search algorithms, cf. (Yammine et al., 2023).
The reward is the intensity received after selecting the re-
spective antenna and codebook element. A sketch of this
environment is given in Figure 5, details are deferred to
Appendix A and Appendix E.

We specifically employed this environment because it has a
small state and action space, yet exhibits complex dynam-
ics, enabling meaningful analysis without overwhelming
encoding complexity. Moreover, its state space is mostly
continuous, reflecting realistic energy variations and beam
selections as continuous angles. Finally, there is ongoing
debate on suitable methods for beam management, with
RL identified as a strong contender (Maggi et al., 2024;
Voigt et al., 2025), making this environment an excellent
choice for benchmarking classical RL and QRL in a set-
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Figure 6. Empirical sample complexities Ŝ of double deep Q-learning for various relative errors ε and threshold probabilities δ on the
BeamManagement6G environment. The model width denotes the number of neurons in classical hidden layers, and the number of
qubits in quantum models, respectively. Moreover, model depth refers to the number of hidden layers in DNNs, and number of ansatz
repetitions in VQCs. The estimate is based on 100 training runs, with a validation granularity of 2000 steps. The error bars denote the
5th and 95th percentiles, estimated with cluster resampling. The results follow the performance pattern already highlighted in Figure 1.
Both quantum models are on par with the 3- to 4-fold larger medium-sized classical model, with the 14-qubit model having a slight edge.
Configurations where multiple runs do not achieve the targeted relative error rate before the cut-off 200k steps are shown transparent.

ting inspired by practical 6G challenges. Nonetheless, we
highlight that this environment is merely one example to
empirically demonstrate our methodology, which can also
be applied to other, entirely different tasks.

6. Experiments
We evaluate different (Q)RL algorithms on our novel
BeamManagement6G environment using our proposed
statistical sample complexity estimator in Section 6.1. Sec-
tion 6.2 studies the relationship between sample complexity
and (RL) model complexity. In Section 6.3 we compare the
performance of the trained policies.

6.1. Sample Complexity

We extract the sample complexity of a model via post-
processing of the validation logs for 100 randomly seeded
runs. A training epoch collects trajectories from 10 environ-
ments, each with a horizon of 200 steps. Training is con-
ducted for 100 epochs in total, i.e., overall 200, 000 agent-
environment interactions are conducted in each run. After
each epoch, validation is performed on 100 environment in-
stances, reporting the ratio of received beam intensity vs. the
optimal intensity. This validation with relative intensities is
done to enhance the stability of the estimate, and allow for

evaluating the sample complexity depending on the relative
error threshold ε. In contrast, the agent itself has access only
to the intensity values, in accordance with the real-world
conditions. For practical reasons, we evaluate the sample
complexities on only the subset of ε-δ-configurations, which
are meaningful for real-world performance.

In Figure 1, we plot the empirical sample complexity for
three instances of the DDQN algorithm on the standard con-
figuration of three antennas of the BeamManagement6G
environment. Overall, the large classical model with 4611
trainable parameters (width 64, depth 2) exhibits the lowest,
i.e., best, sample complexity. The small quantum model
with only 336 classical and quantum parameters (14 qubits,
4 layers) nearly matches this performance. In contrast to
that, the approximately equally-sized small classical model
with 387 parameters (width 16, depth 2) clearly requires
much more samples for convergence. This hierarchy is
preserved across a wide range of threshold probabilities δ
and error thresholds ε. Note, that a sample complexity of
200, 000 indicates, that some runs failed to converge to the
desired error threshold.

We extend this analysis by conducting cluster resam-
pling (Cameron et al., 2008), a variant of bootstrap resam-
pling which captures the correlations in time of the learning
process. We employ this method to estimate the 5th and
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95th percentiles of the estimator Ŝ for sample complexity.
The percentile ranges are indicated by error bars throughout
this work, and used to determine outperformance according
to Definition 4.2.

In Figure 6 we summarize our main results, and addition-
ally consider two more models: An even smaller quantum
model with 313 parameters (10 qubits, 4 layers). It ex-
hibits a performance close to, but not quite competitive with
the 14-qubit hybrid model. The restriction to 10 qubits in
most experiments optimally utilizes limited computational
resources, see Appendix D.2. Overall, we conclude, that
hybrid classical-quantum models significantly outperform
similar-sized fully classical approaches w.r.t. sample com-
plexity. Furthermore, we include a medium-sized classical
model with 1, 283 parameters (width 32, depth 2), which
performs slightly worse than the large quantum model for
most, but not all ε-δ-configurations. Moreover, the large
quantum model is not significantly outperformed by the
largest DNN, demonstrating signs of competitiveness.

A similar analysis of the PPO algorithm, where both policy
and value function are approximated with DNNs and VQCs,
respectively, supports our findings. Details can be found in
Appendix C.2. While the results qualitatively match pre-
vious observations, typical sample complexities are much
higher across all models. However, this is not surprising,
as on-policy approaches like PPO are known to be less
sample-efficient than off-policy routines like DDQN. This
superiority stems from structures like, e.g., the experience
replay buffer, which allows the latter algorithm to re-use
previous experience (Sutton & Barto, 2018).

6.2. Scaling with Model Complexity

We now explore the relationship between sample efficiency
and the complexity of the RL and QRL model, respectively.
There exist different measures for model complexity both
in the classical (Hu et al., 2021) and quantum (Abbas et al.,
2021) domain. In this work we define model complexity
based on the number of trainable parameters. The parameter
count defines a sequence of models in model space (assum-
ing additional hyperparamter search for given parameter
count). This sequence can then be used to identify potential
trends, for example in the behavior of sample complexity as
we scale to more powerful quantum models.

In the previous section, we experimentally demonstrated that
a hybrid classical-quantum model significantly outperforms
purely classical models of similar complexity and competes
with much larger ones. In Figure 7, we analyze this behavior
more systematically by plotting sample complexity against
both classical and quantum model complexities. Specifi-
cally, we vary the width of hidden layers for the classical
DNNs, and the number of qubits for VQCs. A deeper analy-
sis including investigations into different model depth can
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Figure 7. Correlation of model and sample complexity in the
BeamManagement6G environment with the DDQN algorithm.
The upper plot depicts quantum models with increasing number
of qubits in the variational quantum circuit, the lower plot shows
classical DNNs with increasing width of the hidden layers. The
number next to the markers denotes the number of trainable pa-
rameters in the respective model. All results are averaged over 100
seeds, and error bars denote the 5th and 95th percentiles, estimated
with cluster resampling. A more extensive version of this plot can
be found in the appendix in Figure 19.

be found in Appendix D.2.

Most crucially, the sample complexity of the classical mod-
els saturates once the hidden layer width reaches 64. In
contrast, increasing the qubit number of the quantum model
up to 14 does not exhibit a similar saturation behavior.

At this point, two questions arise which are addressed in the
following: (i) Are models with lower complexity but similar
performance generally preferrable, i.e., how should sample
and model complexity be balanced? (ii) Is outperfomance
of the quantum model achievable by further increasing qubit
numbers? The first question (i) cannot be answered in gen-
eral as it depends on concrete practical considerations and
objectives. If the primary goal is to minimize the number of
agent-environment interactions, regardless of training and
inference costs, the classical models are superior. However,
when memory requirements are considered, the reduced
parameter count of the quantum-enhanced model might
be advantageous. Assuming scalability of this approach,
also runtime improvements are conceivable. The second
question (ii) cannot be answered conclusively at the current
stage. The saturation behavior in Figure 7 suggests that
further scaling the quantum model could lead to compara-
ble or superior performance relative to the largest classical
model, which, however, can only be substantiated by more
experimental evaluations. We stress that a naive extrapola-
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Figure 8. Cumulative intensities over trajectories achieved in the
BeamManagement6G environment. For both, the trained hybrid
quantum and classical model, we select the 10 best-performing
instances out of the trained models and evaluate each on 1000
random trajectories. The quantum model (green) and the classical
model (blue) closely match the ground-truth performance (yellow),
with a large performance gap to random behavior (brown). Next
to the subplot identifiers we report the mean value of observed
intensities over the 10 model instances.

tion to higher qubit numbers might be limited in practice
by trainability issues (Larocca et al., 2024). Moreover, it is
computationally prohibitive to generate simulation results
beyond 14 qubits due to the substantial overhead required
for statistically robust results as summarized in Table 3 in
Appendix D.2.

6.3. Performance of Trained Policies

In the following, we validate that the RL models trained in
Section 6.1 behave in a meaningful way. Therefore, we iden-
tified the 10 best-performing instances with width 64 and 14
qubits, respectively. In Figure 8, we report the histogram of
intensities for the standard environment configuration (see
Figure 11) received by employing the respective policies on
1000 random trajectories each.

As a consequence of different trajectories, the maximum
achievable intensity varies. Both RL strategies produce

similar-looking histograms of the received intensities. The
reported mean values of the intensity of the quantum model
(green) and the classical model (blue) do not indicate signif-
icantly different behavior by visual inspection. Furthermore,
we observed comparable results for various different en-
vironment configurations in Appendix E. Therefore, we
conclude that the performance of the QRL and classical RL
models is on par for the BeamManagement6G environ-
ment.

These closely match the ground-truth intensity distribution
(yellow) obtained by brute force. Moreover, all approaches
clearly improve upon a random strategy. Note that the poli-
cies of the trained models correspond to non-trivial behavior
patterns. We stress that simply selecting the closest antenna
is sub-optimal, as highlighted by the complex spatial inten-
sity patterns shown in Figure 13 in the appendix. Moreover,
as highlighted in Figure 5, the position of antenna and the
mobile phone are unknown to the agent and only learned
implicitly.

6.4. Standard CartPole Benchmark

To further test our benchmarking scheme, we extend our
analysis to the widely used CartPole-v1 environment. This
benchmark regularly appears in QRL studies (Lockwood &
Si, 2020; Skolik et al., 2022), often accompanied by claims
that quantum models outperform classical approaches with
fewer number of trainable parameters. However, these state-
ments rely on a small number of training runs and are based
on simple visual comparisons. In contrast, here we apply our
statistical sample complexity estimator to CartPole-v1
with the results shown in Figure 9.

We employed a vanilla policy gradient algorithm and per-
formed hyperparameter search over a similar range as re-
ported in Appendix C.1. While generally we do not expect
to find globally optimal settings (Jordan et al., 2020), more
advanced training methods such as natural gradients (Meyer
et al., 2023b) could potentially further improve performance.
Nevertheless, the chosen configurations allows us to com-
pare classical and quantum function approximators with
the number of trainable parameters ranging from about 30
to 17, 000. The best quantum setup found, a single-layer
model on only four qubits (Meyer et al., 2023a), performs
competitively to the best classical model across nearly all
ϵ-δ configurations. The cross-cut, Figure 9(b), of Figure 9(a)
at an evaluated threshold of ε = 0.05 shows that the perfor-
mance gap may not always be statistically significant due to
overlapping confidence bounds. This again underscores the
importance of sufficient number of runs.

We stress that these results should not be interpreted as ev-
idence for quantum advantage. The circuit sizes are very
small, allowing straightforward classical simulation, and
scaling CartPole-v1 in a way that requires larger quan-
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Figure 9. Comparing empirical sample complexities Ŝ of vanilla
policy gradients and a quantum version of the algorithm on the
CartPole-v1 environment. Both classical and quantum models
were optimized over a wide range of hyperparameters and model
sizes. The estimates are based on 100 training runs.

tum models is notoriously difficult. These limitations moti-
vate our focus on BeamManagement6G, whose complex-
ity can be flexibly scaled.

7. Discussion of Quantum Advantage
In this section, we discuss the relation of our benchmarking
results of the previous section to potential quantum advan-
tage. Let us define heuristic quantum advantage as the
consistent and statistically significant (Definition 4.1) out-
performance (Definition 4.2) of a quantum algorithm over
the best (known) classical algorithm for a given task. Do

our findings show signatures of heuristic quantum advan-
tage? Not quite, because despite extensive hyperparameter
optimization, we cannot guarantee that we compared the
quantum model to the optimal classical one.

If we set aside this caveat for the moment as double Q-
learning is known to be comparatively sample-efficient (Sut-
ton & Barto, 2018), the results are more nuanced. If we
steadily increase the number of parameters of the classical
model, our numerical results demonstrate that its perfor-
mance approaches that of the quantum model, but plateaus
before significantly outperforming it. Thus, did we verify
quantum advantage under the condition of comparable pa-
rameter numbers between models? Here, we caution again
because a necessary condition for any kind of quantum ad-
vantage is classical intractability.

Evidence for quantum advantage obtained in small-scale
experiments must therefore necessarily be accompanied by
arguments for its persistence as problem sizes increase. For
example, from our studies on model complexity we might
extrapolate that the performance of the quantum model
could be further improved by increasing the number of
qubits. In this sense, small-scale experiments may indicate
trends that might or might not persist for large problem
instances. We therefore encourage more experiments and
simulations with the striving to scale, which might offer
valuable insights into the behavior of quantum algorithms.
Ultimately, the question of empirical quantum advantage is,
at its core, an empirical one and an answer will come from
experimental progress of the future.

8. Conclusion
In summary, we introduced a robust and statistically sound
methodology for benchmarking heuristic RL, in particular
quantum RL algorithms. Our procedure relies on an empir-
ical notion of sample complexity captured by a statistical
estimator and a rigorous definition of outperformance. We
developed a benchmarking suite inspired by real-world wire-
less 6G communication tasks, which is flexibly adjustable
in difficulty and instance size.

As an application of our methodology, we compared the
performance of double deep Q learning, as well as proximal
policy optimization, and their quantum counterparts. In
an extensive and statistically robust computational analy-
sis, covering many structurally different problem instances
and models, we found that the quantum algorithm consis-
tently outperforms the classical version when the number of
trainable parameters is similar.

We evaluated the results with respect to potential empirical
quantum advantage. We argued that currently no definitive
statement can be made but identified trends, that may be
corroborated by further experiments on larger scale.
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Drǎgan, T.-A., Tandon, A., Strobel, C., Krauser, J. S., and
Lorenz, J. M. Quantum multi-agent reinforcement learn-
ing for aerial ad-hoc networks. arXiv:2404.17499, 2024.
doi: 10.48550/arXiv.2404.17499.

Du, Y., Huang, T., You, S., Hsieh, M.-H., and Tao, D.
Quantum circuit architecture search for variational quan-
tum algorithms. npj Quantum Inf., 8:62, 2022. doi:
10.1038/s41534-022-00570-y.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning (ICML), volume 48, pp. 1329. PMLR,
2016. URL https://proceedings.mlr.press/
v48/duan16.pdf.

Dunjko, V. and Briegel, H. J. Machine learning &; artificial
intelligence in the quantum domain: a review of recent
progress. Rep. Prog. Phys., 81:074001, 2018. doi: 10.
1088/1361-6633/aab406.

Dunjko, V., Taylor, J. M., and Briegel, H. J. Quantum-
enhanced machine learning. Phys. Rev. Lett., 117:130501,
2016. doi: 10.1103/PhysRevLett.117.130501.

Eisenmann, S., Hein, D., Udluft, S., and Runkler, T. A.
Model-based offline quantum reinforcement learning. In
IEEE International Conference on Quantum Computing
and Engineering (QCE), volume 1, pp. 1490–1496, 2024.
doi: 10.1109/QCE60285.2024.00175.

Enescu, M. (ed.). 5G New Radio: A Beam-based Air In-
terface. John Wiley & Sons, Inc., 2020. doi: 10.1002/
9781119582335.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep RL: A case study on PPO and TRPO. In Interna-
tional Conference on Learning Representations (ICLR),
2019. URL https://openreview.net/forum?
id=r1etN1rtPB.

François-Lavet, V., Henderson, P., Islam, R., Bellemare,
M. G., and Pineau, J. An introduction to deep reinforce-
ment learning. Found. Trends Mach. Learn., 11:219, 2018.
doi: 10.1561/2200000071.

Franz, M., Wolf, L., Periyasamy, M., Ufrecht, C., Scherer,
D. D., Plinge, A., Mutschler, C., and Mauerer, W. Un-
covering instabilities in variational-quantum deep Q-
networks. J. Frankl. Inst., 360:13822, 2023. doi:
10.1016/j.jfranklin.2022.08.021.

Fujimoto, S., Conti, E., Ghavamzadeh, M., and Pineau, J.
Benchmarking batch deep reinforcement learning algo-
rithms. arXiv:1910.01708, 2019. doi: 10.48550/arXiv.
1910.01708.

Ganguly, B., Wu, Y., Wang, D., and Aggarwal, V. Quantum
computing provides exponential regret improvement in
episodic reinforcement learning. arXiv:2302.08617, 2023.
doi: 10.48550/arXiv.2302.08617.

Gershman, A. B., Sidiropoulos, N. D., Shahbazpanahi, S.,
Bengtsson, M., and Ottersten, B. Convex optimization-
based beamforming. IEEE Signal Processing Magazine,
27:62, 2010. doi: 10.1109/MSP.2010.936015.

Gorsane, R., Mahjoub, O., de Kock, R. J., Dubb, R., Singh,
S., and Pretorius, A. Towards a standardised performance
evaluation protocol for cooperative MARL. Adv. Neu-
ral Inf. Process. Syst., 35:5510, 2022. URL https:
//openreview.net/forum?id=am86qcwErJm.

Griffiths, D. J. Introduction to Electrodynamics. Pearson,
fourth edition, 2013.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that

11

https://www.iis.fraunhofer.de/en/ff/kom/mobile-kom/6g-sentinel/6g-sentinel-white-paper.html
https://www.iis.fraunhofer.de/en/ff/kom/mobile-kom/6g-sentinel/6g-sentinel-white-paper.html
https://www.iis.fraunhofer.de/en/ff/kom/mobile-kom/6g-sentinel/6g-sentinel-white-paper.html
https://proceedings.mlr.press/v48/duan16.pdf
https://proceedings.mlr.press/v48/duan16.pdf
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=am86qcwErJm
https://openreview.net/forum?id=am86qcwErJm


Benchmarking Quantum Reinforcement Learning

matters. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence. AAAI Press, 2018.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A.,
Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J., Sidor, S., and
Wu, Y. Stable Baselines. https://github.com/
hill-a/stable-baselines, 2018.
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A. 6G Beam forming and RL environment
This appendix elaborates on the 6G beam management environment used in this work as a benchmark environment for
different quantum and classical reinforcement learning algorithms.

Beamforming refers to the technique of transmitting signals in a spatially selective manner despite interference and noise.
There are multiple practical applications for radar and sonar, in communication technology, radio astronomy, seismology
and many more (Trees, 2002). In recent years, the interest in beamforming has further increased due to applications in
wireless communication. Beamforming is seen as one of the key technologies to accommodate the growing number of
users of high data rate services (Corici et al., 2021). Next generation communication networks will feature antennas (in the
following also referred to as base stations) capable of forming directional beams and spatially targeting user equipment
(UE). This process is known as beam management.

In this work, we consider one specific optimization task, known as hand-over management, the task of switching base
stations to maintain optimal quality of service for mobile UEs. For given positions of base stations, the transmitted spatial
radiation intensity pattern is typically highly complex due to reflection and absorption effects. Selecting the optimal base
station (the one with the highest beam intensity at the UE’s location) would require knowledge about the exact spatial
intensity pattern and geolocation of the UE based on initial high-resolution measurements of the intensity field. Machine
learning, particularly reinforcement learning (Gershman et al., 2010), offers a promising simplification by implicitly learning
the intensity field and UE position. Different antenna settings (such as transmission angle, phases and amplitudes of the
transmitters,...) are encapsulated in a codebook–a discretized mapping between these intrinsic antenna settings and resulting
macroscopic intensity patterns. In general, the RL agent’s task is to select the antenna and codebook element which achieves
optimal service.

The practical problem sizes of interest far exceed what can be addressed by currently available quantum computing
technology. Thus, we employ a simplified toy model with the underlying physics simulator taken to be as realistic as
possible. This was ensured by cross-validating our simplified model with a general physics simulator (Burkhardt et al., 2014)
for this problem. Our setting is confined to two spatial dimensions, ignoring reflection, absorption, and beam interference.
We assume one beam per antenna but allow a variable number of base stations. The task is to train a reinforcement-learning
agent that selects the base station with the greatest radiation intensity at the current location of the agent at each time
step. We assume that the optimal beam direction (that is the codebook entry) of the selected base station is automatically
determined by the antenna.

Figure 10. A typical setting in the toy-model reinforcement-learning problem inspired by 6G beam management tasks. The UE moves
on a randomly generated trajectory (orange line) in the intensity field of three base stations at positions (0, L/2), (L/2, 0), (L/2, L). The
main lobe of the antennas is focused on the UE (darker blue corresponds to lower intensity). Clearly visible are also the weaker maxima
of the intensity fields stemming from interference effects within the antenna. By traversing the area between the base stations multiple
times on different trajectories the reinforcement learning agent learns to select the base station with highest intensity without knowledge
of the spatial intensity distribution and the form of its trajectory. For better readability, in this figure the typical inversely squared decrease
of the electric field with the distance to the source is removed.
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The agent only has access to the following information:

• the index of the base station At−1 ∈ Antenna selected in the previous time step t − 1, where Antenna is the set of
antenna indices,

• the active codebook element Bt−1 ∈ Codebook of the base station selected in the previous time step, where Codebook
is the set of codebook elements per antenna, and

• the received radiation intensity It−1 ∈ Intensity from the previously selected base station.

Note that the agent neither has access to its current position in the radiation field nor to the specific structure of the beam
intensity field. While moving along a randomly generated trajectory, the agent learns the mapping between this available
information and the spatial beam intensity pattern and its current location. Figure 10 visualizes a typical intensity field in
our toy model, showing the trajectory of a UE and the beams from three base stations directed towards the UE. Figure 11
exemplarily details an environment instance with three antennas and shows the ground-truth for the selection task.

(a) Two instances of a three-antenna environment configuration, with
different user trajectories. The dashed gray lines depict the environment
boundaries, while the white and black markers indicate the position and
orientation of antennas A1, A2, and A3. The trajectories are indicated
by the green lines, the green crosses mark the current positions of the
user. The task is to select the antenna that leads to optimal service
(greatest beam intensity) at the position of the user. The active antenna
is marked in white, with the active codebook element indicated by ⟨·⟩.
The (symmetric) discretized directions of the main beam are indicated by
the white dotted lines. The secondary beams are caused by interference
effects, but can also be used to serve users, significantly complicating
the task of optimal selection. In each timestep, the agent has to base its
decision solely on the previously selected antenna, codebook element,
and observed intensity, without access to the spatial position of the user.

A1

A2

A3

(b) Ground-truth of the optimal intensity distribution,
generated by brute-forcing over all available antenna-
codebook configurations. At each point, only the highest
received intensity at each point is reported. The colors
indicate the optimal antenna, the brightness the intensity
magnitude. We emphasize the non-triviality of the ground-
truth solution, i.e. the optimal antenna selection does not
just correspond to selecting the antenna with the smallest
spatial distance to the user. Moreover, in real-world sce-
narios this information would not even be accessible to
the RL agent, as localization of the user induces unreason-
able overhead, and furthermore collides with user privacy
concerns.

Figure 11. Two different viewpoints of the BeamManagement6G environment used in this paper. Figure 11(a) shows a single active
antenna at every step in time, which corresponds to the task the RL agent has to solve. Figure 11(b) visualizes the underlying ground-truth
solution.

In the following subsections, we first detail our model of the radiation-intensity field produced by the base stations in
Appendix A.1, followed by a discussion of the relation between beam direction, antenna configuration and codebook element
in Appendix A.2. We conclude with the description of the procedure for sampling random trajectories in Appendix A.3.

A.1. Beam intensity field

We now study the antenna model used in this work and visualized in Figure 12. The base station is equipped with a linear
array of antenna elements or senders (orange dots in Figure 12), with the jth sender at position rj . A sender is a dipole
radiation source, which we assume to be pointing in perpendicular direction to the 2d plane we consider.

Further, we assume the distance |r − rj | between observer at position r and the jth sender to be much larger than the
distance between the individual senders and introduce the effective location r0 of the antenna such that rj = r0+dj . Below,
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Figure 12. Model of an antenna used in the two-dimensional setting used in this work. The senders of a linear phased array are shown as
orange dots in the figure. The electric field emanating from the jth point source is modeled in the far-field as a spherical wave. A tunable
phase offset of each sender can be used to direct beams exploiting interference.

r0 will point to the sender in the middle of the array (assuming an odd number of senders). Far away from the jth sender it’s
electric field at position r and time t approximately is a spherical wave (Griffiths, 2013)

Ej(r, t) =
A

|r− rj |
sin(k|r− rj | − ωt+ ϕj) . (4)

Here, A is a constant, ω the frequency of the light wave, and k = ω/c where c is the speed of light is the wave number.
We disregard the vector character of the electric field since in the far field of the antenna the electric field component of
each sender will approximately point in the same direction. As we will see below, by tuning the phase offset ϕj , directed
high-intensity beams can be sent by exploiting interference effects. Next, we define R = r − r0, and R = |R|. The
following approximations are valid in the far field, that is whenever |dj |/R≪ 1 (Griffiths, 2013),

|r− rj | = R− R · dj

R
+O(R−1) (5)

k[|r− rl| − |r− rj |] = k
R · (dj − dl)

R
+O(R−1) (6)

1

|r− rj |
=

1

R
+O(R−2) . (7)

The average field intensity at a point in space is proportional to the square of the sum of all electric field components
averaged over time, that is

I(r) ∝ lim
T→∞

1

T

∫ T

0

dt
(∑

j

Ej(t)
)2

=
A2

2R2

∣∣∣∣∣∑
j

exp
{
i
(
k
R · dj

R
− ϕj

)}∣∣∣∣∣
2

. (8)

The final equality follows by inserting Equation (4), making use of the approximation in Equations (5) to (7), and a
subsequent straightforward calculation. We model the base stations as a linear phased array of Ns (Ns odd) senders at
position dj = jd with j = −(Ns − 1)/2, ..., (Ns − 1)/2 and ϕj = jφ. Furthermore, |d| = π/k for maximal constructive
interference. Substituting these definitions into Equation (8) yields the final result

I =
B2

2R2

sin2(Nsξ/2)

sin2(ξ/2)
(9)

with the proportionality constant B where

ξ = k
R · d
R
− φ . (10)

Since Equation (9) diverges for R→ 0, we introduce a cut-off at the value of the intensity at R = 0.001. As the number of
senders Ns increases, Equation (9) strongly peaks at ξ = 0. Measuring the direction of the beam by the angle θ with respect
to d, we find

cos(θ) =
φ

π
. (11)
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In our simple model, Equation (11) is the mapping between the macroscopic field configuration (the direction θ of the
beam) and the specific physical settings (the phase gradient φ of the antenna). The codebook then is a vector (θ1, ..., θNc) of
discretized angles evenly distributed over the interval [0, 2π) with the underlying mapping φi = π cos(θi) with i = 1, ..., Nc.
In our experiments, we set Ns = 17 and Nc = 9.

A.2. Antenna configuration

To generate an instance of the environment, we randomly sample the positions for a predefined number of antennas. Inspired
by economic considerations in the real world, we avoid that pairs of antennas are located too close to each other. To enforce
this, we first sample antenna coordinates Rj uniform at random within the 2d environment [0, L]× [0, L]. By default, we
choose L = 6. We resample positions until the Euclidean distance between any of the antennas is greater than a threshold,
i.e. if |Ri −Rj | > dmin for all i and j. The random configurations in our work were created with a value of dmin = 1.5.
The orientations of the antennas are individually sampled uniformly at random, and successively normalized. For a position
r in the plane the ground truth (optimal antenna and codebook entry) is efficiently calculated by maximizing the intensity
at r by iterating over all codebook elements φi for each antenna. Figure 13 illustrates some configurations for different
numbers of antennas. The intensity field calculated via Equation (9) together with the discretized codebook gives rise to the
complex patterns shown in the figure that the RL agent is tasked to learn. Note the difference between the intensity field
pattern for a particular codebook element as shown e.g. in Figure 10 and the pattern shown in Figure 13 where the intensity
is maximized over the codebook elements independently at each position.

2 antennas 3 antennas 4 antennas 5 antennas

Figure 13. Different antenna configurations with increasing number of antennas. At each position, the colors indicate the antenna with
maximum intensity after maximization over the codebook elements. The brightness of the colors show the intensity where darker
corresponds to lower intensity. For better readability, the plots show R2I where I is the antenna’s intensity according to Equation (9).

A.3. Trajectory sampling

In addition to the antenna configuration, we also sample a random trajectory the agent moves on. To this end, we uniformly
sample n ≥ 2 points (xi, yi) for i = 1, ..., n within the 2d grid [0, L] × [0, L]. At the boundary we choose x1 = 0 and
xn = L. The points are subsequently interpolated by a cubic spline function s(t) = (y(t), x(t)) with t ∈ [0, 1] and
s(0) = (0, y1) and s(1) = (L, yn). We perform rejection sampling until 0 < y(t) < L and 0 < x(t) < L for all t. The
number of support points n allows to control the complexity of the trajectory. Figure 14 exemplarily shows trajectories
with an increasing number of support points. Each episode starts at t = 0 and ends at t = 1. The parametrization of the
trajectory s(t) by t results in a t-dependent velocity. As a simplification, we fix the velocity of the agent to v0 which in
general is trajectory dependent due to the different arc lengths of the trajectories. To achieve a constant absolute value v0 of
the velocity, we re-parametrize s(t(τ)) and differentiate with respect to τ

ds

dτ
=

∂s(t)

∂t

dt

dτ
. (12)

Taking the absolute on both sides of the equation, fixing |ds/dτ | = v0 and abbreviating v(t) = |∂s(t)/∂t|, we arrive at the
differential equation

dτ

dt
=

v(t)

v0
. (13)
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3 support points 4 support points 5 support points 6 support points

Figure 14. Different trajectory degrees. We sample n points in the two-dimensional grid and interpolate them by a cubic spline function.
The complexity of the trajectories increases with the number of support points n. The figure shows sample trajectories for n = 3, ..., 6.

Integration with the initial conditions t(τ = 0) = 0 and t(τ = 1) = 1 then yields

τ(t) =
1

v0

∫ t

0

dt′v(t′) (14)

with v0 =
∫ 1

0
dt′v(t′). We use this functional dependence between t and τ to re-parametrize the spline function of the

trajectory.

B. Sample complexity estimator
This appendix provides more details on the statistical estimator for evaluation of sample complexity. Sample complexity, as
used in this work, follows the intuitive notion: Sample complexity is the number of interactions with the environment the
reinforcement learning algorithm needs to achieve a certain performance. More formally, following Ref. (Kakade, 2003;
Kearns & Singh, 1999), given a threshold V ∗, the sample complexity is the number of interactions with the environment
until a measure of the algorithm’s performance such as the expected return is larger than the threshold with high probability.
This definition is meaningful for RL algorithms with guaranteed monotonic convergence properties to the optimal policy
(Kakade, 2003) such as policy iteration in tabular settings (Sutton & Barto, 2018).

However, for algorithms with no performance guarantees, the situation is more involved as showcased by Figure 15. The

number of algorithm-environment interactions

ev
a
lu

a
te

d
re

tu
rn V ∗1

V ∗2 algorithm 2

algorithm 1

Figure 15. The figure shows the learning curves for algorithm 1 and algorithm 2. While algorithm 2 exhibits lower sample complexity
with respect to threshold V ∗

2 than algorithm 1, the converse is true for threshold V ∗
1 , which algorithm 2 even never seems to reach. This

example shows the following: If convergence to optimality cannot be proved for the algorithm, the definition of sample complexity is only
meaningful when defined with respect to a threshold.

figure exemplarily shows the learning curves of two algorithms. Since we consider here for example neural-network based
algorithms with no convergence guarantees to the optimal value, which might even be unknown, the question of which of
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these algorithms has lower sample complexity can only be answered with respect to a predefined threshold. Indeed, in
Figure 15 algorithm 2 has lower sample complexity with respect to V ∗

2 than algorithm 1 because the learning curve shown
first crosses the threshold V ∗

2 . Conversely, algorithm 1 has lower sample complexity with respect to V ∗
1 which algorithm 2

even seems to never reach. In this case, we assign infinite sample complexity to algorithm 2.

So far the discussion has been for two specific training runs. In the following, we capture the notion of sample complexity
more rigorously by viewing the training curve as the realization of a stochastic process. The stochasticity stems from
randomness in the environment but also from the algorithm itself (random initialization of neural network weights, sampling
from action distribution, etc.). Statements about sampling complexity under randomness thus require the definition of a
statistical estimator introduced in the following:

Consider a random process {Vt, t = 1, ..., T}. For given δ ∈ (0, 1] we define a criterion to decide if Vt is below or above a
threshold V ∗ via the probability Pt = P (Vt ≥ V ∗) and define the sampling complexity as

S =

T∑
t=1

I [Pt < δ] . (15)

Here, I[·] is the indicator function which is one if its argument is true and zero otherwise. The number of time steps T is
sent to infinity but in practice taken to be large enough to capture possible instabilities of the algorithm. Obviously, we do
not have access to Pt, which we therefore estimate from independent training runs. This leads to the following definition of
empirical sample complexity:

Definition B.1 (Estimator empirical sample complexity – general case). Given a collection of N random processes
{V (i)

t , t = 1, ..., T} with i = 1, ..., N and V
(i)
t i.i.d. for given t, a threshold value V ∗ ∈ R and a threshold probability

δ ∈ (0, 1], we call

Ŝ =

T∑
t=1

I
[
P̂t < δ

]
(16)

where

P̂t =
1

N

N∑
i=1

I
[
V

(i)
t ≥ V ∗] , (17)

the empirical sample complexity.

Note that EP̂t = Pt, consequently P̂t is unbiased. The estimator Ŝ can be simplified when V
(i)
t is bounded, e.g. V (i)

t ∈
[0, Vmax]. In Section 4 we redefine V

(i)
t → V

(i)
t /Vmax and V ∗ → V ∗/Vmax := 1 − ε with ε ∈ [0, 1]. In this case

Equation (17) becomes

P̂t =
1

N

N∑
i=1

I
[
V

(i)
t ≥ 1− ε

]
. (18)

In the following, we investigate the properties of Ŝ, in particular consistency and bias.

Theorem B.2 (Consistency). Ŝ is consistent, that is for all η > 0 we find that limN→∞ P
(
|Ŝ − S| > η

)
= 0

Proof.

P
(
|Ŝ − S| > η

)
≤ 1

η
E|Ŝ − S| (19)

≤ 1

η

T∑
t=1

E
∣∣I[P̂t < δ]− I[Pt < δ]

∣∣ (20)

=
1

η

T∑
t=1

∣∣P (P̂t < δ)− I[Pt < δ]
∣∣ . (21)
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We first used Markov’s inequality, followed by the triangle inequality. In the final step we made use of the fact that the
indicator function is either zero or one and that E I[·] = P (·). With the definition ∆ = δ − Pt, we find

P
(
P̂t < δ) = P

(
P̂t − Pt < ∆) = I[Pt < δ] +

{
P
(
P̂t − Pt < −|∆|) if ∆ ≤ 0

−P (P̂t − Pt ≥ ∆) if ∆ > 0
(22)

and thus
lim

N→∞
P
(
P̂t < δ) = I[Pt < δ] , (23)

recalling that P̂t is a consistent estimator for Pt, that is limN→∞ P
(
|P̂t−Pt| > ∆) = 0 for ∆ > 0. The claim then follows

when taking the limit of Equation (19) using Equation (23).

Let us now consider the large N limit and possible bias of the estimator. To this end, we calculate the probability of
I[P̂t < δ] = 1 even though Pt > δ.

Theorem B.3 (Bias). For large N we have P (I[P̂t < δ] = 1) → Φ(∆
√
N/σ) with ∆ = δ − Pt and σ =

√
Pt(1− Pt)

where Φ is the error function.

Proof. We obtain an expression for P (I[P̂t < δ] = 1) by the central-limit theorem. We find

P (I[P̂t < δ] = 1) = P (P̂t < δ)→ Φ(∆
√
N/σ) (N large) (24)

where σ2 = Var
(
I
[
V

(i)
t ≥ V ∗]) = Pt(1− Pt) and the error function Φ(z) = 1√

2π

∫ z

−∞dz e−
1
2 z

2

.

The estimator therefore is slightly biased around Pt ≈ δ where Equation (24) deviates from the step function I(Pt < δ) over
a width of

√
δ(1− δ)/

√
N . Figure 16 shows the numerical evaluation for N = 100 samples and V (i) ∼ Uniform(0, 1).

The smoothed step function is clearly visible for different values of δ. For the uniformly distributed random variables
considered here, the central limit theorem closely approximates the simulated curves for N = 100 which corresponds to the
chosen number of training runs throughout this work.
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Figure 16. The figure shows numerical simulations for V (i) ∼ Uniform(0, 1). The y axis shows the probability P (I[P̂t < δ] = 1) =
P (P̂t < δ), on the x-axis we scan Pt = 1−V ∗. The figure shows smoothed step functions around Pt = δ. For the exemplary distribution
V (i) ∼ Uniform(0, 1), the central limit theorem (dashed lines) approximates the functions well.
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C. Experimental Details
This appendix provides details on the experimental setup that was used for producing the results in this paper. Moreover,
we will highlight the implemented tools and configuration options. All implementations and raw results are accessible as
described in the data availability statement.

We implemented the pipeline in python to be compatible with most of the ongoing research efforts in the ma-
chine learning (ML) and quantum computing (QC) community. The classical routines are mainly based on the
PyTorch library (Paszke et al., 2019). For hyperparameter optimization of the quantum models we made use of the
qiskit-torch-module (Meyer et al., 2024), a library for fast simulation of quantum neural networks on multi-core
systems. These initial experiments (results see Appendix C.1) were conducted on a system with a AMD Ryzen 9 5900X
12-Core CPU. As the successive experiments exceeded the capacity of a single machine, these were executed on the woody
cluster of the Erlangen National Performance Computing Center (NHR@FAU), consisting of 112 nodes of Intel Xeon
E3-1240 v6 4-Core CPUs. As these are addressable in a single-core granularity, the PennyLane library (Bergholm et al.,
2022) was found to be more efficient for simulating the quantum circuits.

The pipeline itself consists of three main components:

(1) A realization of the BeamManagement6G environment described in Appendix A, following the OpenAI gymnasium
API (Brockman et al., 2016): The three-dimensional observation consists of base station index, received intensity, and
codebook element of the previous time step. The first and last elements are normalized component-wise to the range
[0, 1]. The intensity is inherently restrained to [0, 1]. The implementation allows to stack multiple past observations
to provide more information to the agent, but this was not found to improve the overall performance for the setups
considered in this paper. During training, the absolute received intensity value is returned as reward value. For testing
purposes, it is also possible to report the fraction of the maximum achievable intensity. However, this internally
computes the ground-truth solution, and therefore this information should not be used during training phase.

The agent’s action is to select one of the available base stations by its index. Once selected, the environment internally
performs a sweep over the available codebook elements and selects that corresponding to the greatest intensity at the
position of the UE. The internal spatial position of the environment is updated according to a trajectory object following
Appendix A.3. For the experiments in this paper, we selected a constant trajectory length of 200 steps. If not mentioned
otherwise, the experiments were conducted with the three-antenna setup displayed in Figure 11. Our framework is
implemented in a modular fashion, which allows to easily replace this environment with others available through the
gymnasium library.

(2) A RL algorithm that trains on the environment for a user-defined maximum number of steps. For that purpose, we
realized two different algorithms: Double Deep Q-Networks (DDQN) (Van Hasselt et al., 2016), an off-policy value-
function based routine; Proximal Policy Optimization (PPO) (Schulman et al., 2017), an on-policy policy-function
based routine. Most experiments in this paper refer to the DDQN algorithm, as off-policy algorithms are usually more
sample-efficient than on-policy approaches (Sutton & Barto, 2018). However, to provide an additional example of using
our sample complexity estimator, we added some experimental results for PPO in Appendix C.2. Both algorithms are
integrated from the Tianshou library (Weng et al., 2022), which makes it straightforward to extend our framework
with additional RL algorithms. Our framework implements classical neural networks and hybrid quantum-classical
networks as function approximators. Details on configuration possibilities and model sizes are provided and analyzed
in Appendix D.

During the training procedure, validation is performed in regular intervals. The training and validation trajectories and
all associated rewards are logged for successive computation of the sampling complexity. Additionally, intermediate
and final parameters of the model are stored, which allows for retrospective fine-tuning and testing.

(3) A tool for evaluating the sample complexity, based on the logged trajectories from the training routine. Additionally,
we implement the estimation of percentiles via cluster re-sampling (Cameron et al., 2008). This is realized as a
post-processing step and requires only few computational resources once the training data is available.

A pseudocode overview of the end-to-end pipeline for estimating the sample complexity of DDQN can be found in
Algorithm 1. A modified version for the PPO algorithm is provided in Algorithm 2.
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Algorithm 1 Estimating the Sample Complexity of Double Deep Q-Networks (DDQN)
Input: environment E (with a horizon of 200 for BeamManagement6G), state-action value function approximator Q,
Input: training runs Nseed (defaults to 100), epochs to train for Nepoch (defaults to 100),
Input: number of training environments Nenv (defaults to 10), validation environments Nval (defaults to 100)
Output: sample complexity of DDQN on environment E for threshold probabilities δ0, . . . and error thresholds ε0, . . .

Set up empty reward buffer of shape Nseed ×Nepoch
for Nseed different (random) initial parametrizations of Q do

Initialize a standard DDQN algorithm (Van Hasselt et al., 2016; Weng et al., 2022) with Q and hyperparameters
− εgreedy: epsilon-greedy action selection
− αC , αQ: classical and (optional) quantum learning rate
− γ: reward discount factor
− Nsync: target network synchronization rate
− Nbuffer: experience replay buffer size
− Nbatch: mini-batch size for update
for Nepoch training epochs do

Use the DDQN algorithm on Nenv parallel training environments
Employ current policy on Nval parallel validation environments
Store the averaged validation result to the reward buffer

end for
end for
for threshold probabilities δ0, δ1, . . . do

for error thresholds ε0, ε1, . . . do
Determine the sample complexity and respective percentiles from the reward buffer as described in Appendix B

end for
end for

Algorithm 2 Estimating the Sample Complexity of Proximal Policy Optimization (PPO)
Input: environment E (with a horizon of 200 for BeamManagement6G), actor approximator Π, critic approximator V ,
Input: training runs Nseed (defaults to 100), epochs to train for Nepoch (defaults to 500),
Input: number of training environments Nenv (defaults to 10), validation environments Nval (defaults to 100)
Output: sample complexity of PPO on environment E for threshold probabilities δ0, . . . and error thresholds ε0, . . .

Set up empty reward buffer of shape Nseed ×Nepoch
for Nseed different (random) initial parametrizations of Π, V do

Initialize a standard PPO algorithm (Schulman et al., 2017; Weng et al., 2022) with Π, V and hyperparameters
− εclip: gradient clipping threshold
− αC , αQ: classical and (optional) quantum learning rate
− γ: reward discount factor
− Nbatch: mini-batch size for update
− Nrepeat: update repetition for each batch
for Nepoch training epochs do

Use the PPO algorithm on Nenv parallel training environments
Employ current policy on Nval parallel validation environments
Store the averaged validation result to the reward buffer

end for
end for
for threshold probabilities δ0, δ1, . . . do

for error thresholds ε0, ε1, . . . do
Determine the sample complexity and respective percentiles from the reward buffer as described in Appendix B

end for
end for
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C.1. Hyperparameter Optimization

To evaluate and compare the sample efficiency, it is important to optimize the hyperparameters of the involved algorithms.
Only then statements can be made on the suitability and performance for specific tasks. While we focus on algorithmic
hyperparameters in this section, an ablation study for different underlying models is performed in Appendix D. While it is
impossible to consider every degree of freedom with fine granularity, we determine the hyperparameters that have the largest
impact on the overall performance – and in particular sample complexity.

For both the DDQN and PPO algorithm with classical and quantum function approximators the results are reported in
Table 1. The bold values were determined to be optimal by using grid-search with 20 runs for each configuration. These
are the settings that have been used to produce the results in the rest of this paper. While this does not proof that the
respective models produce the best sample efficiency possible, we believe that the performed comprehensive hyperparamter
optimization allows for statements with high certainty.

Classical Quantum

DDQN
(Algorithm 1)

action selection εgreedy 0.05, 0.1, 0.2 0.05, 0.1, 0.2
synchronization rate Nsync 250, 1000, 2000, 4000 not separately optimized
replay buffer size Nbuffer 1000, 10000 not separately optimized
classical learning rate αC 0.01, 0.001, 0.0005, 0.0002, 0.0001 0.001, 0.0005, 0.0002, 0.0001
quantum learning rate αQ N/A 0.002, 0.001, 0.0005, 0.0002

PPO
(Algorithm 2)

gradient clipping εclip 0.05, 0.1, 0.2, 0.4 0.05, 0.1, 0.2, 0.4
update repetition Nrepeat 1, 5, 10, 50, 100 not separately optimized

classical learning rate αC 0.002, 0.001, 0.0005, 0.0002, 0.0001 0.002, 0.001, 0.0005
quantum learning rate αQ N/A 0.002, 0.001, 0.0005

Shared
discount factor γ 0.90, 0.95, 0.99 not separately optimized

mini-batch size Nbatch 32, 64 not separately optimized
activation function† None, ReLU, Tanh None, ReLU, Tanh

†refers to the type of activation function used in classical neural networks between each layer; for hybrid classical-quantum networks, for
a sketch see Figure 3, placement is between input layer and quantum circuit, as well as between measurement and output layer.

Table 1. Hyperparameter optimization for the DDQN and PPO algorithm with underlying classical and quantum models. For each
hyperparameter, we denote the considered values and the found optimal setup. For guaranteeing robust results, we performed full grid
search with 20 seeds for each configuration. Due to the large simulation overhead, for the quantum models some hyperparameters were
not separately optimized but taken over from the classical results.

C.2. Sampling Complexity of Proximal Policy Optimization (PPO)

Most experiments in this paper were conducted using the DDQN algorithm (Van Hasselt et al., 2016), which can be
considered an off-policy approach. This means that the agent can learn from actions that were not produced by the current
policy. In DDQN this is typically realized by an experience replay buffer that allows to re-use past experience (Mnih et al.,
2015). It is straightforward to see that such re-use of information can be expected to reduce the sample complexity. On
the other hand, PPO (Schulman et al., 2017) is an on-policy algorithm. Such approaches can only learn from actions that
were taken during the current training epoch. While this allows for more stable learning in some contexts, as well as other
advantages (Sutton & Barto, 2018), it does prevent the use of past information. Consequently, the sample efficiency can
be expected to be tentatively lower compared to DDQN. However, it is still possible to quantitatively compare PPO with
different underlying models.

In Figure 17, we report the sample complexities for three different classical PPO models and one quantum PPO model on
the BeamManagement6G environment. To allow for convergence, we increased the maximum number of interactions
to 500 (epochs) · 200 (steps) · 10 (batch) = 1000000. Comparison with Figure 6 validate the above assumption that PPO
is less sample efficient than DDQN. However, for most ε-δ-configurations we observe superior performance of the small
quantum model to the small classical model (width 16), on par performance with the medium classical model (width 32),
and only slightly inferior performance to the large classical model (width 64). This is in line with the other observations in
this work, i.e. that quantum models can achieve a sample complexity competitive with much larger classical models.
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Figure 17. Empirical sample complexities Ŝ of proximal policy optimization (PPO) for various relative errors ε and threshold probabilities
δ on the BeamManagement6G environment. The model width denotes the number of neurons in classical hidden layers, and the number
of qubits in quantum models, respectively. Moreover, model depth refers to the number of hidden layers in DNNs, and number of
ansatz repetitions in VQCs. Compared to Figure 6 which shows the same study but for DDQN, the larger number of trainable parameter
originates from the use of separate actor and critic networks. All results are averaged over 100 seeds and error bars denote the 5th and
95th percentiles, estimated with cluster resampling. Configurations where multiple runs do not achieve the targeted relative error rate
before the cut-off of one million steps are grayed out.

D. Analysis of Classical and Quantum Function Approximators
This appendix complements the discussion of the algorithmic setup from Appendix C with considerations regarding the
underlying models. In our work, we distinguished between two classes of function approximators – both for the value
function in DDQN and the policy in PPO: On the one hand, classical fully-connected neural networks with varying width
and depth of the hidden layers. On the other hand, hybrid classical-quantum networks, i.e. a variational quantum circuit with
varying qubit and layer counts, encased by single-layer classical networks (sketch see Figure 3).

In Appendix D.1, we describe the hybrid model in more detail and discuss different ansätze for the underlying variational
quantum circuit. An ablation study we conducted w.r.t. model complexity of both, classical and quantum approaches, is
outlined in Appendix D.2.

D.1. Notes on Quantum Circuit Ansatz

The choice of the quantum circuit ansatz is a frequently debated topic in the quantum computing community. It is possible
to compare different choices based on measures such as expressibility, trainability, and entanglement capability (Sim et al.,
2019; Abbas et al., 2021). There also exist approaches for automatically generating architectures that are optimal w.r.t. some
of these properties (Du et al., 2022). However, apart from some artificial examples, relating these metrics to task-specific
performance has so far been unsuccessful.

We decided for a hybrid instead of a pure quantum model which avoids the dependency of the qubit number on the
dimensionality of the RL state. This allows the flexibility of arbitrarily scaling the VQC – for a sketch see Figure 3. More
formally, we use an initial single-layer fully connected network to map the dimension of the state observation s := s(0) to a
vector compatible with the input dimension of an n-qubit VQC:

s(1) = wt
pre · s(0) + bpre (25)

This intermediate state s(1) is encoded into the VQC with a parameterized unitary U(s(1); Θ), with details on the trainable
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parameters Θ and encoding procedure described below. The respective quantum state is evolved and the individual qubits
are measured in the Pauli-Z basis to get the intermediate state s(2):

s(2) =


〈
0|U(s(1); Θ)†

(
Z ⊗ I⊗n−1

)
U(s(1); Θ)|0

〉
...〈

0|U(s(1); Θ)†
(
I⊗n−1 ⊗ Z

)
U(s(1); Θ)|0

〉
 (26)

The intermediate result is post-processed using another single-layer classical neural network. This adjusts the dimensionality
to the desired output dimension, usually the number of actions, i.e. antennas in the BeamManagement6G environment:

s(3) = wt
post · s(2) + bpost (27)

For the DDQN algorithm, this output s(3) is directly used as an approximation for the Q-value function. In case of PPO, we
consecutively append a softmax layer to get a probability density function approximating the policy. While the hybrid model
incorporates both, trainable classical and quantum parameters, our ablation study on model complexity in Appendix D.2
demonstrates that the performance of these models can be mainly attributed to the quantum part.

H

H

H

Ul,0

Ul,1

Ul,2

U0,0

U0,1

U0,2

(a) “Ent-C”: CX entanglement

H

H

H

Ul,0

Ul,1

Ul,2

U0,0

U0,1

U0,2

(b) “Ent-CZ”: CZ entanglement

H

H

H

Ul,1

Ul,2

Ul,0 H

H

H

U0,1

U0,2

U0,0

(c) “IQP”: instantaneous quantum polynomial ansatz

Figure 18. Three different hardware-efficient ansatz structures compared for this paper. All configurations initially create a uniform
superposition, followed by potentially multiple layers of variational gates and two-qubit entangling gates. The different instances
are realized with: (a) variational single-qubit unitaries together with nearest-neighbor controlled-X gates; (b) variational single-qubit
unitaries together with nearest-neighbor controlled-Z gates; (c) controlled variational unitaries in a nearest-neighbor structure, followed by
Hadamard gates; In the notation Ul,q , the index l denotes the layer and q the qubit position. Consequently, for two and more layers we
employ data re-uploading (Pérez-Salinas et al., 2020), enhancing the expressivity of the ansatz. The variational unitaries are realized with
one of the parameterizations of a universal single-qubit rotation shown below in Equations (29) to (31).

For studying the measure of sample complexity, we identified the most suitable ansatz out of 9 architectures that are
commonly used by the quantum machine learning (QML) community. More concretely, we consider 3 different hardware-
efficient circuit structures, all featuring at most two-qubit interactions (Kandala et al., 2017). This includes (a) a nearest-
neighbor entanglement structure with controlled-X gates and single-qubit rotations, (b) a nearest-neighbor entanglement
structure with controlled-Z gates and single-qubit rotations, and (c) the so-called instantaneous quantum polynomial
ansatz (Shepherd & Bremner, 2009) with controlled rotations interleaved between Hadamard gates. A visualization of these
configurations can be found in Figure 18. In general, the single-qubit unitary Ul,q(s; Θ) acts on qubit q in layer l. We realize
data encoding in the general form as

Ul,q(s; θ, λ) = U(λl,q,2 · sq + θl,q,2, λl,q,1 · sq + θl,q,1, λl,q,0 · sq + θl,q,0), (28)

where the trainable parameters Θ are comprised of standard variational parameters θ, and state scaling parameters λ (Jerbi
et al., 2021). Furthermore, sq denotes the q-th entry of the intermediate output from the classical encoding layer, see
Equation (25). In this work, we consider 3 different parameterization of variational universal rotation gates:

UROT
l,q (s; θ, λ) = Rz(λl,q,2 · sq + θl,q,2)Ry(λl,q,1 · sq + θl,q,1)Rz(λl,q,0 · sq + θl,q,0) (29)

UXYZ
l,q (s; θ, λ) = Rz(λl,q,2 · sq + θl,q,2)Ry(λl,q,1 · sq + θl,q,1)Rx(λl,q,0 · sq + θl,q,0) (30)

UU3
l,q (s; θ, λ) = U3(λl,q,2 · sq + θl,q,2, λl,q,1 · sq + θl,q,1, λl,q,0 · sq + θl,q,0) (31)

All three expressions parametrize arbitrary single-qubit unitaries. The representation in Equation (29) is typically used by
PennyLane. The second on in Equation (30) is the subsequent rotation along all three axis. The final one in Equation (31)
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structure
IQP Ent-CX Ent-CZ

gate

ROT baseline throughout paper ⊖ slightly worse performance ⊖ significantly worse performance

XYZ ⊖ slightly worse performance ⊕ comparable performance ⊖ significantly worse performance
⊖ slow simulation ⊖ slow simulation ⊖ slow simulation

U3 ⊖ extremely slow simulation ⊖ unstable training curves ⊖ significantly worse performance
⊖ unstable training curves ⊖ unstable training curves

Table 2. Different quantum circuit ansätze compared to the baseline selected for the experiments in this paper. We considered combinations
of the ansatz layouts in Figure 18 and variational gates in Equations (29) to (31). Overall we observed that the IQP and CX-entanglement
layout exhibited a performance clearly superior to CZ-entanglement. Furthermore, ROT and XYZ gates performed similarly, but the
former was much faster to simulate. While the final performance using U3 gates was also comparable, the training procedure was much
more volatile.

is the arbitrary single-qubit rotation parameterized as

U3(θ, ϕ, δ) =

[
cos

(
θ
2

)
−eiδ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+δ) cos

(
θ
2

)] . (32)

While in principle all these parameterizations can be used to approximate the same functions, we observed significant
differences regarding convergence stability and simulation speed. Our results are summarized in Table 2. Overall, we
identified the IQP structure with UROT parameterization as most suitable for optimizing the sample complexity on the
BeamManagement6G task. Therefore, this configuration is used for all other experiments in this paper. The combination
of the CX-Ent structure with UXYZ parameterization exhibits almost equivalent performance but increased the simulation
times due to not being native in PennyLane. As a general rule of thumb, we discovered that the IQP and CX-Ent structure
are superior to CZ-Ent. Moreover, the training performance with UROT and UXYZ usually was much more stable compared
to UU3. We emphasize that this small study by no means should be considered an exhaustive architecture search. It might
be possible to develop ansätze that are even more suitable for the considered task. However, such extensions are out of the
scope of this work.

D.2. Ablation Study of Model Complexity

In the following, we will investigate the impact of model complexity on the sample complexity. For both types of models we
examined two degrees of freedom: For the classical model, this incorporates the depth, i.e. number of hidden layers, and
the width, i.e. the number of neurons in each hidden layer. With input dimension dimin and output dimension dimout, the
number of trainable parameters scales as:

weight parameters :

input layer︷ ︸︸ ︷
dimin · width +

hidden layer(s)︷ ︸︸ ︷
(depth− 1) · width · width +

output layer︷ ︸︸ ︷
width · dimout (33)

bias parameters : width + (depth− 1) · width + dimout (34)

For the standard BeamManagement6G environment configuration with dimin = 3 (i.e. antenna index, received intensity,
and codebook element of previous timestep) and dimout = 3 (i.e. 3 antennas) this simplifies to

(depth− 1) · width2 + (depth + 6) · width + 3 (35)

overall trainable parameters, i.e. a linear scaling in the depth and quadratic in the width. The parameter count approximately
doubles for PPO as separate actor and critic networks are used – with the critic requiring an output size of 1.

For the hybrid classical-quantum model, the number of classical parameters depends on the in- and output dimensionality,
as well as on the number of qubits in the VQC. Additionally, we can increase the number of variational parameters by
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appending additional layers. Therefore, the number of trainable parameters scales as:

(classical) weight parameters :

input layer︷ ︸︸ ︷
dimin · qubits + 0 +

output layer︷ ︸︸ ︷
qubits · dimout (36)

(classical) bias parameters : qubits + 0 + dimout (37)
(quantum) variational parameters : 0 + layers · qubits · 3 + 0 (38)

(quantum) scaling parameters : 0 + layers · qubits · 3︸ ︷︷ ︸
quantum circuit

+ 0 (39)

For the standard environment configuration with this simplifies to

6 · layers · qubits︸ ︷︷ ︸
quantum parameters

+ 7 · qubits + 3︸ ︷︷ ︸
classical parameters

(40)

overall trainable parameters. One can see from this expression that for increasing number of layers, the fraction of trainable
classical parameters becomes insignificant in comparison to the parameters count of the quantum circuit. This ensures, that
the performance of the model originates from the quantum part, while only pre- and post-processing is handled classically.
Moreover, further below we show that small purely classical networks are not capable of learning a meaningful strategy in
the BeamManagement6G environment.
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(a) Classical neural networks with: (upper plot) increasing width of
hidden layers for depth 2; (lower plot) increasing depth of hidden
layers for widths 32 and 64.
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(b) Hybrid classical-quantum networks with: (upper plot) increasing
number of qubits for 4 variational layers; (lower plot) increasing
number of variational layers for 8 and 10 qubits.

Figure 19. Impact of model size on the sample complexity in the BeamManagement6G environment with the DDQN algorithm. For
simplicity, we show only a single intermediate configuration of threshold probability δ = 0.85 and error threshold ε = 0.15, but similar
results were observed for other setups. In (a) we depict the scaling behavior of a classical model with increasing width and depth, (b)
refers to a quantum model with increasing qubit count and number of layers. The concrete parameter counts can be determined following
Equations (35) and (40). All results are averaged over 100 seeds, and error bars denote the 5th and 95th percentiles, estimated with 1000
repetitions of cluster bootstrapping.

We analyze the impact of model complexity, in terms of the trainable parameter count, on the sample complexity in Figure 19.
All experiments were conducted on the BeamManagement6G environment from Figure 11, using the DDQN algorithm.
We report results for an in-between configuration of threshold probability δ = 0.85 and error threshold ε = 0.15.

For the classical models in Figure 19(a), a clear performance saturation with model complexity can be observed. When
the number of hidden layers is fixed to 2, the best sample complexity is achieved with a hidden layer width of 64 (4611
parameters). The performance with a width of 128 (17411 parameters) and 256 (67587 parameters) is nearly equivalent but
no improvement could be observed. Consequently, there should be a sweet-spot model size for optimizing the task-specific
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qubits
6 8 10 12 14

layers

3
total runtime [min:sec] 00:48 01:19
thereof for train | test 00:23 | 00:19 00:44 | 00:26

4
total runtime [min:sec] 00:44 00:59 01:35 04:10 12:41
thereof for train | test 00:20 | 00:18 00:30 | 00:21 00:55 | 00:29 02:46 | 01:07 09:21 | 02:48

5
total runtime [min:sec] 01:09 01:57
thereof for train | test 00:37 | 00:23 01:10 | 00:33

6
total runtime [min:sec] 01:57 02:17
thereof for train | test 01:10 | 00:33 01:24 | 00:37

Table 3. Expected runtimes for simulating one epoch of DDQN training with hybrid classical-quantum models. All times refer to
single-core performance on an Intel Xeon E3-1240 v6 CPU. Keep in mind that for the results in this work we typically trained for
100 epochs and averaged the performance over 100 runs. We report the total end-to-end times, as well as two other values: the time
required for actual training, mostly for computing the gradients – realized using the backprop method from PennyLane; the time for
intermediate testing, which is necessary for subsequent estimation of the sample complexity; For the classical models of the considered
sizes, the time was approximately constant at only 15 seconds per episode.

sample complexity. A similar observation is made for increasing model depth, where close-to-optimal results are achieved
for depth 2. Increasing this to depth 3 brings insignificant performance improvements, but significantly increases the
parameter count – e.g. from 4611 to 8771 for width 64. Therefore, we selected a depth of 2 for the experiments in this work.

The hybrid classical-quantum models in Figure 19(b) do not exhibit a comparable saturation behavior for the considered
model sizes. With 4 layers, the sample complexity reduces for qubit counts from 6 up to 14. Moreover, the model size
in term of parameters only grows slowly for these instances, i.e. from 189 to 437. However, at this point we are faced
with a current technical bottleneck: While current quantum hardware is not robust enough to run the quantum models with
high enough fidelity, classical simulation costs increase exponentially with qubit count. The simulation time increased
additionally by a large factor, as we have to execute 100 full training runs for a single data point. In Table 3 we summarize
runtimes that can typically be expected for training the different models in simulation. While the results suggest that it is
possible to reduce the sample complexity even further by increasing the qubit count, experimental validation is currently
infeasible. However, already these comparatively small quantum models are competitive with much larger classical models.
This highlights the promising potential of scaling the quantum approaches, once the hardware development has caught up.
Increasing the number of layers seems to have a less significant impact on the overall performance, but still some gains
might be possible there. For the experiments in this work, we selected a moderate size of 4 layers.

Overall, we conclude that the classical baseline with width 64 and depth 2 is the sweet-spot model size w.r.t. sample
efficiency. For the quantum model the best performance was achieved with 14 qubits and 4 layers, but it is reasonable to
assume that further improvements are possible. For saving computational resources, for most experiments we reduced the
qubit count to 10. Therefore, the results in this work could be interpreted as comparing an close-to-optimal classical model
to an only partially optimized quantum model with potential for future improvement.

E. Task Complexity of BeamManagement6G Environments
In this appendix, we discuss two different ways to adjust the difficulty of the developed BeamManagement6G environment.
So far, we conducted our experiments on the environment configuration in Figure 11, which contains 3 antennas. Furthermore,
the trajectories were sampled using 3 support points, we also refer to this setup as trajectories of degree 3. In the following,
we will vary both these setup parameters and observe the change in task complexity. We interpret the averaged sample
complexity, exhibited across various models, as task complexity. While this might not quantitatively capture the ground-truth
difficulty across all possible solution methods, it suffices for a qualitative comparison. The results are summarized in
Figure 20.

First, we use the standard environment configuration but increase the trajectory degree up to an value of 6. Intuitively, this
leads to more complicated and unpredictable trajectories, which should complicate the task for the RL agent. Examples of
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(a) Sample complexity of the standard BeamManagement6G environment with increasing trajectory degree, examples see Figure 14.
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(b) Sample complexity of random BeamManagement6G environments with increasing number of antennas. The dashed lines depict the
average over 5 environments for each antenna count, for plots of the used instances see Figure 13.

Figure 20. Task complexity of different variants of the BeamManagement6G environment in terms of the sample complexity exhibited
by various classical and a hybrid DDQN algorithms: (a) depicts this scaling behavior for instances of the standard 3-antenna environment
from Figure 11; (b) shows the sample complexity over 5 instances with 2, 3, 4, and 5 antennas each, with a trajectory degree of 3;
The model width denotes the number of neurons in classical hidden layers, and the number of qubits in quantum models, respectively.
Moreover, model depth refers to the number of hidden layers in DNNs, and number of ansatz repetitions in VQCs. The values are
averaged over these instances to account for the randomness in antenna placement. All data points are calculated from 100 runs as before.

30



Benchmarking Quantum Reinforcement Learning

trajectories with varying number of support points can be found in Figure 14. As expected, in Figure 20(a) we can observe an
increase of sample complexity over all model instances. While this behavior is less visible for larger threshold probabilities
δ and larger error thresholds ε, for decreasing values of both the behavior get significant. Moreover, this replicates the
behavior from the rest of this work, that the quantum model outperforms the similar-sized classical model, i.e. width 16
and depth 2, on all instances. Furthermore, for most ε-δ-configurations the performance closely matches that of the larger
classical models. Note, that this is only the 10-qubit quantum model, i.e. one can expect performance improvement for 14
qubits, especially for the degree 5 setup. However, due to the large overhead of generating the raw results for this setting,
such considerations are too computationally expensive. For a trajectory degree of 6, the movement of the UEs becomes too
unpredictable for all models to allow for informed antenna selection. Looking at samples of such trajectories in Figure 14
also suggests that a degree of at most 5 should be used to model human behavior. Overall, it is reasonable to claim that with
increasing trajectory degree also the underlying task gets more difficult.

Second, we modify the actual placement and orientation of the antennas in Figure 20(b). In all instances the trajectory
degree is set to 3. We sample random instances for 2, 3, 4, and 5 antenna positions from [0.0, 6.0]× [0.0, 6.0] as explained
in Appendix A.2, i.e. by enforcing an Euclidean distance of at least 1.5 between pairs of antennas. The direction is assigned
uniformly at random. Some of the resulting configurations can be found in Figure 13, all 5 for each antenna count are
available in the GitHub repository. As the environments seem to become significantly more difficult with increasing antenna
count (compared to increasing the trajectory degree) we relaxed the error thresholds ε. As there is a lot of randomness
involved for the actual environment setup, we averaged the sample complexity over all 5 instances, in order to get a more
robust estimate. For all models, one can see a clear increase in sample complexity with increasing antenna number. Similar
to above, the quantum model exhibits a competitive performance for most ε-δ-configurations. Only for δ = 0.75 and
ε = 0.10 the performance on the 2-antenna environments is inferior to the similar-sized classical model. However, for
this setup also the usually best-performing classical model with a width of 64 seems to struggle. Moreover, also for this
setting we could only simulate sufficient runs for the 10-qubit model. For 5 antennas, all but the large classical model on one
environment instance fail to reach the desired quality threshold. This is not too surprising, given the complex interference
patterns in Figure 13. To improve upon this, one might need to resort to larger models, or provide additional information to
the agent. This can e.g. be done by stacking multiple of the past RL states. However, as the reported results are sufficient
to see a clear trend w.r.t. task complexity, this is out of the scope of this work. To summarize, there is a clear correlation
between the number of antennas placed in the environment and the resulting task complexity.

As discussed, both the trajectory degree, and the number of antennas can be used to adjust the difficulty of the
BeamManagement6G environment. Furthermore, the clear real-world inspiration and the sound physical dynamics
enhance the practical relevance. Overall, we are confident that the BeamManagement6G environment lends itself as a
sophisticated benchmark for quantum reinforcement learning (QRL) with the possibility to create instances of increasing
complexity.
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