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Abstract

While Large Language Models (LLMs) have demonstrated remarkable capabilities
across various tasks and various prompting techniques have been proposed, there
remains room for performance enhancement. In this work, we introduce a novel
dimension to prompt design — coded prompts for LLM inference. Drawing inspi-
ration from coding theory, where coded symbols communicate or store functions
of multiple information symbols, we design coded prompts to process multiple
inputs simultaneously. We validate this approach through experiments on two
distinct tasks: identifying the maximum prime number within a range and sentence
toxicity prediction. Our results indicate that coded prompts can indeed improve
task performance. We believe that coded prompts will pave a new way for innova-
tive strategies to enhance the efficiency and effectiveness of LLMs. Our code is
available at GitHub repository: https://github.com/UW-Madison-Lee-Lab/
Coded_Prompts_for_LLMs/tree/main.

1 Introduction

In recent years, Large Language Models (LLMs) [1, 2] have become a cornerstone of generative
Al research, demonstrating remarkable capabilities in a wide array of natural language processing
tasks. An essential technique to improve LLM’s performance is prompt engineering. Numerous
heuristic strategies [3, 4, 5,6, 7, 8,9, 10, 11, 12, 10] have been developed to design better prompts
for LLMs. Despite their impressive performance, there is a significant scope for further enhancement,
innovation, and optimization.

In response to this opportunity, we propose a novel dimension to prompt design — coded prompts
for pooled LLM inference (inference an LLM with multiple samples). This innovative approach is
inspired by the principles of coding theory [13], a field that focuses on designing coded symbols
as functions of multiple information symbols rather than onw symbol for reliable communication
and storage systems. In a similar vein, we design coded prompts for processing multiple inputs
simultaneously, thereby enabling pooled inference within the context of LLMs.

In this paper, we review coding and its potential to improve prompt design in LLMs. We introduce
a new framework for coded prompts, providing formal definitions. This framework is the basis for
our investigation into coded prompts’ ability to boost LLM performance. We test this concept with
experiments on two tasks: a classification task of identifying the largest prime number in a range and
a regression task of predicting text toxicity. Initial results show that coded prompts can significantly
improve task performance, highlighting this approach’s potential.

In summary, our contributions are as follows:
1. We introduce the concept of coded prompts, a novel approach to prompt design, inspired by the

principles of coding theory. This approach allows for the simultaneous processing of multiple
inputs, potentially enhancing the efficiency and performance of LLMs.

RO-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at 37th
Conference on Neural Information Processing Systems (NeurIPS 2023).
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2. We propose a comprehensive framework for coded prompts, providing formal definitions.

3. We empirically validate our approach through experiments on two tasks including a classification
task of identifying the largest prime number in a range and a regression task of predicting
text toxicity. We demonstrate that coded prompts can significantly improve task performance,
highlighting the potential of our approach.

2 Related Work

Prompt Engineering Prompt engineering has been studied for a long period. Researchers have
explored topics including how to ensemble multiple prompts [3, 14, 15, 16, 17, 18], automatically
generate good prompts [19, 10, 20, 21], or train a better model for instruction [22, 7, 8]. Further, Wei
et al. [9] propose Chain-of-Thoughts (CoT) which explores how to generate a chain of thoughts — a
series of intermediate reasoning steps — significantly improves the ability of large language models.
CoT is further improved by varied directions such as ensembling [23, 24, 25], and selecting good
steps in multi-step reasoning [26, 27].

Self-evaluation for In-context Learning Self-evaluation mechanism [28, 29, 30] was introduced
that LMs themselves provide feedback to their own generation candidates. Chen et al. [31] use
self-evaluation to improve the accuracy of LMs to generate code. Xie et al. [32] endow LLMs with
self-evaluation to refine multi-step reasoning inference. Yao et al. [27] allow LLMs to perform
deliberate decision making by considering multiple different reasoning paths and self-evaluating
choices to decide the next course of action. Zhang et al. [33] employ language models in a cumulative
and iterative manner to emulate human thought processes to solve complex problems. Different from
these works that predict one sample at each inference, we consider how to leverage multiple inputs
together to boost the performance of LLMs.

In-context Learning In-context learning provides another special angle of prompt design, i.e.,
leveraging extra samples into the prompt [1] to boost the prediction performance. This method is fur-
ther explored via improving sample quality such as calibrating to reduce in-context sample bias [34],
choosing better in-context samples [4, 35, 6], training LLMs following in-context instruction [36], or
providing samples without true labels [37].

Coding Theory Coding theory [38] was adopted in various domains of machine learning. Han et al.
[39] applied coding theory to compress neural networks. Dimakis et al. [40] and Rashmi et al. [41]
applied coding theory to storage systems. Lee et al. [42] applied coding theory to speed up distributed
computing. In this work, we aim to apply coding theory to an LLM which is used as a predictor.

3 Coded Prompts

3.1 Coding Theory: A Brief Overview

Before introducing our framework for coded prompts, let us first briefly overview the key idea of
coding theory [13]. Coding theory is concerned with designing efficient and reliable methods for
transmitting or storing data. One of the main goals is to develop encoding schemes that can protect
the integrity of data against errors that might occur during transmission or storage.

To illustrate the key idea, consider the following example concerning the communication of two
bits, say B; and Bs. In a naive approach, one might simply transmit (over a noisy communication
channel) B; and B, as they are. However, this approach is vulnerable to channel errors. If an error
occurs during the communication, and if the values of B; or B is lost, it will be impossible to
recover the lost data. Furthermore, if the values of B; or By have altered while being transmitted, it
will be impossible to even realize if there was any error.

To protect against this, we can use a simple coding scheme. Instead of just transmitting the original
bits By and By, we also transmit the XOR of By and Bs, denoted as By & B>. Here, we call B; @ B,
an encoded bit or coded bit. Now, even if one bit of the two information bits is lost, we can recover
it using the remaining one information bit and the encoded bit. For instance, if B; is lost, we can
recover it by XORing By and By @ B, i.e., Bo @ (B1 @ Bz) = Bj. Similarly, if Bs is lost, we can
recover it by XORing B; and By & Bs, i.e., By ® (B; ® Bs) = Bs.
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Figure 1: Illustration of the analogy between information bit transmission in a noisy communi-
cation channel and LLM inference. The communication channel transmits bit B with a probability
P,.(B) of error occurrence, while LLM inference predicts a sample with true label X and has a
probability P.(X;p) of making incorrect predictions.
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Figure 2: Illustration of the analogy between encoded bit transmission in a noisy communication

channel and coded LLM inference. The communication channel transmits an encoded bit B, & Bs,
while LLM inference predicts multiple samples (two samples in this example) with true label X1, X5.

This simple example illustrates the basic principle of coding theory. In practice, coding theory
involves much more complex and sophisticated schemes, but the underlying goal remains the same:
to protect data and ensure its integrity during transmission or storage.

3.2 Analogy Between Noisy Communication and LLM inference

To introduce coded prompts, we draw a novel analogy: viewing LLM inference as a noisy communi-
cation channel [38]. By drawing inspiration from information and coding theory, we can consider the
process of generating predictions from LLMs as analogous to transmitting and receiving information
through a noisy channel. With this analogy, the unknown ground truth labels can be thought of
as the “information bits”, while the LLM’s predictions represent the “received bits" after passing
through the noisy channel. More specifically, consider a test sample drawn from the data distribution
(X,Y) ~ D. For instance, X could be a sentence, and Y = f(X) € {0, 1} could be a binary label
denoting if the sentence is toxic (1) or not (0). Here, f(-) is an unknown deterministic label mapping
from X to Y. The prediction result of an LLM inference with a particular prompt, say p, can be
modeled as follows:

YP =Y oWk,

where W% denotes a binary noise which (1) depend on the input X and (2) is parameterized by the
choice of prompt p. Note that for a fixed prompt p, this becomes analogous to the binary asymmetric
channel [43, 44, 45, 46], which has been extensively studied in the field of information theory. See
Figure 1 for visual illustration.

3.3 Coded Prompts

We now present the concept of coded prompts, which extends the previously discussed analogy
to the transmission of encoded bits. See Figure 2 for a visual representation. In the context of
communication, as explored in the prior toy example, we initially compute the encoded bit (B & B>)
and subsequently transmit it over the channel, yielding By & By & W at the receiver end, where W
represents the channel noise.

How can we implement analogous mechanisms within the framework of LLMs? The equivalent
of transmitting a coded bit can be conceptualized as generating a prediction from an LLM using a
coded prompt. A coded prompt is a specially crafted prompt that accommodates multiple test inputs
concurrently, mirroring the coded bit in the communication example.

To illustrate this, let us consider a binary classification task where we have two inputs X; and Xs. In
a simplistic approach, we could generate predictions from the LLLM for each input independently.



However, this method is susceptible to noise in the LLM inference process. If the prediction for one
input is erroneous due to noise, error detection becomes infeasible.

To safeguard against this, we propose the development of a coding scheme. Instead of merely
generating individual predictions, we also generate a prediction using a coded multi-input prompt,
which incorporates both X; and X,. We refer to the prediction derived from this coded prompt as a
coded prediction. Now, even if one prediction from the two original prompts is inaccurate, we may
be able to detect or correct it using the remaining prediction and the coded prediction.

One crucial distinction exists here. Given that LLMs can generate outputs of arbitrary length, we could
produce a vector-valued prediction, as depicted in Figure 2. This contrasts with the communication
example where only a single bit can be received when utilizing the communication channel once.

Remark While the existing prompt techniques focus on addressing individual test samples, our
coded prompting technique processes multiple test samples simultaneously. It is important to note
that this is not always feasible — if only one test sample is available, then coding offers no advantage.
Indeed, this mirrors the block-length condition necessary for efficient coding — coding techniques
are effective when handling a large number of information bits, and their benefits are limited when
dealing with one or a small number of information bits [38].

3.4 Formal Definition

For clarity of presentation, we will assume the following simple setting (binary classification)
throughout the paper. Our framework can be easily extended to handle more general cases.

For the input feature and label, we write (X,Y) ~ D, X € XY = f(X) € Y forsome f : X — V.
We denote by LLM the mapping induced by a raw LLM inference followed by the label mapping
function (e.g., parser). That is, LLM : text — U2 ; Y™, Here, when we use the standard prompting,
LLM’s output is in ), while when we use a coded prompt, LLM may output more than one label, i.e., it
outputs )" for some n > 1. More precisely, given an input token sequence, the raw LLM inference
will return a sequence distribution, and the label mapping function will find the most likely label (or
labels) given the output sequence distribution. For instance, the simplest post-processing algorithm is
to look at the distribution of the first output token and determine which of the binary labels is more
likely than the other.

A single-input prompt function is denoted by p : X — text, i.e., p maps a single input feature
X into a formatted text p(X). The set of all possible such mappings is denoted as P;. Note that
this set includes not only various prefixes but also various prompting techniques such as few-shot
prompting [1, 4, 5, 6] and Chain-of-Thoughts (CoT) [9]. For example, consider the movie review
sentiment classification task. A one-shot prompt can be represented as follows:

p(X) = “Movie review 1: It was so boring. [Q] Is this review positive or negative? Negative.”
+ “Movie review 2: ” + X + “[Q] Is this review positive or negative?”.
As another example, one can represent a CoT prompt as follows:
p(X) = “Movie review: "+ X +“[Q] Is this review positive or negative? Let’s think step by step.”.

A k-input coded prompt function is denoted by p : X* — text, i.e., p maps a k input features
X1,Xs,..., X}y into a formatted text p(X7y,...,Xx). The set of all possible such mappings is
denoted as Py. For example, consider the following examples of multi-input coded prompts:

piist (X1, Xo) = “Movie review 1: ” + X7 + “Movie review 2: 7 + X,

+ “[Q] For each review, classify its sentiment.”. (Vector prompt)
pu(X1, X2) = “Movie review 1: 7 + X + “Movie review 2: ” + X,
+ “[Q] Is there any positive review above?”. (Detecting prompt)

Note that similar to the single-input case, coded prompts can also incorporate various prompting
techniques such as few-shot prompting and CoT. The end-to-end LLM inference with a prompting p
can be viewed as a function composition, i.e., LLMop : X — U2 V™.

When both uncoded prompts and coded prompts are used, we can decode the uncoded and coded
LLM outputs to better estimate the labels.



4 Experiments

In this section, we show that coded prompts can improve prediction performance on two tasks.

4.1 Task 1: Finding the Maximum Prime Number in a Range (Binary Classification)

Task Setup. In this task, the goal is to classify if the given mathematical statement is true or false.
The statement is in the form of “p is the largest prime number smaller than p’” for some integers p
and p’. Each batch of k& samples of the synthetic dataset is generated as: (i) generate all N primes
between vnmin and Vmax: Vmin < P1 < P2 < ... < PN < Umax, (i1) uniformly randomly sample
k + 1 continuous primes p,,—g+1, - - - , Pn,Pn1 from py, po, . .., Py, (iii) the statement of each prime
pi, i < ninthe k 4 1 continuous primes is constructed as “p; is the largest prime smaller than p,,1.”
This way, we always create one positive label sample and k — 1 negative label samples.

Prompt Design & Rationale. Table 1 presents our uncoded and coded prompts for k£ = 4. Uncoded
prompts evaluate a single test statement for its truthfulness, while coded prompts assess k test
statements simultaneously to determine the sequence of true/false values. We experimented with
three variations of prompts. The first prompt is the coded prompt, while the second and the third
prompts are two variants of uncoded prompts. Uncoded prompt 1 is in the same format as the coded
prompt with only one inputted sample, while uncoded prompt 2 is a more natural question format for
prompting a single example. Notably, for this task, within a batch, it is impossible for more than one
statement to be true concurrently. The coded prompt, by evaluating multiple test statements, i.e., using
the vector prompt, has the potential to discern this underlying pattern and thus make more accurate
predictions than uncoded prompts. It is important to note that we did not explicitly inform the model
of this hidden condition. Although explicitly stating this could potentially enhance the performance
of coded prompts, our aim here is to test the model’s inherent ability to deduce inter-prompt relations
independently.

Experimental Results. The “Prediction” column in Table 1 shows a real prediction outcome
obtained with GPT-4 [2]. (The system message is set as ““You are a mathematician. Consider the
following prime number task and follow the exact instruction.”)

We observe that GPT-4 tends to predict “1” to at most one statement in most cases when using the
coded prompt, implying GPT-4 tends to consider the relationship between samples when making a
coded inference. However, when performing multiple inferences individually via uncoded prompts,
GPT-4 frequently makes multiple “1” predictions to different samples in a batch.

Furthermore, we compare the F1-score of uncoded prompts and coded prompts in Table 2. We varied
the values of vy,in, Umax, and k (the number of samples in a batch). One can observe that the F1-score
with (one) coded prompt is consistently higher than (four) uncoded prompts in all tested cases.

4.2 Task 2: Online Comment Toxicity Prediction (Regression)

Task Setup. In this task, the goal is to predict the toxicity of online comments, with a scale of 0
to 1. We use the Civil Comments dataset [47], which compiles a vast number of comments from
the Civil Comments platform and adds a human label for identity and toxicity to each comment. In
this dataset, “Toxicity” describes any language that is impolite, inconsiderate, or irrational [47]. It
ranges from O to 1, with higher values indicating a higher level of toxicity. Due to the extremely
imbalanced distribution of toxicity in the dataset, we partitioned the dataset into four bins: [0, 0.25),
[0.25,0.5), [0.5,0.75), and [0.75, 1]. We then randomly sub-sampled 200 comments from each bin,
forming a balanced dataset containing 800 comments. For each experiment run, we randomly sample
4 comments from this dataset and have LLM predict their toxicity scores. We then compute the mean
square error (MSE) between the LLM outputs and the true labels, and repeat this 100 times.

Prompt Design & Rationale and Decoding Algorithms. For uncoded prompts, we let LLM
evaluate them one by one independently, resulting in 4 scores from 4 queries. In particular, we use

“Evaluate the toxicity score from O to 1 of the following sentence, provide
your brief reason first and then show the toxicity score (from O to 1) in
the final line: {comment}”



Table 1: The illustration of coded and uncoded prompts with a real example. A coded prompt predicts
multiple samples in a single inference while an uncoded prompt predicts one sample in one inference.
Uncoded prompt 1 is in the same format as the coded prompt, while uncoded prompt 2 is a more
natural question format for prompting a single example. v'/X= correct/incorrect prediction.

Method Prompt Prediction

Please indicate whether the following statements are correct.

0]
(2) 6113 is the largest prime number smaller than 6121.

gg?:fdt (3) 6089 is the largest prime number smaller than 6121. (/}(‘)/0/)
p (4) 6091 is the largest prime number smaller than 6121.
Provide a sequence of Os (for wrong statement) and 1s (for correct
statement) for the statements with no commas, spaces, or text.
Please indicate whether the following statements are correct.
)
Provide a sequence of Os (for wrong statement) and 1s (for correct Xx)
statement) for the statements with no commas, spaces, or text.
Please indicate whether the following statements are correct. 1
(1) 6113 is the largest prime number smaller than 6121.
Provide a se f )
Uncoded > asequence of . .. or text. .
Prompt | Please indicate whether the following statements are correct. )
(1) 6089 is the largest prime number smaller than 6121.
Provide a se f *)
quence of ... or text.
Please indicate whether the following statements are correct. 1
(1) 6091 is the largest prime number smaller than 6121. X
Provide a sequence of . .. or text. (
Directly answer whether the above statement is true or false )
without any additional analysis.
6113 1s the largest prime number smaller than 6121. True
Uncoded Directly answer . .. without any additional analysis. W)
Prompt 2 6089 is the largest prime number smaller than 6121. True
Directly answer . . . without any additional analysis. (X)
6091 is the largest prime number smaller than 6121. True
Directly answer . .. without any additional analysis. X)

Table 2: Fl-score comparison between coded prompt and uncoded prompt under different prime
ranges and different sample batch sizes. F1-score is measured by averaging 400 batches.

. [Vrmins Vmax) (101,107 [103,10%] [105,106]
Setting % R g 7 4 g 7 4 g

Uncoded Prompt 1 051 025 014 033 023 010 023 0.11 0.10
Uncoded Prompt 2 0.61 032 0.17 033 021 0.13 0.01 0.00 0.01
Coded Prompt 099 0381 0.64 069 042 032 074 0.24 0.26

For a coded prompt, we use the vector prompt, i.e., we obtain 4 scores from a single query. In
particular, we use

“Evaluate the toxicity score from O to 1 of the following four sentences,
provide your brief reason and score for each one, and finally list the four
scores in the last line, separated by commas: {commentl} {comment2}
{comment3} {comment4}”

Coded prompts, by processing multiple examples at once, can enhance the calibration of toxicity
scales in LLMs, potentially reducing calibration errors. For instance, consider two comments: “I hate
this person.” and “I despise this person." Assessing each comment individually makes it challenging



to assign a toxicity score due to the lack of specific guidelines. In fact, this is an ill-posed problem on
its own. However, when evaluated together, it is evident that the second comment (using ‘despise’) is
more toxic than the first (using ‘hate’). Thus, even without clear guidelines, one can assign a higher
score to the second comment. This self-calibration is unique to coded prompts, making them more
effective for this task.

We also test the performance when both uncoded prompts and a coded prompt are used (five inference
calls for four samples). We adopt this approach as it allows us to utilize both individual calibration
results and inter-sample calibration results, which could potentially enhance the performance. Note
that this is the standard approach in coding theory, where we use the channel more than % times
when transmitting % bits, as in the illustrative example shown earlier. The rate of a code is defined
as the ratio of the number of information bits to the number of transmissions. In the context of this
particular coded prompting with four uncoded prompts and one coded prompt, the rate is 4/5 = 0.8.

Furthermore, when using uncoded and coded prompts, we require decoding algorithms. These are
necessary to determine the four toxicity levels (one for each comment) based on the five inference
results through a specific algorithm. In this case, we tested two simple decoding algorithms. The
first decoding algorithm (decl) simply returns the average of the predictions made solely from the
uncoded prompts and those from the coded prompt. More specifically, let ¥ be a 4-dimensional vector
representing the four uncoded predictions, and z be a 4-dimensional vector from a coded (vector)
prediction. Then, decl returns the average of these two vectors: (¥ + z)/2.

The second decoding algorithm, (dec2), is more complex. Despite the coded prompt processing
multiple prompts simultaneously, the problem’s ill-posedness persists. The model may correctly
order the inputs, but it might not accurately determine their absolute toxicity levels. Therefore, we
post-process the results to obtain the six (6 = (;1)) pairwise differences. Specifically, we first process
zinto q = [Zy — Z2, 7y — Z3,Z1 — Z4, Lo — Z3, Zo — Zy, Z3 — Z4). We then solve the following
least-squares problem:

1 -1 0 0
1000 1 0 -1 0

. Ay y 10 100 |1 0 0 -1
yeos [Az}y_[q} M T loot o[ A2T 01 1o
000 1 0 1 0 -1

0 0 1 -1

Here, note that the A4 is the observation matrix corresponding to the four outputs from the uncoded
prompts, and A is the observation matrix corresponding to the six pairwise differences obtained
from a single coded prompt.

Results. As shown in the results of Table 3, coded

prompts alone achieve lower MSE than uncoded prompts. Methods MSE

Further, when coded prompts are used together with un- uncoded 0.3643
coded prompts, we were able to further decrease the MSE. coded 0.3309
We observed that (dec2) performed slightly better than uncoded+coded+(decl) 0.3191
(decl) in this experiment. uncoded+coded+(dec2) 0.3005

Table 3: MSE for different prompts.
5 Conclusion

In conclusion, our introduction of coded prompts for LLM inference presents a promising avenue for
enhancing the performance of LLMs. By processing multiple inputs simultaneously, coded prompts
have demonstrated improved task performance in our experiments. This innovative approach could
potentially revolutionize strategies for optimizing the efficiency and effectiveness of LLM:s.
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6 Supplementary Material

6.1 Additional Diagram for Task 2

Figure 3 presents an MSE comparison of uncoded prompts and uncoded+coded-+(dec2) prompts
across 100 experiments. Most of the MSE pairs lie below y = z, indicating that the performance of
the uncoded-+coded+(dec2) prompts often surpasses that of the uncoded prompts.

1.2
MSE pair
— y=x

1.0

0.8

0.6

0.4

0.2

MSE (uncoded+coded+dec2 prompts)

0.0
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Figure 3: Scatter Diagram of MSE (uncoded prompts) vs MSE (uncoded+coded+(dec2)

prompts). Each MSE pair represents one experiment, with a total of 100 experiments. The red line
represents y = x.
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