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Abstract

Current methods used to diagnose or moni-001
tor dementia-related cognitive decline predom-002
inantly rely on audio recordings. Such au-003
dio recordings can leak personally identifi-004
able information and create new risks given005
deep fake technology. We introduce generative006
likelihood-based approaches to identify differ-007
ences in healthy versus dementia-diagnosed008
participants via gaze tracking and text tran-009
scriptions during a standard diagnostic image010
description task without relying on sensitive011
audio information. Contrasting conventional012
wisdom, we find that text transcriptions alone013
are not a reliable measure of cognitive impair-014
ment in this task, finding gaze tracking to be015
more reliable, and suggesting existing results016
in language-based dementia detection rely pri-017
marily on audio signals.018

1 Introduction019

Continual monitoring of cognitive change can en-020

able early detection of Alzheimer’s and related de-021

mentias, facilitating earlier intervention and treat-022

ment (Rasmussen and Langerman, 2019). Existing023

dementia detection resources and methods largely024

focus on audio and text transcriptions, but we find025

that reliable detection from short interactions with026

participants is achievable through gaze tracking in027

tandem with text transcriptions.028

Around 70% of Americans said they would029

want Alzheimer’s disease identified if that knowl-030

edge led to earlier treatment (Alzheimer’s Asso-031

ciation, 2023), but available clinically validated032

measures of cognitive change for early detection033

of Alzheimer’s take place at most every three (P034

et al., 2009; CB et al., 2023) to six (KV et al., 2024)035

For some, these important checks don’t take place036

at all until after advanced symptoms are present.037

Developing computational models to detect the on-038

set of dementia-related cognitive decline in time039

for medical intervention and evaluation is an under-040

Figure 1: We investigate training-free dementia detec-
tion methods from gaze tracking (colored dots) and
transcript text (colored words) of participants describ-
ing The Cookie Theft Picture.

explored problem, as most existing ML detection 041

methods are based on data from a single assessment 042

and modality of interaction, such as speech (Becker 043

et al., 1994; Luz et al., 2020). 044

The speech data from those existing works of- 045

ten includes a verbal task where participants spend 046

up to two minutes describing a line drawing scene 047

(Figure 1). This task is a component of the The 048

Boston Diagnostic Aphasia Examination (Good- 049

glass et al., 2001) frequently used by clinicians for 050

screening for dementia symptom presentation. Ex- 051

isting works that train machine learning models to 052

detect the presence of dementia symptoms largely 053

focus on audio signals or hand-crafted features 054

summarizing aspects of text transcripts (Santander- 055

Cruz et al., 2022; Kumar et al., 2022; Javeed et al., 056

2023; Shi et al., 2023). These approaches typi- 057

cally train simple classifiers such as SVM, Random 058

Forest, and logistic regression (Diogo et al., 2022; 059

Haider et al., 2020), or fine-tune existing pretrained 060
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models such as BERT (Balagopalan et al., 2020),061

RoBERTa (Matošević and Jović, 2022), and GPT-2062

(Liu and Wang, 2023).063

In this paper, we take a step towards non-064

invasive, privacy-preserving, in-home monitoring065

tools for detecting early signs and symptoms of de-066

mentia. We explore analysis methods on raw gaze067

and text data that require no hand-crafted features,068

federated learning across participants, or even back069

propagation gradient passes on existing models, all070

of which can inadvertently leak personally identi-071

fiable information. In short, we explore methods072

to detect dementia symptoms from the under ex-073

plored spaces of gaze tracking and verbal text tran-074

scriptions. The contributions of the paper can be075

summarized as follows:076

• We empirically demonstrate that the gaze of077

Control group focus on the areas-of-interest078

presented in The Cookie Theft Picture com-079

pared to that of participants with AD.080

• We similarly demonstrate that the Control081

group’s text transcript descriptions of The082

Cookie Theft Picture correspond more closely083

to the expectations of large, pretrained image084

captioning model when compared to partici-085

pants with AD.086

• Our analyses do not rely on hand-crafted fea-087

tures related to analyzing dementia presen-088

tation, and instead leverage pretrained mod-089

els and statistical machine learning models090

to measure deviation from expected gaze pat-091

terns and sequences of descriptive words in092

terms of likelihood without any additional093

model training or fine-tuning.094

2 Participant Gaze and Text Data095

We analyze a dataset of participant tracked eye096

gaze and human-corrected transcripts of participant097

speech during the completion of The Cookie Theft098

Description Task. The study included 25 Control099

group participants with healthy cognitive function100

and 14 participants with an Alzheimer’s Disease101

(AD) diagnosis. Participants were all patients at a102

local aging research center, at which they were also103

recruited for enrollment in the study.104

During each participant session, we recorded eye105

gaze and audio while the participant viewed The106

Cookie Theft Picture on a Surface Laptop Studio107

equipped with an Intel Core i7 processor, 32 GB108

of RAM, a 1TB SSD, Microsoft OS, an NVIDIA109

GeForce RTX graphics card, and a Tobii Pro X3-110

120 eye tracker. Eye tracking was calibrated using 111

Tobii Manager software, with gaze data gathered 112

via the Tobii Pro SDK 3 1. Audio was processed 113

to speech transcriptions standardized using the Au- 114

tomatic Speech Recognition (ASR) Vosk Model 2 115

followed by manual annotation by a person to cor- 116

rect any ASR errors. After removing gaze points 117

from timesteps when none was tracked and clean- 118

ing up text transcriptions, we have an average of 119

8312.82± 4993.53 gaze points and 167.87±58.47 120

transcribed words of description across the 39 to- 121

tal participants whose sessions lasted, on average, 122

94.89±21 seconds. 123

3 Hypotheses and Methods 124

The methods described in the paper do not involve 125

training algorithms based on participant data or 126

processing participant data for any sort of hand- 127

crafted feature extraction. Instead, these methods 128

utilize pre-trained, generative models to estimate 129

likelihoods of observed data being generated by a 130

background, “healthy” distribution. We hypothe- 131

size that: 132

H1 gaze points collected from participants in the 133

AD group will exhibit lower likelihood of gaze 134

being explained by annotated areas of interest 135

in the stimulus image than will the Control 136

group; and 137

H2 text transcribed from audio of participants in 138

the AD group will exhibit lower likelihood 139

due to syntactic fluency and topic consistency 140

(H21) as well as relevance to the stimulus im- 141

age (H22). 142

H3 gaze and text will reveal complementary par- 143

ticipant cognitive function. 144

For the purposes of evaluating our hypothesis, 145

we calculate the average Negative Log-Likelihood 146

(NLL) of sequences of gaze points and transcrip- 147

tion words for each participant. Note that a lower 148

NLL corresponds to a lower likelihood, while a 149

high NLL indicates a higher likelihood. 150

3.1 Gaze: Semantic GMM 151

We fit a Gaussian Mixture Models (GMM) to Ar- 152

eas of Interest (AOI) in The Cookie Theft Picture 153

annotated by an experimenter. We learn a k = 17 154

component mixture of Gaussians, each defined by a 155

mean (µk), covariance (σk), and mixing coefficient 156

1https://developer.tobiipro.com/python/python-
oldmigrationsdk.html

2https://alphacephei.com/vosk/models/vosk-model-en-us-
0.21.zip
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Figure 2: Heatmap displaying the likelihood estimations
by the GMM across The Cookie Theft Picture.

(πk). Figure 2 visualizes the likelihood heatmap by157

pixel in the stimulus image of this fitted “Semantic158

GMM.” We calculate the average NLL for a set of159

gaze points {x, y}N by:160

NLLgaze({x, y}N ) =161

− 1

N

N∑
n=1

ln

(
K∑
k=1

πkN ((xn, yn)|µk,Σk)

)
.162

We calculate this average log-likelihood per par-163

ticipant, then analyze the differences in these gaze164

likelihood samples between the control and AD165

populations.166

3.2 Text Transcripts: Pretrained LLMs167

We utilize two pretrained large language models168

(LLMs) that decode autoregressively and can be169

run on-device to calculate the average likelihood of170

the sequence of transcribed tokens from participant171

descriptions. Given trained LMM parameters θ172

yielding a distribution pθ(xi|x1...i−1) of next token173

probability, the average log-likelihood of a token se-174

quence x⃗ := LLM-Tokenizer(w⃗) from participant175

transcript word sequence w⃗ is calculated as:176

NLLtext(x⃗) = − 1

N

N∑
i=1

ln pθ(xi|x1...i−1).177

GPT-2 (Radford et al., 2019) is a transformer-178

based model that was pre-trained on substantial179

English data using self-supervised learning tech-180

niques, primarily focusing on predicting the next181

word in sentences. We can consider the GPT-2182

NLL values to represent the prior likelihood of183

text, where differences in NLL scores are likely184

to correspond to syntactic fluency and topic con-185

sistency (H21). We use the GPT-2 Large model186

which can be run on-device, and break transcripts 187

into tokens using the GPT-2 Large tokenizer. 188

BLIP, Bootstrapping Language-Image Pre- 189

training (Li et al., 2022), is a model pretrained 190

on large-scale image-text datasets using self- 191

supervised learning techniques to autoregressivelyi 192

predict textual descriptions of input images. The 193

BLIP NLL values represent posterior likelihoods 194

of text descriptions conditioned on The Cookie 195

Theft Picture stimulus, and may expose more nu- 196

anced differences in semantic relevance between 197

control and AD participants (H22). We use the 198

BLIP-image-captioning-base 3, a BLIP processor 199

which wraps a BERT tokenizer 4 and BLIP image 200

processor into a single processor. For a fair compar- 201

ison against GPT-2, we additionally test BLIP with 202

a blank image input, treating it as another prior 203

likelihood measure in that case. 204

4 Experiments and Results 205

The experimental results reveal that significant dif- 206

ferences exist between the Control and AD groups 207

when analyzing eye gaze data. However, the differ- 208

ences between text transcripts are less consistent. 209

In multimodal analyses combining eye gaze and 210

text transcripts, the Hotelling T-square indicate sig- 211

nificant differences between the two groups when 212

using GPT-2. 213

Gaze reveals AD symptoms. To evaluate hypoth- 214

esis H1, we compared the population of NLLgaze 215

values of the 25 control patients to those of the 14 216

patients with an AD diagnosis using a one-sided, 217

Welch’s unequal variances t-tests. Figure 3(a) 218

shows histograms of NLLgaze values between the 219

populations. The average NLLgaze of the control 220

group was found to be statistically significantly 221

higher than that of the AD group, with p-value 222

.0158, providing supporting evidence for H1. 223

Transcription text is not enough. To evaluate 224

H2, we compared populations of NLLtext values 225

between 24 control and 14 AD patient groups us- 226

ing autoregressive text-only and image-conditioned 227

LLMs using one-sided, Welch’s unequal variances 228

t-tests. Figures 3(b), 3(c), and 3(d) show the dis- 229

tribution of NLLtext values between each popula- 230

tion as estimated by GPT-2, BLIP with a blank 231

conditioning image, and BLIP conditioned on The 232

3https://huggingface.co/Salesforce/blip-image-
captioning-base

4https://huggingface.co/docs/transformers/v4.41.3/en/model_doc/
bert#transformers.BertTokenizerFast
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(a) Gaze NLL values from the Semantic GMM. (b) Text NLL values from GPT-2-Large

(c) Text NLL values from BLIP-Large 
 with blank conditioning image.

(d) Text NLL values from BLIP-Large 
 with stimulus conditioning image.

Figure 3: Average NLL values from control group gaze and text transcripts estimated via the Semantic GMM (a),
GPT-2-Large (b), BLIP-Large conditioned on a blank image (c), and BLIP-Large conditioned on the stimulus image.

Cookie Theft Picture stimulus image. The corre-233

sponding p-values are .0795, .317, and .355, re-234

spectively. These results suggest that there may235

be support for H21, that there are measurable236

likelihood-based differences in control versus AD237

patient transcripts with respect to syntactic fluency238

and topical consistency (as measured by GPT-2;239

p = 0.0795). However, the image-conditioned240

BLIP model, with both a blank image and the ac-241

tual stimulus image, show no substantial differenti-242

ation in likelihood estimates of transcription tokens243

between the groups; we suspect this result may244

arise from the misalignment between BLIP’s im-245

age caption language pretraining data and the long246

form text transcription descriptions of images.247

Transcription May Not Complement Gaze. We248

used a Multivariate Hotelling’s T-square test to249

compare participant NLLgaze and NLLtext data si-250

multaneously. This multivariate population dif-251

ference was found statistically significant, but we252

repeated the test with identical 0 values substituted253

for NLLtext for all participants also found signif-254

icance. Our findings do not support H3. Partici- 255

pant NLLtext contributed no significant information 256

about the presenc or absence of dementia symp- 257

toms compared to NLLgaze alone. 258

5 Future Work 259

While our areas of interest for gaze analysis are 260

hand-annotated, we note that pretrained segmen- 261

tation models such as Meta AI’s Segment Any- 262

thing (Kirillov et al., 2023) may handle line draw- 263

ings like The Cookie Theft Picture. Additionally, 264

methods like MDETR (Kamath et al., 2021) can 265

identify image regions corresponding to input lan- 266

guage, opening another way to measure alignment 267

of participant transcripts. Similarly, while our tran- 268

scriptions are hand-corrected, we note that the ASR 269

system produced an estimated WER rate of only 270

5.43, and that future work may be able to incorpo- 271

rate visual priors from the image itself to improve 272

automatic transcription (Chang et al., 2023). 273
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Limitations274

We acknowledge that our study is based on a small275

sample of 39 participants, and the demographics276

are not balanced. Specifically, 71% of the par-277

ticipants are white Caucasians, and there is a 1278

to 2 ratio of Alzheimer’s Disease (AD) patients279

to healthy controls. This demographic imbalance280

may limit the generalizability of our findings to281

the broader population. However, we believe that282

our analysis highlights the value of methods like283

estimation log-likelihood for small datasets in both284

unimodal and multimodal approaches to dementia285

assessment. Our findings demonstrate the potential286

of using limited data effectively, offering evalua-287

tion metrics that can be applied to other multimodal288

tasks where access to large datasets is restricted.289

Ethical Impact290

This study recognizes the ethical concerns regard-291

ing privacy and potential information leakage in292

the collection and analysis of eye gaze data and293

text transcripts. To address these issues, we have294

implemented stringent data protection protocols,295

including anonymization, secure storage, and strict296

access controls. Informed consent was obtained297

from all participants, ensuring they understand298

how their data will be used and protected. Our299

research team is dedicated to continuously improv-300

ing our practices to uphold the highest ethical stan-301

dards, ensuring that the benefits of our research are302

achieved without compromising participant privacy303

and trust.304
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