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Abstract

Current methods used to diagnose or moni-
tor dementia-related cognitive decline predom-
inantly rely on audio recordings. Such au-
dio recordings can leak personally identifi-
able information and create new risks given
deep fake technology. We introduce generative
likelihood-based approaches to identify differ-
ences in healthy versus dementia-diagnosed
participants via gaze tracking and text tran-
scriptions during a standard diagnostic image
description task without relying on sensitive
audio information. Contrasting conventional
wisdom, we find that text transcriptions alone
are not a reliable measure of cognitive impair-
ment in this task, finding gaze tracking to be
more reliable, and suggesting existing results
in language-based dementia detection rely pri-
marily on audio signals.

1 Introduction

Continual monitoring of cognitive change can en-
able early detection of Alzheimer’s and related de-
mentias, facilitating earlier intervention and treat-
ment (Rasmussen and Langerman, 2019). Existing
dementia detection resources and methods largely
focus on audio and text transcriptions, but we find
that reliable detection from short interactions with
participants is achievable through gaze tracking in
tandem with text transcriptions.

Around 70% of Americans said they would
want Alzheimer’s disease identified if that knowl-
edge led to earlier treatment (Alzheimer’s Asso-
ciation, 2023), but available clinically validated
measures of cognitive change for early detection
of Alzheimer’s take place at most every three (P
etal., 2009; CB et al., 2023) to six (KV et al., 2024)
For some, these important checks don’t take place
at all until after advanced symptoms are present.
Developing computational models to detect the on-
set of dementia-related cognitive decline in time
for medical intervention and evaluation is an under-
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Figure 1: We investigate training-free dementia detec-
tion methods from gaze tracking (colored dots) and
transcript text (colored words) of participants describ-
ing The Cookie Theft Picture.

explored problem, as most existing ML detection
methods are based on data from a single assessment
and modality of interaction, such as speech (Becker
et al., 1994; Luz et al., 2020).

The speech data from those existing works of-
ten includes a verbal task where participants spend
up to two minutes describing a line drawing scene
(Figure 1). This task is a component of the The
Boston Diagnostic Aphasia Examination (Good-
glass et al., 2001) frequently used by clinicians for
screening for dementia symptom presentation. Ex-
isting works that train machine learning models to
detect the presence of dementia symptoms largely
focus on audio signals or hand-crafted features
summarizing aspects of text transcripts (Santander-
Cruz et al., 2022; Kumar et al., 2022; Javeed et al.,
2023; Shi et al., 2023). These approaches typi-
cally train simple classifiers such as SVM, Random
Forest, and logistic regression (Diogo et al., 2022;
Haider et al., 2020), or fine-tune existing pretrained



models such as BERT (Balagopalan et al., 2020),
RoBERTa (Matosevi¢ and Jovié, 2022), and GPT-2
(Liu and Wang, 2023).

In this paper, we take a step towards non-
invasive, privacy-preserving, in-home monitoring
tools for detecting early signs and symptoms of de-
mentia. We explore analysis methods on raw gaze
and text data that require no hand-crafted features,
federated learning across participants, or even back
propagation gradient passes on existing models, all
of which can inadvertently leak personally identi-
fiable information. In short, we explore methods
to detect dementia symptoms from the under ex-
plored spaces of gaze tracking and verbal text tran-
scriptions. The contributions of the paper can be
summarized as follows:

* We empirically demonstrate that the gaze of
Control group focus on the areas-of-interest
presented in The Cookie Theft Picture com-
pared to that of participants with AD.

* We similarly demonstrate that the Control
group’s text transcript descriptions of The
Cookie Theft Picture correspond more closely
to the expectations of large, pretrained image
captioning model when compared to partici-
pants with AD.

* Our analyses do not rely on hand-crafted fea-
tures related to analyzing dementia presen-
tation, and instead leverage pretrained mod-
els and statistical machine learning models
to measure deviation from expected gaze pat-
terns and sequences of descriptive words in
terms of likelihood without any additional
model training or fine-tuning.

2 Participant Gaze and Text Data

We analyze a dataset of participant tracked eye
gaze and human-corrected transcripts of participant
speech during the completion of The Cookie Theft
Description Task. The study included 25 Control
group participants with healthy cognitive function
and 14 participants with an Alzheimer’s Disease
(AD) diagnosis. Participants were all patients at a
local aging research center, at which they were also
recruited for enrollment in the study.

During each participant session, we recorded eye
gaze and audio while the participant viewed The
Cookie Theft Picture on a Surface Laptop Studio
equipped with an Intel Core i7 processor, 32 GB
of RAM, a 1TB SSD, Microsoft OS, an NVIDIA
GeForce RTX graphics card, and a Tobii Pro X3-

120 eye tracker. Eye tracking was calibrated using
Tobii Manager software, with gaze data gathered
via the Tobii Pro SDK 3 !. Audio was processed
to speech transcriptions standardized using the Au-
tomatic Speech Recognition (ASR) Vosk Model 2
followed by manual annotation by a person to cor-
rect any ASR errors. After removing gaze points
from timesteps when none was tracked and clean-
ing up text transcriptions, we have an average of
8312.824 4993.53 gaze points and 167.87+£58.47
transcribed words of description across the 39 to-
tal participants whose sessions lasted, on average,
94.89+£21 seconds.

3 Hypotheses and Methods

The methods described in the paper do not involve
training algorithms based on participant data or
processing participant data for any sort of hand-
crafted feature extraction. Instead, these methods
utilize pre-trained, generative models to estimate
likelihoods of observed data being generated by a
background, “healthy” distribution. We hypothe-
size that:

H1 gaze points collected from participants in the
AD group will exhibit lower likelihood of gaze
being explained by annotated areas of interest
in the stimulus image than will the Control
group; and

H2 text transcribed from audio of participants in
the AD group will exhibit lower likelihood
due to syntactic fluency and topic consistency
(H2,) as well as relevance to the stimulus im-
age (H2»).

H3 gaze and text will reveal complementary par-
ticipant cognitive function.

For the purposes of evaluating our hypothesis,
we calculate the average Negative Log-Likelihood
(NLL) of sequences of gaze points and transcrip-
tion words for each participant. Note that a lower
NLL corresponds to a lower likelihood, while a
high NLL indicates a higher likelihood.

3.1 Gaze: Semantic GMM

We fit a Gaussian Mixture Models (GMM) to Ar-
eas of Interest (AOI) in The Cookie Theft Picture
annotated by an experimenter. We learna k = 17
component mixture of Gaussians, each defined by a
mean (L), covariance (o), and mixing coefficient

"https://developer.tobiipro.com/python/python-
oldmigrationsdk.html

Zhttps://alphacephei.com/vosk/models/vosk-model-en-us-
0.21.zip



0.8

o
EY

Score (normalized)

I
>

o
N}

=—0.0

Figure 2: Heatmap displaying the likelihood estimations
by the GMM across The Cookie Theft Picture.

(7). Figure 2 visualizes the likelihood heatmap by
pixel in the stimulus image of this fitted “Semantic
GMM.” We calculate the average NLL for a set of
gaze points {z,y} by:

mgaze({x, y}N) =

1 & -
-~ Zln (Z wkj\/((xn,yn)\uk,zk)) :
=1

n=1

We calculate this average log-likelihood per par-
ticipant, then analyze the differences in these gaze
likelihood samples between the control and AD
populations.

3.2 Text Transcripts: Pretrained LLMs

We utilize two pretrained large language models
(LLMs) that decode autoregressively and can be
run on-device to calculate the average likelihood of
the sequence of transcribed tokens from participant
descriptions. Given trained LMM parameters 6
yielding a distribution py(x;|z1. ;—1) of next token
probability, the average log-likelihood of a token se-
quence ¥ := LLM-Tokenizer(w) from participant
transcript word sequence w0 is calculated as:

N
. 1
NLLex(Z) = N E Inpg(zilz1. i—1).
i=1

GPT-2 (Radford et al., 2019) is a transformer-
based model that was pre-trained on substantial
English data using self-supervised learning tech-
niques, primarily focusing on predicting the next
word in sentences. We can consider the GPT-2
NLL values to represent the prior likelihood of
text, where differences in NLL scores are likely
to correspond to syntactic fluency and topic con-
sistency (H27). We use the GPT-2 Large model

which can be run on-device, and break transcripts
into tokens using the GPT-2 Large tokenizer.

BLIP, Bootstrapping Language-Image Pre-
training (Li et al., 2022), is a model pretrained
on large-scale image-text datasets using self-
supervised learning techniques to autoregressivelyi
predict textual descriptions of input images. The
BLIP NLL values represent posterior likelihoods
of text descriptions conditioned on The Cookie
Theft Picture stimulus, and may expose more nu-
anced differences in semantic relevance between
control and AD participants (H2;3). We use the
BLIP-image-captioning-base 3, a BLIP processor
which wraps a BERT tokenizer # and BLIP image
processor into a single processor. For a fair compar-
ison against GPT-2, we additionally test BLIP with
a blank image input, treating it as another prior
likelihood measure in that case.

4 Experiments and Results

The experimental results reveal that significant dif-
ferences exist between the Control and AD groups
when analyzing eye gaze data. However, the differ-
ences between text transcripts are less consistent.
In multimodal analyses combining eye gaze and
text transcripts, the Hotelling T-square indicate sig-
nificant differences between the two groups when
using GPT-2.

Gaze reveals AD symptoms. To evaluate hypoth-
esis H1, we compared the population of NLLgy,c
values of the 25 control patients to those of the 14
patients with an AD diagnosis using a one-sided,
Welch’s unequal variances t-tests. Figure 3(a)
shows histograms of NLLgy,e values between the
populations. The average NLLg,,. of the control
group was found to be statistically significantly
higher than that of the AD group, with p-value
.0158, providing supporting evidence for H1.

Transcription text is not enough. To evaluate
H2, we compared populations of NLL; values
between 24 control and 14 AD patient groups us-
ing autoregressive text-only and image-conditioned
LLMs using one-sided, Welch’s unequal variances
t-tests. Figures 3(b), 3(c), and 3(d) show the dis-
tribution of NLLy, values between each popula-
tion as estimated by GPT-2, BLIP with a blank
conditioning image, and BLIP conditioned on The

3https://huggingface.co/Salesforce/blip-image-
captioning-base

*https://huggingface.co/docs/transformers/v4.41.3/en/model_doc/

bert#transformers.BertTokenizerFast
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Figure 3: Average NLL values from control group gaze and text transcripts estimated via the Semantic GMM (a),
GPT-2-Large (b), BLIP-Large conditioned on a blank image (c), and BLIP-Large conditioned on the stimulus image.

Cookie Theft Picture stimulus image. The corre-
sponding p-values are .0795, .317, and .355, re-
spectively. These results suggest that there may
be support for H2;, that there are measurable
likelihood-based differences in control versus AD
patient transcripts with respect to syntactic fluency
and topical consistency (as measured by GPT-2;
p = 0.0795). However, the image-conditioned
BLIP model, with both a blank image and the ac-
tual stimulus image, show no substantial differenti-
ation in likelihood estimates of transcription tokens
between the groups; we suspect this result may
arise from the misalignment between BLIP’s im-
age caption language pretraining data and the long
form text transcription descriptions of images.

Transcription May Not Complement Gaze. We
used a Multivariate Hotelling’s T-square test to
compare participant NLLgyze and NLLey data si-
multaneously. This multivariate population dif-
ference was found statistically significant, but we
repeated the test with identical O values substituted
for NLLy, for all participants also found signif-

icance. Our findings do not support H3. Partici-
pant NLLe, contributed no significant information
about the presenc or absence of dementia symp-
toms compared to NLLg,,. alone.

5 Future Work

While our areas of interest for gaze analysis are
hand-annotated, we note that pretrained segmen-
tation models such as Meta AI’'s Segment Any-
thing (Kirillov et al., 2023) may handle line draw-
ings like The Cookie Theft Picture. Additionally,
methods like MDETR (Kamath et al., 2021) can
identify image regions corresponding to input lan-
guage, opening another way to measure alignment
of participant transcripts. Similarly, while our tran-
scriptions are hand-corrected, we note that the ASR
system produced an estimated WER rate of only
5.43, and that future work may be able to incorpo-
rate visual priors from the image itself to improve
automatic transcription (Chang et al., 2023).



Limitations

We acknowledge that our study is based on a small
sample of 39 participants, and the demographics
are not balanced. Specifically, 71% of the par-
ticipants are white Caucasians, and there is a 1
to 2 ratio of Alzheimer’s Disease (AD) patients
to healthy controls. This demographic imbalance
may limit the generalizability of our findings to
the broader population. However, we believe that
our analysis highlights the value of methods like
estimation log-likelihood for small datasets in both
unimodal and multimodal approaches to dementia
assessment. Our findings demonstrate the potential
of using limited data effectively, offering evalua-
tion metrics that can be applied to other multimodal
tasks where access to large datasets is restricted.

Ethical Impact

This study recognizes the ethical concerns regard-
ing privacy and potential information leakage in
the collection and analysis of eye gaze data and
text transcripts. To address these issues, we have
implemented stringent data protection protocols,
including anonymization, secure storage, and strict
access controls. Informed consent was obtained
from all participants, ensuring they understand
how their data will be used and protected. Our
research team is dedicated to continuously improv-
ing our practices to uphold the highest ethical stan-
dards, ensuring that the benefits of our research are
achieved without compromising participant privacy
and trust.
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