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Abstract

Normalizing flows (NF) are expressive as well as tractable density estimation
methods whenever the support of the density is diffeomorphic to the entire data-
space. However, real-world data sets typically live on (or very close to) low-
dimensional manifolds thereby challenging the applicability of standard NF on real-
world problems. Here we propose a novel method - called Denoising Normalizing
Flow (DNF) - that estimates the density on the low-dimensional manifold while
learning the manifold as well. The DNF works in 3 steps. First, it inflates the
manifold - making it diffeomorphic to the entire data-space. Secondly, it learns an
NF on the inflated manifold and finally it learns a denoising mapping - similarly
to denoising autoencoders. The DNF relies on a single cost function and does not
require to alternate between a density estimation phase and a manifold learning
phase - as it is the case with other recent methods. Furthermore, we show that
the DNF can learn meaningful low-dimensional representations from naturalistic
images as well as generate high-quality samples.

1 Introduction

Given samples from the data-density p(x), key objectives in probabilistic Machine Learning are 1.
estimating p(z) (density estimation), 2. generating new data points from p(z) (sampling), and 3.
finding low-dimensional representations of the data (inference). The three main methods used to
perform these tasks are Normalizing Flows (NFs) [34], Generative Adversarial Networks (GANs)
[17], and Variational Autoencoders (VAEs) [26]. Among those methods, only the VAE does check
all desired objectives by default. However, it does so by sacrificing the sample quality (compared to
GANSs), and only learning a lower bound on p(x) (rather than the exact value as NFs do). Finding
new ways to meet these key objectives, based on either the known main methods or new ones, is an
active and important research area.

How can we infer low-dimensional representations using NFs? The standard NF requires the data-
density p(z) to have a support diffeomorphic to the entire data-space R”. However, the manifold
hypothesis conjectures that the data-manifold M lies close to a d-dimensional manifold embedded in
RP,d < D. Thus, unfortunately, a standard NF cannot be used to infer the latent space. Recently,
Brehmer et al. proposed to overcome this limitation by first projecting the data into a d-dimensional
space using the first d—components of a standard NF, and then using another NF to learn the latent
distribution 7 () [[10]. For their method to work they propose different learning schemes, separating
the manifold learning from the density estimation.

In this paper, we propose an easy and new way to learn low-dimensional representations with NFs.
Our idea is based on the theoretical work derived in [20] where it was shown that by inflating the
data-manifold with Gaussian noise ¢ ~ N(0,0%1Ip), i.e. ¥ := x + ¢, the data-density p(z) can
be well approximated by learning the inflated distribution ¢, (Z). More concretely, the main result
in [20] states sufficient conditions on the choice of noise ¢, (Z|x) and type of manifold such that
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¢, (x) = p(x)q,(z|x) holds. Here, by adding a penalty term to the usual KL-divergence used to
learn ¢, (%), we ensure that the first d-components of the corresponding flow are noise insensitive
and thus encode the manifold. This penalty term is essentially the objective function of a Denoising
autoencoder (DAE), and thus we call our method Denoising Normalizing Flow (DNF).

In summary, our contributions are the following:

1. We propose a new method, the Denoising Normalizing Flow, which combines two previously
well-known methods (DAE and NF), and is able to
e approximate p(z),
e sample new data z ~ p(x) as a non-linear transformation of u ~ N '(u; 0, I),
e infer low-dimensional latent variables u ~ p(u|z) given x ~ p(z).

2. We demonstrate on naturalistic data that our method learns meaningful latent representations
without sacrificing the sample quality.

Notations: We adapt the notation used in [10]]. To further simplify it and avoid clutter, we denote the
Gram matrix of g evaluated at g~ *(z) as

Gy(x) = J4(g7 ()" Tyl () (D
where J, (g~ (x))7 is the transpose of the Jacobian of g : R? — RP, d < D, evaluated at g~!(x).

2 Problem statement

In the following, we are going to show why standard NFs are not suited to infer low-dimensional
representations of the given data. We end the section with the research question we are going to study
in Section

General setting: In generative modeling, it is assumed that the data 2 € M C RP” is generated by a
non-linear transformation g of some latent variables u € U C R?, i.e. * = g(u) where u ~ 7(u).
Typically, d < D and the latent distribution () is assumed to be Gaussian, m(u) = N (u; 0, I).
Hence, the latent random variable u generates x, and the data-density p(x) evaluated at x € RP is
given by

plz) = /u (W) (z — g(u))du, @)

where § denotes the Dirac function, see [3]]. If d = D and g is a diffeomorphism, we have for z € M
that

p(x) = | det Gy(x)] " m(g ™ (). 3)
Then, the target density p(z) can be learned, in principle, exactly using an NF [21]]. In general, an NF
is an embedding mapping &/ C R% to M C RP, see [32] or [27] for some recent reviews. Denoting
this mapping as gg : ¥ — M and its parameters as 6, the induced density on M is given by

po(z) = | det Gy, (2)| " 2pu(g; ' (2)), )

where p,, (u) is a known reference density (usually set to be standard Gaussian). The parameters
are updated such that the KL-divergence between p(z) and pg (),

Dxv(p(x)|[po()) = —Eprp(z)[log pe(x)] + const. (5)

is minimized. Thus, to learn ¢ efficiently, one needs to evaluate T} (z) := logp,(g, ' (z)) and
Ty (x) := £ log | det G, ()| efficiently.

Topological constraints: The evaluation of 77 () is efficient since we are free to choose the reference
measure p,,, and g, ! (z) is the forward pass of a neural network constructed to be bijective [[13] 21].
Therefore, the majority of the NF literature focuses on designing clever flow architectures to be able
to calculate 75 () efficiently without sacrificing the flow’s expressiveness (i.e. the size of the space
of embeddings able to learn). However, so far these architectures are constructed for d = D since in
this case, the Jacobian of gy is a square matrix, and thus 75(x) becomes

1 _
- log| det Gy, ()| = log | det J,, (g5 ()] ©)



Hence, calculating the Gram determinant of gy efficiently amounts to calculating the determinant of
the Jacobian of gy efficiently. Popular choices are to construct gg such that J,, is lower triangular, as
in this case, the determinant is simply the product of diagonal elements. Unfortunately, for d < D,
Jg, 1s not a square matrix, and the full Gram determinant needs to be calculated. This makes NFs
unsuitable for finding low-dimensional representations u of high-dimensional data points for large d
as the computational complexity to calculate det G, is O(d2D) + O(d?).

Research question: As mentioned in [L10], finding ways to design gy such that T5(x) can be
efficiently calculated for d < D is an interesting research question. Here, we address it from a
different angle.

Let M be a d—dimensional manifold embedded in R” through g. Can we construct a mapping
go : R — M to

1. generate x ~ p(x) in 2 steps: (a) generate u ~ N (u;0, I;) and (b) set z = gg(u)?
2. inferu € RY such that x = g (u)?
3. approximate det G4 () efficiently?

3 Denoising Normalizing Flow

We answer the research question based on the theoretical work developed in [20]. First, we briefly
review this work, and then introduce the DNF.

Preliminaries: In Section 2] we discussed why classical NFs are not suited to infer low-dimensional
representations of the given data. Also, if one is only interested in the value of p(z), standard NF
cannot be used. Intuitively, a standard NF f,, with parameters 1) simply squeezes or expands a
volume element where the net change is given by its Jacobian determinant. A volume element of a
d—dimensional manifold is d—dimensional and thus has D—dimensional Lebesgue measure 0. Thus,
we are asking fy, to expand a d—dimensional volume to a D—dimensional one which will lead to
a degeneration of | det Gz, (x)| and manifest in numerical instabilities. Therefore, [20] inflated the

manifold by adding Gaussian noise to the data points This inflated manifold is D—dimensional and
thus a usual flow can be used to learn the corresponding density. Their main result states sufficient
conditions on the choice of noise and type of manifold M, such that the learned inflated distribution
can be deflated, and p(z) is exactly retrieved.

More precisely, given a random variable x ~ p(x% with probability measure Py and taking values
in a d—dimensional manifold M embedded in R”, if we add some noise ¢ to it, the resulting new
random variable & = x + ¢ has the following density:

4 (7) = /M 4o (B|2)dPx (). )

In [20], it was shown that if (a) the noise is only added in the (D — d)—dimensional normal space N,
in z, (b) the noise magnitude o is sufficiently small, and (c) the manifold M is sufficiently smooth
and disentangled, the resulting inflated distribution evaluated at £ = x takes the following product
form:

QU($> = p(x)q(,(x|x), 3

where ¢, (z|z) is the normalization constant of the noise density. More concretely, (a) and (b) need to
ensure that x is almost surely uniquely determined by Z as the orthogonal projection of £ on M. For
this projection to be well-defined, a sufficient condition is that the manifolds reach numbeﬂ is finite
[6]. A manifold where almost every point & ~ ¢(Z) in the inflated set has a unique projection on
M was called Q—normally reachable in [20], where ) denotes the collection of noise distributions
4o (Z|2). Their main Theorem proves that for any (Q—normally reachable manifold equation (8) holds.
Therefore, if g, (Z) can be learned exactly using a standard NF, the on-manifold density p(x) can be
retrieved exactly.

It was also shown that for the case where d < D (as it is generally assumed for high-resolution
images), full Gaussian noise is an excellent approximation for a Gaussian in the normal space.

! Adding noise to circumvent the aforementioned degeneracy problem was also proposed in [24]).
Informally, this reach condition ensures that a manifold is learnable through samples.



Main idea: We use a standard flow fy, to learn g, (%) such that the corresponding density has the
product form of equation @i and the first d—components u of the flow’s output f; ! (Z) are noise-
insensitive whereas the remaining (D — d)—components v remain noise-sensitive. Thus, intuitively,
we want the first d—components to denoise the inflated data.
DNF: Let f, : RP? — RP be a standard flow with reference measure p,(z). We denote the first
d—components of the flows output as u, and the remaining ones as v, i.e. (u,v)T = fdjl (Z). More
formally,

u=u(Z) = Proj,(f, ' (%)), v=uv(&)=Proj,(f," (%)) )
with Proj, (2) = (1, .. ., 2z4) and Proj, () = (2441, . ., 2p) for 2 € RP. As reference measure p,,
we choose p, ((u,v)T) = p.(u)p,(v) with p, (v) modelling the noise-sensitive part, and p,, (u) the
noise-insensitive part. In particular , if ¢, (Z|z) is a (D — d)—dimensional Gaussian distribution with
covariance o2 Ip_ g4, we set p,(v) = N(v;0,02Ip_4).
For p,(u) to model the noise-insensitive part, we want the image f, (u,0) to be in the manifold.
Therefore, we embed u back in R” by padding the missing coordinates with 0,

Pad(u) = (u, 0,...,0 )%, (10)
N——
(D—d)-times

such that the operation Pad(Proj,, ((u,v))) = (u,0)T ignores the noise-sensitive part v in the latent
space. This operator allows us to define a denoising function r,, () as

ry(%) := (fy o Pad o Proj,, o f1)(%) (11)
and we regularize ¢ by minimizing
C(¥) = Eurp(a)Bing, @la) |2 — 74 (2)]° (12)
where || - || denotes the Ly norm.

We have not specified the reference measure p,(u). To facilitate the disentanglement of noise-
insensitivity and noise-sensitivity in the u and v variables, we transform u with yet another flow hg
with paramters ¢ and reference measure p,,/ (e.g. standard Normal).

Now, our sampling procedure looks as follows: 1. sample v’ ~ p,/(u'), 2. apply hy to obtain a
sample v from p,, (u), i.e. u = hg(u'), and 3. set z = fy;(Pad(u)). Denoting 6 = (¢, ¢), our model
to learn ¢, (Z) is

g0(Z) =| det G, (2)| 2 pu(u())py (v(Z))
=| det Gy, (2)| 2| det G, (u(Z))|2pu (hy * (u(@)))pu(v(@)). (13)

Note that the reconstruction loss, equation (I2), is essentially the objective function for the Denoising
Autoencoder introduced in [1]]. Therefore, we call our method Denoising Normalizing Flow (DNF)
and it is trained on

Lone(0) :=Dx(g0(7)[[g0(Z)) + AC(¢) (14)

where A > 0 is the penalty hyperparameter and is trading the density estimation with the manifold
learning. A graphical description of the DNF model is given in Figure [I] (a), and an algorithmic
description in the DNF Algorithm belowE]

Answer to research question: If Lpngr(6) = 0, the reconstruction error expressed in equation
is 0. Thus, the generative story of the DNF is exactly the one described in point 1. of our research
question with g := fy o Pad o hy. The inverse, h;l o Proj,, o f;l, can be used to infer v’ s.t. point
2. holds. Finally, to show the third claim, we additionally assume that ¢/ (which is the domain of
the manifold generating function g) is diffeomorphic to RY, s.t. without loss of generality we set
m(u) = N(u;0,14). Then, we exploit equation (8) and calculate |det G, (z)] efficiently with the
help of f, and hy, see Propositionand its proof in the supplementary.

3We show the algorithm for the general scenario where the manifold is unknown and thus noise cannot be
added to the normal space. We also ignore terms independent of 6 in the calculation of Lpnr, and denote this
loss function as Ling.



DNF Algorithm: Training of Denoising Normalizing Flow for g, (Z|z) = N (%; z,0%Ip). For sim-
plicity, we show a stochastic gradient descent with a constant learning rate. Alternative optimization
methods and learning rate schedules can be easily adapted.

Require: Manifold dimension d, Learning rate «, penalty parameter ), inflation variance o2, batch
size n, number of epochs E.
Initialize: Parameters ¢ and ¢ for flows fy, and h.
while 6 = (¢, ¢) has not converged do
fore =1to E do
fori =1tondo

Sample: x; ~ p(z) # sample data
Inflate: &; = x; + &;, where &; ~ N'(0,02%Ip) # add noise
(wi,v5) f,(;l(:%l-) # project on u € R? and v € RP~4
Z;  fy(u;,0) # reconstruct z
u'; h;l (u;) # transform u
end for
LHng % >oi log pur (u'5) — log | det Jy, (u/3)| 4 log(py (vi)) — log | det Jy, (ui, v;)]
+A||zi — &4)? # calculate logqg (%) and add reconstruction error
0 <+ 0 — aVoLhnr # update model parameters
end for
end while

Proposition 1 Let M be a d—dimensional manifold embedded in R” through g : RY — M. Let
x ~ p(z) be generated by g(u), where u ~ N (u;0,1,), i.e. © = g(u). Assume that we can learn
the inflated distribution q,(Z) using an NF and that for & = x it holds that ¢, () = p(x)q. (z|x). If
EDNF(G) =0, then

|det Gy(x)| = [det G, (v)|| det G, (7)]. (15)

4 Related work

Autoencoders: An autoencoder learns to compress the data x using an encoder fJ ! and then
to reconstruct = using a decoder gg. As the AE is only trained on the reconstruction error ||z —
9o (fy L(x))||?, it can’t be used to generate new data or estimate p(z). However, if the input is
corrupted by Gaussian noise €, an optimal AE that can reconstruct the uncorrupted input depends on
the gradient of the data-loglikelihood [[I]]. This can be exploited to estimate p(z) [7]]. A variational
autoencoder (VAE) [26]] is a stochastic version of an AE. More concretely, a lower bound on the data
log-likelihood, known as ELBO or free energy, is maximized to learn parameters ¢ and 6 such that
the true conditional distributions p(|z) and p(z|z) are approximated by py(x|z) = N (z; go(2), Ip)
and ¢y (z|z) = N(z; fy(x), Ip), respectively. If one is not interested in p(z) but still wants to
generate new data using an AE, regularization terms can be exploited [28,[37]]. Alternatively, an NF
can be used to normalize the learned latent variables v = f (x). Thus, after training a usual AE, the
latent density associated with the latent variable u is learned using a standard NF. This probabilistic
autoencoder (PAE) was recently introduced in [9].

NF's based models: Recently, a few attempts have been made to overcome the topological constraint
of NFs in terms of density estimation [10} [11} 20} 131} 134} 135]], sampling [4, [10} [12, 24]], and inference
[5,[10]. If the manifold is known, i.e. its atlas is given, a usual flow in R4 is sufficient to learn the
data-density p(z) as we can use these charts to push-back p(z) to R?. This was first done in [16] for a
manifold consisting of a single chart g. However, if g is not known, only recently some methods were
proposed to learn it [4}[10]. We review these methods in the following, highlight their differences to
the DNF and illustrate them in Figure[T}

Pseudo invertible encoder (PIE): The idea of [4] is to define the manifold as a level set of a
usual NF f. For that, they propose to treat the first d—latent variables u differently than the
remaining D — d variables v, by using different reference measures for u and v, respectively, i.e.
Y z) = 2 = (u,v)T € R? x RP~? and p.(2) = p.(u)p,(v). The gist is very similar to the
DNF. However, there is no incentive for f to encode the manifold in u which manifests in poor
sample quality (see [L0]). In addition, this approach does not work for data living exactly on a
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Figure 1: Schematic overview of different NF-based methods (DNF, PIE, M-flow) (adopted from
[10]). Left: Graphical model. Red solid lines are NFs, red dashed lines the corresponding generator.
Black dashed lines describe the projection or padding operation, respectively, as described in the
main text. Right: The losses used to train the models.

low-dimensional manifold as the Jacobian determinant of f degenerates. In Figure[I] we depict a
version of the PIE model where w is additionally transformed with a flow h. Note that a PIE model is
an DNF with A = o = 0.

Manifold flow (M —flow): The idea of [10] is to learn the embedding g directly by first mapping
the data into the latent space using a usual NF f, projecting it to the first d—coordinates u, and finally
transform these variables using yet another flow A in R¢ with reference measure p,,r, see Figure 1| for
a depiction of their M —flow. The resulting density,

paa() = pur (W™ (u()))| det Gp(u())| 2| det Gy (u(x))| "2, (16)

is indeed a density defined only on the manifold. As noted in [10], calculating the Gram determinant
of g may be very slow for large d. Therefore, they propose to train the parameters of g using the
reconstruction error ||z — g~ !(g(x))||3 only, and the parameters of h using the usual Dy objective
for NFs. They propose several training strategies to ensure that g encodes the manifold (manifold
phase), and h learns the density (density phase). One strategy alternates between the manifold- and
density phase (alternate training) for every training epoch. Another strategy first trains g on the
reconstruction error and then learns the density through h (sequential training). Note that a PAE is
also trained using a sequential training scheme, as opposed to the DNF which combines the manifold-
and density learning phase into a single cost function, equation (I4). Another difference to the DNF
is that the Gram determinant of f is neither used to train the M —flow nor to estimate p(x).

5 Results

In this chapter, we confirm experimentally our claims made at the end of Section|[I] formalized as a
research question, and answered at the end of SectionE} First, we show that the DNF circumvents the
degeneracy problem of a standard NF for manifold-supported densities. Afterward, we show that
the DNF can learn meaningful latent representations for naturalistic images, without sacrificing the
sample quality compared to the M—flow, PAE, and VAE (see Section[4). Our method depends on two
hyperparameters, the noise magnitude o2 and the penalty coefficient \. o2 needs to be sufficiently
small such that equation () approximately holds (see [20] for more details on the choice of o). If
A = 0, only the density is learned, and if A > 1 the manifold learning dominates.



We closely follow the experimental setting of [10]. For the M —flow and DNF, we use the same
network architectures and training protocols. These architectures are based on affine-coupling
layers [13]], neural splines [14], and trainable permutations [25]]. The PAE uses convolutional neural
networks for the encoder and decoder, respectively. For images, we use a recently developed variant
of the VAE, the InfoMax-VAE [33]], which uses insights from information theory to learn meaningful
latent representations. We refer to the supplementary for more training details. E|

5.1 Density estimation

We consider a 1—dimensional manifold embedded in R2,
a thin spiral. We draw the latent variable u from
exponential distribution with scale 0.3, i.e. 7(u)
exp(—0.3u), and generate the spiral through g(u) 4
aTﬁ(cos(a\/ﬁ), sin(ay/u))? where a = 4m/3 (upper half (::

of Figure [2]top left).

original p(x) standard NF

R E

We train a standard NF (upper right), M —flow (middle left), M flow DNF
DNF (middle right), PAE (lower left), VAE (lower right) with / -
similar architectures on 100 epochs with a batch size of 100. - !"* [ -

As we can see in Figure |2[, the Jacobian determinant of the o —
standard NF degenerates, and the learned density collapses . -

into single points. Surprisingly, the M —flow fails to learn PAE r VAE
p(z) as well, no matter which training schedule we use (we -
display the result of the sequential training). The PAE learns if «, \ { i
an inflated version of p(z), however, it does not have a defla- S ' ,“‘

tion procedure. The standard VAE simply equates p(x) with
the Gaussian prior on the latent variables (we take a point
estimate of the ELBO to approximate p(x)). low high

For the DNF, we use Gaussian noise with 02 = 0.01 and
A = 1. Note that only the DNF is trained on the inflated den- .|  originalntw) standard NF
sity ¢ (Z), and it encodes the noisy part in v(Z), i.e. for points
close to the manifold v(Z) should be close to 0. Therefore,
we set p(x) to 0 whenever v(z) > o /3 and otherwise we ap-
proximate p(z) according to equation (8) with gg(x)/q, (z|x)

m(u)

where g, (z|x) = 1/V2mc2. The fact that the M—flow fails o 2

to learn p(x) and the DNF succeeds, suggests the regulatory M= flow DNF
importance of the Gram determinant of f,, (which is only '-\

used from the DNEF, and reflects the main difference between \

those two methods next to the training scheme). When set-
ting 02 = 0, the DNF degenerates similar to the standard
NF (more details in the supplementary). This illustrates the
importance of the inflation step for a density supported on a PAE VAE
low-dimensional manifold.

-

|
!I
|

All densities are evaluated on a 100 x 100 grid. For that,
the M —flow calculates the Gram determinant of the learned !
generator g (see equation (T6) and Figure[T] (c)) for each |~~~ ¥
point. Like this, evaluating the density on a batch consisting

of 500 points takes about 188 seconds on a GPUﬂ On the

same device and for the same batch size, the DNF needs only Figure 2: Density estimation
1 second to evaluate the density. This illustrates the drawback

of needing to calculate the full Gram determinant (see Section

*Our main code is available at https://github.com/chrvt/denoising-normalizing-flow| and is
based on the original M —flow implementation made public by the authors of [10] under the MIT license. For
the InfoMax-VAE and PAE on images, we use the official implementations made public by the authors of [33]]
and [9] under the Apache License 2.0 and General Public License v3.0, respectively.

>The Gram matrix can be calculated using automatic differentiation.
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StyleGAN d = 2 StyleGAN d = 64

Model FID Mean reconstr. error  FID Mean reconstr. error
M—flow 4.85+0.14 309.32 +6 19.95 +£0.22 1019.18 £+ 30.08
DNF 442 +0.2 22578 +14.4 17.61 +0.11 899.35 +37.19
InfoMax-VAE 38.24+1.19 12047.92 + 105.95 58.18 = 6.67  16397.54 4 286.65
PAE 2258 £4.50 7181.21 £ 27.17 54.51 £ 7.13  7169.97 + 14.25

Table 1: FID and mean reconstruction error of the M—flow, DNF, InfoMax-VAE, and PAE on the
StyleGAN image manifold for d = 2 and d = 64. For d = 2, we train 10 models with different
initializations, remove the best and worst results, and report the mean and standard deviation of the
remaining 8 models. For d = 64, we train 3 models and report the mean and standard deviation.

To further validate the learned on-manifold density, for each model we compare the induced latent
density with the ground truth exponential distribution () (second half of Figure . For that, we
first generate 1000 latent points w ~ 7(u), then evaluate the model likelihood at x = g(u), and finally
multiply the likelihood with the square root of the Gram determinant of the generating mapping
g, /det Gy(u) < (1 + (au)?)/(au)?. This must lead to the correct latent density 7(u) if the

data-density p(z) = | det Gy ()|~ 27 (g (x)) is learned correctly as p(x) is uniquely determined
by the pair (g, 7). The standard NF, M —flow and VAE are out of scale. The PAE follows the
exponential course of 7(u), however, only the DNF learns the correct course and scale. This indicates
that equation can be used to approximate det G (u) well.

In the supplementary, we conduct more density estimation experiments and compare the DNF with
the inflation-deflation method [20]]. For a von Mises distribution on a circle, and a mixture of von
Mises distributions on a sphere, the DNF learns the density almost exactly showing the correctness of
equation (T5). Also in the supplementary, we use the DNF for probabilistic inference following the
protocol used in [10].

5.2 StyleGAN image manifold

One drawback of both the M —flow and DNF is that the true manifold dimension d must be known
beforehand. For real-world datasets, d is unknown. Therefore, [10] uses a StyleGAN2 model [23]]
trained on the FFHQ dataset [22] to generate an d—dimensional manifold by only varying the first d
latent variables while keeping the remaining fixed.

d = 2: We want to show that the DNF learns meaningful latent representations. For that, we first
train an DNF on 10* images using 100 epochs with o? = 0.1 and A = 1000. Then, we generate an
image grid by varying the 2—dimensional latent variables ' and mapping them to the data space
using the learned mapping gy. In Figure 3| we see on the top left the original grid obtained by the
StyleGAN2 model, and on the top right the grid generated by the DNF. A smooth mapping from
latent to data space is learned. The PAE (lower left), does not learn such a smooth mapping which
may be due to the lack of learning p(z), in contrast to the InfoMax-VAE (lower right). However,
the latter lacks variability which shows that the learned posterior p(z|z) does not match the prior

N(z;0,1,).

To further evaluate the quality of generated test samples, we display the Fréchet inception distance
(FID score) E] [19} 130] in Table along with the mean reconstruction error which measures the
manifold learning. We slightly outperform the M —flow in terms of FID score, and significantly in
terms of the mean reconstruction error. The latter is surprising as the M —flow is directly trained on
the reconstruction error. The PAE and InfoMax-VAE perform worse compared to the M —flow and
DNF indicating a suboptimal choice for the latent dimension for these models.

SThe FID is the Wasserstein-2 distance between two Gaussians. The mean values and covariance matrices
are obtained as sample estimates of the original and model data, respectively. However, instead of using the
pixel values, one uses the outcomes of the next to the last layer of the Inception v3 ([36]) image classifier trained
on the corresponding data set.
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Figure 3: Image grids, as described in the main text. StyleGAN images (top left) are used to train an
DNF (top right), PAE (bottom left), and InfoMax-VAE (bottom right).

d = 64: We train the models on 2 - 10* images for 200 epochs. In Figure@ we show in the first 5
columns samples from the original dataset (top), M —flow (second row), DNF (third row), InfoMax-
VAE (fourth row), and PAE (last row). In the remaining 5 columns, we show how smoothly these
models interpolate linearly in the latent space. For that, we linearly interpolate between two training
images in latent space, and display the corresponding trajectory in image space. We compare the
FID and mean reconstruction error of the models in Table |1} Similar to the d = 2 case, the DNF
outperforms the M —flow, InfoMax-VAE, and PAE in terms of FID and mean reconstruction error.

6 Summary and discussion

Our model is based on the theoretical work established by [20] leading to a natural combination of NFs
and DAE - the DNF. In contrast to similar methods, an DNF is trained on a single objective function
combining manifold- and density learning. To learn a density supported on a low-dimensional
manifold with an NF, one needs to compute the flow’s Gram determinant. The DNF circumvents
this necessity and can be used to approximate it. We have pigeonholed the DNF into the literature,
and compared its performance on naturalistic images with related methods (M — flow, PAE, VAE).
Among those methods, we have seen that the DNF generates images with the highest quality (in
terms of FID), and reconstructs a given input with the lowest Lo distance.

It is well known that adding noise in the input can increase the generalisation performance in
supervised learning tasks [2] [8] 29]. However, typically this comes with the price of lower sample
quality or worse density estimation. The DNF has the potential to avoid this trade-off, and proves
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Figure 4: First 5 columns: Samples from StyleGAN, M —flow, DNF, InfoMax-VAE, and PAE (in
this order). Last 5 columns: Latent interpolation as described in the main text.

experimentally that adding noise to images can lead to better performance in terms of sampling
quality and manifold learning.

Extensions: The theoretical foundation of the DNF is equation (8) which requires the manifold to
be sufficiently smooth, and the noise to be added in the manifold’s normal space. Although for the
special case where d < D standard Gaussian noise is an excellent approximation for a Gaussian in
the normal space, more research is needed on how to sample in a manifold’s normal space in order to
improve the performance of the DNF. Essentially, the DNF learns to encode the manifold in the
component and the normal space direction in the v component. Arguably, a pre-trained DNF could
be used to improve the sampling ability in the normal space.

Another limitation of the DNF is that the manifold dimension d needs to be known. Nevertheless, if
p(x) is supported on a low-dimensional manifold, to the best of our knowledge the DNF together
with the M —flow are the only existing methods to learn p(x) and the manifold generating mapping
based on NF. Hence, in contrast to other methods which need to know the exact manifold, the DNF
and M —flow can still be used when d is estimated from samples. The latter is an active research area

5L (IS I8].

Other recently developed methods (such as PAE or M —flow) separate the manifold from the density
learning. We have seen that this separation is not necessary, and have used different heuristics to
evaluate the quality of learning. For the value of p(z), we visualized the learned (latent) density
(Figure[2)). For the quality of latent representations, we generated an image grid (Figure [3), and
for the smoothness in the latent space, we generated an image path (Figure ). We measured the
sampling quality using the FID, and the manifold-learning using the mean reconstruction error (Table
[I). Given these different heuristics, there is an aspiration for a unified performance criterion.

Broader Impact: To compress increasingly high-dimensional data with the least loss of information
as possible is becoming increasingly important. The DNF ties in with the M —flow and shows that
such compression is possible, even for naturalistic images. Similar to all other generative models, a
possible negative impact of DNFs would be the generation of fake data. On a more positive note,
the DNF could improve out-of-distribution detection or even increase the robustness to adversarial
attacks which are both essential for reliable societal applications of Machine Learning.
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