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Abstract
The widespread online communication in a001
modern multilingual world has provided op­002
portunities to blend more than one language003
(aka code­mixed language) in a single utter­004
ance. This has resulted a formidable chal­005
lenge for the computational models due to006
the scarcity of annotated data and presence007
of noise. A potential solution to mitigate the008
data scarcity problem in low­resource setup is009
to leverage existing data in resource­rich lan­010
guage through translation. In this paper, we011
tackle the problem of code­mixed (Hinglish012
and Bengalish) to English machine translation.013
First, we synthetically develop HINMIX, a014
parallel corpus of Hinglish to English, with015
~5M sentence pairs. Subsequently, we pro­016
pose JAMT, a robust perturbation based joint­017
trainingmodel that learns to handle noise in the018
real­world code­mixed text by parameter shar­019
ing across clean and noisy words. Further, we020
show the adaptability of JAMT in a zero­shot021
setup for Bengalish to English translation. Our022
evaluation and comprehensive analyses quali­023
tatively and quantitatively demonstrate the su­024
periority of JAMT over state­of­the­art code­025
mixed and robust translation methods.026

1 Introduction027

Recent explosion of digital communication around028

the world has been marked by the growing use of029

informal language in online conversations. These030

conversations often feature the use of words and031

phrases from multiple languages back and forth032

into a single utterance: a phenomenon referred to033

as code­mixing (CM) or code­switching (Myers­034

Scotton, 1993, 1997; Duran, 1994). Code­mixing035

has become a standard practice both as a form of036

speech and text in multilingual communities such037

as Hindi­English, Spanish­English, Cantonese­038

Sanghaiese, etc., where people subconsciously al­039

ter between languages. Building upon this promi­040

nent use, it is imperative to build NLP technologies041

for code­mixed data.042

Recent studies have explored computational 043

models for code­mixed languages in various do­ 044

mains such as Automatic Speech Recognition 045

(ASR), Text to Speech (TTS), Sentiment Analy­ 046

sis, etc. (Luo et al., 2018; Sitaram et al., 2019; 047

Patwa et al., 2020). Due to the unavailability of 048

annotated data, code­mixing in the domain of text 049

remains vastly unexplored. With no official ref­ 050

erences of CM text in books and articles, online 051

social networks (OSNs) remain the only source of 052

mixed data collection. Further, the real­world un­ 053

structured text is highly susceptible to typograph­ 054

ical errors and misspellings. These mistakes be­ 055

come more prevalent when languages written in 056

non­romanized scripts such as Hindi, Japanese, etc. 057

are adopted to code­mixed scenarios as each word 058

in the originating script can be mapped to mul­ 059

tiple probable transliterations, e.g., ‘haan bilakul 060

(bilkul). yah ek klaasik (classic) hai, lekin phir 061

bhee bahut hee ekshan (action) aaj ke lie bhee paik 062

(pack) hai’ (Yes, definitely. It is a classic, but still 063

very action packed even for today). The problem 064

is exacerbated by the multilingual nature of online 065

code­mixed content, making it essential to under­ 066

stand CM concerning a common language. 067

In order to circumvent all these challenges, 068

we propose robust code­mixed translation using 069

a joint learning model, named Joint Adversarial 070

Machine Translation (JAMT). Neural Machine 071

Translation (NMT) models have become state­of­ 072

the­art in sequence­to­sequence tasks (Sutskever 073

et al., 2014; Bahdanau et al., 2015). At the root 074

of this advancement are two interrelated issues: (i) 075

NMT models need a vast amount of parallel data 076

for satisfactory performance; and (ii) NMT mod­ 077

els are brittle to even a slight amount of input 078

noise (Belinkov and Bisk, 2018). First, to han­ 079

dle the scarcity of code­mixed parallel data, we 080

construct a synthetic Hinglish­English dataset by 081

leveraging a bilingual Hindi­English (Hi­En) cor­ 082

pus. For this, we identify various grammatical and 083
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semantic patterns in the continuous switching of084

two languages and formulate a general pipeline for085

creating a synthetic code­mixed corpus. The gen­086

erated parallel data is then passed through an ad­087

versarial module that injects different types of nat­088

urally occurring adversarial perturbations to gener­089

ate a source­side noisy version of the code­mixed090

dataset. Inspired by multilingual NMT models,091

we train a joint model for translation of clean and092

noisy CM text to make the code­mixed translation093

robust to noisy input. Our experiments show that094

by jointly training both noisy and clean text in a095

multilingual setting, the model can encode diverse096

lexical variations of code­mixed words into the097

shared representation space; thereby, substantially098

improving the translation quality. Additionally,099

the need of a parallel CM corpus for every new100

language pair limits the applicability of NMTmod­101

els for code­mixed translation. Further, the avail­102

ability and accuracy of language specific POS­103

taggers, translation dictionaries, filtering tools be­104

come pivotal for building a synthetic CM corpus.105

To ease this challenge, we propose zero­shot CM106

translation, where a bilingual Bengali­English (Bn­107

En) parallel corpus is trained along with a code­108

mixed Hindi­English parallel corpus. This way,109

the model learns to adapt to the multilingual sce­110

nario and translate Bengali CM text to English.111

Precisely, the contributions of our work are sum­112

marized below:113

• We formulate a linguistically­informed pipeline114

for synthetically generating codemix data from115

parallel non­code­mixed corpora.116

• We release HINMIX, the first large­scale117

Hinglish Code­Mixed parallel corpus consist­118

ing of ~5M parallel sentences. We manually119

annotate 2787 gold standard CM sentences for120

the evaluation.121

• We propose a novel JAMT model for effec­122

tively translating real­world noisy code­mixed123

sentences to English.124

• We explore Zero­Shot Code­Mixed Translation125

for Bengali code­mixed to English translation126

without any parallel CM corpus.127

• Through experiments and analysis, we show that128

JAMT significantly outperforms the previous129

state­of­the­art CM and robust MT approaches.130

2 Related Work131

In the past, various linguists (Verma, 1976; Joshi,132

1982; Singh, 1985) studied the phenomena of CM133

and intra­sentential code­switching. Dhar et al. 134

(2018) initiated the effort to create a 6K pair gold­ 135

standard Hindi­English CM dataset. Following 136

this, synthetic CM data generation methods by 137

utilizing parse trees (Pratapa et al., 2018), align­ 138

ment learning (Rizvi et al., 2021) and copy mech­ 139

anism (Winata et al., 2018) were proposed. Re­ 140

cently, Gupta et al. (2020, 2021) explored the lin­ 141

guistic properties to automatically generate CM 142

sequence without parallel corpus by employing 143

NMT models such as pointer generator (See et al., 144

2017) and mBERT (Devlin et al., 2019). 145

The presence of annotated CM data does not 146

ease the target task due to the extensive amount 147

of noise in the data. Several approaches (Belinkov 148

and Bisk, 2018; Karpukhin et al., 2019; Passban 149

et al., 2020) have studied the robustness of the 150

model with respect to the dataset and training pro­ 151

cedure. Cheng et al. (2018, 2020) adopted an 152

adversarial stability training objective to build a 153

perturbation­invariant encoder. Some of the recent 154

works (Sato et al., 2019; Park et al., 2020) also 155

adopted the regularization procedure for the ad­ 156

versarial effectiveness of NMT models. Although 157

these schemes satisfy the robustness criteria of an 158

NMT model, the nature of noise in the CM lan­ 159

guage largely remains unexplored. 160

Our proposed work is motivated by the gap in 161

research to build an all­inclusive code­mixed trans­ 162

lation system that handles the diverse switching 163

nature in CM communities and is robust to any 164

kind of CM noise. The following section elabo­ 165

rates upon the methodology adopted to build the 166

dataset and satisfy the mentioned criterion. 167

3 Dataset 168

In this section, we describe the pipeline used to 169

create HINMIX utilizing IITB English­Hindi par­ 170

allel corpus (Kunchukuttan et al., 2018) – it con­ 171

tains text from TED Talks, Judicial domain, news 172

articles, Wikipedia headlines, etc. HINMIX con­ 173

sists of Hindi­English CM parallel pairs gener­ 174

ated using two strategies – alignment­based and 175

translation­based. 176

Code­Mixed Generation: Matrix Language 177

Frame (MLF) model (Myers­Scotton, 1997) 178

argues that the syntactic and morphological struc­ 179

ture of any code­switch utterance comes from 180

a Matrix Language (Lm) which borrows words 181

from the Embedded Language (Le). Following 182

this theory, we characterize the asymmetric (Joshi, 183
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Figure 1: Pipeline of code­mixed data generation.

1982) nature of intra­sentential code­mixing in184

Indian languages. After performing a linguistic185

study on a large number of CM tweets collected186

from Twitter, we conclude that the regional187

language acts as the base language Lm, and188

words are borrowed from English Le for switch­189

ing in the urban usage of hybrid text in Indian190

languages. Given a source­target sentence pair191

S ∥ T , we generate the synthetic code­mixed192

data by substituting words in the matrix language193

sentence with the corresponding words from the194

embedded language sentence. Figure 1 explains195

the code­mixed data generation pipeline.196

Candidate Word Selection: We select proper197

nouns (NNP, NNPC, NNPS), common nouns (NN,198

NNC, NNS), adjectives (JJ), and quantifiers (QC,199

QCC, QO) to be part of an inclusion list I . All200

words whose POS tag belongs to the inclusion201

list are potential candidates for code­switching (c.f.202

appendix for detail).203

Building Substitution Dictionary: Once the204

corpus is POS­tagged and candidate words are205

shortlisted, the substitute words fromLe need to be206

determined. We propose two approaches to build207

a substitution dictionary:208

1. Translation Based: In any code­switch commu­209

nity, there is a code choice that is more fa­210

vorable than other potential choices (Myers­211

Scotton, 1997). For example, a regular Hindi212

user would routinely use the English word213

“help” than the word “assist” due to its com­214

mon usage. Moreover, NMT models show a215

similar property of memorizing commonly seen216

words in the corpus (Luong et al., 2015). Uti­217

lizing this correlation, we prepare a dictionary218

by training an Hi­En NMT model followed by219

context­independent word­by­word translation220

using the trained model. This method ensures221

a prevalent and consistent code­mixed vocabu­222

En The tendency to give physical training to the whole
society resulted in many disastrous consequences.

Hi समस्त समाज को शारीिरक प्रिशक्षण देने के कारण बहुत से बुरे
पिरणाम हुए।

Rank ↑

A whole समाज को physical training देने के कारण बहुत से
बुरे पिरणाम हुए।

3

A whole society को physical training देने के कारण बहुत
से बुरे consequences हुए।

5

T/A समस्त society को physical training देने के कारण बहुत
से बुरे पिरणाम हुए।

5

T all society को शारीिरक training देने के cause बहुत से
evil results हुए।

2

T समस्त society को physical training देने के कारण बहुत
से बुरे results हुए।

4

Table 1: Sample of generated Hindi code­mixed (Hic)
sentences using translation (T) and alignment (A) ap­
proach. Rank (↑) defines the quality assessment by hu­
mans.

lary in the dataset. 223

2. Alignment Based: In this approach, an align­ 224

ment model is trained between a source and tar­ 225

get corpus to learn word­level correspondence 226

between each parallel sentence. We use the 227

fast­align (Dyer et al., 2013) symmetric align­ 228

ment model to obtain the source­target align­ 229

ment matrix. Next, a substitution dictionary 230

for each sentence is obtained, consisting of 231

only words with one­to­one source­target map­ 232

ping. This approach allows us to deal with the 233

word­sense ambiguity problem by substituting 234

context­dependent foreign words in each sen­ 235

tence, thereby forming a diverse set of code­ 236

mixed vocabulary in the corpus. 237

For each sentence in corpus, 2 substitution dictio­ 238

naries are formed corresponding to the 2 approach. 239

Language Switching: It might appear that the 240

decision to switch a word is a binary choice and 241

that every word in Lm can be replaced from the set 242

of potential substitute words. However, the switch­ 243

ing paradigm in a CM utterance depends upon a 244

range of factors such as lexical information avail­ 245

able with the speaker, their relative fluency in the 246

languages, speaker’s intention to switch, and most 247

importantly, the intrinsic structure of involved lan­ 248

guages (Kroll et al., 2008). Hence, instead of sub­ 249

stituting every candidate word and generating a sin­ 250

gle CM sentence, we follow a randomized word­ 251

selection and filtering method to obtain multiple 252

CM combinations of a single source sentence. Ta­ 253

ble 1 shows the generated CM (Hic) sentences for 254

a single sample using translation (T) and alignment 255

(A) based approach. To illustrate the need for sen­ 256

tence filtering, we rank from 1 to 5 (higher is bet­ 257

ter) to evaluate the quality of these CM sentences. 258
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DEMPOS tag

safety certificate reliable security certificate trusted

सुर�ा
(suraksha)

�माणप�
(pramaanapatr)

िव�सनीय
(vishvasaneey)

NN NN JJ RB VM

यह
(yah)

सुर�ा
(suraksha)

�माणप�
(pramaanapatr)

िव�सनीय
(vishvasaneey)

नही ं
(nahin)

है
(hai)

This security certificate is not trustedEn

Hi

यह security certificate trusted नही ंहै।

Translation Alignment

।
(.)

SYM

yah safety certificate reliable nahin hai. yah security certificate trusted nahin hai.
यह safety certificate reliable नही ंहै।

.

Figure 2: An example showing the process of code­
mixed sentence generation using both method.

• Word Selection: Given that there can be 2r − 1259

CM combinations in a sentence of r candidate260

words – computationally expensive for large r,261

we adopt a set of heuristics (details in appendix)262

to limit the CM sentences to be generated.263

• Sentence Filtering: To further narrow down the264

selection pool and incorporate language struc­265

tures of bilingual languages into synthetic CM266

sentences, we use a combination of probabilistic267

and deterministic NLP evaluation metrics.268

1. We use an unsupervised cross­lingual269

XLM (Conneau and Lample, 2019) model270

to calculate the perplexity of CM sentences.271

We observe a good correlation between the272

fluency of the CM sentence and its perplexity,273

even when provided with Devanagari Hindi274

and English text in a single CM sentence.275

2. We employ code­mixed specific measures276

such as Code­Mixing Index (CMI) (Gambäck277

and Das, 2016) and Switch Point Fraction278

(SPF) (Gupta et al., 2020) to select sentences279

between a certain threshold, details of which280

are discussed in Section 5.3.281

Figure 2 shows the generated CM sentences from282

both methods for a single sample. This forms283

our two code­mixed parallel datasets CTRANS and284

CALIGN from translation and alignment meth­285

ods respectively with Hindi (Devanagari)­English286

CM pairs: Hic­En. Finally, for each case, we287

use Google Transliterate API1 to produce the ro­288

manized version r of the CM parallel corpora –289

Hicr­En. In total, we obtain ~4.9M and ~4.2M290

parallel sentences using the translation and align­291

ment strategies, respectively. A detailed statistics292

of the dataset is presented in appendix.293

1https://developers.google.com/
transliterate/v1/getting_started

AdversarialModule: The transliteration of non­ 294

roman languages depends upon the phonetic tran­ 295

scription of each word, varying heavily with the 296

writer’s interpretation of involved languages. With 297

no consistent spelling of a word, it becomes cru­ 298

cial to simulate the real­world variations and noise 299

for the practical application of any CMT model. 300

Hence, we propose to learn robust contextual rep­ 301

resentations by distorting the available clean cor­ 302

pora with word­level adversarial perturbations as 303

follows (c.f. appendix for detail): 304

• Switch: “t r a n s f e r” vs “t r a s n f e r” 305

• Omission: “a m a z i n g” vs “a m z n g” 306

• Proximity typo: “m o b i l e” vs “m o v i l e” 307

• Random Shuffle: “l a p t o p” vs “l o p t a p” 308

We inject 30% switch, 12% omission, 12% typo, 309

and 5% shuffle noise to Hicr to produce a 60% 310

word­level noisy code­mixed corpus Hicrn­En. 311

Both clean (Hicr­En) and noisy (Hicrn­En) cor­ 312

pora are further used to train a joint model, which 313

is described in the next subsection. 314

4 Joint Code­Mixed Translation 315

In this section, we describe our approach for ro­ 316

bust translation of code­mixed sentences to En­ 317

glish. We apply SentencePiece2 tokenizer with a 318

unigram subword model (Kudo, 2018) to generate 319

a vocabulary directly from the raw text. The ob­ 320

tained synthetic CM text is then passed through 321

an adversarial module to generate a noisy CM 322

corpus. Subsequently, the clean and noisy cor­ 323

pora are simultaneously trained using the proposed 324

JAMT model. A high­level architectural diagram 325

of JAMT is illustrated in Figure 3. 326

Architecture: Inspired by the success of mul­ 327

tilingual models, we leverage a sequence­to­ 328

sequence joint learning framework to translate 329

code­mixed sentences to English. Unlike NMT 330

models trained on a single language pair for one 331

direction, the joint model consists of a single en­ 332

coder and a decoder for different corpora (code­ 333

mixed/romanized/noisy) and directions allowing 334

them to simultaneously learn useful information 335

across language boundaries. For training the joint 336

model from multiple sources to multiple targets 337

(many­to­many), a proxy token for the target lan­ 338

guage is inserted at the beginning of the source sen­ 339

tence, indicating the intended target at the decod­ 340

ing stage as shown in Figure 3. 341

2https://github.com/google/
sentencepiece
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Shared Encoder

Unigram Tokenization

Zero-Shot CMTTask-Specific Source Task-Specific Target

Shared
embeddings

Positional
embeddings

Zero-Shot CMT

<Hicr> 2En h1 hn

z<En> 2Hicr ene1

<Bnr> 2En x1 xn

<En> 2Bnr e1 en

<En> e1 en

<Bnr> x1 xn

<En> e1 en
...

...

...
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<Hicrn> 2En h'1 h'n...

...

...
<En>

<Hicr> h1 hn...

Shared Decoder

Unigram Tokenization

e1 en...

Robust CMT Robust CMT

Training

Figure 3: Architecture of our proposed JAMT model. Here, Hi, En, and Bn represent Hindi, English, and Bengali
language, respectively. The subscripts c, r, and n are used to denote codemix, romanized, and noisy version of a
dataset. The first token [2T ] in the encoder input indicates the intended target language T followed by tokens in
the source language S. The target tokens are passed to the decoder sequentially for model training.

Training Objective: The joint model is trained342

to optimize the sum of categorical cross­entropy343

(CE) loss with label smoothing (Szegedy et al.,344

2016) across all language pairs. As our code­345

mixed datasets are synthetically prepared by re­346

placing words using the matrix language frame­347

work (Myers­Scotton, 1997), learning the model348

directly using the CE loss would tend to memorize349

the labels for incorrect source tokens and degrade350

the model performance. Therefore, we adopt label351

smoothing to train our proposed model.352

4.1 Robust Code­mixed MT (RCMT)353

To capture the context­dependent lexical variations354

between the noisy and clean corpora, we formu­355

late the cross­lingual translation setting to the code­356

mixed scenario, referred to as Robust Code­Mixed357

Translation (RCMT). For this, we jointly train a358

transformer model in three directions (RCMT1)359

– bidirectional Hindi­English using clean code­360

mixed romanized corpus (Hicr⇌En) and Hindi361

to English using noisy code­mixed romanized cor­362

pus (Hicrn→En), where c,r, and n represent the363

code­mixed, romanized, and noisy versions of a364

dataset, respectively.365

When a pair of a sentence from Hicr and Hicrn366

are tokenized through the unigram model, the sub­367

words tokens of both sentences would contain sub­368

stantial amount of overlap due to the joint vocab­369

ulary. Any noise due to lexical, phonetic, or or­370

thographic variations only perturbs the word at371

the character level, thereby obtaining similar sub­372

words to some extent. Further, when translating373

two different sentences to the same target language,374

the joint model would learn the relationship be­375

tween those subwords by utilizing their same syn­376

tactic and semantic properties. Therefore, the non­ 377

canonical nature of noisy text would benefit from 378

the strong implicit supervision of clean sentences 379

even when they are morphologically dissimilar. 380

Since both noisy and clean corpora follow the 381

same origin (Devanagari Hindi), we also experi­ 382

ment with the robustness capabilities of JAMT by 383

adding two non­romanized code­mixed directions 384

in RCMT1, representing it as RCMT2: Devanagari 385

Hic⇌En. This modification would enable JAMT 386

to better handle the dependencies among Devana­ 387

gari and romanized characters besides minimizing 388

the morphological ambiguity across sentences. 389

4.2 Zero­shot Code­mixed MT (ZCMT) 390

The previous robust CMT approach uses the lin­ 391

guistic and lexical similarity of the corpora to learn 392

robust representations effectively. However, to 393

adapt CMT for any other language pair (e.g., Ben­ 394

galish ⇌ English), we need a code­mix parallel 395

corpus, which is often unavailable. Therefore, to 396

negate the limitation of data scarcity, we propose 397

a zero­shot transfer learning approach for code­ 398

mix translation in a new language pair. In this ap­ 399

proach, we use the previously generated CM cor­ 400

pora to exploit the transfer learning characteristic 401

of cross­lingual models for CMT in an unseen pair. 402

The idea is to utilize the existing non­CM paral­ 403

lel corpus of language l1 and a CM parallel corpus 404

of language l2 for the translation of CM sentences 405

of l1. To this end, we train JAMT with Bengali­ 406

English (Bn­En) and Hinglish­English (Hicr­En) 407

parallel corpora. Subsequently, the trained model 408

is employed to convert a Bengalish sentence to En­ 409

glish. We argue that the trained model would be 410

able to transfer the code­mixing behaviour onto 411
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the network activations in a zero­shot way. We412

choose Bengali (Bn) due to the availability of413

both Bn­En large parallel­corpora (Hasan et al.,414

2020) and Bengali code­mixed test set Bnc­En415

(Gupta et al., 2021). The following language pairs416

are used to train the Zero­shot CM Translation417

(ZCMT) model:418

• Code­mixed Hindi to English: Devanagari419

Hic⇌En, romanized Hicr⇌En, noisy ro­420

manized Hicrn→En.421

• Bengali to English: romanized Bnr⇌En and422

Eastern­Nagari Bn⇌En.423

5 Experiments and Results424

Depending upon the dataset and language pair, we425

evaluate JAMT on different tasks and configura­426

tions. Due to the unavailability of gold­standard427

CM parallel test data, we limit our evaluation to428

two languages: Hindi (Hi) and Bengali (Bn), de­429

scribed as follows: Hi­En: We utilize the test430

(2507 samples) and dev sets (280 samples) from431

WMT 2014 En­Hi shared task (Bojar et al., 2014)432

for gold­standard annotation of codemix data (ref.433

Appendix). Bn­En: For testing our ZCMT model,434

we make use of the Spoken Tutorial3 Bn­En CM435

test set (Gupta et al., 2021) – it consists of 28K436

utterances transcribed from code­mixed video lec­437

tures. We randomly select 500 and 2000 sentences438

as the dev and test sets, respectively. We com­439

pute SacreBLEU (Ott et al., 2019) andMETEOR440

(Banerjee and Lavie, 2005) to evaluate the quality441

of the translation.442

5.1 Baselines443

We conduct experiments with multiple CM and444

robust MT baselines for fair comparison of our445

JAMT approach: • TFM: We employ a vanilla446

Transformer with the same hyperparameters as447

JAMT for each configuration. • FCN: Follow­448

ing Gehring et al. (2017), we adapt seq2seq449

fully convolutional network for Robust CMT450

task. • mT5: Xue et al. (2021) put forward451

a “span­corruption” objective to pre­train a mas­452

sive multilingual masked LM for sequence gen­453

eration. • mBART: Liu et al. (2020b) used a454

seq2seq denoising­based autoencoder pre­trained455

on a large common­crawl corpus. •MTNT: Vaib­456

hav et al. (2019) proposed to enhance the robust­457

ness of MT on the noisy text by pre­training an458

3https://github.com/shruikan20/
Spoken­Tutorial­Dataset

LSTM model with a clean corpus and fine­tuning 459

it on noisy artificial data. • MTT: Zhou et al. 460

(2019) presented a Multi­task Transformer for ro­ 461

bust MT that uses dual decoders, one to generate 462

the clean text and another to provide the transla­ 463

tion given the noisy input. • AdvSR: Park et al. 464

(2020) introduced an adversarial subword regular­ 465

ization scheme for on­the­fly selection of diverse 466

subword segmentation in a sequence resulting in 467

character­level robustness of an NMT model. 468

5.2 Results 469

Table 2 presents the results of our robust CMT ex­ 470

periments. We observe that JAMT significantly 471

outperforms all CM and robust MT baselines. 472

Overall, the performance is better onCALIGN than 473

CTRANS possibly due to the better quality and 474

lesser CM complexity in CALIGN over CTRANS 475

(c.f. Section 5.3). 476

Furthermore, we observe decline in results 477

(RCMT1 > RCMT2) with the increase in the cor­ 478

pus/languages (RCMT1 < RCMT2). We attribute 479

this to the lesser number of parameters for each 480

pair in a joint model when more pairs are added. 481

Regardless, our proposed model handles an all­ 482

inclusive CM input (Devanagari, English, roman­ 483

ized, and noisy words) in an efficient manner, thus 484

making it a suitable candidate for practical applica­ 485

tions. In the following subsections, we elaborate 486

on the obtained results and their comparisons with 487

the baselines and state­of­the­art systems. 488

Code­mixed MT Results: Seq2Seq models 489

such as transformers (TFM) and convolutional 490

attention networks (FCN) have become the de­ 491

facto standard to evaluate MT systems (Liu et al., 492

2020a; Wu et al., 2019). Following their competi­ 493

tive performance in code­mixed translation tasks 494

(Nagoudi et al., 2021; Appicharla et al., 2021; 495

Dowlagar and Mamidi, 2021), we train individual 496

models in each direction (Hic→En, Hicr→En, 497

Hicrn→En) for both the CTRANS and CALIGN 498

datasets. Table 2 shows the superior performance 499

of TFM over FCN with an avg. improvement 500

of +2.47 & +2.68 BLEU across CM (c,c+ r) 501

and robust CM (c+r+n) translation models, 502

respectively. A substantial gain of +3.31B, 503

+7.25M score (on avg.) over TFM is observed 504

on noisy corpus (Hicrn→En) when it is trained 505

simultaneously with clean corpora (Hicr⇌En) 506

in RCMT1. Furthermore, the inclusion of De­ 507

vanagari CM (Hic⇌En) in RCMT2 improves 508
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Model
CTRANS CALIGN

c c+ r c+ r+ n c c+ r c+ r+ n
B M B M B M B M B M B M

TFM 9.35 36.2 9.18 35.0 5.46 27.3 9.97 39.7 10.02 36.2 9.70 37.4
FCN 6.62 27.8 6.04 27.4 4.10 22.6 7.89 33.2 8.07 33.1 5.69 27.5
mT5 4.30 23.4 3.83 23.5 2.06 16.6 4.27 22.6 4.28 25.9 2.80 19.5

mBART 6.72 34.3 5.51 30.1 2.80 22.0 5.38 29.5 7.07 35.7 3.19 21.7
MTT ­ ­ ­ ­ 8.93 34.0 ­ ­ ­ ­ 10.44 38.0
MTNT ­ ­ 6.76 29.8 4.26 22.3 ­ ­ 8.48 35.1 5.92 28.0
AdvSR ­ ­ 6.64 30.5 2.62 19.1 ­ ­ 9.63 36.7 7.28 32.7
RCMT1 ­ ­ 12.91 43.0 10.25 37.7 ­ ­ 13.58 45.7 11.54 41.5
RCMT2 13.07 44.0 12.83 43.0 9.79 36.9 13.81 46.2 13.72 45.7 11.3 40.8

Table 2: Baseline comparison of RCMT1 and RCMT2 from Hindi to English on CTRANS and CALIGN datasets.
Here, c, r, and n denote codemix, romanized, and noisy version of a dataset. (B: SacreBLEU and M: METEOR)

CM performance; however, it does not provide509

additional support in the robustness of the system.510

Also, for Hic → En, JAMT shows stronger results511

than TFMmodel even when Devanagari subwords512

are not shared with any other pair. We hypothesize513

that training on a common target En enables the514

encoder to learn overlapping representations for515

all inputs (Hic,Hicr,Hicrn), thereby reducing516

the effect of script variation and reinforcing the517

same family correlation.518

Previous works in CMT have primarily relied on519

large­scale multilingual models such as mBART520

and mT5 (Xue et al., 2021; Liu et al., 2020b; Gau­521

tam et al., 2021; Jawahar et al., 2021). For com­522

parison, we adopt the existing approach by finetun­523

ing mT5 and mBART models on our CM datasets.524

Table 2 (row­3 and row­4) highlights the CM per­525

formance on these finetuned models. Surprisingly,526

the romanized code­mixed MT (c+ r) demon­527

strates comparable METEOR score with +1.35%528

improvement over its Devanagari counterpart (c),529

even though the romanized Hindi text is seen only530

during finetuning. Conclusively from Table 2,531

these transfer learning approaches still lag behind532

JAMT, especially in robust CMT as the pre­trained533

procedure did not involve any kind of CM data.534

However, it gives us a direction to explore by in­535

cluding CM data in the pre­training steps.536

Robust MT Results: In order to corroborate the537

robustness capabilities of RCMT models, we test538

three noise­robust MT models as baselines: MTT,539

MTNT, and AdvSR. MTT proves to be most re­540

silient to synthetic noise with 1.21 BLEU decrease541

from RCMT1 as it uses a dual decoding scheme542

to jointly maximize clean text and the translated543

text. Yet, this improvement comes at the cost of in­544

creased model size to allocate parameters for sec­545

ond decoder module. On the other hand, JAMT has546

Model Hi Bn
B M B M

CT
RA
NS

MMT
c 10.8 41.9 13.84 45.1

c+ r 9.41 40.2 12.65 43.3
c+ r+ n 5.50 29.3 ­ ­

c 11.95 43.4 12.81 45.5
c+ r 11.45 42.5 11.96 44.0ZCMT

c+ r+ n 7.41 33.2 ­ ­
CA
LI
GN

MMT
c 13.59 45.0 15.66 47.7

c+ r 13.05 44.1 13.83 44.3
c+ r+ n 8.31 34.2 ­ ­

c 14.00 46.7 15.41 49.8
c+ r 13.69 46.1 14.01 47.6ZCMT

c+ r+ n 10.79 40.4 ­ ­

Table 3: Performance of ZCMTmodel for Hindi (Hi),
Bengali (Bn) to English translation on CTRANS and
CALIGN dataset. c, r, n denote the code­mixed, ro­
manized, noisy version of a dataset.

the capability to adapt to any number of pairs with­ 547

out increasing the model size. The AdvSR model, 548

trained exclusively on noisy corpus, yields better 549

performance on CALIGN dataset than the MTNT 550

model, which is trained on clean corpusHicr→En 551

and finetuned on the noisy corpus Hicrn→En. In 552

comparison, without changing the training proce­ 553

dure or scaling the parameters, JAMT achieves the 554

best robustness to noise with an avg BLEU score 555

of 10.89 against 9.68 of the best baseline (MTT). 556

Further, we evaluate the robustness of our 557

trained RCMT models by testing on both CM 558

(LinCE45 (Aguilar et al., 2020), SpokenTuto­ 559

rial Hi­En) and non­CM (IITB Hi­En test set) 560

datasets. As seen in Table 4, our models obtain 561

better performance across all datasets with avg. 562

BLEU and Meteor scores of 14.17 and 42.08, re­ 563

spectively. On LinCE, RCMT models yield com­ 564

paratively lower scores, possibly due to the higher 565

percentage of noise and the presence of informal to­ 566

4contains real­world noisy tweets collected from Twitter
5https://ritual.uh.edu/lince/datasets
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Dataset CTRANS CALIGN
B M B M

R
C
M
T
1 IITB (non­CM) 12.01 40.6 12.25 40.8

SpokenTutorial (CM) 20.53 50.0 22.58 52.1
LinCE (CM) 7.97 30.2 11.06 33.9
HINMIX (CM) 12.91 43.0 13.58 45.7

R
C
M
T
2 IITB (non­CM) 11.77 40.4 12.75 40.9

SpokenTutorial (CM) 20.70 50.3 23.07 52.5
LinCE (CM) 8.77 30.7 10.28 33.5
HINMIX (CM) 12.83 43 13.72 45.7

Table 4: Comparison of trained (c+ r)RCMTmodels
on various CM and non­CM evaluation corpus.

kens (emoticons, hashtags, etc.). Also, our model567

is able to translate non­CM text with comparable568

performance as that of code­mixed translations.569

Finally, we investigate the CMT performance570

using a baseline dataset, RandRep, prepared by571

randomly replacing words in the IITB Hi­En cor­572

pus. A large Hi­En dictionary6 is employed to ran­573

domly replace Hiwords with their En translations;574

thus, forming a code­mixed Hi­En corpus. We575

train both RCMT1 and RCMT2 on RandRep and576

evaluate on gold set. In comparison with HINMIX,577

it yields inferior performance in both RCMT mod­578

els – RCMT1[B: 9.16; M: 34.8] and RCMT2[B:579

8.82; M: 34.4]. The above observation suffices the580

effectiveness of the HINMIX dataset.581

Zero­shot MT Results: A good way to lever­582

age the cross­lingual transfer property of multi­583

lingual models is to incorporate CM behaviour584

learned from one code­mixed language to an585

unseen code­mixed language. Table 3 shows586

the effectiveness of zero­shot CM translation587

({Bnc,Bncr}→En) by training a joint model588

using a bilingual Bn­En corpus and our syn­589

thetic code­mixed Hi­En corpus in the fol­590

lowing directions: {Hic,Hicr,Bn,Bnr}⇌En +591

Hicrn→En. For the baseline model, we test592

Bn code­mixed translation without training on593

CM text in a multilingual manner (MMT), i.e.,594

{Hi,Hir,Bn,Bnr}⇌En + Hirn→En. Inter­595

estingly, MMT demonstrates appreciable perfor­596

mance on the Bn test set with ZCMT obtaining597

3.25 improvement of METEOR scores over the598

MMTmodel. A possible reason for this can be the599

nature of the spoken tutorial test set, which mostly600

contains technical words and proper nouns as En­601

glish (Le)words in Bengali (Lm) code­mixed text.602

Another surprising benefit of our ZCMT model603

is observed in Hindi CM translation in both De­604

6https://github.com/bdrillard/
english­hindi­dictionary

Source Hicr Is thought ko sabhi places par support nahin mila.
Target En The concept is not a universal hit.
CTRANS En This idea was not supported at all places.
CALIGN En This thought did not support at all the places.
Source Hicr Yah aapke relatives aur loved ones ke liye ek complete

gift hai.
Target En It is perfect gift for your relatives and loved ones.
CTRANS En This is a whole gift for your relatives and loved ones
CALIGN En This is a complete gift for your relatives and loved ones

Table 5: Sample translation of code­mixed (Hicr) sen­
tences to English (En) by translation (CTRANS) and
alignment (CALIGN) of proposed RCMT1 model.

vanagari and romanized texts of CALIGN dataset 605

outperforming RCMT1 and RCMT2 scores in Ta­ 606

ble 2. This indicates that adding languages from 607

the same family (Indo­Aryan) can sometimes im­ 608

prove the code­mixed translation quality despite 609

varying scripts (Devanagari vs. Eastern­Nagari). 610

5.3 Qualitative Analysis 611

Table 5 shows the difference in outputs of 612

CALIGN and CTRANS datasets for the RCMT1 613

model. JAMT trained on CALIGN learns to match 614

the words in source and target – the word “thought” 615

is translated as it is from the source sentence; 616

whereas, in CTRANS, it gets mapped to a com­ 617

monly used word “idea”. Similar behaviour can 618

be seen in the second example where the word 619

“complete” takes a new meaning “whole” in the 620

CTRANS prediction. Interestingly, the translations 621

in both samples are semantically very different 622

from the ideal target even when they represent a 623

coherent and accurate translation. This highlights 624

the shortcomings of precision­recall based metrics 625

such as B, M, etc. A simple but correct translation 626

would result in a low score when evaluated against 627

a vocabulary­rich complex translation. 628

6 Conclusion 629

In this work, we proposed a two­phase strategy to 630

translate the real­world code­mixed sentences in 631

multiple languages to English. First, a linguisti­ 632

cally informed pipeline was introduced to gener­ 633

ate a large­scale HINMIX code­mixed corpora syn­ 634

thetically. Next, we created a perturbed corpus by 635

passing the clean code­mixed corpus to an adver­ 636

sarial module – both of which are simultaneously 637

trained in a joint learning mechanism to learn ro­ 638

bust CM representations. Finally, we showed the 639

effectiveness of zero­shot learning on code­mixed 640

MT in Bengali language. Our evaluation showed 641

satisfying performance for both robust Hindi CM 642

and zero­shot Bengali CM translation. 643
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A Appendix976

A.1 Linguistic Study of CM tweets:977

To understand the usage of matrix (Lm) and em­978

bedded language (Le) in a code­switch utterance,979

we started by collecting a large number of tweets980

from Indian Twitter users by searching past trend­981

ing keywords in multiple domains. Among these,982

1000 tweets were randomly selected, containing983

mix usage of Hindi (Devanagari/ Roman) and En­984

glish. In all tweets, Hindi played the predominant985

role in setting the grammar and syntactical frame986

of the code­mixed utterance. The tweets were then987

POS tagged to identify and empirically infer the988

patterns of English usage in Hinglish communica­989

tion. The detailed statistics of the POS Tags are990

presented in Table 6.991

Candidate Word Selection: First, we select992

words to substitute in the Hindi (Lm) sentence993

based on their POS tag. Given a source sentence994

S = {s1, s2, . . . , sn} ∈ Lm and a target sentence995

T = {t1, t2, . . . , tm} ∈ Le, we obtain POS tags996

for each word in S. Next, we make the select can­997

didate words based on their POS tags:998

1. Named entities such as person, location, orga­999

nization, etc., are represented as proper nouns1000

(NNP, NNPC, NNPS). These are typically1001

present in an ambiguousmanner where the root1002

word does not change, but multiple spelling1003

variations can be found due to its modern adap­1004

tation. For example, “sitambar” vs “septem­1005

ber”, “captaan” vs “captain”.1006

2. Common nouns (NN, NNC, NNS), adjectives1007

(JJ), and quantifiers (QC, QCC, QO) are fre­1008

quently translated with their Le counterparts.1009

These words do not change the grammati­1010

cal structure of Lm and form the basis of1011

widespread Hinglish usage.1012

Based on these switching constraints, we form an1013

inclusion list (I) containing the POS tags to be1014

included for code­switching. Subsequently, we1015

shortlist the candidate words S′ = si such that1016

their corresponding tags pi ∈ I . Verbs (VB) and1017

other tags are not included in I as they don’t fol­1018

low a general rule in code­switched text and often1019

cannot be directly replaced. In cases where verbs1020

are present asmain verb+ auxiliary verb, themain1021

verb can be translated with Lm. Else, an auxiliary1022

verb can be added after translating the main verb1023

depending upon the tense and context of a text.1024

POS Tag Percentage Count
Noun 70.3%

Adjective 8.8%
Verb 7.8%
Others 13.1%

Table 6: Part­of­Speech tags of English words in 1000
code­mixed Hinglish sentences.

Heuristic for candidate word selection for lan­ 1025

guage switching: Given that there can be 2r − 1 1026

CM combinations in a sentence of r candidate 1027

words, we adopt the following selection rule de­ 1028

pending upon the length of sentences to narrow 1029

down the possible sample space: 1030

1. Use all combinations for r<=4. For example, 1031

an n­word sentence with 3 candidate words 1032

will have 23 − 1=7 CM sentences. 1033

2. Use r − 3 to r candidate word combina­ 1034

tions for 5<=r<7. For example, an n­word 1035

sentence with 5 candidate words will have 1036
5C2+5C3+5C4+5C5=26 CM sentences. 1037

3. Use 0.6r to 0.7r candidate word combina­ 1038

tions for r>=7. For example, an n­word 1039

sentence with 15 candidate words will have 1040
15C9+15C10=8008 CM sentences. 1041

A.2 Adversarial Module: 1042

The transliteration of non­roman languages de­ 1043

pends upon the phonetic transcription of each 1044

word, varying heavily with the writer’s interpre­ 1045

tation of involved languages. With no consistent 1046

spelling of a word, it becomes crucial to simulate 1047

the real­world variations and noise for the practical 1048

application of any CMT model. Hence, we pro­ 1049

pose to learn robust contextual representations by 1050

distorting the available clean corpora with word­ 1051

level perturbations as follows7: 1052

• Switch: The adjacent characters inside the 1053

word are randomly switched to reproduce the 1054

typos due to the fast entry of keys. For exam­ 1055

ple, “t r a n s f e r” vs “t r a s n f e r”. 1056

• Omission: A single character inside a word is 1057

randomly omitted to add noise. This error is 1058

usual when using short words during informal 1059

communication on OSNs. This also occurs in 1060

cases when characters are excluded while typ­ 1061

ing due to the phonetically similar pronuncia­ 1062

tion of the correct and incorrect spellings. For 1063

example, “a m a z i n g” vs “a m z n g”. 1064

7All noise is added between the first and last character of
a word keeping both characters intact.
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• Proximity typo: While typing a character, a1065

neighboring key is pressed mistakenly, thereby1066

completely distorting the word. To replicate1067

this error, we randomly select a character from1068

the word followed by random neighboring key1069

replacement corresponding to the QWERTY1070

keyboard. For example, “m o b i l e” vs1071

“m o v i l e”.1072

• Random Shuffle: Sometimes, the non­1073

adjacent letters are swapped erroneously. Al­1074

though this does not happen frequently, we in­1075

ject this noise by randomly shuffling the word1076

to make our model robust to any word­level1077

noise. For example, “l a p t o p” vs “l o p t a p”1078

We inject 30% switch, 12% omission, 12% typo,1079

and 5% shuffle noise to Hicr for producing a 60%1080

word­level noisy code­mixed corpus Hicrn­En.1081

Both clean (Hicr­En) and noisy (Hicrn­En) cor­1082

pora are further used to train a joint model, which1083

is described in the next subsection.1084

A.3 Statistics:1085

The detailed statistics of the synthetic and gold­1086

standard annotated code­mixed datasets are pro­1087

vided in Table 7. CTRANS on an average, con­1088

tains 19% more number of ways in which a sin­1089

gle Hindi sentence is represented into multiple CM1090

sentences, calculated by the ratio of total sentences1091

to unique sentences than CALIGN. The higher1092

number of Hi (src) tokens in CALIGN is justified1093

by the fact that the dataset has lower Code­Mixing1094

Index (CMI) (27.9% vs 35.9%) than CTRANS sug­1095

gesting a less percentage of code­mixing. Due to1096

this, a relatively lesser number of words are sub­1097

stituted by their English counterparts. Despite a1098

lower CMI, we can see that CALIGN dataset con­1099

tains as much as 30000 higher number of En(src)1100

tokens than CTRANS as the alignment based sub­1101

stitution method replaces different words based on1102

the target sentence alignment. Further, the CM sen­1103

tences in the test set have longer average sentence1104

length than the train set (34.5%↑ character­level1105

and 34.3%↑ word­level), demonstrating the diffi­1106

culty of code­mixed machine translation at test­1107

time.1108

We also evaluate the complexity of datasets us­1109

ing codemix­specificmetrics such as Code­Mixing1110

Index (CMI) and Switch Point Fraction (SPF).1111

CMI measures the percentage of code­mixing in1112

a sentence, whereas SPF calculates the complex­1113

ity of code­mixing in a sentence. On average, the1114

CALIGN dataset is 7.1% less complex and has a1115

Statistics CTRANS CALIGN Dev TestTrain
#Total Sent 4.9M 4.2M 280 2507
#Unique Sent 0.67M 0.71M 280 2507

CMI 35.6 27.9 32.6 32.4
SPF 47.7 44.3 47 45.5

Token­level statistics
#Hi (src) 0.19M 0.25M 711 4194
#En (src) 0.08M 0.11M 667 5923
#En (tgt) 0.17M 0.19M 1392 11255

#Total (src­tgt) 0.45M 0.52M 2533 18827
Char­level sentence length

Mean 84.73 100.9 65.6 124.9
Median 74 88 64 111

Word­level sentence length
Mean 15.7 18.24 12.17 22.8
Median 14 16 12 20

Table 7: Statistics of CTRANS and CALIGN code­
mixed datasets. Here, src and tgt represent source (Hic)
and target (En) sentences.

21.6% lower presence of code­mixed words than 1116

CTRANS making it relatively easier to translate. 1117

A.4 Training details: 1118

We use a standard seq2seq Transformer model 1119

(Vaswani et al., 2017) in all our experiments to en­ 1120

sure the same number of parameters. Both encoder 1121

and decoder consist of a stack of 6 identical layers. 1122

Each layer comprises aMulti­Head Attention layer 1123

with 4 attention heads and a Feed­forward layer 1124

with an inner dimension of 1024. The shared in­ 1125

put and output embedding dimensions are set to 1126

512. We use a dropout rate of 0.1, a learning rate 1127

of 5× 10−4 and an Adam optimizer with warmup 1128

steps of 4000. A unigram model with character 1129

coverage 1.0 is trained on all languages to obtain a 1130

common vocabulary of size 32000. To implement 1131

our model, the fairseq (Ott et al., 2019) toolkit is 1132

employed. We compute SacreBLEU (Ott et al., 1133

2019), andMETEOR (Banerjee and Lavie, 2005) 1134

to evaluate the quality of the translation. 1135

A.5 Baselines details: 1136

We use original code base for most of the base­ 1137

lines. For some baselines, we prefer model’s re­ 1138

implementation in Fairseq due to its ease of use. 1139

Following are the links to each baseline: 1140

• Transformer (TFM): Fairseq implementation 1141

(https://github.com/pytorch/ 1142

fairseq) 1143

• Fully­Convolutional Network (FCN): Fairseq 1144

(https://github.com/pytorch/ 1145

fairseq) 1146
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• mT5: (https://github.1147

com/google­research/1148

multilingual­t5)1149

• mBART: Fairseq (https://github.1150

com/pytorch/fairseq)1151

• MultiTask Transformer (MTT): (https:1152

//github.com/shuyanzhou/1153

multitask_transformer)1154

• MTNT: (https://github.com/1155

MysteryVaibhav/robust_mtnt)1156

• AdvSR: (https://github.com/1157

dmis­lab/AdvSR)1158

A.6 Tokenization:1159

We apply SentencePiece8 tokenizer with a unigram1160

subword model (Kudo, 2018) to generate a vo­1161

cabulary directly from the raw text. As the uni­1162

gram model calculates subwords according to the1163

occurrence probabilities, directly applying the tok­1164

enization to the corpora would result in the under­1165

representation of low­resource languages. There­1166

fore, we undersample the high­resource language1167

by randomly choosing a fixed set of sentences from1168

the corpora to obtain the shared dictionary.1169

A.7 Instructions to the annotators1170

For gold standard annotation of dev (280), and test1171

(2507) sets are randomly divided into two nearly1172

equal­sized sets of 1393 & 1394 and provided to1173

each of the two annotators. The annotators are1174

bilingual Indians in the age range 25­35 years with1175

fluency in both Hindi and English. Given a De­1176

vanagari Hindi sentence, annotators were told to1177

write the Hinglish conversion that appears as a first1178

thought in the mind. The time­frame for codemix1179

conversion should not exceed 5 seconds once a1180

sentence is read. Devanagari sentences are now1181

converted to code­mixed Devanagari+Roman sen­1182

tences. As there is no standard scheme for roman1183

transliteration of Indic scripts, annotators were1184

then told to transliterate the Devanagari words as1185

per their understanding of word structure and its1186

sound pattern. This way the code­mixed sentences1187

are annotated in the complete romanized formwith1188

no fixed spelling of any word. Same words can ap­1189

pear as multiple spellings in the dataset which act1190

as natural noise during testing.1191

8https://github.com/google/
sentencepiece

A.8 Human Evaluation: 1192

To quantitatively assess the quality of our syn­ 1193

thetic CM sentences, we perform a human evalu­ 1194

ation on 50 randomly selected Hinglish samples 1195

from CTRANS and CALIGN datasets. Three bilin­ 1196

gual speakers proficient in English and Hindi were 1197

asked to rate the adequacy and fluency of each sam­ 1198

ple on a 5­point scale. Fluency measures whether 1199

the generated code­mixed sentence is syntactically 1200

fluent independent of its meaning, whereas ade­ 1201

quacy compares if the meaning of the original Hi 1202

sentence is adequately conveyed in the target sen­ 1203

tence. The annotators report the average adequacy 1204

score for CALIGN and CTRANS as 4.76 and 4.18, 1205

respectively. Moreover, they report 4.44 and 4.12 1206

average fluency scores on the two datasets. The 1207

superiority of CALIGN over CTRANS in adequacy 1208

and fluency also aligns with better CMT results in 1209

Table 2. However, both methods are prone to er­ 1210

rors, some of them are discussed in appendix. 1211

A.9 Qualitative Analysis of CTRANS and 1212

CALIGN 1213

We determine the quality of the synthetic code­ 1214

mixed sentences in CTRANS and CALIGN as well 1215

the generated translations using JAMT. In Table 8, 1216

samples from both datasets highlight the distinc­ 1217

tion between our two CM generation approaches. 1218

In the translation approach, the word “prerana” is 1219

replaced by “inspiration” due to its frequent usage 1220

in the corpus as well as the real world. But due 1221

to the existence of a relatively uncommon word 1222

“persuasion” in its target pair, the CALIGN dataset 1223

chooses “persuasion” for substitution. Similarly, 1224

“sankshipt” is replaced by “brief ” in CTRANS and 1225

by a rare word “abridged” in CALIGN. This makes 1226

our CTRANS code­mixed vocabulary consistent 1227

throughout every occurrence of a source word, 1228

whereas CALIGN benefits from the rich lexicons 1229

in generated CM sentences. 1230

A.10 Error Analysis: 1231

We end with the analysis of some common errors 1232

when translating CM text to English. 1233

• Alignment Errors: Despite the context­ 1234

dependent word substitution in CALIGN, this 1235

approach is susceptible to all the alignment 1236

errors. Incorrect word mapping between the 1237

source­target could completely alter its CM 1238

meaning. Also, we substitute words with 1239

an only one­to­one correspondence between 1240
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Source Hir Pati ki prerana se unhonne sanskrut men likhit
ramayan ka bangla men sankshipt rupantar kiya.

Target En At her husband's persuasion she translated into Bengali
an abridged version of the Ramayana from Sanskrit.

CTRANS Hicr Husband ki inspiration se unhonne sanskrit men
written ramayana ka bangla men brief rupantar kiya.

CALIGN Hicr Husband ki persuasion se unhonne sanskrit men
likhit ramayan ka bangla men abridged rupantar kiya.

Source Hir Hum khane ke baad aam khate the
Target En We ate mangoes after lunch
CTRANS Hicr Hum khane ke baad common account the
CALIGN Hicr Hum khane ke baad mangoes ate the

Table 8: Samples of generated code­mixed (Hicr)
sentences using translation (CTRANS) and alignment
(CALIGN) approaches.

the source and target, thereby abandoning all1241

words with multiple alignment mapping.1242

• Translation Errors: The benefit of imitat­1243

ing real­world code­mixed usage by substitu­1244

tion with prevalent words (learned from trans­1245

lation model) leads to incorrect handling of1246

Homonyms (Anekarthi Shabd). An individ­1247

ual word, when passed through a translation1248

model, gives a single translation independent1249

of context. This leads to incorrect translation1250

in scenarios when the same word represents a1251

different meaning. For instance, in Table 8,1252

the word “aam” in Hi incorrectly translates to1253

“common” where the correct translation would1254

be “mango” according to the context.1255

• POS Tagging Errors: A good POS tagger1256

forms the basis of our code­mixed creation pro­1257

cess. In cases when a word in the source sen­1258

tence is incorrectly tagged to a tag in POS in­1259

clusion list I , it will be replaced by both substi­1260

tution approaches. For example in Table 8, the1261

verb “khate” gets mistagged to a noun, thereby1262

being replaced by its translation “account” in1263

CTRANS and “ate” in CALIGN. Note that the1264

word “khate” is a homonym, thereby produc­1265

ing both translation and POS­tagging error in1266

a single word.1267
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