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ABSTRACT

As AI models are trained on ever-expanding datasets, the ability to remove the
influence of specific data from trained models has become essential for privacy
protection and regulatory compliance. Unlearning addresses this challenge by
selectively removing parametric knowledge from the trained models without re-
training from scratch, which is critical for resource-intensive models such as Large
Language Models (LLMs). Existing unlearning methods often degrade model per-
formance by removing more information than necessary when attempting to “for-
get” specific data. We introduce Forgetting-MarI, an LLM unlearning framework
that provably removes only the additional (marginal) information contributed by
the data to be unlearned, while preserving the information supported by the data
to be retained. By penalizing marginal information, our method yields an ex-
plicit upper bound on the unlearn dataset’s residual influence in the trained mod-
els, providing provable undetectability. Extensive experiments confirm that our
approach outperforms current state-of-the-art unlearning methods, delivering re-
liable forgetting and better preserved general model performance across diverse
benchmarks. This advancement represents an important step toward making AI
systems more controllable and compliant with privacy and copyright regulations
without compromising their effectiveness.*

1 INTRODUCTION

As machine learning models, particularly Large Language Models (LLMs), get trained on bigger
datasets containing potentially sensitive or regulated information, and as LLMs are increasingly
deployed in high-stakes domains, the need to selectively remove specific data influences from these
models has become critical. This requirement is driven not only by privacy regulations such as
the European Union’s General Data Protection Regulation (GDPR) and its “right to be forgotten,”
but also by practical concerns including the removal of copyrighted content, personally identifiable
information, or data determined to be harmful or biased [33, 15, 11, 5, 3]. Unlearning, or removing
the influence of specific data post hoc, is an attractive tool for achieving this information removal,
especially with the high costs of retraining a model from scratch.

Existing unlearning methods often over-forget, removing all information linked to the data to un-
learn/forget, including knowledge also legitimately supported by the data meant to be preserved.
This indiscriminate approach leads to degraded model performance on tasks unrelated to the dis-
tinctive information to be forgotten.

To illustrate this distinction, consider a copyright unlearning scenario where we have an LLM pre-
trained on an article from The Washington Post and on one from The New York Times, but only
the former is legally authorized for use. Both outlets report on an identical event, yet their articles
differ in narrative style, phrasing, overlapping facts, and editorial perspective. There are two distinct
unlearning objectives with this setup:

• Marginal Information Unlearning: Remove only the stylistic elements, phrasing and content
unique to the Times article, while retaining shared factual content that also appears in the autho-
rized Washington Post article.

*The implementation will be released on GitHub upon acceptance of this manuscript.
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• Full Information Unlearning: Erase all content associated with the Times article, including fac-
tual information that is independently supported by the retained Washington Post article.

Figure 1: Comparison of sentence completions generated by Llama-3.2-1B models
before and after different unlearning methods.

We argue LLM unlearning naturally
targets marginal unlearning, and ex-
isting LLM unlearning methods in-
directly target it by balancing sig-
nals from data to unlearn and data
to retain (see Appendix A.1). In-
deed, the goal of unlearning is not
to eradicate knowledge contained in
the unlearn data, but rather to sur-
gically remove only its marginal ef-
fect, the information not already sup-
ported by the data we are authorized
to use. In this copyright scenario,
the marginal effect unlearning satis-
fies legal requirements with minimal
utility loss, whereas the full removal
would unnecessarily discard informa-
tion that is lawfully present in the
model. This distinction motivates our
proposed method, Forgetting-MarI, a
direct marginal information† removal
of the unlearned data.

Figure 1 further demonstrates the difference between full-information unlearning and marginal-
information unlearning (detailed experimental setup in Section 4.3). We created three models trained
on ground truth prompts: one before unlearning, one after marginal information unlearning, and one
after full information unlearning. Models are given the first half of a sentence (prompt) and are asked
to complete it. Before unlearning, the model completes the sentences in a way that is similar to the
ground truth. With marginal unlearning, the model produces different but coherent completions.
With full unlearning, the model struggles to coherently complete the sentences.

1.1 OPEN CHALLENGES IN LLM UNLEARNING

Effective LLM unlearning must balance three objectives [25]. First, unlearn efficacy measures
how well a model suppresses the influence of the data we want to unlearn, called the unlearn set
Du. Second, utility preservation ensures the model’s ability to retain performance on general tasks,
and the data we are still authorized to use, called the retain set, Dr. Finally, computational cost
encompasses the time, memory, and carbon used during unlearning. All unlearning techniques
aim to optimize these three objectives, which inherently come with tradeoffs; what differs is where
and how the model parameters are updated, directly affecting their ability to balance the three. A
breakdown of existing techniques and their strengths, weaknesses is shown in Table 1, with their
technical details and commonality in indirect marginal unlearning in Appendix A.1.

Table 1: Comparison of LLM Unlearning Approaches

†Numbers map to BibTeX entries: 1[44], 2[25], 3[17], 4[35], 5[45], 7[30], 8[31], 9[10], 10[41], 11[20], 12[9],
13[38], 14[26], 15[19], 16[12].

†The term Marginal Information is formalized in Definition 1.1.
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Despite rapid progress, LLM unlearning is still an emerging discipline with several open challenges,
summarized in Table 2.

Robust unlearning & Utility Preservation: Existing LLM unlearning techniques via full-parameter
fine-tuning typically treat the unlearn set Du as fully toxic, forcing the model to forget every se-
quence in Du regardless of overlap with the retain set Dr. Examples include loss-reversal [24],
gradient-difference [44], KL-ascent [17], and preference-based DPO/NPO [35, 45]. Furthermore,
Even the local editors aim at precise edits (ROME, MEMIT) share this limitation [30, 31], erasing
shared facts and stylistic cues and raising perplexity on Dr and held-out tasks. Benchmarks (RWKU,
MUSE, Eight-Method) consistently report sizable utility drops after unlearning [21, 46, 27].

Table 2: Comparison of families of unlearning methods based on liter-
ature evidence. Our proposed marginal effect unlearning addresses key
limitations of existing approaches. (✓=yes, ✗=no, ✩=partial)

Stable Continual Unlearning: As the legal
landscape around data usage changes, a de-
ployed LLM may receive hundreds or thou-
sands of unlearn requests. Production-ready
unlearning, therefore, needs to be able to re-
peatedly unlearn, retain utility, and keep com-
putation and memory within a practical range.
Exact methods like full retraining or shared
SISA guarantee unlearning but their cost scales
with both model size and request count [2, 14,
1]. Lighter updates like influence functions [16] or repeated ROME/MEMIT edits [30, 31] are cheap
per removal yet accumulate inference costs and utility drift. Task-vector subtraction or adapter
stacks save compute during unlearning but require storing external model adapters, also creating
downstream inference costs [19, 12, 40]. Thus, continually unlearning without runaway resources
or utility loss remains unsolved.

Formal Guarantees at LLM-Scale: Certified unlearning is well established for linear/kernel models
[16], high-dimensional classifiers [6], and general mathematical formulation of machine unlearning
[43]. However, no existing method provides guarantees that scale to autoregressive transformers
with billions of parameters (7B–70B+), such as GPT or Llama. As a result, practitioners lack reliable
guarantees of the extent to which the unlearn set remains uninferable or undetectable after common
downstream operations such as compression, distillation, or adversarial probing [25].

1.2 OUR CONTRIBUTIONS

To address these challenges, we introduce Forgetting-MarI, a novel information-theoretic LLM un-
learning framework. First, we provide a heuristic definition of marginal information (formal quan-
tification appears in Section 2.1):
Definition 1.1 (Marginal Information (MarI)). Marginal information is the marginal effect on model
inference when adding the unlearn set to the retain set.

The core idea of Forgetting-MarI is to penalize the model in proportion to the marginal information,
and thus eliminate only the unique contribution of the unlearn dataset on the model’s parameters and
its inference abilities. This avoids erasure of shared information between the retain and unlearn sets.
A key piece of our technique, therefore, is an accurate quantification of marginal information, which
we detail in Section 2.1. Forgetting-MarI can be summarized by the following learning objective:

min
model parameter: θ

ℓutility(model(θ), Dr) + ℓMarI(model(θ), Dr, Du),

with ℓutility being a loss that aims to maintain the utility of the model and ℓMarI being the marginal
information loss derived from an accurate marginal information quantification.

The key contributions of our proposed method include:

• (A1) Utility preservation: Targeting marginal information means that only the marginal effect of
the unlearn set is removed, preserving information shared with the retain set.

• (A2) Scalable and continual: Using an additive mutual-information regularizer integrates with
standard gradient-based fine-tuning and naturally supports continual unlearning.

• (A3) Theoretical unlearning guarantee: Bounding marginal information yields an explicit upper
bound on residual mutual information, providing provable undetectability of the unlearn set.
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• (A4) Exemplary experimental performance: Experiments show that our proposed method outper-
forms state-of-the-art unlearning methods in a wide range of unlearning tasks.

2 UNLEARNING: MARGINAL INFORMATION

Forgetting-MarI relies on a novel quantification of marginal information that (i) vanishes when the
unlearn set Du adds no new information beyond the retain set Dr, and (ii) increases as Du contributes
information absent from Dr, recovering the full information in Du as Dr vanishes. We propose a
mutual information (MI)–based quantification that satisfies these properties.

2.1 QUANTIFYING AND UNLEARNING MARGINAL EFFECTS

Fix a language model pθ (with parameter θ) over a finite vocabulary V and a length T ≥ 1. For y ∈
V T , let pθ(· | y<t) be the next-token distribution. For a subset s ⊆ V T , let µs be the uniform law on
s and define its averaged next-token marginals (pθ)st (v) := EY∼µs

[
pθ(v | Y<t)

]
for t ∈ [T ], v ∈ V .

Write p r := {(pθ)rt}t∈[T ], pu := {(pθ)ut }t∈[T ]. For d := r ∪ u, p d
t = αp r

t + (1 − α) pu
t ,

α := |r|
|r|+|u| ∈ (0, 1). Let T ∗ ∼ Uniform([T ]) and Z ∼ Bernoulli( 12 ) be independent. Conditioned

on (T ∗ = t, Z), draw X ∼ p d
t if Z = 0 and X ∼ p r

t if Z = 1, and set XMarI := (T ∗, X). Then
the mutual information between XMarI and Z is defined as

I(XMarI;Z) :=
1

T

T∑

t=1

JSD
(
p d
t , p

r
t

)
. (1)

Here, we denote the Jensen-Shannon divergence as JSD(p, q) := 1
2DKL(p∥m)+ 1

2DKL(q∥m) with
m := p+q

2 and DKL(p∥q) :=
∑

v p(v) log
p(v)
q(v) . By construction, the information or distribution

represented by d can be decomposed into the contribution of r∩d = r and the marginal contribution
of d \ r = u. The distribution contributed by r through the model pθ is p r. The distributional
contribution from the addition of u through pθ is the distributional difference between p r and p d.

By construction, the quantification of the marginal effect is small if p r is close to p d, because
such proximity suggests that the information content in u has already been largely represented by
r. Conversely, the quantification will be large if p r differs significantly from p d, indicating that
u contributes substantial new information w.r.t. pθ and induces a model output distribution shift.
Therefore, defining this marginal effect quantification boils down to differentiating p r from p d for
any r ⊂ Dr and d = r ∪ u with arbitrary u ⊂ Du.

A natural way to quantify this difference is via a binary detection problem. Consider a binary
detection problem using the construction above:

Xt := X
∣∣
T∗=t

∼
{
pdt , Z = 0,

prt , Z = 1,
P[Z = 0] = P[Z = 1] = 1

2 . (2)

If pr = pd, even an optimal classifier does no better than flip a coin. If there is distributional shift,
it can detect the difference. A sharp information–theoretic upper bound on the Bayes accuracy,
denoted by Pacc and defined below in Proposition 2.1, is the following:

Proposition 2.1 (Detection accuracy upper bounded by mutual information). For (XMarI, Z) with
prior π = P[Z = 1],

Pacc = E
[
max{P (Z = 0 |XMarI), P (Z = 1 |XMarI)}

]
≤ 1−H−1

2

(
H2(π)− I(XMarI;Z)

)
,

where H2(·) is the binary entropy and H−1
2 denotes the inverse of H2 restricted to [0, 1

2 ].

Proof in Appendix B.1. Here P (Z |XMarI) denotes the Bayes-optimal posterior between retain r
and union d. Note that I(XMarI;Z) ∈ [0,H2(π)] satisfies: (1) I(XMarI;Z) = 0 when p d = p r; (2)
I(XMarI;Z) grows with their divergence, approaching H2(π) as Dr vanishes. Since a gap p d ̸=p r

occurs precisely when u induces model confidence shifts not explained by r, Proposition 2.1 gives
I(XMarI;Z) an intuitive meaning as the detectability of the marginal effect (Definition 1.1).
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Definition 2.1 (MI-based marginal information loss). With (XMarI, Z) as in equation 2, define

ℓMarI(θ, r, u) := I(XMarI;Z).

Thus, Forgetting-MarI solves

min
θ

ℓKL(θ, r) + ℓMarI(θ, r, u), (3)

where ℓKL(θ, r) := DKL

(
p r(θ) ∥ p r(θ0)

)
is the KL divergence between the updated model (pa-

rameter θ) and the frozen original model (parameter θ0) on r, and ℓMarI is as above, motivated by
Prop. 2.1. Algorithm 1 describes an efficient LLM implementation.

Remark 2.1 (Alternative quantification). Marginal information measures the shift from pθ(r) to
pθ(d). Alternatively, one may use ℓ′MarI(θ, r, u) := DKL

(
p d ∥ p r

)
or DKL

(
p d ∥ p r(θ0)

)
. But mutual

information has the advantage of (1) stability (boundedness), (2) interpretability (Proposition 2.1),
and (3) continuous unlearning (evolving reference m = p+q

2 ). See Appendix B.2 for details.

2.2 MARGINAL INFORMATION & PERPLEXITY-BASED DETECTORS

We provide theoretical guarantees for the unlearning performance of Forgetting-MarI against white-
box copyright detectors that rely on model confidence (perplexity / cross-entropy). Let

Sθ(x, y) =
1

T

T∑

t=1

(
− log pθ(xt | y<t)

)

be the standard cross-entropy (per-token negative log-likelihood). State-of-the-art detectors [3, 47,
29] flag the membership of x in training by testing whether Sθ(x, x) is suspiciously low. We adopt
the notation from Section 2.1: sequences r, u ∈ V T , next-token marginals p r

t , p
u
t , their mixture

p d
t = αp r

t + (1− α) pu
t with α = |r|

|r|+|u| , and the mutual information I(XMarI;Z).

The next result shows that, given a set of sequences to forget, denoted by u, Forgetting-MarI guar-
antees that there is a set of sequences in the retain set, denoted by r, such that the score Sθ(u, u) is
close to Sθ(u, r). In other words, a high model confidence implied by Sθ(u, u) is possibly due to
the existence of r because one would get the same score for u if feeding the model r instead of u.

Theorem 2.1 (MarI controls the self-perplexity gap). Fix u = (u1, . . . , uT ) ∈ V T and assume the
pathwise non-vanishing condition min{pu

t (ut), p
r
t (ut)} ≥ γ ∈ (0, 1] for all t. Then

∣∣∣Sθ(u, u)− Sθ(u, r)
∣∣∣ ≤ 2

√
2

γ(1− α)

√
I(XMarI;Z) .

See Appendix B.3 for the proof. In particular, when I(XMarI;Z) goes to zero, the score gap above
vanishes, and the perplexity/log-likelihood detectors lose discriminative power after unlearning.

Finally, we show that MarI directly controls the score gap even for a neighborhood of u rather than
only u itself. Proof can be found in Appendix B.4.

Theorem 2.2 (MarI controls neighborhood-perplexity gap). Draw U := {Ut}Tt=1 with Ut ∼
pu
t independently across t ∈ [T ] and suppose maxt,x

{pu
t (x)

p r
t (x) ∨

p r
t (x)

pu
t (x)

}
≤ M . Let C :=

maxt,x: pu
t (x)>0

[
log

p r
t (x)

pu
t (x)

]2
< ∞. Then, for any ε > 0, with probability at least 1 −

2 exp
(
−Tε2/(2C)

)
,

∣∣Sθ(U, u)− Sθ(U, r)
∣∣ ≤

(
logM

) M

M − 1

√
2

1− α

√
I(XMarI;Z) + ε.

3 ALGORITHM DESIGN

Algorithm 1 presents a pseudo-code for Forgetting-MarI. In theory, the token-wise MarI (Equa-
tion 1) provides strong guarantees when sentences in r and u are homogeneous in length

5
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and token-wise context. In practice, however, token-wise MarI Loss can be noisy un-
der heterogeneous batches. To address this, we also provide a pooled (“flattened”) esti-
mator that first averages across token positions (and batch) to form p̄ s = 1

T

∑
t p

s
t , s ∈

{r, u, d}, then computes the pooled MarI Loss I(X̄MarI;Z) = JSD
(
p̄ d, p̄ r

)
. By the

data-processing inequality, I(X̄MarI;Z) is a variational lower bound to the token-wise MarI,
I(XMarI;Z). Such a pooled version aims to stabilize marginal information quantification
by filtering the position-heterogeneous noise and emphasizing the dominant distribution shift.

Algorithm 1: Forgetting-MarI.

Forgetting-MarI

Algorithm 1: Forgetting-MarI

Require: Retain dataset Dr = {x r
i }|Dr|

i=1 , unlearn dataset Du = {xu
j }|Du|

j=1 ; pretrained
model f✓0 ; learning rate ⌘; batch sizes Br, Bu; epochs E; trade-o↵ � 2 (0, 1);
hetero 2 {False, True}.

Ensure: Unlearned parameters ✓E .
1: Initialize ✓  ✓0; build dataloaders Lr, Lu.
2: for e = 1 to E do
3: Shu✏e Lr, Lu; S  min{|Lr|, |Lu|}.
4: for s = 1 to S do
5: Minibatches: r  Lr(s), u Lu(s).
6: Model logits & probabilities:
7: L r f✓(r) 2 RBr⇥T⇥|V |, p r

b,t softmax(L r[b, t, :]) 2 [0, 1]Br⇥T⇥|V |;

8: L r
0 f✓0(r) 2 RBr⇥T⇥|V |, p r

b,t(✓0) softmax(L r
0 [b, t, :]) 2 [0, 1]Br⇥T⇥|V |;

9: Lu f✓(u) 2 RBu⇥T⇥|V |, pu
b,t softmax(Lu[b, t, :]) 2 [0, 1]Bu⇥T⇥|V |;

10: p d  concatbatch([p
r, pu]) 2 [0, 1](Br+Bu)⇥T⇥|V |.

11: Utility Loss:
12: If hetero=True:
13: p̄ r  1

Br⇤T
P

b,t p r
b,t, p̄ r

0  1
Br⇤T

P
b,t p r

b,t(✓0),

14: `KL  
P

v2V p̄ r(v) log( p̄ r(v)
p̄ r
0 (v))

15: Else:
16: p r

t  1
Br

PBr
b=1 p r

b,t, p r
t (✓0) 1

Nr

PBr
b=1 p r

b,t(✓0),

17: `KL  1
T

P
t

�P
v2V p r

t (v) log(
p r

t (v)
p r

t (✓0)(v))
�

18: MarI Loss:
19: If hetero=True:
20: P (v, 0) 1

2(Br+Bu)⇤T
P

b,t p d
b,t, P (v, 1) 1

2Br⇤T
P

b,t p r
b,t, P (v)=

P
z P (v, z),

21: `MarI  
P

z2{0,1}
P

v2V P (v, z) log P (v,z)
P (v) P (z) .

22: Else:
23: Pt(v, 0) 1

2(Br+Bu)

P
b p d

b,t, Pt(v, 1) 1
2Br

P
b p r

b,t, Pt(v)=
P

z Pt(v, z),

24: `MarI  1
T

P
t

�P
z2{0,1}

P
v2V Pt(v, z) log Pt(v,z)

Pt(v) Pt(z)

�
.

25: Total loss: `total = (1� �) `KL + � `MarI.
26: Update: ✓  ✓ � ⌘r✓`total.
27: end for
28: end for
29: return ✓E  ✓

35

In practice, one should use
hetero=False when r and u are
homogeneous (similar lengths and
aligned token-wise contexts), to
leverage the more accurate token-
wise signal. Use hetero=True for
large dataset with random batching
and unaligned sequences, to obtain
a more stable pooled marginal
information signal.

A full theoretical/empirical compari-
son (and mixtures of both signals) is
deferred to future work. In our ex-
periments, I(XMarI;Z) and pooled
I(X̄MarI;Z) achieve comparable un-
learning under different hyperparam-
eters. Therefore, Section 4 reports
results under one label. We include
a head-to-head comparison between
the two approaches of marginal infor-
mation in Appendix C.

4 EXPERIMENTS

We evaluated Forgetting-MarI across the GPT and Llama family models on two real-world datasets:
Harry Potter and the Prisoner of Azkaban [22] and Careless People: A Cautionary Tale of Power,
Greed, and Lost Idealism [42], chosen for contrasting genre and pretraining prevalence (Harry Pot-
ter is abundant in pretraining; Careless People is likely scarce).‡ As a full-parameter unlearning
approach, we benchmark against full-parameter fine-tuning baselines: gradient ascent (GA) [44],
KL-gradient ascent (KL-GA) [17], gradient difference (GD) [24], and direct preference optimization
(DPO) [35]. Table 3 summarizes these baselines alongside other unlearning approaches. Detailed
discussion of the latter is deferred to Appendix A.1.

Table 3: The table summarizes the utility and unlearn-
ing types of methods included in the comparison experi-
ments.

Our numerical results demonstrate four key advantages:
(1) Balanced unlearning: after hyperparameter tuning
for all methods, Forgetting-MarI best matches the re-
tain–unlearn trade-off, preserving performance on Dr

while removing Du; (2) Stable continual unlearning:
in terms of both regularization parameter selection and
model performance during training, Forgetting-MarI is
the most stable; (3) General capacity: models unlearned
with Forgetting-MarI retain general model capabilities;
(4) Theoretical guarantee: perplexity/confidence-based
detectors can no longer detect unlearning data following
unlearning via Forgetting-MarI, as guaranteed by Theorems 2.2 and 2.1.

‡All experiments ran on a node with four NVIDIA A100 GPUs (80 GB HBM2 each).
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4.1 EXPERIMENTAL SETUP

To simulate real-world scenarios where forget and retain content is semantically intertwined, we
construct the unlearn set Du and retain set Dr by selecting alternating sentences from each dataset.
We use a separate validation set to monitor utility. For Careless People, we additionally use Reddit
stories [36]. Experiments share the following protocol: (i) fine-tune on Du∪Dr to obtain a baseline;
(ii) apply each unlearning method to remove the influence of Du; (iii) train a gold-standard unlearn
baseline on Dr only, simulating a model that never saw Du. An optimally unlearned model should
match the performance of this gold-standard. Model performance on the unlearn, retain, and val-
idation sets were assessed using next-token prediction accuracy. General model performance was
assessed using benchmarks from Eleuther’s LM Evaluation Harness [13].

4.2 FORGETTING HARRY POTTER

Figure 2: Next-token prediction accuracies for different unlearning methods
compared to the baselines.

Setting We fine-tune a pretrained GPT-2
Large [34] model on excerpts of Harry
Potter and the Prisoner of Azkaban [22]
following a similar approach of Eldan et
al. [9]. We curated equally-sized (50/50) re-
tain and unlearn datasets with high contex-
tual overlap to maximize their correlation.

Utility Preservation Figure 2 reports the best accuracies achieved for each unlearning method after
tuning their regularization parameters (e.g., with the best λ marked below the methods). The re-
ported accuracies correspond to the stopping criterion when validation accuracy fell by 3% or more.
Forgetting-MarI shows the best balance of unlearning and utility preservation, as it best matches the
retain-unlearn trade-off of the gold-standard unlearn baseline.

Stability of continual unlearning Figure 3 highlights two notions of robustness:

Epoch Epoch Epoch

Forgetting-MarI Gradient Ascent KL-Gradient AscentGradient Difference DPO

Epoch Epoch Epoch

A
cc

ur
ac

y

Figure 3: Training curves for each method with varying choices of the regularization parameter λ. Forgetting-MarI exhibits smooth monotone
behavior, while the other methods show oscillation or utility collapse.

(1) Training robustness over epochs. Forgetting-MarI descends steadily to its optimum. GA
and GD overshoot and bounce, KL–GA diverges after 5–6 epochs, DPO plateaus prematurely.

Table 4: Performance on the WikiText benchmark.

Table 5: Performance on the MMLU hierarchical evalu-
ation.

(2) Robustness against regularization tuning. Forgetting-
MarI shows a monotone and smooth utility-unlearning
trade-off when adjusting the regularization parameter. In
comparison, GD and KL-GA display unstable oscillations
with different choices of λ.

Both training and regularization robustness are necessary
for a practical use of unlearning techniques. Practitioners
do not have access to ground truth baselines and have lim-
ited time to select/determine the best parameter or train-
ing epoch to stop at, so stability is essential. Forgetting-
MarI is the most stable technique during unlearning, mak-
ing it the safest choice in practice. We refer the reader to Appendix D Figure 10 for a smaller learning
rate training curve, which further demonstrates the stability of continual unlearning.

Preserved general model capacity To assess the general model capacity after unlearning, we com-
pare the unlearned model with the baseline, the unlearn baseline, and GPT2-LG (the model before
finetuning on the retain set) on the following benchmarks: WikiText and MMLU [13]. We repeated
the experiment with a realistic 10/90 unlearn/retain split to simulate practical scenarios where only
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a small portion of the data requires removal. The training curves for this setup is in Figure 9.
Forgetting-MarI exhibits small declines on a few capability metrics (Tables 4 and 5) compared with
the baseline or the unlearn baseline, while matching them on most tested metrics. Overall, the
method largely preserves general model capacity on standard evaluations. Additional results on
PIQA, ARC, and HellaSwag are reported in Table 7 (Appendix D).

4.3 FORGETTING CARELESS PEOPLE

Figure 4: Next-token prediction accuracy for correlated (top)
and uncorrelated (bottom) test sets.

Setting We fine-tune Meta’s Llama-3.2-1B [32]
on Careless People: A Cautionary Tale of Power,
Greed, and Lost Idealism [42], following [28]. Be-
yond the setup in Sec. 4.1, we also test an uncorre-
lated scenario: use 2025 Reddit stories as Du and
the other half of Careless People as validation. Both
datasets were published after the Llama model’s re-
lease, ensuring Du is not in the model pre-training.

Utility preservation Figure 4 shows the best results
for each unlearning method on both experiments.
Consistent with results in Sec. 4.2, Forgetting-MarI
most closely matches the unlearn baseline, achieving comparable unlearn accuracy while maintain-
ing a similar retain and validation accuracy in both settings:

(i) Correlated experiment: GD and DPO both overtrain on Dr, while KL-GA struggles to remove
the information in Du while maintaining performance on Dr. Moreover, all other methods show a
gradual loss of performance on the test set. (ii) Uncorrelated experiment: With less informational
overlap between Du and Dr, other unlearning methods more easily remove Du. However, GD
and DPO still overtrain on Dr while either over- or undershooting the desired unlearning. KL-GA
quickly overshoots the desired amount of unlearning.

Gradient Ascent

KL-Ascent KL-Ascent

Epoch Epoch

DPO DPO

Gradient Ascent

Gradient Difference Gradient Difference

Forgetting-MarI Forgetting-MarI

Epoch Epoch

Retain Reference
Unlearn Reference

Validation Reference
Retain Accuracy

Unlearn Accuracy
Validation Accuracy

Figure 5: Next-token prediction accuracy during training for both experiments. Epoch 0 represents the
model before unlearning. Horizontal lines represent the “gold standard” unlearn baseline model, the model
trained only on Dr . Left/right columns for each method show correlated/uncorrelated test results respec-
tively.

Stability of continual
unlearning Figure 5
shows the unlearning
performance of each
method over the
course of unlearning,
where the curves
for each method
correspond to the
experiment with the
best performing reg-
ularization parameter
for each method.

Forgetting-MarI is the
best at smoothly approximating the unlearn baseline. The methods based on gradient ascent, GA,
GD, and KL-GA, all over-penalize Du due to the utility-destroying nature of gradient ascent. DPO,
meanwhile, never matches the unlearn baseline in accuracy on Du and over-trains on Dr. Across
both sets of experiments, Forgetting-MarI minimally drops the validation accuracy, where the vali-
dation curve remains largely unchanged.

Table 6: Evaluation results from the ARC-Easy and
PIQA benchmarks for both the correlated and uncorre-
lated experiments.

We note that there is the possibility that, in theory, one
could find a perfect balance between gradient ascent and
utility regularization, leading to a stable balance between
unlearning and utility preservation, using one of the other
methods. However, such a balance seems practically
unattainable due to the unlearning instability over time
and the lack of monotonicity in the choice of λ for meth-
ods based on gradient ascent.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Preserved general model capacity Table 6 shows the performance of Llama-3.2-1B unlearned
with Forgetting-MarI on the ARC-Easy and PIQA [13] benchmarks. Similar to Sec. 4.2, the model
maintains relatively little performance drop compared to the baseline and the unlearn baseline, with
the largest gap being observed on the ARC-Easy benchmark for the uncorrelated experiment.

4.4 EMPIRICAL VERIFICATION OF THEORETICAL GUARANTEES

Theorems 2.2 and 2.1 imply that, after Forgetting-MarI, the mutual information between logits and
the “seen/unseen” bit Z is negligible; hence any confidence-based test (perplexity, cross-entropy,
log-likelihood, etc.) should fail to separate forgotten from genuinely unseen text. We therefore
evaluate Forgetting-MarI with the strongest confidence-based detector before/after unlearning.

Note: ppl = perplexity
Figure 6: Detector performance for a GPT2-LG model without unlearning (left), unlearned
with Forgetting-MarI (middle), and the golden-standard unlearn baseline (bottom).

Copyrighted-text detection
methods fall into two fam-
ilies: (i) white-box detec-
tors [3, 47, 29, 39], which
use (tail or reference-model)
perplexity to infer training
membership; (ii) black-box
detectors [23, 4, 8, 7, 18], which
rely on string-level similar-
ity without logits. Because
Forgetting-MarI (and most

threat models) allow weight access, white-box tests are strictly harder to defeat; we thus focus on
them. (See Appendix D for method details and additional results.)

We run the current SOTA white-box detector of Shi et al. [39] on: (i) the model finetuned on Dr∪Du,
(ii) the gold-standard unlearn baseline trained only on Dr, and (iii) model (i) after Forgetting-MarI.
We report ROC–AUC: low values indicate the detector believes the model was trained with Du, high
values indicate opposite. As shown in Fig. 6, the ROC–AUC after Forgetting-MarI closely matches
the unlearn baseline, indicating effective removal of Du’s influence, as predicted by theory.

5 CONCLUSION

This work presents Forgetting-MarI, a novel approach to LLM unlearning that improves upon ex-
isting state-of-the-art unlearning methods while providing rigorous theoretical guarantees. Our ex-
perimental results across multiple benchmarks confirm the practical effectiveness of our proposed
technique, while our theoretical analysis establishes formal bounds on the unlearning process and
convergence properties.

The combination of strong empirical results and theoretical foundations represents a significant ad-
vancement in machine unlearning for LLMs. However, several important directions remain for
future research. First, while our theoretical guarantees provide valuable insights into the method’s
behavior, there is still a gap between theoretical bounds and the practical performance we observed.
For example, it is still unknown how Forgetting-MarI finds the unearthed baseline with certainty.
Bridging this gap could lead to tighter analysis and potentially improved algorithms.

Second, our work highlights the importance of parameter selection in unlearning effectiveness. De-
veloping principled approaches for optimal parameter tuning, especially with theoretical guidance,
remains an open challenge that could significantly enhance the practicality of unlearning methods.
Additionally, future work could explore the scalability of our approach to even larger models and
datasets, investigate our method’s robustness across different model architectures and domains, and
the principles of our approach could be applied to models trained on other data modalities.

As LLMs continue to grow in capability and deployment, developing reliable and theoretically
grounded unlearning methods becomes increasingly important for responsible AI development and
deployment. Forgetting-MarI is an important step towards that end. §

§During the preparation of this work, the authors used large language model ChatGPT by OpenAI to refine
the language and enhance readability. After using this tool or service, the authors reviewed and edited the
content as needed and take full responsibility for the content of the publication.
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A APPENDIX OF SECTION 1

A.1 DETAILS OF LLM UNLEARNING METHODS: IMPLICIT MARGINAL INFORMATION
UNLEARNING

Recent surveys highlight four broad families of LLM-unlearning techniques, each making a differ-
ent compromise between unlearn efficacy, the ability to remove information from a model, utility
preservation, how well the model performs on the remaining data, and computational cost, the re-
sources expended to perform the unlearning [25]. A heuristic commonality of the techniques is their
implicit/indirect target of marginal unlearning: all the methods tend to detect and thereby remove
only the marginal effect of adding an “unlearn set” (Du), the dataset that is meant to be forgotten, to
a “retain set” (Dr), the dataset that the model should remember, on the given model.

Full parameter fine-tuning: These techniques train and perform weight updates on the whole
model. Gradient ascent (or “loss reversal”) [44] is the most straight-forward unlearning technique.
It directly maximizes the cross-entropy on Du, effectively penalizing the model performance on the
unlearn set. This type of unlearning was shown to lead to an overall decrease in model performance,
so Gradient Difference [25] was developed to balance unlearning while maintaining general model
performance. Gradient Difference maximizes the cross-entropy loss on Du while continuing to
minimize the loss on Dr:

min
θ

Ex∈Dr
ℓ(θ;x)︸ ︷︷ ︸

utility

− λ Ex∈Du
ℓ(θ;x)︸ ︷︷ ︸

loss reversal

,

ℓ(θ;x) = CE
(
pθ( · | x<t), xt

)
.

Here λ > 0 balances utility preservation and unlearning. Intuitively, gradient descent is applied on
Dr while gradient ascent is applied on Du.

Follow-up studies revealed that, even when balanced with gradient descent, this global ascent signal
is too coarse: it suppresses the target examples but also degrades correlated yet legitimate content
[17]. To overcome this challenge, variants have aimed to improve both sides of the problem. For util-
ity preservation, past work has shown that distillation-style regularization with a Kullback–Leibler
(KL) divergence penalty outperforms gradient descent on Dr in keeping the updated model close
to the original without over-training on the retain set. For unlearning, alignment-style variants such
as Direct Preference Optimization (DPO) and Negative Preference Optimization (NPO) replace the
unlearn objective with more specific preference-based objectives, slowing catastrophic performance
collapse [35, 45]. However, such preference-supervised methods can be difficult to generalize to
unlearn at a large scale.

Finally, from the perspective of marginal unlearning, these full-parameter objectives act as indirect
proxies for the marginal effect of adding Du to Dr: they rely on carefully balancing ascent on Du

and descent (or KL regularization) on Dr. In practice, such proxies can be neither the most effective
nor the most efficient at isolating the unique contribution of Du without erasing information shared
with Dr.

Weight editing and partial tuning: In an effort to perform unlearning more efficiently, this line of
methods focuses on selectively altering only a subset of a model’s parameters rather than retraining
the entire network. Such “model-surgery” methods perform rank-constrained updates at one or a
few layers. Rank-One Model Editing (ROME) edits a single MLP weight with a closed-form rank-1
patch [30]. In particular, it modifies only the weights causally responsible for one token sequence in
the unlearn set:

min
∆W

∥∆W∥2F s.t. Wl⋆hl⋆(x) + ∆Whl⋆(x) = vnew.

Here, ∆W :=

(
vnew−vold

)
h⊤

∥h∥2
2

, l∗ is the layer most influenced by the unlearn sample or prompt x,
hl∗(x) is the activation and Wl∗ is the weight matrix of layer l∗, vold := Wl∗hl∗(x), and finally
vnew is the alternative answer we want to replace vold by. Mass Editing Memory in a Transformer
(MEMIT) [31] extends this idea to thousands of facts simultaneously and stacks many (hi

l∗ , v
i
l∗)

pairs. AlphaEdit furthers the idea by projecting edits into the null space of preserved knowledge,
with the aim to improve robustness in sequential settings, ensuring minimal disruption to previously
learned information. Detecting and Editing Privacy Neurons (DEPN) [41] masks the gradients of
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neurons identified as contributing the most to the prediction of privacy-related content. In general,
weight editing and partial tuning techniques are fast, but they are limited to short factual associations
and struggle with stylistic or distributed knowledge.

Finally, the above weight-editing and partial-tuning methods share a common indirect marginal
unlearning proxy: they infer marginal information by targeting parameters most influenced by the
unlearn set, while largely ignoring parameters most influenced by the retain set. This can help isolate
some marginal information signal, but again risks overlooking deep interactions between r and u.

Curating counterfactuals: Instead of directly unlearning all or part of the model, another ap-
proach is to substitute the parametric knowledge of the unlearn set with benign knowledge. Broadly,
this class of methods can be characterized by:

min
θ

Ex∈Dr

[
ℓ(θ;x)

]
︸ ︷︷ ︸

retain utility

+ λ Ex∈Dneg

[
ℓ(θ;x)

]
︸ ︷︷ ︸
counterfactual prompts

,

where Dneg contains prompts or contexts designed to neutralize the influence of the unlearn set,
ℓ(θ;x) is the same cross entropy loss as before, and λ > 0 balances unlearning against utility.

“I don’t know” [20] trains the model on question-answer pairs that map sensitive questions to a
safe refusal (e.g. “I don’t know”), teaching the model to decline queries about the unlearn set.
Entity anonymization [9] replaces sensitive entities with anonymized placeholders and trains the
model on the rewritten placeholders to scrub identifiable information from the model. Unlearn-
ing Large Language Models via Negative Response and Model Parameter Average (ULMR) [38]
constructs adversarial “negative” prompts, trains on the paired responses, and then averages the up-
dated weights with the base model to dampen overshoot. Selective Knowledge-negation Unlearning
(SKU) first mines harmful or copyrighted contexts via red-teaming, then injects counterfactuals that
negate them [26]. Such approaches are easy to deploy but depend heavily on prompt engineering
and high-quality counterexamples.

From a marginal information proxy perspective, the curating counterfactuals approach aims to first
penalize model utility related to the unlearn set by replacing the original model capability on the
unlearn set with a lower-utility capacity on the counterfactuals, then rescue the utility related to
the retain set using the utility preservation term, and finally balance the two to indirectly find the
marginal information and penalize it.

Model adaptation: These methods train something external to the model and then use that exter-
nally trained adapter to update the model itself. A common instantiation is the task-vector frame-
work: let pθ0 be the original model and pθu the same model fine-tuned on the unlearn set Du. The
element-wise difference ∆θ := θu − θ0 is treated as an encoding of the deleted knowledge and
direct-subtraction methods [19] form the unlearned model as pθ0−∆θ. Orthogonality offers an al-
ternative geometric control. O3 [12] trains one orthogonal LoRA adapter per removal request and
learns a contrastive out-of-distribution (OOD) gate that activates the corresponding adapter at in-
ference time. Orthogonality limits interference between requests, but the approach incurs two key
costs: (1) the number of adapters (and hence memory) grows linearly with the number of unlearn-
ing requests, and (2) any mismatch between model behavior and the assumed linear/inner-product
structure in weight space can undermine both unlearning guarantees and downstream utility.

From a marginal-information viewpoint, model-adaptation methods isolate the contribution of Du

by (i) subtracting the unlearn-induced task vector from the retain base, θ0 − ∆θ, or (ii) enforcing
orthogonality between components aligned with retain and the unlearn signals and then penalize the
isolated component. Both approaches can be considered as proxy of marginal information, though
with strong arithmetic or geometric assumptions.

The proposed method, Forgetting-MarI, belongs to the full-parameter fine-tuning category. It applies
a “marginal information” penalty that suppresses only the influence of the unlearn set while leaving
the shared information, which is supported by the retain data, largely intact.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B APPENDIX OF SECTION 2

B.1 PROOF OF PROPOSITION 2.1

Proof. To start, define the Bayes error as

Pe := EXMarI

[
min

{
P (Z = 0 | XMarI), P (Z = 1 | XMarI)

}]
= 1− Pacc.

In addition, for each x, let p(x) := P (Z = 1 | XMarI = x) ∈ [0, 1] be the conditional probability
of {Z = 1} given {XMarI = x}. Then it follows from Z being binary that H(Z | XMarI = x) =
H2

(
p(x)

)
. Denote m(XMarI) := min

{
P (Z = 0 | XMarI), P (Z = 1 | XMarI)

}
. Since H2 is

concave, it follows from Jensen’s inequality that

H(Z | XMarI) = EXMarI

[
H2(p(XMarI))

]

= EXMarI

[
H2(m(XMarI))

]

≤ H2

(
EXMarI

[m(XMarI)]
)

= H2(Pe).

where the second equality holds due to the fact that H2(p) = H2(1−p). Now, since I(XMarI;Z) =
H(Z)−H(Z | XMarI) and H(Z) = H2(π), we obtain

H2(π)− I(XMarI;Z) = H(Z | XMarI) ≤ H2(Pe).

Since Pe ∈ [0, 1
2 ] and H2 is strictly increasing on this interval, by applying the inverse H−1

2 , we
have

Pe ≥ H−1
2

(
H2(π)− I(XMarI;Z)

)
.

Finally, by Pacc = 1− Pe, we have

Pacc ≤ 1−H−1
2

(
H2(π)− I(XMarI;Z)

)
.

This proves the stated inequality. The particular case π = 1
2 follows from H2(

1
2 ) = 1.

It remains to show that the upper bound is tight. Indeed, fix an arbitrary I ∈ [0, H2(π)]. Choose
p⋆ ∈

[
1
2 , 1
]

such that H2(p
⋆) = H2(π) − I . Construct PZ|XMarI

such that P (Z = 1 | XMarI) ∈
{p⋆, 1 − p⋆} with probabilities chosen to match the prior π. Then H(Z | XMarI) = H2(p

⋆) and
I(XMarI;Z) = I , while the Bayes error satisfies Pe = min{p⋆, 1−p⋆} = H−1

2 (H(Z)−I). Hence,
equality holds in the bound.

B.2 WHY MUTUAL INFORMATION RATHER THAN KL DIVERGENCE

One might consider penalizing a directional KL divergence between the “to-unlearn” and “to-retain”
distributions. Instead, we regularize the mutual information between the model output and a binary
indicator of sensitive content, which is equal to the Jensen-Shannon divergence as shown in Section
2. Here, we show that mutual information offers several advantages over one–way or two-way KL
divergence:

• Flexibility for utility and continual unlearning. The reference m in Jensen-Shannon divergence
is the mixture of the two conditionals and evolves with training; we do not assume a fixed “gold”
model. This yields a pure unlearning regularizer that can be combined with any utility term (e.g.,
ℓKL(θ, r)) and naturally supports continual/online updates.

• Stable training signal. I(X̂;Z) ≤ H2(π) ≤ log 2 for binary Z, so the gradients remain well-
behaved even when supports differ, unlike one–way KL which can be unbounded on support
mismatch.

• Downstream robustness via data processing. For any downstream representation or task T =

g(X̂), the data-processing inequality gives I(T ;Z) ≤ I(X̂;Z). Thus, suppressing I(X̂;Z) at the
model output (or an internal layer) upper-bounds leakage throughout the pipeline.

In contrast, a directional KL requires committing to a fixed target (encoding a specific utility as-
sumption) and can be unstable or unbounded when supports are disjoint. That said, if an ideal
frozen reference is indeed mandated, a one–way KL to that reference is a reasonable alternative.
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B.3 PROOF OF THEOREM 2.1

Here, we provide the proof for Theorem 2.1:

Proof. By the mean value theorem, for each t there exists ξt ∈ [min{pu
t (ut), p

r
t (ut)}, 1] ⊆ [γ, 1]

such that
∣∣log pu

t (ut)− log p r
t (ut)

∣∣ =
∣∣pu

t (ut)− p r
t (ut)

∣∣
ξt

≤
∣∣pu

t (ut)− p r
t (ut)

∣∣
γ

≤ ∥pu
t − p r

t ∥1
γ

=
2 ∥pu

t − p r
t ∥TV

γ
.

Averaging over t,
∣∣Sθ(u, u)− Sθ(u, r)

∣∣ ≤ 2

γ

1

T

T∑

t=1

∥pu
t − p r

t ∥TV .

Apply Lemma B.3 followed by Lemma B.2 and Jensen’s inequality:

1

T

∑

t

∥pu
t − p r

t ∥TV =
1

1− α

1

T

∑

t

∥p d
t − p r

t ∥TV ≤
√
2

1− α

√
1

T

∑

t

JSD(p d
t , p

r
t ).

Combining yields the claim.

B.4 PROOF OF THEOREM 2.2

We start with the following three lemmata that are needed for the proof of Theorem 2.2:
Lemma B.1 (Point-wise KL bound). Let p, q be two probability distributions over a finite set V
such that p(x)

q(x) ∈ [1,M ] for every x ∈ V for some constant M > 1. Then for every x ∈ V

p(x) log
p(x)

q(x)
≤ (logM)

M

M − 1

[
p(x)− q(x)

]
. (4)

Proof. Fix x ∈ V and set y :=
p(x)

q(x)
∈ [1,M ]. Inequality equation 4 is equivalent to

y log y ≤ M

M − 1
(logM) (y − 1), ∀ y ∈ [1,M ]. (4)

For y > 1 let g(y) := y log y
y−1 and set g(1) := limy→1+ g(y) = 1. We show that g is strictly

increasing on [1,M ]. Indeed, compute g′(y) = (y−1)−log y
(y−1)2 . Since log y < y − 1 for all y > 1, we

have g′(y) > 0; thus, g is strictly increasing. Because g is increasing and y ∈ [1,M ], we have

g(y) ≤ g(M) =
M logM

M − 1
.

Multiplying both sides by y − 1 yields equation 4, which is precisely equation 4 after reinstating
y = p(x)/q(x). Therefore, equation 4 holds for every x ∈ V . This completes the proof.

Lemma B.2. (Total Variation is controlled by Jensen-Shannon Divergence) For any two proba-
bility measures p, q on a finite set, we have

∥p− q∥TV ≤
√

2 JSD(p, q),

where JSD(p, q) := 1
2DKL(p∥m)+ 1

2DKL(q∥m), m := p+q
2 and DKL(p∥q) :=

∑
v p(v) log

p(v)
q(v) ,

denotes the Jensen–Shannon divergence.
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Proof. Let m = p+q
2 . Pinsker’s inequality gives ∥p −m∥21 ≤ 2DKL(p∥m) and analogously for q.

Hence
JSD(p, q) ≥ 1

4

[
∥p−m∥21 + ∥q −m∥21

]
= 1

8 ∥p− q∥21,
because p − m = p−q

2 and q − m = −p−q
2 . Since ∥p − q∥TV = 1

2∥p − q∥1, it follows that
∥p− q∥2TV ≤ 2 JSD(p, q).

Lemma B.3 (Exact TV scaling under mixture). If pd = αpr + (1− α)pu with α ∈ (0, 1), then

∥pu − pr∥TV =
1

1− α
∥pd − pr∥TV .

Proof. pd − pr = (1− α)(pu − pr). Taking ℓ1-norms and dividing by 2 yields the identity.

Now, we are ready to prove Theorem 2.2:

Proof. Define Yt := log
p r
t (Ut)

pu
t (Ut)

, so that

Sθ(U, u)− Sθ(U, r) =
1

T

T∑

t=1

Yt.

Since Ut ∼ pu
t , E[Yt] =

∑
x p

u
t (x) log

p r
t (x)

pu
t (x) = −DKL(p

u
t ∥p r

t ), hence

E
[
Sθ(U, u)− Sθ(U, r)

]
= − 1

T

T∑

t=1

DKL(p
u
t ∥p r

t ).

Now, by the assumption maxt,x max
{

pu
t (x)

p r
t (x) ,

p r
t (x)

pu
t (x)

}
≤ M , we have prt (x) > 0 for put (x)-a.e. x

for all t. Therefore, for all t, we have log
p r
t (x)

pu
t (x) < ∞ and taking the maximum over t ∈ [T ], we

obtain C := maxt, x: pu
t (x)>0

[
log

p r
t (x)

pu
t (x)

]2
< ∞. It then follows from the definition of Yt that

|Yt| ≤
√
C a.s.. Hoeffding’s inequality for independent bounded variables yields, for any ε > 0,

P

(∣∣∣∣∣
1

T

T∑

t=1

Yt − E
1

T

T∑

t=1

Yt

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−T ε2

2C

)
.

Using
∣∣|a| − b

∣∣ ≤ |a− b| for b ≥ 0, we have

∣∣Sθ(U, u)− Sθ(U, r)
∣∣ ≤ 1

T

T∑

t=1

DKL(p
u
t ∥p r

t ) + ε.

with probability at least 1− 2 exp(−T ε2

2C ).

Now, for each t, let At = {x : pu
t (x) ≥ p r

t (x)}. Then by Lemma B.1, we have

DKL(p
u
t ∥p r

t ) ≤ κ(M)
∑

x∈At

(
pu
t (x)− p r

t (x)
)
≤ κ(M) ∥pu

t − p r
t ∥TV .

Averaging in t gives

1

T

T∑

t=1

DKL(p
u
t ∥p r

t ) ≤ κ(M)
1

T

T∑

t=1

∥pu
t − p r

t ∥TV .

Finally, it follows from Lemma B.3 and Lemma B.2 that

1

T

T∑

t=1

∥pu
t − p r

t ∥TV =
1

1− α

1

T

T∑

t=1

∥p d
t − p r

t ∥TV ≤
√
2

1− α

1

T

T∑

t=1

√
JSD(p d

t , p
r
t ).

By Jensen’s inequality, 1
T

∑
t

√
JSD(p d

t , p
r
t ) ≤

√
1
T

∑
t JSD(p d

t , p
r
t ). Combining the displays

proves the claim with I(XMarI;Z) = 1
T

∑
t JSD(p d

t , p
r
t ).
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C APPENDIX OF SECTION 3

C.1 POSITION-WISE VS. POOLED MARI: EMPIRICAL COMPARISON

We empirically compare the token/position-wise MarI, I(XMarI;Z) = 1
T

∑T
t=1 I(Xt;Z), with

the pooled (“flattened”) MarI, I(X̄MarI;Z), on our heterogeneous dataset. As predicted by the
data–processing inequality, I(X̄MarI;Z) ≤ I(XMarI;Z), so the position-wise estimator produces a
stronger marginal-information signal. Nevertheless, by appropriately tuning the trade-off parameter
γ (weighting MarI vs. utility), both estimators attain comparable forget–utility trade-offs.

However, we can also observe the influence of the heterogeneity of dataset and random batch sam-
pling. In particular, in Figure 7, the position-wise estimator exhibits higher variance on heteroge-
neous batches (varying lengths, topics, and token alignments). Furthermore, Figure 8 shows that,
with fixed γ (e.g., γ = 0.9), the position-wise MarI tends to over-unlearn relative to the gold unlearn
baseline. Intuitively, it can over-penalize idiosyncratic, position-specific fluctuations rather than true
marginal effects.

A deeper theoretical and experimental analysis of these behaviors, hybrids that combine both signals,
is left for future work. In our experiments, because the text is heterogeneous in both length and
context, we use random mini-batches and the pooled estimator by default.

D APPENDIX OF SECTION 4

D.1 MORE ROBUSTNESS TEST RESULTS

In Figure 9 we show that 10/90 split unlearning training curve, which supplements the 50/50 split
unlearning training curve in Figure 3 of Section 4.

In Figure 10 we show the training curve using a smaller learning rate than the result shown in Figure
3.

D.2 SUPPLEMENTARY GENERAL MODEL CAPACITY TEST RESULTS

Table 7 illustrates comprehensive evaluation results across multiple benchmark test.

E APPENDIX OF SECTION 4.4: DETECTION TESTS

E.1 DETECTOR METHODS

Here, we provide a more detailed introduction to the current study of copyright content detectors
for LLMs so that readers better understand the numerical study in section 4.4. The current study of
copyrighted text detectors can be roughly separated into two lines of work:

• White-box methods: Perplexity outlier and reference model perplexity outlier [3], domain nor-
malized minimum k-percentage [47], and data-set level inference [29].
The above methods largely share the same idea of constructing a statistic (or a vector of statistics)
that indicates the probability that a model has seen a given sentence or not. It bases the probability
on how confidently the model predicts the true output. The idea is based on the intuition that a
model that has seen the sentence during training will have high confidence when trying to complete
it.

• Black-box methods: Direct regurgitation probes [23], Name-cloze membership inference [4],
DE-COP: multi-choice preference [8], Output-consistency measures [7], and VeilProbe [18].
Black-box methods, which do not have access to the model parameters and therefore the output
logits or prediction distributions, often use either edit distance (a.k.a. Levenshtein distance) or
some token embedding model (e.g. a small transformer) to quantify the distance or similarity
between a model’s output and a reference string, then generate statistics of the similarity between
the two.
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Task Metric GPT-2 Baseline Unlearn
Baseline

F-MarI

ARC-Easy acc 0.53 ± 0.01 0.46 ± 0.01 0.48 ± 0.01 0.45 ± 0.01
acc norm 0.47 ± 0.01 0.42 ± 0.01 0.43 ± 0.01 0.43 ± 0.01

ARC-Challenge acc 0.22 ± 0.01 0.23 ± 0.01 0.22 ± 0.01 0.22 ± 0.01
acc norm 0.25 ± 0.01 0.27 ± 0.01 0.27 ± 0.01 0.26 ± 0.01

PIQA acc 0.70 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01
acc norm 0.69 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.66 ± 0.01

Hellaswag acc 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.35 ± 0.00
acc norm 0.45 ± 0.00 0.43 ± 0.00 0.43 ± 0.00 0.42 ± 0.00

MMLU acc 0.23 ±0.00 0.23 ±0.00 0.24 ±0.00 0.23 ±0.00
- humanities acc 0.25 ±0.01 0.24 ±0.01 0.25 ±0.01 0.24 ±0.01
- other acc 0.24 ±0.01 0.24 ±0.01 0.24 ±0.01 0.24 ±0.01
- social sciences acc 0.22 ±0.01 0.22 ±0.01 0.22 ±0.01 0.22 ±0.01
- stem acc 0.22 ±0.01 0.22 ±0.01 0.23 ±0.01 0.22 ±0.01

Task Metric GPT-2 Baseline Unlearn
Baseline

F-MarI

WikiText bits/byte 0.841 0.925 0.905 0.910
byte-pplx 1.792 1.898 1.873 1.879
word-pplx 22.61 30.80 28.66 29.19

Table 7: Comprehensive evaluation results across multiple benchmarks for the 10/90 split test with GPT2-LG baselines. When the true
underlying stopping criteria is unknown, we choose to stop when the detector fails. This corresponds to F-Mari with lambda = 0.95 and epoch
= 10.

Black-box methods are weaker detectors than white-box methods since they do not have access to a
model’s internals. Since our method assumes access to the model parameter, we tested our method
against the current SotA white-box method, the minimum k-percent method [37], to demonstrate
the effectiveness of our unlearning in real-world applications.

E.2 MULTIPLE DETECTION TEST RESULTS

Here, we provide more detailed results in addition to Figure 6 in Section 4.4.
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Figure 7: Position-wise vs. pooled MarI under several λ settings using Llama models.
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Figure 8: With a fixed trade-off (λ = 0.9) on LLama models, position-wise MarI is noisier on heterogeneous data and over-unlearns compared
to the unlearn baseline.

Figure 9: Training curves of F-MarI for the 10/90 split unlearning with the GPT2-LG model. When you do not know the true underlying
stopping criteria, we choose to stop when the detector fails. This corresponds to F-Mari, lambda = 0.95 and epoch = 10.
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(a) Accuracy versus training epochs.

(b) Unlearning results using different regularization with stopping E.
Figure 10: 50/50 split test, F-MarI training curves using small learning rate using GPT2-LG to better observe the convergence process. Both
plot shows stable curve and robustness against lambda choice. The stopping criteria is when validation accuracy drop 3 percent, with the
corresponding epoch denoted as ‘E’
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(a) Unlearn Baseline (b) Baseline

(c) Forgetting-MarI
Figure 11: Training data membership detection test of Forgetting-MarI against state-of-the-art detection methods using the 10/90 split Un-
learning of the GPT2-LG.
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