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Abstract

Stochastic Gradient Descent (SGD) and its Ruppert–Polyak averaged variant
(ASGD) lie at the heart of modern large-scale learning, yet their theoretical prop-
erties in high-dimensional settings are rarely understood. In this paper, we pro-
vide rigorous statistical guarantees for constant learning-rate SGD and ASGD in
high-dimensional regimes. Our key innovation is to transfer powerful tools from
high-dimensional time series to online learning. Specifically, by viewing SGD
as a nonlinear autoregressive process and adapting existing coupling techniques,
we prove the geometric-moment contraction of high-dimensional SGD for con-
stant learning rates, thereby establishing asymptotic stationarity of the iterates.
Building on this, we derive the q-th moment convergence of SGD and ASGD
for any q ≥ 2 in general ℓs-norms, and, in particular, the ℓ∞-norm that is fre-
quently adopted in high-dimensional sparse or structured models. Furthermore,
we provide sharp high-probability concentration analysis which entails the proba-
bilistic bound of high-dimensional ASGD. Beyond closing a critical gap in SGD
theory, our proposed framework offers a novel toolkit for analyzing a broad class
of high-dimensional learning algorithms.

1 Introduction

Stochastic gradient descent (SGD) has been a cornerstone in large-scale machine learning since
the seminal work by Robbins and Monro [1951]. It is especially efficient in high-dimensional
and overparameterized settings where the number of unknown parameters can exceed the number
of training samples [Arpit et al., 2017, Zhang et al., 2017, He et al., 2016]. SGD can also be
combined with regularization techniques such as dropout to prevent overfitting in large networks
[Krizhevsky et al., 2012, Srivastava et al., 2014]. Despite the vast amount of theoretical work on
SGD, generalization bounds of SGD in high-dimensional regimes remain limited [Garrigos and
Gower, 2023]. Considering a strongly convex objective function, we provide statistical guarantees
for constant learning-rate SGD and its Ruppert–Polyak averaged variant (ASGD) [Ruppert, 1988,
Polyak and Juditsky, 1992] in high-dimensional settings.
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Specifically, we consider a general optimization problem

β∗ ∈ arg min
β∈Rd

G(β), where β 7→ G(β) := Eξ∼Πg(β, ξ), (1)

g(·) is the noise-perturbed measurement of G(·), and ξ denotes a random element sampled from some
unknown distribution Π. Given i.i.d. random samples ξ1, ξ2, . . . and some initialization β0 ∈ Rd, the
k-th SGD iteration is

βk = βk−1 − α∇g(βk−1, ξk), k = 1, 2, . . . , (2)

for some constant learning rate α > 0, and ∇g(β, ξ) = ∇βg(β, ξ) the stochastic gradient with
respect to β. For k ≥ 1, the ASGD variant is defined by

β̄k =
1

k

k∑
i=1

βi. (3)

We are interested in the high-dimensional setting where the parameter dimension d can be very large.
Here, a notable divide between empirical success and theoretical understanding is that practitioners
often employ a large constant learning rate α in (2) to accelerate convergence in high-dimensional
problems [Wu et al., 2018, Cohen et al., 2021, Cai et al., 2024]. However, such choices can induce
pronounced non-stationarity in the SGD iterates {βk}k∈N which will not converge to a point but
oscillates around the mean of a stationary distribution. In other words, βk is non-stationary but
asymptotically stationary, which converges only in distribution as k → ∞, while the mean of this
distribution differs from the exact minimizer β∗ due to the non-diminishing bias of order O(α)
[Dieuleveut et al., 2020, Merad and Gaïffas, 2023]. Classical theory mostly relies on decaying
learning rates [Zhang, 2004, Nemirovski et al., 2009, Jentzen and von Wurstemberger, 2020, Shi
et al., 2023]. To address the non-stationarity issue, we apply powerful tools from nonlinear time series
analysis [Wu and Shao, 2004] to online learning, particularly by adapting the coupling techniques to
show the geometric-moment contraction of SGD for constant learning rates. Specifically, for any two
SGD sequences {βk}k∈N and {β′

k}k∈N that share the same random samples but have different initial
vectors β0 and β′

0, we show in Theorem 1 that for all sufficiently small constant learning rates α, the
initialization is forgotten exponentially fast in the sense that

(E|βk − β′
k|qs)1/q ≤ rkα,s,q|β0 − β′

0|s holds for all k ∈ N, (4)

for contraction speed 0 ≤ rα,s,q < 1, and | · |s the ℓs-norm, that is,

∣∣(v1, . . . , vd)⊤∣∣s = ( d∑
i=1

|vi|s
)1/s

, s ≥ 1.

This asserts the existence of a limiting stationary distribution of βk as k → ∞, thereby facilitating a
systematic convergence theory of SGD even in nonlinear, overparameterized models.

Building on this new framework, we provide non-asymptotic bounds for higher-order moments
of the SGD error in general ℓs-norms for any finite s ≥ 2 beyond the usual ℓ2-norm, extendable
to max-norm ℓ∞ by choosing s ≈ log(d). Notably, the ℓ∞-norm is frequently adopted in high-
dimensional sparse or structured estimation [Wainwright, 2019]. See for instance, the max-norm
convergence of the Lasso and Dantzig selector [Lounici, 2008]; the pivotal method for sup-norm
bounds of the square-root Lasso [Belloni et al., 2011]; and the max-norm error control for confidence
intervals in high-dimensional regression problems [Javanmard and Montanari, 2013]. In stochastic-
approximation (SA), Wainwright [2019] derived ℓ∞-norm bounds for Q-learning with decaying
learning rates; Chen et al. [2023] derived maximal concentration bounds for SA under arbitrary
norms with decaying learning rates and with contraction as an assumption; Agarwal et al. [2012]
considered high-dimensional SA for strongly convex objectives with a sparse optimum, but using
decaying learning rates and restricting the tails of stochastic gradients to be sub-Gaussian. To date,
all the existing results are restricted to low-dimensional settings or decaying learning rates and do
not carry over to overparameterized models with constant learning rates. To address this gap, we
derive a sharp high-dimensional moment inequality (see Lemma 2) valid for a broad class of learning
problems, delivering explicit non-asymptotic bounds of E|βk − β∗|qs and its ASGD variant for any
q, s ≥ 2 with mild conditions, together with matching complexity guarantees, i.e., given some target
error ε > 0 (see Proposition 2), the required number of iterations k such that

E|β̄k − β∗|qs ≤ ε.
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Although moment bounds capture average-case performance, a single execution of (A)SGD in
practice demands high-probability guarantees [Valiant, 1984, Vapnik, 2000, Bach and Moulines,
2013, Durmus et al., 2021, Zhong et al., 2024]. Recent advances include a generic high-probability
framework for both convex and nonconvex SGD with sub-Gaussian gradient noises [Liu et al.,
2023], high-probability rates for clipped-SGD with heavy-tailed noises [Nguyen et al., 2023], and
high-probability guarantees for nonconvex stochastic approximation via robust gradient clipping [Li
and Liu, 2022]. However, these established high-probability bounds focus again on decaying learning
rates and low dimension. Moreover, early work primarily addressed light-tailed noises where the
gradients are bounded or have exponential-type moments [Nemirovski et al., 2009, Rakhlin et al.,
2012, Ghadimi and Lan, 2013, Cardot et al., 2017, Harvey et al., 2019, Mou et al., 2020, Chen et al.,
2023]. For the cases that only admit a polynomial tail with finite q-th moment, Lou et al. [2022] were
the first to derive a Nagaev–type inequality [Nagaev, 1979] for low-dimensional ASGD. The rate was
shown to be optimal but their bound heavily relies on the linearity of gradients and is only suitable
for decaying learning rates. By leveraging a dependency-adjusted functional dependence measure
in high-dimensional time series [Zhang and Wu, 2017], we derive a high-probability concentration
bounds for high-dimensional ASGD with constant learning rates. Given a tolerance level δ ∈ (0, 1)
and a target error ε > 0, we provide bounds for the required number of iterations k to guarantee that

P
(
|β̄k − β∗|s ≤ ε

)
≥ 1− δ.

This tail-decay result (see Eq. (10)) is proved via a new Fuk-Nagaev-type inequality (see Theorem 4)
and complements our moment and complexity characterizations of large-step stochastic optimization.

1.1 Our Contributions

This paper contributes to theoretical advancements for understanding constant learning-rate SGD
and its averaged variant (ASGD) in the challenging high-dimensional regime. Our main technical
innovations and results include:

(1) Handling Constant Learning Rates in High Dimensions. In practice, large-scale machine
learning models commonly deploy fixed, large learning rates to speed up optimization in high-
dimensional settings. To address this, we introduce novel coupling techniques inspired by high-
dimensional nonlinear time series and establish the asymptotic stationarity of the SGD iterates with
arbitrary initialization (Section 2).

(2) Generalized Moment Convergence in ℓs- and ℓ∞-Norms. By deriving a sharp high-dimensional
moment inequality, we establish explicit, non-asymptotic q-th moment bounds for arbitrary ℓs-norms
of (A)SGD iterates for any q ≥ 2 and even integers s, generalizing previous theory primarily focusing
on mean squared error (MSE) convergence with q = s = 2. Our results extend naturally to the
max-norm case (i.e., ℓ∞) by selecting s ≈ log(d), that is essential for modern sparse and structured
estimation in high-dimensional data (Section 3).

(3) High-Probability Tail Bounds. While average-case (moment) bounds are informative, single runs
require tail guarantees. We derive the first high-probability concentration bounds for ASGD in high-
dimensional settings with constant learning rates. By developing a tight Fuk-Nagaev-type inequality
using the coupling techniques in nonlinear time series, we control the algorithmic complexity required
to achieve targeted accuracy with high confidence (Section 4).

1.2 Related Works

Stochastic Gradient Descent and its Variants. The SGD algorithm can be traced back to Robbins and
Monro [1951], Kiefer and Wolfowitz [1952]. Popular SGD variants include Nesterov’s accelerated
gradient [Nesterov, 1983], AdaGrad [Duchi et al., 2011], AdaDelta [Zeiler, 2012], Adam [Kingma
and Ba, 2014], AMSGrad [Reddi et al., 2018], AdamW [Loshchilov and Hutter, 2018], SAG [Schmidt
et al., 2017], SVRG [Johnson and Zhang, 2013], SARAH [Nguyen et al., 2017], SPIDER [Fang
et al., 2018] and Katyusha [Allen-Zhu, 2017]. The theoretical foundations of SGD under decaying
learning rates were established in the early studies by [Blum, 1954, Dvoretzky, 1956, Sacks, 1958],
with stronger almost-sure guarantees by Fabian [1968], Robbins and Siegmund [1971], Ljung [1977],
Lai [2003], Wang and Gao [2010]. Existing works for smooth, strongly-convex objectives with
decaying step sizes include Ruppert [1988], Polyak and Juditsky [1992], Nemirovski et al. [2009],
Bach and Moulines [2013], Rakhlin et al. [2012], Mertikopoulos et al. [2020] among others. Despite
the rich literature on SGD, the theoretical understanding in high-dimensional settings remains limited.
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Exceptions are Paquette et al. [2021, 2022] who study high-dimensional SGD for the least-squares
loss.

Constant Learning Rate. In high-dimensional scenarios, constant learning rates prevail due to simpler
tuning procedures and faster convergence [Wang et al., 2022]. More recent theoretical and empirical
studies of large-step SGD include Wu et al. [2018], Cohen et al. [2021] and the very recent Cai
et al. [2024], which formalize the resurgence of constant-step methods in modern machine learning.
A useful way to analyze constant–step SGD is to treat its iterates as a time-homogeneous Markov
chain [Pflug, 1986], which makes it possible to characterize its long-run behavior and stationary law.
However, previous works only derived convergence in Wasserstein distance [Dieuleveut et al., 2020,
Merad and Gaïffas, 2023]. Such convergence in probability measures can hardly provide refined
(non)-asymptotics such as higher-moment convergence and concentration inequalities, and seems
nontrivial to extend to high-dimensional regimes.

High-Dimensional Nonlinear Time Series. An alternative approach for constant learning-rate SGD
is to view it as an iterated random function [Dubins and Freedman, 1966, Barnsley and Demko,
1985, Diaconis and Freedman, 1999, Diaconis and Duflo, 2000], or a nonlinear autoregressive (AR)
process. This interpretation facilitates the theory of online learning with non-stationarity and complex
dependency structures; see, for example, the recent work by Li et al. [2024c] on SGD with dropout
regularization building on the GMC framework [Wu and Shao, 2004]. To extend this systematic
theory to high-dimensional settings, we adapt the coupling techniques in time series [Wu, 2005, 2007,
2009, 2011, Xiao and Wu, 2012, Berkes et al., 2014, Wu and Wu, 2016, Karmakar and Wu, 2020],
especially the ones for high-dimensional regimes [Zhang and Wu, 2017, 2021, Li et al., 2024a] to
online learning algorithms.

1.3 Notation

Denote column vectors in Rd by lowercase bold letters x = (x1, . . . , xd)
⊤ and the ℓs-norm of x

by |x|s = (
∑d
i=1 |xi|s)1/s, s ≥ 1. Write x⊙s = (xs1, . . . , x

s
d)

⊤. The expectation and covariance of
random vectors are respectively denoted by E[·] and Cov(·). For q > 0 and a random variable X ,
we write X ∈ Lq iff ∥X∥q = [E(|X|q)]1/q < ∞. We denote matrices by uppercase letters. Given
matrices A and B of compatible dimension, their matrix product is denoted by juxtaposition. Write
A⊤ for the transpose of A and Id for d × d identity matrix. For two positive number sequences
(an) and (bn), we say an = O(bn) (resp. an ≍ bn) if there exists c > 0 such that an/bn ≤ c (resp.
1/c ≤ an/bn ≤ c) for all large n. Let (xn) and (yn) be two sequences of random variables. Write
xn = OP(yn) if for ∀ϵ > 0, there exists c > 0 such that P(|xn/yn| ≤ c) > 1− ϵ for all large n.

Notation Definition Reference Index Range
β∗ minimizer of the loss function G(β) Eq. (1) /
βk SGD iterates Eq. (2) k ∈ N
β◦
k stationary SGD iterates Thm. (2) k ∈ Z

β̄k ASGD iterates Eq. (3) k ∈ N
β̄◦
k stationary ASGD iterates Eq. (9) k ∈ Z

Table 1: List of the sequences defined in the paper.

2 Convergence of SGD to a Stationary Distribution

In this section, we establish the GMC property of high-dimensional SGD with constant learning rates.
Our technique is to construct a smooth surrogate for the non-differentiable ℓ∞-norm via the ℓs-norm,
so that standard gradient-based tools become available. We defer the technical details to Section 6.1.
Furthermore, we provide a novel high-dimensional moment inequality (see Section 6.2) and use it to
derive the dimension-dependent range of the constant learning rate that guarantees the contraction.

We first impose the following assumptions on the objective function and the stochastic gradients.

Assumption 1 (Coercivity). Assume that for any sequence β1,β2, . . . with |βn|s → ∞ the loss
function G(·) in (1) satisfies limn→∞ G(βn) = ∞.
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Assumption 2 (Strong Convexity – ℓs-norm). Let s ≥ 2 be an even integer and write v⊙s :=
(vs1, . . . , v

s
d)

⊤ for a vector v = (v1, . . . , vd)
⊤. Assume there exists µ > 0 such that〈

(β − β′)⊙(s−1),∇G(β)−∇G(β′)
〉
≥ µ|β − β′|ss, for all β,β′ ∈ Rd.

In Lemma 3 in the supplementary materials, we show that under Assumptions 1 and 2, a unique
global minimizer β∗ exists for the optimization problem (1). When s = 2, Assumption 2 reduces to
the regular strong convexity frequently adopted in the literature [Polyak and Juditsky, 1992, Moulines
and Bach, 2011, Dieuleveut et al., 2020, Mies and Steland, 2023]. For general s and the linear
regression model, Section 8.2 in the supplementary material interprets the ℓs-type strong convexity
assumption via the ℓs-norm induced matrix norm. As different norms are involved, there does not
seem to be an apparent relationship between the classical strong convexity and the case s > 2.

Assumption 3 (Stochastic Lipschitz Continuity – ℓs-norm). Let β∗ be the global minimizer. For
some q ≥ 2 and an even integer s ≥ 2, assume that

Ms,q :=
(
E|∇g(β∗, ξ)|qs

)1/q
< ∞.

Further assume there exists a constant Ls,q > 0 such that(
E
∣∣∇g(β, ξ)−∇g(β′, ξ)

∣∣q
s

)1/q
≤ Ls,q|β − β′|s, for all β,β′ ∈ Rd.

Later we will choose s = O(log(d)) to bound the max-norm. The above defined Lipschitz constant
Ls,q and the moments Ms,q will then grow as d increases. Taking linear regression as an example,
we investigate the dimension dependence of Ls,q and Ms,q in Section 8.2. All bounds in this work
will contain the explicit dependence on (Ls,q,Ms,q).

We now state the first main result of this paper, which plays a crucial role in establishing moment
convergence and tail probability results in the following sections. The statement quantifies the
exponential rate at which the initialization β0 will be forgotten and the SGD iterates βk converges to
a stationary distribution πα.

Theorem 1 (Convergence of SGD to stationary distribution). Suppose that Assumptions 1–3 hold for
some µ > 0, q ≥ 2 and even integer s ≥ 2. Given a constant learning rate

0 < α < αs,q :=
2µ

max{q, s}L2
s,q

, (5)

for any two d-dimensional SGD sequences {βk(α)}k∈N and {β′
k(α)}k∈N sharing the same i.i.d.

noise injections {ξk}k≥1 but possibly different initializations β0,β
′
0 ∈ Rd, the geometric-moment

contraction (GMC)

∥|βk − β′
k|s∥q ≤ rkα,s,q|β0 − β′

0|s, for all k = 0, 1, . . .

holds with contraction constant

rα,s,q = 1− 2µα+max{q, s}L2
s,qα

2 < 1. (6)

Moreover, there exists a unique stationary distribution πα with a finite q-th moment, that is,∫
|u|qsπα(du) < ∞, such that

βk ⇒ πα, as k → ∞.

Equivalently, for any continuous function f ∈ C(Rd) with |f |∞ < ∞,

E
[
f(βk)

]
→
∫

f(u)πα(du), as k → ∞.

The result generalizes Li et al. [2024b] to large dimension d and extends the ℓ2-type GMC based on
Lemma 9 to general ℓs-norms. Moreover, choosing s = sd with

sd := 2min{ℓ ∈ N : 2ℓ > log(d)}, (7)

and using the inequality

|x|∞ ≤ |x|sd ≤ d1/sd |x|∞ ≤ e|x|∞, (8)

shows the equivalence of the ℓsd- and ℓ∞-norms. Consequently, by choosing s = sd, the previous
theorem can also be used to derive the GMC property with respect to the ℓ∞-norm.
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3 Convergence of High-Dimensional SGD and ASGD

In this section, we derive convergence rates for the moments of the last iterate E|βk − β∗|q∞ and the
moments of the averaged SGD.

3.1 Convergence of SGD

Proposition 1. If Assumptions 1–3 hold for some q ≥ 2, an even integer s ≥ 2, and a constant Ms,q ,
then,∥∥|βk − β∗|s

∥∥2
q
≤
(
1− 2αµ+ 7max{q, s}α2L2

s,q

)∥∥|βk−1 − β∗|s
∥∥2
q
+ 3max{q, s}α2M2

s,q,

for all k ≥ 1. The same inequality holds if βk is replaced by the stationary SGD iterates β◦
k ∼ πα,

k ≥ 1.
Theorem 2 (Moment convergence of SGD). Let 0 < α < αs,q/7 with αs,q as defined in (5). Suppose
that Assumptions 1–3 hold for q ≥ 2 and even integer s ≥ 2. Then for the stationary SGD iterates
β◦
k ∼ πα, ∥∥|β◦

k − β∗|s
∥∥
q
= O

(
Ms,q

√
max{q, s}α

)
for all k ≥ 1

and for the SGD iterate βk with arbitrary initialization β0,∥∥|βk − β∗|s
∥∥
q
= O

(
Ms,q

√
max{q, s}α+ rkα,s,q∥|β0 − β◦

0 |s∥q
)

for all k ≥ 1.

Choosing s = sd in (7) yields a bound with respect to the ℓ∞-norm.

3.2 Convergence of Ruppert-Polyak Averaged SGD

Consider now the Ruppert-Polyak Averaged SGD (ASGD) β̄k = 1
k

∑k
i=1 βi as defined in (3). For

the initialization β◦
0 ∼ πα, define the stationary ASGD sequence

β̄◦
k =

1

k

k∑
i=1

β◦
i , k ≥ 1. (9)

Theorem 3. Consider the ASGD sequence {β̄k}k≥1. Suppose that Assumptions 1–3 hold with
some q ≥ 2 and even integer s = sd in (7), the conditions of Theorem 8 hold and the learning
rate satisfies α ∈ (0, αsd,q) with αsd,q defined in (5). For any k ≥ 1 and some universal constants
C1, C2, C3 > 0,∥∥|β̄k − β∗|∞

∥∥
q
≤ C1

{√
cqsd
k

Msd,q

(
Lsd,q

√
αmax{q, sd}+ 1

)
︸ ︷︷ ︸

stochastic variance

}

+C2

{ 1

k(1− rα,sd,q)
∥|β0 − β◦

0 |∞∥q︸ ︷︷ ︸
initialization bias

}
+ C3

{
M2
sd,q

max{q, sd}αd
q

q−1 ·(1−
2
sd

)︸ ︷︷ ︸
bias of constant learning rate

}
.

Proposition 2 (Complexity bound). Under the assumptions of Theorem 3, let ∆0 = ∥|β0 − β◦
0 |∞∥q ,

V = Lsd,qMsd,q

√
max{q, sd}+Msd,q, B = M2

sd,q
max{q, sd} d

q
q−1 (1− 2

sd
)
.

Given a tolerance ε > 0,

α ≤ min
{ ε

3C3B
,
αsd,q
7

}
, and k ≥ max

{ 9C2
1cqsdV

2 α

ε2
,
3C2∆0

αε

}
,

we have ∥|β̄k − β∗|∞∥q ≤ ε.

A proof outline is given in Section 6.3 and the full proof is deferred to the supplementary material.
The sharpest complexity bound of SA for ℓ∞-norm known to date was derived by Wainwright [2019]
proving that the number of iterations required to obtain an ε-accurate solution of Q-learning scales as
(1− γ)−4 · ε−2 with the discount factor γ. In Proposition 2, our complexity bound for SGD is also of
the order of O(1/ε2) if the dimension d is fixed, which is consistent with the degenerate Q-learning
case in Wainwright [2019]. The derived result allows to determine the dependence on the dimension
d.
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4 Sharp Concentration and Gaussian Approximation

Via the following tail probability inequality for the averaged SGD estimator β̄k, one can further derive
high-probability concentration bound of |β̄k−β∗|∞. Recall that sd = 2min{ℓ ∈ N : 2ℓ > log(d)}.
Theorem 4 (Fuk-Nagaev inequality). Under the conditions of Theorem 3, for any z > 0, we have

P
(
|β̄k − β∗|∞ > z

)
≲

∥|β0 − β◦
0 |∞∥qq

(kαz)q
+

(log d)
3q
2 (log k)1+2qMq

sd,q

zqkq−1αq/2−1
+ exp

(
−Ckz2α1−2/q

M2
sd,q

log d

)
,

where the constants in ≲ are independent of k, d, s and α.

As an immediate consequence of Theorem 4, we obtain a sharp high-probability upper bound for
|β̄k − β∗|∞, that is, for any given tolerance rate δ ∈ (0, 1), with at least probability 1− δ, we have

|β̄k − β∗|∞ = O

∥|β0 − β◦
0 |∞∥qq

kαδ1/q
+

(log d)3/2(log k)1/q+2Msd,q

k1−1/qα1/2−1/qδ1/q
+

√
M2
sd,q

log d log(1/δ)

kα1−2/q

 .

(10)

Notably, if the q-th moment of the gradient noise is finite (Msd,q < ∞), the second term of the right
hand side, involving k1−q , is generally unimprovable [Nagaev, 1979, Lou et al., 2022].

The distribution convergence for the high-dimensional ASGD relies on the following result. Let M2,q

be as defined in Assumption 3.
Theorem 5 (Gaussian approximation). Consider stationary SGD iterates β◦

k ∼ πα with πα as
defined in Theorem 1, initialization β◦

0 ∼ πα, and learning rate α ∈ (0, αsd,q). Suppose that
Assumptions 1–3 hold for some q > 2. Then, on a potentially different probability space, and for
a number of iterations T satisfying d ≤ cT , where c > 0 is some constant, there exist random
vectors {β̃k}Tk=1

D
= {β◦

k}Tk=1 and independent Gaussian random vectors {zk}Tk=1 with mean zero
and covariance matrix

Ξ =

∞∑
k=−∞

Cov(β◦
0 ,β

◦
k), (11)

such that(
Emax
k≤T

∣∣∣ 1√
k

k∑
i=1

[
(β̃i − E[β◦

1 ])− zi
]∣∣∣2

2

)1/2
≤ C∗

α,qM2,q

√
d log(T )

( d
T

) q−2
6q−4

, (12)

with C∗
α,q a constant that only depends on c, the learning rate α, and the moment index q.

For diverging moment index q → ∞, the Gaussian approximation rate in (12) approaches the
rate O(

√
log(T )(d4/T )1/6). Thus, to obtain a nontrivial Gaussian approximation bound within T

iterations, we need dimension dependence d = o(T 1/4−ζ) with ζ > 0.

5 Constant Learning Rate for Large Dimension

Recall that Ls,q is the Lipschitz constant introduced in Assumption 3. We established asymptotic
stationarity and non-asymptotic convergence if α < αs,q/7 with αs,q defined in (5), leading to the
upper bound

α <
αs,q
7

=
2µ

7max{q, s}L2
s,q

≍ 1

d2 log(d)
,

if we choose s = sd in (7) and if Lsd,q ≍ d. We refer to Section 8.2 for the derivation of the
dimension dependence of Ls,q in the linear regression model.

Alternatively, the upper bound for the learning rate α can also be derived by a linear approximation
technique (see Lemma 1), defined as the nontrivial solution to the following equation

1− qµα+
q
[
|q − s|+ (s− 1)

]
L2
s,q

2
α2(1 + αLs,q)

q−2 = 1. (13)
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A derivation of this equation is provided in Section 6.1. The existence of a solution of (13) is shown
below the proof of Lemma 1 in the supplementary materials. When q = 2, the range of α simplifies
to

α <
2µ

7
[
|s− 2|+ (s− 1)

]
L2
s,2

,

which is also proportional to 1/[d2 log(d)] if we choose s = sd in (7) and if Lsd,2 ≍ d, matching the
rate of αs,q in (5) derived by Lemma 2, though with a slightly more conservative constant for general
s. In the special case with s = 2, both bounds reduce to the classical α < 2µ/L2

2,2. If L2,2 ≍ d for
large dimension d, which is shown to be true for the linear regression model in Section 8.2 in the
supplementary materials, the ℓ∞- and the ℓ2-norm yield similar upper bounds for the learning rate α.

6 Proof Sketches

6.1 Bridge between ℓs- and ℓ∞- Norms

In high-dimensional regimes, convergence rates of constant-learning-rate SGD (2) with respect to the
ℓ∞-norm are of particular interest [Wainwright, 2019, Chen et al., 2023]. However, it is extremely
challenging to directly study the convergence of |βk − β∗|∞ since the ℓ∞-norm is not differentiable
thereby ruling out standard gradient-based tools for proving convergence rates or concentration. To
address this issue, we instead study | · |sd with sd defined in (7). By the equivalence between ℓsd-
and ℓ∞-norms shown in (8), contraction in ℓ∞-norm follows from ℓsd -norm contraction.

To prove the GMC property of SGD as introduced in (4), it suffices to show that for any two d-
dimensional SGD sequences {βk}k∈N and {β′

k}k∈N sharing the same i.i.d. observations {ξk}k≥1

but possibly different initializations β0,β
′
0 ∈ Rd, the contraction holds for |βk −β′

k|sd for all k ≥ 1.
To this end, we need to determine a range of constant learning rates α such that for any q ≥ 2 and
β,β′ ∈ Rd, the GMC in Theorem 1 holds, i.e.,(

E
∣∣β − α∇g(β, ξ)−

(
β′ − α∇g(β′, ξ)

)∣∣q
s

)1/q ≤ r|β − β′|s, for some r = rα,s,q < 1. (14)

To derive the inequality, we first provide a lemma based on linear approximation by considering the
scalar function

α 7→ |x− αz|qs, where x = β − β′, z = ∇g(β, ξ)−∇g(β′, ξ),

and linearizing it around α = 0. Then, one only needs to prove that E|x − αz|qs ≤ r|x|qs. By the
second-order Taylor expansion of |x− αz|qs in α, we have the linear approximation

|x− αz|qs ≈ |x|qs − qα|x|q−ss ⟨xs−1, z⟩, (15)

with remainder term of order α2, see Section 2 in the supplementary materials for details. Since
a simple triangle inequality argument ∥|x − αz|s∥q ≤ ∥|x|s∥q + α∥|z|s∥q fails to control this
remainder sufficiently to yield a contraction constant r < 1, we establish a more precise bound.

Lemma 1. Recall that v⊗s = (vs1, . . . , v
s
d)

⊤ for a vector v = (v1, . . . , vd)
⊤. For any q ≥ 2, any

even integer s ≥ 2, any two vectors x, z ∈ Rd, and any α > 0,∣∣∣|x− αz|qs − |x|qs + qα|x|q−ss ⟨xs−1, z⟩
∣∣∣ ≤ qα2

2

[
|q − s|+ (s− 1)

](
|x|s + α|z|s

)q−2|z|2s.

If s = 2, q = 2, the right-hand side is α2|z|22. This is consistent with the Taylor remainder of the
right-hand side in Lemma 9 derived by Li et al. [2024c]. Using this inequality to prove the contraction
in (14) is remarkably different from the approaches relying on the martingale decomposition (MD)
that is frequently adopted in the literature [Dieuleveut et al., 2020, Mertikopoulos et al., 2020, Mies
and Steland, 2023]. Our proposed method requires mild moment conditions on the stochastic gradients
and yields simpler proofs that can be generalized to a broad class of online learning problems. We
refer to Li et al. [2024b] for detailed discussion. Nevertheless, we remark in advance that a Rio-type
inequality (Lemma 2) with slightly sharper constants will be used directly in our main contraction
proof, while we retain Lemma 1 here for its intuitive appeal. Finally, by choosing s = sd as in (7)
for (14), we can expect the ℓ∞-norm type GMC to hold for high-dimensional SGD iterates.
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6.2 High-Dimensional Moment Inequality

To prove Theorem 1, we derive a high-dimensional version of Rio’s inequality [Rio, 2009], adapted
to the q-th moment of ℓs-norm. This result provides a slightly sharper constant than Lemma 1 and is
used directly in our moment-contraction analysis.
Lemma 2 (High-dimensional moment inequality). For any q ≥ 2, any even integer s ≥ 2, and any
two d-dimensional random vectors x,y, we have∥∥|x+ y|s

∥∥2
q
≤
∥∥|x|s∥∥2q + 2

∥∥|x|s∥∥2−qq
E
(
|x|q−ss

d∑
j=1

xs−1
j yj

)
+
(
max{q, s} − 1

)∥∥|y|s∥∥2q.
Moreover, if E[y | x] = 0 almost surely, then∥∥|x+ y|s

∥∥2
q
≤
∥∥|x|s∥∥2q + (max{q, s} − 1

)∥∥|y|s∥∥2q. (16)

Repeatedly applying Lemma 2 leads to the high-dimensional maximal moment inequality in Lemma 8
in the supplementary materials, which is of independent interest.

6.3 Stationarity, Variation and Bias of ASGD

We prove the moment bound ∥|β̄k − β∗|∞∥q via the decomposition∥∥|β̄k − β∗|∞
∥∥
q
≤
∥∥|β̄k − β̄◦

k|∞
∥∥
q
+
∥∥|β̄◦

k − E[β̄◦
k]|∞

∥∥
q
+
∣∣E[β̄◦

k]− β∗∣∣
∞.

The first term accounts for the deviation due to the non-stationarity of β̄k as it is initialized from an
arbitrarily fixed β0; this can be bounded using the GMC property of βk shown in Theorem 1. The
second term captures the stochastic variance of the stationary ASGD sequence. Bounding this term is
more delicate because of the intricate dependency structure of β̄◦

k. To address this, we deploy another
powerful tool in time series – the functional dependence measure [Wu, 2005] in Section 8.6 of the
supplementary materials, which can effectively quantify the contribution of the random sample ξi to
the k-th SGD iterate β◦

k for all i ≤ k. As such, by controlling the cumulative dependence measures,
we can bound this variance. Lastly, we handle the third term, which represents the non-diminishing
bias of β̄◦

k induced by the constant learning rate α [Dieuleveut et al., 2020, Huo et al., 2023]. This
can be dealt with by extending the approach in Li et al. [2024b] to high-dimensional settings.
Theorem 6 (Asymptotic stationarity). Consider the ASGD iterates β̄k and the stationary version β̄◦

k.
Suppose that Assumptions 1–3 are satisfied for some q ≥ 2 and some even integer s ≥ 2. Then, for
the learning rate α ∈ (0, αs,q) with αs,q defined in (5),∥∥|β̄k − β̄◦

k|s
∥∥
q
≤ 1

k
· 1

1− rα,s,q
|β0 − β◦

0 |s.

As a direct consequence of Theorem 6, we have ∥|β̄k − β̄◦
k|s∥q ≲ |β0 − β◦

0 |s/(kα), which indicates
the asymptotic stationarity of high-dimensional ASGD sequences. When the bias induced by the
initialization is controlled, i.e., |β0 − β◦

0 |s < ∞, as kα → ∞, the ASGD iterate β̄k approaches the
stationary solution β̄◦

k in the sense that ∥|β̄k − β̄◦
k|s∥q → 0. By Theorem 6, we only need to show

the convergence for stationary ASGD.
Theorem 7 (Stochasticity of stationary ASGD). Consider the stationary SGD sequence {β◦

k}k≥1.
Suppose that Assumptions 1–3 hold with some q ≥ 2 and some even integer s ≥ 2. Then there exists
a constant cq > 0 only depending on q, such that, for all k ≥ 1,∥∥|β̄◦

k − E[β̄◦
k]|s
∥∥
q
≤
√

cqs

k
Ms,q

(
Ls,q

√
αmax{q, s}+ 1

)
.

In the low-dimensional case, we take s = 2 as a special example. Then, Ls,q
√
αmax{q, s} = O(1)

such that the bound is ∥|β̄◦
k − E[β̄◦

k]|s∥q = O{1/
√
k}. This rate is optimal considering the central

limit theorem of the stationary ASGD.

Next, we consider the bias induced by the constant learning rate. We first introduce some nec-
essary notation. Recall G(β) = E[∇g(β, ξ)] and ∇G(β) = (∂1G(β), . . . , ∂dG(β))⊤, where
β = (β1, . . . , βd)

⊤. Denote ∂iG(β) = ∂G(β)/∂βi, 1 ≤ i ≤ d,
∇2G(β) =

[
∂i∂jG(β)

]
1≤i,j≤d, ∇3Gi(β) =

[
∂i∂l∂rG(β)

]
1≤l,r≤d. (17)

We provide the non-asymptotic bound for the bias of stationary ASGD in the following lemma.
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Theorem 8 (Bias of stationary ASGD). Under Assumptions 1–3, consider the stationary ASGD β̄◦
k.

Assume that g(β, ξ) is twice differentiable with respect to β with positive definite Hessian matrix
∇2G(β∗), and uniformly bounded derivatives max1≤i≤d ∥∇3Gi(β)∥∞ < ∞, where

∥∇3Gi(β)∥∞ := max
1≤l≤d

d∑
r=1

∣∣∣(∇3Gi(β)
)
l,r

∣∣∣.
Then, we have ∣∣E[β̄◦

k − β∗]
∣∣
∞ = O

(
M2
sd,q

max{q, sd}αd
q

q−1 ·(1−
2
sd

)
)
.

7 Conclusions and Discussion

This work advances the theoretical understanding of the constant learning-rate SGD algorithms in
high-dimensional settings. By introducing novel coupling techniques in nonlinear time series, we
establish asymptotic stationarity of SGD with any initialization. We then derive non-asymptotic q-th
moment bounds in general ℓs- and ℓ∞-norms, and develop the first Fuk-Nagaev high-probability tail
bound for ASGD. While this paper assumes strong convexity and smoothness of the objective, the
nonlinear time series perspective offers a principled framework applicable to a broad class of over-
parameterized optimization tasks and can be extended to non-convex regimes, providing fundamental
insights into the stability, convergence, and reliability of large-scale learning algorithms.
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8 Technical Appendices and Supplementary Material

8.1 Existence and Uniqueness of Global Minimum

Lemma 3. Consider the minimization problem β∗ ∈ argminβ∈Rd G(β). If the function G satisfies
Assumptions 1 and 2, then a global minimizer β∗ exists and is unique.

Proof of Lemma 3. We first show the existence of a global minimizer. By the coercivity condition in
Assumption 1, lim|β|s→∞ G(β) = ∞, which implies that we can choose some large δ ∈ R such that
the sub-level set

Sδ := {β ∈ Rd : G(β) ≤ δ}
is non-empty and bounded. Since G is continuous by Assumption 2, Sδ is also closed, and hence
compact in Rd by the Heine–Borel theorem. Finally, by applying the Weierstrass extreme value
theorem, there exists β∗ ∈ Sδ such that G(β∗) = minβ∈Sδ

G(β). Since for any β /∈ Sδ, G(β) >
δ ≥ G(β∗), G(β∗) = minβ∈Rd G(β).

Next, we show the uniqueness of the global minium. Assume that there are two distinct minimizers
β1 ̸= β2. By Assumption 2, there exists µ > 0 such that

⟨(β1 − β2)
⊙(s−1),∇G(β1)−∇G(β2)⟩ ≥ µ|β1 − β2|ss > 0.

However, since β1 and β2 are both minimizers, ∇G(β1) = ∇G(β2) = 0, while µ|β1 − β2|ss > 0.
This leads to contradiction, which finishes the proof.

8.2 Example: Linear Regression

As example, we consider the SGD algorithm for the high-dimensional linear regression, observing
independent and identically distributed (i.i.d.) pairs ξ1 := (x1, y1), ξ2 := (x2, y2), . . . satisfying

yk = x⊤
k β + ϵk, for k = 1, 2, . . . , (18)

for random noises ϵk that are independent of xk with E[ϵk] = 0 and E|ϵk|q < ∞ for some q ≥ 2.
We verify Assumptions 2 and 3 and derive the explicit dependency of the learning-rate, the Lipschitz
constant, and the moments of the gradient noise on the dimension d.

Let ξ = (y,x) be an independent random sample from the same distribution as the data. The
least-squares loss and the stochastic gradient are respectively given by

g(β, ξ) =
1

2
(y − x⊤β)2, and ∇g(β, ξ) = −(y − x⊤β)x. (19)

Then

∇G(β) = E[∇g(β, (y,x)] = −E[(y − x⊤β)x] = E[xx⊤](β − β∗). (20)

Let
Σ = E[xx⊤], v = β − β′. (21)

To verify the ℓs-type strong convexity〈
(β1 − β2)

⊙(s−1),∇G(β)−∇G(β′)
〉
≥ µ|β − β′|ss, for all β,β′ ∈ Rd,

imposed in Assumption 2, observe that ∇G(β)−∇G(β′) = Σv. Thus, the condition becomes

0 < λ
(s)
min := inf

v∈Rd,v ̸=0

⟨vs−1,Σv⟩
|v|ss

. (22)

Lemma 4. Let s ∈ {2, 4, 6, . . .}. Writing Σ = (Σij)i,j=1,...,d, we have

λ
(s)
min ≥ min

i=1,...,d
Σii −

∑
j:j ̸=i

|Σij |.
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Proof of Lemma 4. Write v = (v1, . . . , vd)
⊤. Because of (|vi|s−1 − |vj |s−1)(|vi| − |vj |) ≥ 0, we

obtain |vs−1
i vj |+ |vivs−1

j | ≤ vsi + vsj and

⟨v⊙(s−1),Σv⟩ =
d∑
i=1

Σiiv
s
i −

∑
i<j

Σij
(
vs−1
i vj + viv

s−1
j

)
≥

d∑
i=1

Σiiv
s
i −

∑
i<j

∣∣Σij∣∣(vsi + vsj
)

≥
(

min
i=1,...,d

Σii −
∑
j:j ̸=i

|Σij |
)∑

ℓ

vsℓ .

This shows that the rightmost “Gershgorin gap” mini=1,...,d Σii −
∑
j:j ̸=i |Σij | is a universal lower

bound for every s. The lower bound is non-trivial if Σ is sufficiently diagonally dominant.

For large s, the inequality λ
(s)
min ≥ mini=1,...,d Σii −

∑
j:j ̸=i |Σij | is nearly sharp. To see this,

let i∗ be the index i that minimizes mini=1,...,d Σii −
∑
j:j ̸=i |Σij |. For a small δ > 0, pick v =

(v1, . . . , vd) by choosing vi∗ := 1 and for i ̸= i∗, taking vi := − sign(Σi∗i)(1 − δ). For large s,
v⊙(s−1) ≈ (0, 0, . . . , 1, 0, . . . , 0) with the 1 at the i∗-th position. Similarly, |v|ss ≈ 1. The i∗-th entry
of Σv is given by Σi∗i∗ −

∑
j ̸=i∗ |Σi∗j |+O(δ). Hence for suitable sequences δ → 0 and s → ∞,

we obtain ⟨v⊙(s−1),Σv⟩/|v|ss → Σi∗i∗ −
∑
j ̸=i∗ |Σi∗j | = miniΣii −

∑
j ̸=i |Σij |.

Regarding Assumption 3, we investigate the dependence of the Lipschitz constant Ls,q on the
dimension d in high-dimensional linear regression models. If s∗ is the dual exponent of s, satisfying
1/s+ 1/s∗ = 1, we show that the condition holds with

Ls,q =
∥∥|x|s|x|s∗∥∥q. (23)

To see this, for any two vectors β,β′ ∈ Rd, we have

∇g(β, ξ)−∇g(β′, ξ) = −
[
(y − x⊤β)x− (y − x⊤β′)x

]
= xx⊤(β − β′). (24)

Taking the ℓs-norm on both sides, we obtain∣∣∇g(β, ξ)−∇g(β′, ξ)
∣∣
s
=
∣∣xx⊤(β − β′)

∣∣
s
= |x|s

∣∣x⊤(β − β′)
∣∣. (25)

By Hölder’s inequality, for the dual exponent s∗ satisfying 1/s+ 1/s∗ = 1, it follows that∣∣x⊤(β − β′)
∣∣ ≤ |x|s∗ |β − β′|s. (26)

Therefore, for q ≥ 2, we have the q-th moment bounded as follows,(
E
∣∣∇g(β, ξ)−∇g(β′, ξ)

∣∣q
s

)1/q
≤
(
E
[
|x|qs|x|

q
s∗
])1/q

|β − β′|s,

proving (23).

Recall sd defined in (7). To bound the ℓ∞-norm, we set the conjugates

s = sd, s∗d =
sd

sd − 1
. (27)

Recall that for the ℓs-norm, we have |x|∞ ≤ |x|sd ≤ d1/sd |x|∞ ≤ e|x|∞. Similarly, for the

conjugate ℓs
∗
d -norm, d

1
s∗
d
−1

= d
1
sd ≤ e implies
1

e
|x|1 ≤ 1

d
1
s∗
d
−1

|x|1 ≤ |x|s∗d ≤ |x|1, (28)

which together with (23) gives
Lsd,q ≤ e

∥∥|x|∞|x|1
∥∥
q
. (29)

The next two lemmas show that the tail behavior of the covariate vector xk determines the behavior
of the Lipschitz constant Ls,q and the moment Ms,q defined in Assumption 3.
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Lemma 5. Consider the linear regression in (18) with i.i.d. generic random samples (x, y), where
x = (x1, . . . , xd)

⊤. Let q ≥ 2 and recall sd in (7).

(i) (Sub-Gaussian) If there is a constant K such that for all u ∈ Rd, |u⊤x|ψ2
≤ K|u|2, where

|v|ψ2 = inf{t > 0 : E[ev2/t2 ] ≤ 2} denotes the sub-Gaussian norm, then

Lsd,q = O(d
√
log(d)).

(ii) (Sub-exponential) If there is a constant K such that for all u ∈ Rd, |u⊤x|ψ1
≤ K|u|2,

where |v|ψ1 = inf{t > 0 : E[e|v|/t] ≤ 2} denotes the sub-exponential norm, then

Lsd,q = O(d log(d)).

(iii) (Finite moment) If there is some p ≥ 2q and a finite constant Kp such that for each
1 ≤ j ≤ d, E|xj |p ≤ Kp, then

Lsd,q = O(d1+
1
2q ).

(iv) For all three cases (i)–(iii), when s = 2, L2,q = O(d).

Proof of Lemma 5. We write x = xk to denote a generic covariate. By (29) and Hölder’s inequality,

Lsd,q ≤ e
∥∥|x|∞|x|1

∥∥
q
≤ e∥|x|∞∥2q∥|x|1∥2q.

The convexity of the function t 7→ t2q and Jensen’s inequality yield |x|2q1 ≤ d2q−1
∑d
j=1 |xj |2q and

E|x|2q1 ≤ d2q−1
d∑
j=1

E|xj |2q ≤ d2q max
1≤j≤d

E|xj |2q.

Therefore, for all the three cases (i)–(iii),

∥|x|1∥2q = O(d).

Next, we study the order of (E[|x|2q∞])1/(2q) for fixed q ≥ 2.

(i) If each xj is sub-Gaussian, then by Section 2.5 in Vershynin [2018], we have

(E[ max
1≤j≤d

|xj |2q])1/(2q) ≤ K(
√
log(d) +

√
q) = O(

√
log(d)).

(ii) If each xj is sub-exponential, then by Section 2.7 in Vershynin [2018], we obtain

(E[ max
1≤j≤d

|xj |2q])1/(2q) = O(K(log(d) + log(q))) = O(log(d)).

(iii) If each xj has the finite p-th moment for some p ≥ 2q, then

E[ max
1≤j≤d

|xj |2q] ≤
∑

1≤j≤d

E[|xj |2q] ≤ dKq = O(d).

Finally, for case (iv) with sd = 2, by (23),

L2,q = ∥|x|2∥22q.

By the convexity of the function t 7→ tq , we apply Jensen’s inequality and obtain

|x|2q2 =
( d∑
j=1

x2
j

)q
≤ dq−1

d∑
j=1

|xj |2q.

Therefore, for x satisfying case (iii),

E|x|2q2 ≤ dq−1
d∑
j=1

E|xj |2q ≤ dqKp, (30)
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which yields L2,q = O(d). For the cases (i) and (ii), by Sections 3.4 and 2.7 in Vershynin [2018],
respectively, we obtain

∥|x|2∥2q = O(K(
√
d+

√
q)) = O(

√
d),

and

∥|x|2∥2q = O(K(q
√
d)) = O(

√
d),

both indicating L2,q = O(d). This completes the proof.

Lemma 6. Consider the linear regression model in (18) and assume the conditions on ϵ and x
therein are satisfied. Recall that Ms,q = ∥|∇g(β∗, ξ)|s∥q is defined in Assumption 3 for some q ≥ 2.
For the same four cases (i)–(iv) as in Lemma 5 and sd defined in (7), Msd,q is respectively equal to
(i) O(

√
log(d)), (ii) O(log(d)), (iii) O(d1/(2q)) and (iv) O(

√
d).

Proof of Lemma 6. In the linear regression model, the stochastic gradient at the global minimum β∗

can be rewritten into
∇g(β∗, ξ) = −(y − x⊤β∗) = −ϵx.

Since the noise ϵ is independent of the covariate vector x, we obtain

∥|∇g(β∗, ξ)|sd∥q = ∥|ϵ| · |x|sd∥q = ∥ϵ∥q∥|x|sd∥q.

By inequality (8), it suffices to bound ∥|x|∞∥q . Since ∥|x|∞∥q ≤ ∥|x|∞∥2q , the same arguments in
the proof of Lemma 5 carry over immediately. We omit the details here.

8.3 Some Useful Lemmas

Lemma 7 (Maximal inequality [Chernozhukov et al., 2015]). Let z1, . . . ,zn be independent, d-
dimensional random vectors. Denote the j-th element of zi by zij , 1 ≤ j ≤ d. Define M :=
max1≤i≤nmax1≤j≤d |zij | and σ2 := max1≤j≤d

∑n
i=1 E[z2ij ]. Then,

E
[
max
1≤j≤d

|
n∑
i=1

(zij − E[zij ])|
]
≲ σ

√
log(d) +

√
E[M2] log(d),

where the universal constant in ≲ is positive and independent of n and d.

Lemma 8 (Lq maximal inequality). Let x1, . . . ,xn be independent, d-dimensional random vectors.
Denote by xij the j-th element of xi, 1 ≤ j ≤ d. Then,∥∥∥ max

1≤j≤d

∣∣∣ n∑
i=1

(
xij − E[xij ]

)∣∣∣∥∥∥2
q
≤ e2

(
max{q, log(d)} − 1

) n∑
i=1

∥∥∥ max
1≤j≤d

∣∣xij − E[xij ]
∣∣∥∥∥2
q
.

This moment inequality can be derived by repeatedly applying Lemma 2. It generalizes the maximal
inequality for E[max1≤j≤d |

∑n
i=1(xij − E[xij ])|] in Chernozhukov et al. [2015], reproduced above

as Lemma 7, to general q-th moments.

Proof of Lemma 8. One can assume that the independent random vectors x1, . . . ,xn have zero
means. By repeatedly applying Lemma 2 and choosing s = log(d),∥∥|x1 + · · ·+ xn|∞

∥∥2
q
≤
∥∥|x1 + · · ·+ xn|s

∥∥2
q

≤
∥∥|x1 + · · ·+ xn−1|s

∥∥2
q
+ (max{q, s} − 1)

∥∥|xn|s∥∥2q
≤ (max{q, s} − 1)

n∑
i=1

∥∥|xi|s∥∥2q
≤ e2

(
max{q, log(d)} − 1

) n∑
i=1

∥∥|xi|∞∥∥2q.
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Lemma 9 (Moment inequality [Li et al., 2024c]). Let q ≥ 2. For any two random vectors x and y in
Rd with fixed d ≥ 1, and let

∆ = E
∣∣∣∥x+ y∥q2 − ∥x∥q2 − q∥x∥q−2

2 x⊤y
∣∣∣.

Then, the following inequalities holds:

(i)
∆ ≤ E

(
∥x∥2 + ∥y∥2

)q − E∥x∥q2 − qE(∥x∥q−1
2 ∥y∥2).

(ii)
∆ ≤

[
(E∥x∥q2)1/q + (E∥y∥q2)1/q

]q − E∥x∥q2 − q(E∥x∥q2)(q−1)/q(E∥y∥q2)1/q.
Lemma 10 (Equivalence of ℓs-ℓ∞-induced matrix norms). For matrix A ∈ Rd×d, we have the
equivalence of the ℓsd -norm and ℓ∞-norm induced matrix norms as follows

1

e
∥A∥∞ ≤ ∥A∥sd ≤ e∥A∥∞, (31)

where sd is defined as (7) and ∥A∥s = max|x|s ̸=0 |Ax|s/|x|s. If in addition, A is symmetric, then
1

e
∥A∥1 =

1

e
∥A∥∞ ≤ ∥A∥sd ≤ e∥A∥∞ = e∥A∥1. (32)

Proof of Lemma 10. By Horn and Johnson [1985], for any 1 ≤ p ≤ q ≤ ∞ and matrix A ∈ Rd×d,

d(1/q)−(1/p)∥A∥q ≤ ∥A∥p ≤ d(1/p)−(1/q)∥A∥q. (33)
For p = s and q = ∞, we obtain

d−1/s∥A∥∞ ≤ ∥A∥s ≤ d1/s∥A∥∞. (34)

Since d1/s ≤ e by choosing s = sd in (7), we obtain (31).

For symmetric A = (aij)1≤i,j≤d, aij = aji for all i, j. Therefore,

∥A∥1 = max
1≤j≤d

d∑
i=1

|aij | = max
1≤i≤d

d∑
j=1

|aij | = ∥A∥∞. (35)

This completes the proof.

8.4 Proofs for Section 2

Derivation of (15): Since s is an even integer, we can write

f(α) := |x− αz|qs =
{ d∑
i=1

(xi − αzi)
s
} q

s

. (36)

Taking the derivative with respect to α, we obtain

f ′(α) :=
d

dα
f(α) =

q

s

{ d∑
i=1

(xi − αzi)
s
} q

s−1 d∑
i=1

d

dα
(xi − αzi)

s

=
q

s

{ d∑
i=1

(xi − αzi)
s
} q

s−1 d∑
i=1

s(xi − αzi)
s−1(−zi)

= −q
{ d∑
i=1

(xi − αzi)
s
} q

s−1 d∑
i=1

(xi − αzi)
s−1zi. (37)

Therefore,

f ′(0) = −q
{ d∑
i=1

xsi

} q
s−1 d∑

i=1

xs−1
i zi

= −q|x|q−ss

d∑
i=1

xs−1
i zi. (38)

A first-order Taylor expansion yields then (15).
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Proof of Lemma 1. Recall that we have defined

f(α) = |x− αz|qs =
{ d∑
i=1

(xi − αzi)
s
} q

s

.

A second order Taylor expansion gives f(α) = f(0) + αf ′(0) + 1
2α

2f ′′(η) for some η ∈ [0, α]. It
suffices to bound supu∈[0,α] |f ′′(u)|. Defining

M(u) :=

d∑
i=1

(xi − uzi)
s = |x− uz|ss, (39)

we have f(u) = [M(u)]
q
s ,

M ′(u) = −s

d∑
i=1

(xi − uzi)
s−1zi, (40)

M ′′(u) = s(s− 1)

d∑
i=1

(xi − uzi)
s−2z2i , (41)

and the first two derivatives of f(u) can be respectively expressed by

f ′(u) =
q

s
[M(u)]

q
s−1M ′(u), (42)

f ′′(u) =
q

s

(q
s
− 1
)
[M(u)]

q
s−2[M ′(u)]2 +M ′′(u)

q

s
[M(u)]

q
s−1. (43)

Since s is an even integer, it follows from Hölder’s inequality that

[M ′(u)]2 = s2
( d∑
i=1

(xi − uzi)
s−1zi

)2
≤ s2

(( d∑
i=1

(xi − uzi)
s
) s−1

s
( d∑
i=1

zsi

)1/s)2

= s2|x− uz|2(s−1)
s |z|2s. (44)

By applying Hölder’s inequality again, we obtain∣∣M ′′(u)
∣∣ ≤ s(s− 1)

( d∑
i=1

(xi − uzi)
s
) s−2

s
( d∑
i=1

zsi

)2/s
= s(s− 1)|x− uz|s−2

s |z|2s. (45)
By the two results above, we have

|f ′′(u)| =

∣∣∣∣∣qs(qs − 1
)
|x− uz|q−2s

s [M ′(u)]2 +M ′′(u)
q

s
|x− uz|q−ss

∣∣∣∣∣
≤ q|q − s| · |x− uz|q−2

s |z|2s + q(s− 1)|x− uz|q−2
s |z|2s

≤ q
[
|q − s|+ (s− 1)

](
|x|s + |uz|s

)q−2|z|2s. (46)

Since u ∈ [0, α], it follows that

sup
u∈[0,α]

|f ′′(u)| ≤ q
[
|q − s|+ (s− 1)

](
|x|s + α|z|s

)q−2|z|2s. (47)

This completes the proof.

Existence of solution to (13): To see the existence of the solution αs,q in

1− qµα+
q
[
|q − s|+ (s− 1)

]
L2
s,q

2
α2(1 + αLs,q)

q−2 = 1.

denote the function α 7→ F (α) = −µ+cα(1+L)q−2 for the constant c = [|q−s|+(s−1)]L2/2 > 0
and L = Ls,q . For any q ≥ 2, and any α > 0, F ′(α) = c[(1+Lα)q−2+α(q−2)L(1+Lα)q−3] > 0,
proving that F (α) is strictly increasing on α > 0. Since F (0) = −µ < 0 and F (∞) = +∞, the
unique root to F (α) = 0 exists.
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Proof of Lemma 2. Define φ(t) = ∥|x+ ty|s∥2q for t ∈ [0, 1]. Then

φ′(t) =
2

q

[
E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−1 q

s
E
[{ d∑

j=1

(xj + tyj)
s
}q/s−1 d∑

j=1

s(xj + tyj)
s−1yj

]

= 2
[
E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−1

E
[{ d∑

j=1

(xj + tyj)
s
}q/s−1 d∑

j=1

(xj + tyj)
s−1yj

]
and

φ′′(t) = 2
(2
q
− 1
)[

E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−2

· q
s
· s
∣∣∣E[{ d∑

j=1

(xj + tyj)
s
}q/s−1 d∑

j=1

(xj + tyj)
s−1yj

]∣∣∣2
+ 2
[
E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−1

· E
[(q

s
− 1
){ d∑

j=1

(xj + tyj)
s
}q/s−2

s
{ d∑
j=1

(xj + tyj)
s−1yj

}2]

+ 2
[
E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−1

E
[{ d∑

j=1

(xj + tyj)
s
}q/s−1

(s− 1)

d∑
j=1

(xj + tyj)
s−2y2j

]
=: ∆1(t) + ∆2(t) + ∆3(t)

Since q ≥ 2, ∆1(t) ≤ 0.

Case I. If q/s− 1 ≤ 0, then ∆2(t) ≤ 0 and φ′′(t) ≤ ∆3(t). By Hölder’s inequality,
d∑
j=1

(xj + tyj)
s−2y2j ≤

{ d∑
j=1

(xj + tyj)
s
}(s−2)/s( d∑

j=1

ysj

)2/s
Consequently,

∆3(t) ≤ 2(s− 1)
[
E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−1

· E
[{ d∑

j=1

(xj + tyj)
s
}q/s−1{ d∑

j=1

(xj + tyj)
s
}(s−2)/s( d∑

j=1

ysj

)2/s]

= 2(s− 1)
[
E
{ d∑
j=1

(xj + tyj)
s
}q/s]2/q−1

E
[{ d∑

j=1

(xj + tyj)
s
}(q−2)/s( d∑

j=1

ysj

)2/s]

= 2(s− 1)∥|x+ ty|s∥2−qq E
[{ d∑

j=1

(xj + tyj)
s
}(q−2)/s( d∑

j=1

ysj

)2/s]
≤ 2(s− 1)∥|x+ ty|s∥2−qq ∥|x+ ty|s∥q−2

q ∥|y|s∥2q
= 2(s− 1)∥|y|s∥2q.

Case II. If q/s− 1 > 0, by Hölder’s inequality,{ d∑
j=1

(xj + tyj)
s−1yj

}2

=
{ d∑
j=1

(xj + tyj)
s/2(xj + tyj)

s/2−1yj

}2

≤
d∑
j=1

(xj + tyj)
s

d∑
j=1

(xj + tyj)
s−2y2j .
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Therefore,

∆2(t) ≤ ∆3(t)
q − s

s− 1

and

φ′′(t) ≤ ∆2(t) + ∆3(t) ≤ ∆3(t)
q − 1

s− 1
≤ 2(q − 1)∥|y|s∥2q.

Then, we have∥∥|x+ y|s
∥∥2
q
= φ(1) = φ(0) + φ′(0) +

∫ 1

0

(1− t)φ′′(t) dt

≤
∥∥|x|s∥∥2q + 2

∥∥|x|s∥∥2−qq
E
(
|x|q−ss

d∑
j=1

xs−1
j yj

)
+
(
max{q, s} − 1

)∥∥|y|s∥∥2q.

Proof of Theorem 1. Consider the iterated random function

F : Rd × R 7→ R, (β, ξ) 7→ Fξ(β) = β − α∇g(β, ξ). (48)

To prove GMC in Theorem 1, it suffices to show that, for some q ≥ 2 and even integer s ≥ 2, for any
fixed vectors β,β′ ∈ Rd,

∥|Fξ(β)− Fξ(β
′)|s∥q ≤ rα,s,q|β − β′|s.

Recall the inequality in Lemma 2. For x and y therein, we choose them to be x = β − β′ and
y = −α(∇g(β, ξ)−∇g(β′, ξ)) respectively. Then, it directly follows from Lemma 2 that

∥|Fξ(β)− Fξ(β
′)|s∥2q

≤ |β − β′|2s − 2α|β − β′|2−qs E
[
|β − β′|q−ss

〈
(β − β′)s−1,∇g(β, ξ)−∇g(β′, ξ)

〉]
+ α2(max{q, s} − 1)∥|∇g(β, ξ)−∇g(β′, ξ)|s∥2q

= |β − β′|2s − 2α|β − β′|2−ss

〈
(β − β′)s−1, G(β)−G(β′)

〉
+ α2(max{q, s} − 1)∥|∇g(β, ξ)−∇g(β′, ξ)|s∥2q.

This along with Assumptions 2 and 3 yields

∥|Fξ(β)− Fξ(β
′)|s∥2q ≤

(
1− 2αµ+ α2(max{q, s} − 1)L2

s,q

)
|β − β′|2s,

which completes the proof.

8.5 Proofs for Section 3.1

Proof of Proposition 1. Recall (17) and let ∇G(β) =
(
∇G1(β), . . . ,∇Gd(β)

)⊤
with

∇Gi(β) = ∂G(β)/∂βi =
(
E[∇g(β, ξ)]

)
i
, i = 1, . . . , d. (49)

Since the random samples ξk, k ≥ 1, are independent, it follows that for the k-th iteration, ξk is
independent of βk−1. Then, by the tower rule, for all k ≥ 1,

Eξ

[
∇g(βk−1, ξk)−∇G(βk−1) | βk−1

]
= Eξ[∇g(βk−1, ξk)−∇G(βk−1)] = 0. (50)

Therefore, by applying the high-dimensional moment inequality (16) in Lemma 2, we obtain∥∥|βk − β∗|s
∥∥2
q
≤
∥∥|βk−1 − β∗ − α∇G(βk−1)|s

∥∥2
q

+ (max{q, s} − 1)α2
∥∥|∇g(βk−1, ξk)−∇G(βk−1)|s

∥∥2
q
. (51)
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For the second part in (51), noting that ∇G(β∗) = 0, by the triangle inequality, we have∥∥|∇g(βk−1, ξk)−∇G(βk−1)|s
∥∥2
q

≤
(∥∥|∇g(βk−1, ξk)−∇g(β∗, ξk)|s

∥∥
q
+
∥∥|∇G(βk−1)−∇G(β∗)|s

∥∥
q
+
∥∥|∇g(β∗, ξk)|s

∥∥
q

)2
≤ 3
∥∥|∇g(βk−1, ξk)−∇g(β∗, ξk)|s

∥∥2
q
+ 3
∥∥|∇G(βk−1)−∇G(β∗)|s

∥∥2
q
+ 3
∥∥|∇g(β∗, ξk)|s

∥∥2
q
.

(52)

Since | · |s is a convex function for s ≥ 1, we have |E[·]|s ≤ E[| · |s]. Thus, for all q ≥ 1, by Jensen’s
inequality, we can bound

|∇G(βk−1)−∇G(β∗)|s =
∣∣Eξ

[
∇g(βk−1, ξk)−∇g(β∗, ξk)

]∣∣
s

≤ Eξ

[∣∣∇g(βk−1, ξk)−∇g(β∗, ξk)
∣∣
s

]
≤
(
Eξ

∣∣∇g(βk−1, ξk)−∇g(β∗, ξk)
∣∣q
s

)1/q
. (53)

This along with Assumption 3 yields∥∥|∇G(βk−1)−∇G(β∗)|s
∥∥
q
≤
(
EβEξ

∣∣∇g(βk−1, ξk)−∇g(β∗, ξk)
∣∣q
s

)1/q
=
∥∥∥∣∣∇g(βk−1, ξk)−∇g(β∗, ξk)

∣∣
s

∥∥∥
q

≤ Ls,q
∥∥|βk−1 − β∗|s

∥∥
q
. (54)

Inserting this result back into (52), we obtain a bound for the second term in (51) using∥∥|∇g(βk−1, ξk)−∇G(βk−1)|s
∥∥2
q
≤ 6L2

s,q

∥∥|βk−1 − β∗|s
∥∥2
q
+ 3
∥∥|∇g(β∗, ξk)|s

∥∥2
q
. (55)

For the first term in (51), by applying Lemma 2 again, it follows from Assumptions 2 and 3 that∥∥|βk−1 − β∗ − α∇G(βk−1)|s
∥∥2
q

≤
∥∥|βk−1 − β∗|s

∥∥2
q
− 2α

∥∥|βk−1 − β∗|s
∥∥2−q
q

E
(
|βk−1 − β∗|q−ss

d∑
j=1

(βk−1 − β∗)s−1
j ∇Gj(βk−1)

)
+ α2(max{q, s} − 1)

∥∥|∇G(βk−1)−∇G(β∗)|s
∥∥2
q

≤
(
1− 2αµ+ α2(max{q, s} − 1)L2

s,q

)∥∥|βk−1 − β∗|s
∥∥2
q
. (56)

Inserting this inequality and (55) into (51), we obtain the inequality

∥|βk − β∗|s∥2q ≤
(
1− 2αµ+ 7(max{q, s} − 1)α2L2

s,q

)
∥|βk−1 − β∗|s∥2q

+ 3(max{q, s} − 1)α2∥|∇g(β∗, ξk)|s∥2q.

The desired result is achieved since ∥|∇g(β∗, ξk)|s∥q ≤ Ms,q by Assumption 3. As a special case,
for the stationary SGD iterates β◦

k ∼ πα, k ≥ 1, we obtain the same result.

Proof of Theorem 2. First, we denote the contraction constant in Proposition 1 as follows

r̃α,s,q := 1− 2αµ+ 7(max{q, s} − 1)α2L2
s,q. (57)

Given the range of the constant learning rate α, we have r̃α,s,q < 1. Moreover, notice that

3(max{q, s} − 1)α2∥|∇g(β∗, ξk)|s∥2q = O
(
max{q, s}α2M2

s,q

)
. (58)

Therefore, for the stationary SGD iterates β◦
k ∼ πα, by Proposition 1, we can obtain

∥|β◦
k − β∗|s∥2q ≤ r̃α,s,q∥|β◦

k−1 − β∗|s∥2q +O
(
max{q, s}α2M2

s,q

)
. (59)
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Since the SGD iterates β◦
k satisfy the geometric-moment contraction in Theorem 1, following Remark

2 in Wu and Shao [2004], the recursion β◦
k = β◦

k−1 − α∇g(β◦
k−1, ξk) also holds for k ≤ 0. Thus,

we can recursively apply the inequality above and achieve

∥|β◦
k − β∗|s∥2q ≤ O

(
max{q, s}α2M2

s,q

)
·

∞∑
i=0

r̃iα,s,q

=
1

1− r̃α,s,q
O
(
max{q, s}α2M2

s,q

)
= O

(
max{q, s}αM2

s,q

)
. (60)

This finishes the proof for the stationary SGD sequence.

Furthermore, for the general SGD iterates βk in (2) that may not have the stationary initialization, we
apply the geometric-moment contraction in Theorem 1 and obtain

∥|βk − β∗|s∥q ≤ ∥|βk − β◦
k|s∥q + ∥|β◦

k − β∗|s∥q
≤ rkα,s,q∥|β0 − β◦

0 |s∥q +O
(
Ms,q

√
max{q, s}α

)
, (61)

which completes the proof.

8.6 Functional Dependence Measure in Time Series

The functional dependence measure in time series [Wu, 2005] is a key concept in our analysis. For
that we view the high-dimensional SGD iterates {βk}k∈N as a nonlinear autoregressive (AR) process.
Recall that ξk, k ∈ Z, are i.i.d. Define the shift process Fk = (ξk, ξk−1, . . .) and its coupled version
Fk,{l} = (ξk, . . . , ξl+1, ξ

′
l, ξl−1, . . .), l ≤ k, where ξ′l is an i.i.d. copy of ξl.

The stationary sequence {β◦
k}k∈Z can be represented by a functional system
β◦
k = hα(ξk, ξk−1, . . .) = hα(Fk), k ≥ 1, (62)

where hα is a measurable function that depends on α [Wiener, 1958, Wu, 2005]. Define the coupled
version of β◦

k by
β◦
k,{l} = hα(ξk, . . . , ξl+1, ξ

′
l, ξl−1, . . .) = hα(Fk,{l}), l ≤ k. (63)

The next lemma provides a bound for the functional dependence measure ∥|β◦
k − β◦

k,{l}|s∥q. It is
later used to derive the moment bounds and the tail probability of the ASGD iterates.
Lemma 11. Consider the stationary SGD sequence {β◦

k}k≥1. Suppose that Assumptions 2 and 3
hold with some q ≥ 2 and even integer s ≥ 2. Then, for all k ≥ 1 and l ≤ k, we have

∥|β◦
k−β◦

k,{l}|s∥
2
q ≤ 4α2

(
1− 2αµ+7(max{q, s}− 1)α2L2

s,q

)k−l(
L2
s,q∥|β◦

l−1−β∗|s∥2q +M2
s,q

)
.

Proof of Lemma 11. By applying Lemma 2, it follows from similar arguments as in the proof of
Proposition 1 that, for each l ≤ k − 1,

∥|β◦
k − β◦

k,{l}|s∥
2
q ≤

(
1− 2αµ+ 7(max{q, s} − 1)α2L2

s,q

)k−l∥|β◦
l − β◦

l,{l}|s∥
2
q. (64)

By Assumption 3, for all l ≥ 1,
∥|∇g(β◦

l−1, ξl)|s∥2q ≤ 2∥|∇g(β◦
l−1, ξl)−∇g(β∗, ξl)|s∥2q + 2∥∇g(β∗, ξl)|s∥2q

≤ 2L2
s,q∥|β◦

l−1 − β∗|s∥2q + 2M2
s,q, (65)

which yields
∥|β◦

l − β◦
l,{l}|s∥

2
q = α2∥|∇g(β◦

l−1, ξl)−∇g(β◦
l−1, ξ

′
l)|s∥2q

≤ α2
(
2∥|∇g(β◦

l−1, ξl)|s∥2q + 2∥|∇g(β◦
l−1, ξ

′
l)|s∥2q

)
≤ 4α2

(
L2
s,q∥|β◦

l−1 − β∗|s∥2q +M2
s,q

)
(66)

Recall ∥|∇g(β∗, ξk)|s∥q ≤ Ms,q by Assumption 3. Therefore,

∥|β◦
k − β◦

k,{l}|s∥
2
q ≤ 4α2

(
1− 2αµ+ 7(max{q, s} − 1)α2L2

s,q

)k−l
·
(
L2
s,q∥|β◦

l−1 − β∗|s∥2q +M2
s,q

)
. (67)

This completes the proof.
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8.7 Proofs for Section 3.2

In this section, we provide the proofs for the convergence results of ASGD in Section 3.2, which can
be decomposed into the proofs for Theorems 6 to 8 in Section 6.

Proof of Theorem 7. Recall the i.i.d. random samples ξk = (yk,xk), the filtration Fk =
(ξk, ξk−1, . . .) and its coupled version Fk,{l} = (ξk, . . . , ξl+1, ξ

′
l, ξl−1, . . .), l ≤ k, where ξ′l is

an i.i.d. copy of ξl. Following Wu [2005], we introduce the projection operator

Pl[·] = E[· | Fl]− E[· | Fl−1].

Then, we can rewrite the centered ASGD into

β̄◦
k − E[β̄◦

k] =
1

k

k∑
i=1

i−1∑
l=0

Pi−l(β◦
i ) =

1

k

k−1∑
l=0

k∑
i=l+1

Pi−l(β◦
i ). (68)

Since {Pi−l(β◦
i )}i≥l+1 is a sequence of martingale differences over i for each l = 0, 1, . . . , i− 1,

following Lemma D.2 in Zhang and Wu [2021] and triangle inequality, we can obtain

∥|β̄◦
k − E[β̄◦

k]|s∥q =
∥∥∥∣∣∣1

k

k−1∑
l=0

k∑
i=l+1

Pi−l(β◦
i )
∣∣∣
s

∥∥∥
q

≤ 1

k

k−1∑
l=0

∥∥∥∣∣∣ k∑
i=l+1

Pi−l(β◦
i )
∣∣∣
s

∥∥∥
q

≤ 1

k

k−1∑
l=0

(
cq · s

k∑
i=l+1

∥∥|Pi−l(β◦
i )|s

∥∥2
q

)1/2
. (69)

By Theorem 1 in Wu [2005], we have

∥|Pi−l(β◦
i )|s∥q ≤ ∥|β◦

i − β◦
i,{i−l}|s∥q. (70)

This along with Lemma 11 and definition of r̃α,s,q in (58) yields

∥|Pi−l(β◦
i )|s∥2q ≤ 4α2

(
1− 2αµ+ 7(max{q, s} − 1)α2L2

s,q

)l
·
(
L2
s,q∥|β◦

i−l−1 − β∗|s∥2q +M2
s,q

)
= 4α2r̃lα,s,q

(
L2
s,q∥|β◦

i−l−1 − β∗|s∥2q +M2
s,q

)
. (71)

Recall rα,s,q in (6) and r̃α,s,q in (58). For some constant ω > 0 such that

ω ≤ min
{ 1

α
, 2µ− 7(max{q, s} − 1)αL2

s,q

}
, (72)

we have 1− ωα ≥ 0 and
rα,s,q ≤ r̃α,s,q ≤ 1− ωα < 1. (73)

Consequently, we can further bound (69) by

∥|β̄◦
k − E[β̄◦

k]|s∥q

≤ 1

k

k−1∑
l=0

[
4cqsα

2(1− ωα)l
k∑

i=l+1

(
L2
s,q∥|β◦

i−l−1 − β∗|s∥2q +M2
s,q

)]1/2

=
1

k

k−1∑
l=0

[
4cqsα

2(1− ωα)l
(
L2
s,q

k∑
i=l+1

∥|β◦
i−l−1 − β∗|s∥2q + (k − l)M2

s,q

)]1/2

≤ 1

k

k−1∑
l=0

[
2α

√
cqs(1− ωα)l/2Ls,q

√√√√ k∑
i=l+1

∥|β◦
i−l−1 − β∗|s∥2q

]

+
1

k

k−1∑
l=0

[
2α

√
cqs(1− ωα)l/2

√
(k − l)Ms,q

]
=: I1 + I2. (74)
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For the term I1, it follows from Theorem 2 and expression (58) that

k∑
i=l+1

∥|β◦
i−l−1 − β∗|s∥2q ≤

k∑
i=l+1

(
6M2

s,q(max{q, s} − 1)α
)

= 6α(k − l)(max{q, s} − 1)M2
s,q. (75)

Inserting this back into (74) gives

I1 ≤
2α

√
cqsLs,q

k

k−1∑
l=0

(1− ωα)l/2Ms,q

√
6α(k − l)(max{q, s} − 1)

≤ √
cqsLs,q ·

c1
√
α√
k

Ms,q

√
max{q, s} − 1, (76)

for some constant c1 > 0, where the last inequality is due to

k−1∑
l=0

(1− ωα)l/2
√
k − l ≤

√
k

k−1∑
l=0

(1− ωα)l/2 = O
(√k

ωα

)
. (77)

Similarly, for some constant c2 > 0,

I2 ≤
c2
√
cqs√
k

Ms,q. (78)

Combining the results of I1 and I2, we obtain the claimed inequality

∥|β̄◦
k − E[β̄◦

k]|s∥q ≤
√

cqs

k

(
c1Ls,q

√
αMs,q

√
max{q, s} − 1 + c2Ms,q

)
.

Proof of Theorem 6. For the ASGD sequence {β̄k}k∈N with arbitrarily fixed initialization β0 ∈ Rd
and the stationary ASGD sequence {β̄◦

k}k∈N with β◦
0 ∼ πα, we have

∥|β̄k − β̄◦
k|s∥q =

1

k

∥∥∥∣∣∣ k∑
i=1

(βi − β◦
i )
∣∣∣
s

∥∥∥
q

≤ 1

k

k∑
i=1

∥|βi − β◦
i |s∥q. (79)

For each 1 ≤ i ≤ k, it follows from the geometric-moment contraction in Theorem 1 that

∥|βi − β◦
i |s∥q ≤ riα,s,q∥|β0 − β◦

0 |s∥q. (80)

Recall that rα,s,q = 1− 2µα+ (max{q, s} − 1)L2
s,qα

2 < 1 in (6). Therefore,

∥|β̄k − β̄◦
k|s∥q ≤

1

k
·
rα,s,q(1− rkα,s,q)

1− rα,s,q
∥|β0 − β◦

0 |s∥q ≤
1

k
· 1

1− rα,s,q
∥|β0 − β◦

0 |s∥q. (81)

The desired result is achieved.

Proof of Theorem 8. Without loss of generality, assume β∗ = 0. We use the notation (17) for the
derivatives of G. Notice that

∇G(β∗) = ∇G(0) = 0. (82)
Consider the stationary SGD recursion

β◦
k = β◦

k−1 − α∇g(β◦
k−1, ξk), k ≥ 1.

By taking the expectation on the both sides, we obtain, for all k ≥ 1,

E[∇G(β◦
k−1)] = 0. (83)
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Throughout the rest of the proof, we omit the iteration index k and write β = β◦
k−1 when no

confusion is caused. For notational convenience, write β = (β1, . . . , βd)
⊤.

A first-order Taylor expansion on ∇G(β) at β∗ = 0 gives

0 = E[∇G(β)] = ∇G(0) +∇2G(0)E[β] +R(β), (84)

where ∇2G(0) is the d× d Jacobian matrix with entries defined by

[∇2G(0)]i,j =
∂2

∂βi∂βj
G(β)

∣∣∣
β=0

, 1 ≤ i, j ≤ d, (85)

and R(β) is the d-dimensional remainder defined as

R(β) =

∫ 1

0

E
(
[∇2G(tβ)−∇2G(0)]β

)
dt. (86)

The i-th entry of R(β) can be rewritten into

Ri(β) =

∫ 1

0

(1− t)E
(
β⊤∇3Gi(tβ)β

)
dt, (87)

where ∇3Gi(β), 1 ≤ i ≤ d, is a d× d matrix whose entries are

[∇3Gi(β)]l,r =
∂3

∂βi∂βl∂βr
G(β), 1 ≤ l, r ≤ d. (88)

Since ∇G(0) = 0 and ∇2G(0) is invertible given that λmin[∇2G(0)] > 0, it follows from equa-
tion (84) that

E[β] = −[∇2G(0)]−1E[R(β)]. (89)

We only need to bound |E[R(β)]|s using Theorem 2, that is E[|β◦
k − β∗|s]2 = O(max{q, s}α) for

all k ≥ 1.

Let v = β/|β|s. For each i = 1, . . . , d,

E[Ri(α)] =

∫ 1

0

(1− t)E[β⊤∇3Gi(tβ)β] dt

=

∫ 1

0

(1− t)E[|β|2sv⊤∇3Gi(tβ)v] dt. (90)

By Hölder’s inequality, for 1/p+ 1/q = 1,

E[|β|2sv⊤∇3Gi(tβ)v] ≤ (E[|β|2qs ])1/q · (E(v⊤∇3Gi(tβ)v)
p)1/p. (91)

Again by Hölder’s inequality,

E[(v⊤∇3Gi(tβ)v)
p] ≤ dp(1−

2
s ) sup

|v|s=1

E|∇3Gi(tβ)v|ps . (92)

Therefore, by Theorem 2 and Lemma 10,

E[β] ≲ M2
s,qmax{q, s}αd

q
q−1 ·(1−

2
s ) max

1≤i≤d
∥∇3Gi(β)∥∞, (93)

where the matrix norm

∥∇3Gi(β)∥∞ := max
1≤j1≤d

d∑
j2=1

∣∣∣(∇3Gi(β)
)
1≤j1,j2≤d

∣∣∣. (94)

Finally, given the uniform bound max1≤i≤d ∥∇3Gi(β)∥∞ < ∞,

E[β] = O
(
M2
s,qmax{q, s}αd

q
q−1 ·(1−

2
s )
)
, (95)

which finishes the proof.
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8.8 Proofs for Section 4

Proof of Theorem 4. By Theorem 6, we have ∥|β̄k − β̄◦
k|s∥q ≲ 1/(kα)∥|β0 − β◦

0 |s∥q and conse-
quently, it follows that

P(|β̄k − β̄◦
k|s > z) ≲

∥|β0 − β◦
0 |s∥qq

(kαz)q
, z > 0. (96)

Then it suffices to upper bound P(|β̄◦
k − β∗|s > z). To this end, we first bound the dependence

adjusted norm (Section 2 in Zhang and Wu [2017]) for {β◦
k}k≥1. By Theorem 1, elementary

calculations yield

∥|β◦
k − E[β◦

k]|s∥q,1/2−1/q = O

(
Ms,q

α1/2−1/q

)
.

Consequently, by Theorem 6.2 in Zhang and Wu [2017] and Theorem 8, we have

P(|β̄◦
k − β∗|s > z) ≲

(log d)3q/2(log k)1+2qMq
s,q

zqkq−1αq/2−1
+ exp

(
−Ckz2α1−2/q

M2
s,q log d

)
.

Combining this with (96) completes the proof.

Theorem 9 (Theorem 3.1 in [Mies and Steland, 2023]). Let (ϵi)i∈Z be i.i.d. random variables and
ϵk = (ϵk, ϵk−1, . . .). Assume Xk = Gk(ϵk) ∈ Rd with E[Xk] = 0 for some measurable function
Gk. For any k, denote ϵ̃k,j = (ϵk, . . . , ϵj+1, ϵ̃j , ϵj−1, . . .) with ϵ̃j an i.i.d. copy of ϵj . Assume there
exist Θ > 0 and q > 2, such that for all k,

(E|Gk(ϵk)−Gk(ϵ̃k,k−j)|q2)1/q ≤
Θ

(j ∨ 1)3
, for all j ≥ 0, and (E|Gk(ϵ0)|q2)1/q ≤ Θ. (97)

Additionally, assume that for some Γ ≥ 1,
n∑
k=2

(E|Gk(ϵ0)−Gk−1(ϵ0)|22)1/2 ≤ Γ ·Θ. (98)

If d ≤ cn for some c > 0, then on a potentially different probability space, there exist random vectors
(X ′

k)
n
k=1 =D (Xk)

n
k=1 and independent, mean zero, Gaussian random vectors

Y ∗
k ∼ N

(
0,

∞∑
h=−∞

Cov
(
Gk(ϵ0), Gk(ϵh)

))
such that (

Emax
m≤n

∣∣∣ 1√
n

m∑
k=1

(X ′
k − Y ∗

k )
∣∣∣2
2

)1/2

≤ CΘΓ
1
4

√
log(n)

( d
n

) q−2
6q−4

,

for some constant C depending on (q, c).

Instead of univariate ϵi, we apply Theorem 3.1 with vector-valued i.i.d. inputs ξi. The theorem still
applies as the proof depends only on the i.i.d. random elements and their Lq bounds but not on the
dimension of ξi.

Proof of Theorem 5. To prove the Gaussian approximation we will apply Theorem 9 (Theorem 3.1 in
Mies and Steland [2023]) with Gk ≡ G = hα defined in (62) since β◦

k is stationary. We now verify
the conditions (97) and (98).

Recall the functional dependence measure ∥|β◦
k − β◦

k,{l}|s∥q introduced in Section 8.6.Throughout
the proof, the q-th moment of the Euclidean norm is denoted by

∥ · ∥q :=
∥∥| · |2∥∥q.

Set

ρ2α,q := 1− 2αµ+ 7(max{q, 2} − 1)α2L2
2,q, Cα,q := 2α

√
cL2

2,qmax{q, 2}α+ 1 (99)
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for some constant c > 0. If c is chosen sufficiently large, then, by Lemma 11 and Theorem 2, for all
k ≥ 1 and l ≤ k, we have

∥β◦
k − β◦

k,{l}∥
2
q ≤ 4α2ρ2(k−l)α,q

(
L2
2,q∥β◦

l−1 − β∗∥2q +M2
2,q

)
≤ 4α2ρ2(k−l)α,q M2

2,q

(
cL2

2,qmax{q, 2}α+ 1
)

= C2
α,qρ

2(k−l)
α,q M2

2,q.

For α ∈ (0, αsd,q), it follows that ρα,q < 1. Let l = k − j. Then, for a sufficiently large constant
C ′
α,q, we have

∥β◦
k − β◦

k,{k−j}∥q ≤ Cα,qM2,qρ
j
α,q ≤ C ′

α,qM2,q(j + 1)−3. (100)

Therefore, the condition (97) holds with Θ = C ′
α,qM2,q. This verifies the first part of condition 97.

For the second part of condition 97, by Assumption 3 and Theorem 2, for some constant C ′′
α,q > 0,

∥hα(ξ0, ξ−1, . . .)∥q = ∥β◦
0∥q ≤ ∥β◦

0 − β∗∥q + |β∗|2 ≤ C ′′
α,qM2,q < ∞. (101)

Moreover, since β◦
k is stationary, Gk = Gk−1 = hα and the left hand side of (98) is zero. Thus,

condition (98) is trivially satisfied with Γ = 1.

Finally, we show that the long-run covariance matrix Ξ =
∑∞
k=−∞ Cov(β◦

0 ,β
◦
k) is well defined in

the sense that the spectral norm ∥Ξ∥s is finite. Following (63), denote

β◦
k,{≤l} := β◦

k,{...,l−1,l} = hα(ξk, . . . , ξl+1, ξ
′
l, ξ

′
l−1, . . .) = hα(Fk,{...,l−1,l}), l ≤ k. (102)

Since β◦
k,{≤0} is independent of β◦

0 , we have

Cov(β◦
0 ,β

◦
k) = E[β◦

0β
◦⊤
k ]− E[β◦

0 ]E[β◦⊤
k ]

= E[β◦
0β

◦⊤
k ]− E[β◦

0 ]E[β◦⊤
k,{≤0}]

= E
[
β◦
0(β

◦
k − β◦

k,{≤0})
⊤]. (103)

We can rewrite the difference as a telescoping sum,

β◦
k − β◦

k,{≤0} =

∞∑
l=0

(
β◦
k,{≤−l+1} − β◦

k,{≤−l}
)
. (104)

By stationarity and (100), it follows that∥∥β◦
k,{≤−l+1} − β◦

k,{≤−l}
∥∥
2
=
∥∥β◦

k,{−l+1} − β◦
k,{−l}

∥∥
2
≤ Cα,2M2,2ρ

k+l+1
2,2 . (105)

For the spectral norm,∥∥Cov(β◦
0 ,β

◦
k)
∥∥
s
= sup

u,v∈Rd,|u|2=|v|2=1

Ev⊤β◦
0(β

◦
k − β◦

k,{≤0})
⊤u

≤ sup
u,v∈Rd,|u|2=|v|2=1

[E(v⊤β◦
0)

2]1/2
[
E[(β◦

k − β◦
k,{≤0})

⊤u]2
]1/2

≤
∥∥β◦

0

∥∥
2

∥∥β◦
k − β◦

k,{≤0}
∥∥
2
, (106)

where the first inequality is by Cauchy-Schwarz and the last inequality uses (u⊤β◦
0)

2 ≤ |β◦
0 |2 with

|u|2 = 1. This, along with M2,2 < ∞ (Assumption 3) yields∥∥Cov(β◦
0 ,β

◦
k)
∥∥
s
≤ ∥β◦

0∥2∥β◦
k − β◦

k,{≤0}∥2 ≤ C ′
αρ

k
α,2, (107)

for some constant C ′
α > 0. As a direct consequence,

∥Ξ∥s ≤
∥∥E[β◦

0β
◦⊤
0 ]
∥∥
s
+ 2

∞∑
k=1

C ′
αρ

k
α,2 < ∞. (108)

This completes the proof.
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Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Answer: [NA]
Justification: This paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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Answer: [NA]
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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