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Abstract

Chemical synthesis remains a critical bottleneck in the discovery and manufacture
of functional small molecules. AI-based synthesis planning models could be a
potential remedy to find effective syntheses, and have made progress in recent years.
However, they still struggle with less frequent, yet critical reactions for synthetic
strategy, as well as hallucinated, incorrect predictions. This hampers multi-step
search algorithms that rely on models, and leads to misalignment with chemists’
expectations. Here we propose RetroChimera: a frontier retrosynthesis model,
built upon two newly developed components with complementary inductive biases,
which we fuse together using a new framework for integrating predictions from
multiple sources via a learning-based ensembling strategy. Through experiments
across several orders of magnitude in data scale and splitting strategy, we show
RetroChimera outperforms all major models by a large margin, demonstrating
robustness outside the training data, as well as for the first time the ability to learn
from even a very small number of examples per reaction class. Moreover, industrial
organic chemists prefer predictions from RetroChimera over the reactions it was
trained on in terms of quality, revealing high levels of alignment. With the new
dimensions that our model unlocks, we anticipate further acceleration towards full
lab-in-the-loop automation of synthesis planning and execution.

1 Introduction

Chemical synthesis is central to the discovery and supply of small molecule-based therapeutics,
materials, and fine chemicals. However, as syntheses often fail, and thus constitute a critical
bottleneck, using computational methods to propose better synthesis routes is highly desirable [1–3].
Computer-aided synthesis planning has a long research history, with tools traditionally implemented
via rule-based expert systems [4–6]. However, over several decades progress had been limited [6].
Since 2017, significant advancements have been made, along two directions. First, the expert
system approach of manually coding reaction rules has been reimplemented [7, 8] by Szymkuc
and coworkers, and has been experimentally validated [9, 10]. Second, by re-framing synthesis
planning as a machine learning (ML) problem, where deep neural networks are trained on large
reaction datasets to predict synthetic disconnections and reaction outcomes, which are then coupled
with neural-guided search, a paradigm shift has been achieved [11–13]. Since then, several new
ML models [14–30] and search algorithms [31–34] have been introduced. Incorporated into readily
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Figure 1: a, In retrosynthesis, potentially multiple reactions towards the same target molecule need to be
predicted. b, Prior work on computer-aided synthesis demonstrated limitations. c, Our framework for ensemble-
based retrosynthesis with learned reranking which underpins RetroChimera. The ensemble receives a target
molecule as the input, which is then processed by the constituent models. The model outputs are then aggregated
using a learning-to-rank strategy. While in this work we only investigate deep learning models as prediction
sources (solid boxes), it is possible to add additional sources, for example calls to reaction databases or human-
in-the-loop queries, which will be addressed in future work (dashed box).

available tools for retrosynthetic search, which are increasingly used in computational workflows and
as a source of inspiration for chemists during route planning, ML-based synthesis planning has also
been experimentally validated [2, 13, 35, 36].

While conceptually ML-based synthesis planning promises favorable scaling with the ever-growing
body of organic chemistry knowledge in the literature, patents, and electronic laboratory notebooks,
so far, compared to hand-coded expert systems, ML-based planning suffered from requiring very
large datasets, limited accuracy in particular for rarer reaction classes, limited robustness further away
from the training distribution, and reduced acceptance by chemists [3]. In addition, chemists often
combine multiple strategies, from direct pattern matching to envisioning new transformations, which
computational approaches currently do not reflect.

In this work, we present a framework for retrosynthesis prediction that ensembles models with
diverse inductive biases using a learning-to-rank strategy. Instantiated with two new state-of-the-art
models, also introduced here – one based on Graph Neural Networks using molecular edit rules
and one on de-novo generation using a modern Transformer – we obtain RetroChimera, which
achieves high accuracy on common and rare reactions alike, increased robustness, as well as superior
performance in multi-step search. Furthermore, we show quantitatively that organic chemists prefer
RetroChimera over reported reactions from the literature, and elucidate the ability of our probabilistic
model to learn robustly even when presented with partially noisy training data.

2 Computer-Aided Synthesis Planning

Systems for Computer-Aided Synthesis Planning usually perform retrosynthesis, i.e. predicting
transformations which correspond to reverse chemical reactions starting with the target molecule,
and have four components: (1) a single-step model or algorithm to propose transformations that
correspond to feasible reactions in the forward direction, (2) a search algorithm that chains together
transformations into multi-step routes, (3) ranking criteria for the routes, and (4) admissible building
block molecules into which the target has to be deconstructed [3, 37]. Thus, an accurate single-step
model is crucial as it defines the search space of possible reactions to explore. As the model is called
recursively during search, the requirements for accuracy are very strict, as errors compound with
multiple steps, and a single error will invalidate the entire route. In addition, it is critical for the model
to cover a large chemical reaction space, so that strategic yet rare transformations are not missed.
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Current single-step models can be classified into editing models, which change only the parts of the
molecule involved in the reaction, e.g. make or break bonds and add leaving groups, or de-novo
models, which generate the reactant structures from scratch, including regeneration of the unchanged
parts. While in recent years several models have been proposed, high accuracy still poses a significant
challenge, especially for reaction types of lower precedence [10, 12, 38–41]. However, rarer reactions
are often highly specific and strategically useful [10].

3 Ensembling

Model ensembling is a technique where models trained to perform the same task are combined to
obtain better performance than any of them would in isolation [42]. Generally, ensembles work best
when the models are diverse [43]. In retrosynthesis prediction, several options of ensembling exist.
Instead of directly ensembling in token probability space, which can only be applied to autoregressive
models, we can perform count-based ensembling in molecule space by aggregating outputs shared by
ensembled models, which we hypothesize to be more expressive. Moreover, count-based ensembling
is more versatile, as it can ensemble any set of models, as well as non-model sources of reactions; for
example, it would allow to mix in proposals coming from lookups in reaction databases.

Here, we propose to merge several output lists based on overlaps between them, which for the first
time leads to substantial gains over the ensembled models. Given outputs ri,k from m models where
ri,k is the k-th prediction from the i-th model, we rank unique reactant sets r by decreasing score(r):

score(r) =
m∑
i=1

kmax∑
k=1

1[r = ri,k] · θi,k, (1)

where kmax is maximum number of predictions considered per model and θ ∈ Rm×kmax
+ ; we omit

the dependence on θ for clarity. In other words, reactant set predicted at rank k by model i is assigned
score θi,k, with scores summed across models. Intuitively, reactions ranking highly across several
models will be assigned a larger score than those suggested by a single model. Inspired by work on
learning to rank [44], we learn θ from predictions on the validation set Dval by minimizing

Lrank = E(p,r+)∈Dval

∑
r−∈R−

σ

(
score(r−)− score(r+) + ϵ

T

)
, (2)

where R− = {ri,k : ri,k ̸= r+} are predictions differing from ground-truth r+ and ϵ is a small
constant. For ϵ, T → 0, Lrank(r

+, r−) → 1[score(r−) > score(r+)], i.e. indicator of whether
r+ and r− are ordered incorrectly. In the limit Lrank lacks useful gradients, thus we start with T > 0
and linearly anneal to 0 over the course of optimization. To avoid overfitting to Dval we constrain
each θi to be decreasing and convex. In the experiments we optimize θ on the validation set and
evaluate on the test set; we defer implementation details and further results to Appendix A.

Ensembling public models To test our strategy, we consider models trained on USPTO-50K
available in syntheseus [45]: Chemformer [46], GLN [16], Graph2Edits [47], LocalRetro [19],
MEGAN [18], RetroKNN [24] and R-SMILES [21]; we also include our reimplementation of
NeuralSym [11]. Remarkably, ensembling any pair of models results in performance better than
attained by either (Appendix A Figure 7), even when combining a strong model with a weaker one: for
example, top-5 accuracy of R-SMILES can be improved by 1.5% by ensembling with GLN, despite it
being significantly weaker. However, models employing similar modeling show limited benefit from
being combined, which suggests diversity is key to a strong ensemble, and motivates us to propose
two models – one based on molecule editing and one on de-novo generation – and investigate the
performance of their ensemble at scale. Prior work often deems ensembles incomparable to individual
models due to higher cost [15], but we challenge this assumption noting that ensembling a fast editing
model with a de-novo Transformer leads to a negligible cost increase over the latter. In the following
sections, we introduce our models, and benchmark them at increasing data scales.

Ensembles discussed above already set a new state of the art on USPTO-50K, even outperform-
ing model-reranker combinations [48]. However, in the following sections we show even better
performance by utilizing our newly proposed models.
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Figure 2: a, Architecture of NeuralLoc. Product and templates are encoded through Graph Neural Network
encoders to produce contextualized atom representations. Template scores are computed by multiplying product
representation with template representations. Localization scores are computed as products of product atom
representations and template left-hand side atom representations. All templates in the batch are used for
classification, a subset is used for localization. b-e, Inference process. b, Product is input into the network
(atom IDs are not part of model input; shown to contextualize the localization). c, Classification head selects a
template from the library. d, Atom representations determine localization scores (shown for first 15 atoms). e,
As the template is symmetric, application produces two reactant sets depending on how the C:5-C:6 bond is
matched. Localization differentiates them, suggesting to match C:5 in the product with C:5 in the template (red
square in d). This proceeds for several top templates; resulting reactants are ranked based on a combination of
classification and localization. In this case, NeuralLoc prefers the result that is more chemically plausible.

4 Model architecture

We instantiate RetroChimera as an ensemble of two separately trained models – one based on
molecule editing and one on de-novo generation – each designed to address specific limitations in
their respective modeling classes. As the edit-based model can be implemented very efficiently,
RetroChimera delivers inference cost comparable to a single de-novo model such as R-SMILES,
however – as seen in the later sections – with superior predictive performance.

Editing Model Molecule-editing models tend to stay closer to the data distribution due to reliance
on symbolic transformations with support in training data, especially when edits are limited to stricter
reaction rules or templates. Even though they were the first ML-based retrosynthesis model, template
classification continues to be a default choice in modern workflows. However, two limitations hinder
these models at scale: (1) weights responsible for choosing the template are treated as free parameters,
precluding representational transfer between templates; and (2) applying a template can produce
more than one prediction due to multiple matches in the input molecule, and these alternatives are not
differentiated. Prior work has explored partial solutions: (1) by using a template encoder [39]; and (2)
by separately predicting the reaction centre to constrain template match [16, 19, 49] or introducing a
separate module to rank the final reactant sets [16]. However, narrowing template application to the
reaction centre may not be enough to uniquely specify the reactants due to symmetry (Figure 2c).

Inspired by these works we design NeuralLoc, a new template classification model (Figure 2a). Apart
from a product encoder, NeuralLoc contains a separate template encoder; unlike MHNreact [39],
this encoder directly processes the template as a graph using a tailored featurization. Our model
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uses aggregated product and template representations for template classification, and atom-level
representations for localization by computing pairwise assignment probabilities between product and
template atoms. During inference (Figure 2b-e) we call the classification branch, apply a number of
top-scoring templates, and reorder all results taking localization into account; see Appendix B for
architectural details, hyperparameters, and description of model training and inference.

De-Novo Model We build our new de-novo model upon the Seq2Seq framework pioneered by Liu
et al [14], and the successful R-SMILES model [15, 21], which utilizes an aligned SMILES format to
represent input products and ground-truth reactants. This involves training an encoder-decoder model
based on the Transformer architecture [50–52] using a cross-entropy loss. Unlike previous work
relying on OpenNMT [53], we employ three architectural modifications to improve accuracy and
inference speed: (1) Group-Query Attention (GQA) [54] instead of standard multi-head attention to
reduce computational complexity; (2) pre-normalization using RMSNorm [55] instead of LayerNorm;
and (3) SwiGLU activation [56] instead of ReLU in feedforward layers. We also refined the beam
search termination condition to better suit the domain, improving top-k accuracy for large k. We
refer to our updated model as R-SMILES 2; see Appendix C for more details.

5 Results on reaction prediction

To test the performance of our framework and models, we start with small-scale experiments on
USPTO-50K, and then scale to the largest public dataset and a better curated proprietary dataset. We
defer a detailed discussion of these datasets and choice of baselines to Appendix D.

USPTO For a comparison on public data we use USPTO-50K and USPTO-FULL datasets prepro-
cessed by prior work [16]. We find that NeuralLoc and R-SMILES 2 generally match or surpass the
state of the art within their own model classes, while RetroChimera performs better than both and sets
new state of the art for k > 1 on both USPTO-50K and USPTO-FULL, pushing the top-10 accuracy
by 1.7% and 1.6%, respectively (see Appendix E for full results). To test the scaling of our ensembling
strategy, we also evaluated an ensemble containing both our proposed models and most of the base-
lines, and found it pushes the state of the art even further, although it may not be practical due to ex-
cessive resource requirements. Nevertheless, this result may inspire future work on model distillation.

To obtain a good trade-off between resource requirements and accuracy, we focus on ensembling two
models and scale RetroChimera to larger and more diverse datasets.

Pistachio We scale our models to the proprietary Pistachio dataset, which is better curated and
represents a 3.5x increase in number of samples compared to USPTO-FULL. We use the data prepared
by Maziarz et al [45], where reactions present in the database as of June 2023 were grouped by
product and randomly split into three folds. We reuse the training and validation sets, and build a
new time-split test set: we take reactions added to Pistachio in 2024, marked as high quality by the
database curator, and whose product had fingerprint similarity to a training product below 0.95 (see
Appendix F). This gave rise to a high quality test set of 146 393 reactions temporally and structurally
separate from data used for training and validation; we use it as our default test set and defer results
on the original test set to Appendix E. As there are no published results on this version of Pistachio,
we also train and evaluate selected, strong baselines (LocalRetro, R-SMILES, NeuralSym).

Similarly to the results on USPTO, our models establish state-of-the-art performance within their
respective classes (Figure 3a). RetroChimera matches R-SMILES 2 for small k while outperforming it
for larger k due to the pooling of diverse inductive biases. With only 10 results, RetroChimera reaches
the accuracy of considering 50 results from R-SMILES.

To further understand the strengths of the individual models, we analysed top-50 recall as a function
of fingerprint similarity to training data, as well as frequency of the ground-truth template (Figure 3b;
see Appendix D for details). All models perform better on reactions more similar to the training data,
or those utilizing more common templates. Far from training data de-novo models degrade less than
edit-based ones, giving credence to a hypothesis that the former generalize better [27, 57]. While
R-SMILES 2 outperforms NeuralLoc on reactions with little to no template precedence, for moderate
template support the trend reverses, showing that our editing model can use a template effectively
from just a few examples.
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Figure 3: Benchmarking Pistachio-trained models (ours shown as solid lines, baselines as dashed). a, Accuracy
on Pistachio. b, Top-50 accuracy when grouping by Morgan fingerprint similarity (Tanimoto, radius 2) to a
training product (left) or template frequency (middle, right). c, Fraction of non-ground-truth predictions accepted
by forward (left) and feasibility (right) models, as a function of rank; dashed line shows the acceptance rate of
dataset ground-truths. d, Solve rate on the SimpRetro dataset (left) and on hard products from Pistachio (right).
e, Win rate against dataset ground-truth conditioned on the prediction being different from the dataset, estimated
from expert comparison data. Whiskers correspond to 95% confidence interval from 1000 bootstrap resamples.

When the models are combined into RetroChimera, their complementary inductive biases lead to
superior performance for both frequent and rare reaction types alike, effectively addressing the “rare
reactions problem”. Moreover, RetroChimera reaches close to optimal recall on well-precedented
reactions, indicating the model can be seen as a “soft reaction database”.

Reaction quality Accuracy tests if a model can recall the ground-truth, but not whether its non-
ground-truth predictions are reasonable, which is arguably more important for search [45]. To assess
how feasible model outputs are overall, one can feed predicted reactants to a forward model to
measure round-trip accuracy [19, 58], or feed entire reactions to a feasibility model [26]. In general,
feasibility models are preferred as those are trained with both positive and negative reactions, and can
handle cases where reactants would not react. Here we explore both routes: we use a forward model
based on the R-SMILES 2 architecture and a feasibility model based on prior work [26]. Both were
trained on Pistachio and calibrated to accept ∼95% of ground-truths; see Appendix G for details.

We compute acceptance rate for each model and rank (Figure 3c). Interestingly, the scoring models
partially disagree: both consider RetroChimera of higher quality than R-SMILES 2, but the forward
model judges NeuralLoc much more highly. This highlights that while the two scoring approaches
correctly distinguish generated predictions from ground-truths, they leverage disparate heuristics.

6 Results on multi-step search

SimpRetro To benchmark RetroChimera in multi-step search we integrate our models into synthe-
seus, and start with an initial exploration of success rate on a dataset collected by Li et al [59]. We
reuse the experimental setup from SimpRetro, including the choice of the search algorithm, building
blocks (23.1M commercially available molecules from eMolecules), GPU type, and time limit. We
consistently see higher success rates than SimpRetro, with RetroChimera also outperforming its
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Figure 4: Example routes identified by RetroChimera. Targets were selected from the Pistachio test set, and
represent commonly observed challenges in medicinal chemistry. Note that route a (5 → 6) uses a less frequent
Hemetsberger–Knittel indole synthesis, which highlights the ability of the model to also propose reasonable
reactions that chemists would likely not immediately think of. As reagents, solvents and reaction conditions
were not predicted in this study, they were omitted from the depiction. Boc is tert-butyloxycarbonyl.

constituents, and obtaining close to 100% solve rate under the largest time limit (Figure 3d). However,
the creation of the SimpRetro test set did not control for similarity to Pistachio training data. To
supplement this analysis, we move to a dataset of targets based on Pistachio.

Pistachio To collect a challenging search dataset sufficiently distinct from training data, we used
Pistachio test products that had high SAScore [60] and could not be easily solved through search
with NeuralSym, and selected a diverse subset based on fingerprint similarity (Appendix H). This
procedure left us with 951 hard targets which we split into 151 for validation and 800 for testing.

We search with Retro* [31] using the same building block set as in SimpRetro. To ensure a fair
comparison, we first tuned temperature for every model on validation targets, and then used the
best value for test targets. Generally, all of our models yield a better solve rate than baselines, with
NeuralLoc performing best early on due to its higher efficiency, but losing to R-SMILES 2 and
RetroChimera in the long run (Figure 3d). RetroChimera performs best for medium-to-long search
times, and finds routes for even highly challenging molecules (Figure 4).

7 Qualitative analysis

In order to understand the complementary strengths of our proposed models and how ensembling
manages to improve upon them, we run qualitative analyses using the models trained on Pistachio.

Quality and alignment assessment by experts To measure the quality of model predictions, we
conducted double-blind AB-tests comparing pairs of models or a single model with dataset ground-
truth. Here, predictions for the same target from two sources were presented to PhD-level organic
chemists, who were asked to express preference for one of the options.

After gathering 599 comparisons from 9 experts covering various pairs of sources, we grouped
based on prediction rank in the corresponding model, and mapped results within each group to
Bradley-Terry scores, which we used to estimate the probability of each model beating ground-truth
(Figure 3e). We find that chemists significantly prefer RetroChimera’s top prediction over the dataset
(P < 0.05, mean preference rate ≈ 64%); RetroChimera also outperforms its submodels but that
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Figure 5: Visualization of how predictions from R-SMILES 2 and NeuralLoc are combined by RetroChimera.
Molecule in row i and column j is the j-th reactant set predicted by the i-th model. (A, B) → C denotes that
a prediction was rank A in the output of R-SMILES 2, rank B in the output of NeuralLoc, and rank C in the
combined output (X signifies a prediction was not found in one of the lists). Segments connect molecules that are
shared. Green box is ground-truth, red box highlights a hallucinated prediction which is chemically implausible.

does not reach statistical significance. As a control, we employed a baseline which naively applies
uncommon templates without any ranking, and mixed 46 baseline pairs into 599 described above;
we find that baseline predictions were rejected in over 93% of cases, confirming that raters were
staying attentive. See Appendix I for details and raw results. This is the first time a model can provide
predictions more aligned to chemists’ expectations than the reference reactions it has been trained on.

Ensembling visualization To visualize what errors are being made by our models and how en-
sembling helps to mitigate them, we used an early version of the feasibility model to mine unlikely
predictions on Pistachio test data. In a selected example (Figure 5) all models correctly predict the
ground-truth as their top prediction, but diverge further down the list, where the 5th output from
R-SMILES 2 is an erroneous version of the ground truth with one of the rings turned aromatic. As
this is chemically implausible and not covered by templates, it is not predicted by NeuralLoc, and
thus downweighed in RetroChimera’s outputs in favour of predictions shared by the submodels. The
unlikely prediction still appears in RetroChimera’s output; while in this case it may seem undesirable,
many predictions made only by R-SMILES 2 are correct, which is reflected in the ensembling weights.
Our ensembling formalism permits a solution in which all outputs shared by both models are ranked
above those predicted by one, but empirically this is suboptimal.

We present further examples in Appendix J, demonstrate RetroChimera’s ability to denoise its training
data in Appendix K, discuss limitations in Appendix L, and compute requirements in Appendix M.

8 Conclusion

In this work, we introduced a framework for building powerful retrosynthesis models by ensem-
bling. Instantiated with two new models with different inductive biases, each exhibiting favorable
performance in their own categories, we introduced RetroChimera, and demonstrated its efficacy on
commonly used datasets, providing key insight into the strengths of different model classes. For the
first time, we have demonstrated close to optimal retrieval for rare reaction classes, thus allowing
retrosynthesis models to essentially become soft reaction databases, and shown that the ensemble is
preferred by expert organic chemists in terms of quality. In experiments on both existing and new
benchmarks, we validated that RetroChimera’s strong performance carries over to multi-step search.

Our results open up ensembling strategies as a new dimension to improve retrosynthesis models,
and demonstrate that deep learning method development, leveraging latest progress in Transformers
and powerful representation learning for chemical transformations, continues to be a fruitful path
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to improving model performance. Importantly, compared to prior data-hungry ML models, the
demonstration of few-shot transfer learning allows one to significantly reduce the required number
of training examples for new reaction classes. In fact, the parallel development of standardized
high-quality high-throughput experimentation data collection will make the generation of such data
fully tractable already in the near future. We thus anticipate further acceleration towards the goal of
fully closed-loop, self-improving systems for synthesis planning, orchestration and execution.

Code and model weights are available under the MIT license at github.com/microsoft/retrochimera
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A Ensembling

We learn ensembling parameters θ using Adam [61] to minimize Lrank +wreg · Lreg , where Lreg is
a regularization term to ensure relative model importance does not change too rapidly across ranks

Lreg =
1

m(m− 1)

∑
i ̸=j

1

kmax − 1

kmax−1∑
k=1

∣∣∣∣ θi,kθj,k
− θi,k+1

θj,k+1

∣∣∣∣
We find that a regularization of this form gives a modest improvement for m = 2 and is roughly
neutral for large m; we thus use a small weight of wreg = 0.2.

Due to correlations between the rankings produced by the different models, in the majority of cases
the relative ordering of r+ and r− is preserved across all models, especially when m is small. Those
cases, while contributing non-zero gradient to Lrank for T > 0, are bound to be ranked in the same
way for any row-wise decreasing θ. Thus, in practice we skip those pairs (r+, r−) in Equation 2 to
reduce variance.

Constraining θ One could minimize Lrank directly, but small validation set size and poor cov-
erage of cases where r+ appears at higher ranks lead to overfitting and poor generalization. To
fix this, we constrain each θi to be decreasing and convex (θi,k > θi,k+1 and θi,k − θi,k+1 >
θi,k+1 − θi,k+2), expressing the intuition that lower ranks are less likely to be correct, and dif-
ferences between ranks are more pronounced closer to the top. Formally, we parameterize θi as
flip(cumsum(cumsum(exp(xi))), where xi ∈ Rkmax are free parameters, cumsum computes a
cumulative sum, and flip reverses the vector.

Implementation details To optimize θ, we first map the entire validation set into a single tensor
containing ranks of r+ and r− across all models, which allows Lrank to be computed efficiently
through a handful of PyTorch [62] primitives. We do not use batching, and instead optimize the full
loss directly for 1000 steps. Both the learning rate and the temperature T start at 0.1 and decay by a
factor of 0.9 every 25 steps. We set the margin ϵ in Equation 2 to 10−4.

Additional results We find that our strategy consistently outperforms other approaches, and learns
non-trivial schemes where relative model importance depends on k (Figure 6).
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Figure 6: a, Ablation study for ensembling weight optimization on USPTO-50K. We consider the same models
as in Figure 7 together with NeuralLoc and R-SMILES 2, a total of 11 models. For every k, we show average
accuracy gain (over 55 model pairs) compared to a baseline formed by taking maximum accuracy among the
models in the pair. Our proposed method performs better than a naive approach (no monotonicity or convexity
constraints, wreg = 0), and several hand-designed weighting schemes: linear (θi,k = kmax +1− k), reciprocal
(θi,k = 1

k
), and weighted reciprocal (θi,k = ci

k
where ci is set to 2 for the model with higher top-1 accuracy and

1 for the weaker model). b, Learned weights for combining R-SMILES and LocalRetro on USPTO-50K. We see
that the curves cross: R-SMILES is assigned higher weight than LocalRetro for k ≤ 2 but lower for larger k.
This highlights that it is not enough to learn the relative model strengths without dependence on rank. We find a
similar trend whenever ensembling a de-novo model with an edit-based one.
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Figure 7: Top-5 (a) and top-50 (b) accuracy of ensembles of pairs of models. All values are in percent; color
palette blue-to-yellow corresponds to low-to-high accuracy (best results shown in bold). 2x2 squares correspond
to model clusters which show a limited benefit from being combined: NeuralSym and GLN (both based on
standard reaction templates), LocalRetro and RetroKNN (based on minimal templates), and the two checkpoints
of R-SMILES. Models are ordered by their result when evaluated in isolation (shown on the main diagonal), with
the exception of swapping GLN and MEGAN in the left plot to make the model cluster consecutive. R-SMILES’
denotes our retraining of R-SMILES. Off-diagonal entries show ensemble results.

Prior work While ensembling for reaction prediction and retrosynthesis has been attempted, results
have been limited so far. Schwaller et al. [15] ensemble up to 20 forward models, but report only
minimal gains at the cost of significantly slower inference. However, they employ the default method
in OpenNMT [53], which averages next token probability distributions predicted by the different
models, and is limited to models sharing the same output space.

Combinations of models have been reported with specialized models for ring-forming reactions [63]
or enzymatic catalysis [64, 65]. Lin et al. [48] combine outputs from different models, but determining
the final order relies on a separately trained ranking model, discarding the rich information present
in the order predicted by the original models. Torren-Peraire observed differences in the solutions
different single-step models find [66]. In a recent paper by Saigiridharan et al., it was explicitly
pointed out that while different models have been combined ad-hoc [66], no principled ensembling
approach is available [67].

B Editing submodel (NeuralLoc)

Input featurization To featurize the input product, we follow prior work [19] and represent a
molecule as a graph G = (V,E) with nodes V and edges E corresponding to atoms and bonds,
respectively. To construct domain-specific node and edge features, we employ the featurizers
available in the dgllife library [68]. Specifically, we use WeaveAtomFeaturizer for atoms and
CanonicalBondFeaturizer for bonds. Following LocalRetro [19] we set the atom types supported
by the atom featurizer to dgllife.data.uspto.atom_types extended by Tantalum. We do not
include loops in G by setting self_loop=False.

Template extraction Templates were extracted with rdchiral [69]. We note that alternative ap-
proaches for template extraction [70, 71], minimal templates [12, 19], or manually coded rules [11]
in combination with template prediction have been described in prior work and could potentially lead
to improved results in future work.

Template featurization Prior work has explored simple template featurization by converting both
sides to molecular fingerprints [39]. This offers limited flexibility, and only produces aggregate
representations, while NeuralLoc requires node embeddings to perform localization; we therefore
design a new template featurization method to meet this desiderata, which turns an input template
into a graph.
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As both sides of the template resemble molecular structures, a starting point is to convert them into
two graphs GL = (VL, EL) and GR = (VR, ER), respectively. Structures involved in templates are
often not fully complete or valid molecules, thus it is not possible to reuse the input featurizer directly.
However, we find that if we switch to a basic atom featurizer (CanonicalAtomFeaturizer without
the chiral tag feature), it is enough to parse the molecules using MolToSmarts followed by calling
UpdatePropertyCache(strict=False) to get the graph featurization to work successfully. Apart
from standard features that are taken into account by the atom featurizer, an atom on the left-hand
side of a template can also be associated with an atom SMARTS – a logical pattern describing more
nuanced match conditions. In principle, these patterns could be parsed and encoded via a specialized
procedure invariant to equivalent logical transformations; for simplicity, we instead opt for a simple
one-hot encoding over a vocabulary of atom SMARTS patterns that occur in the data. Next, we
add binary features distinguishing VL from VR to encode directionality. The last ingredient is to
relate GL to GR by converting the atom mapping to a set of edges M = {(u, v) : u ∈ VL, v ∈
VR, u is matched to v}; these edges are assigned a special edge feature to clearly differentiate from
EL ∪ ER. We define the graph representing the entire template as G = (VL ∪ VR, EL ∪ ER ∪M).

We note that our template featurization procedure is invariant under certain operations that do not
affect the semantics of the template, including varying the linearization of the graphs, and permuting
the atom mapping identifiers. Two syntactically different representations of the same template will
therefore be mapped to the same graph, which can serve a similar purpose to template canonicalization
algorithms [71].

Architecture Bulk of the neural processing in NeuralLoc is performed by two separate GNNs,
GNNin and GNNtpl, which – after several message passing layers interleaved with normalization
and dropout – produce atom representations hin

v and htpl
v , respectively for atoms in the input product

and the template. Both GNNs have a similar architecture based on the PNA [72] message passing
scheme as implemented in PyTorch Geometric [73]. We experimented with a GPS layer [74] from
Graphium [75] to extend PNA with global attention, and found it results in a minor performance
improvement but significantly higher memory requirement. This trade-off was only beneficial on the
small USPTO-50K dataset, thus we use PNA combined with GPS on USPTO-50K, and only PNA on
USPTO-FULL and Pistachio. As one of the downstream objectives is graph-level, representations hin

v

and htpl
v are aggregated similarly to prior work [76] using two separate aggregation layers based on

multi-head attention to form hin and htpl, respectively. Due to a slight deficiency in the expressivity of
our graph-level aggregation method, disconnected templates formed by repeating a fixed component
a varying number of times are assigned the same representation, which would prevent the model
from differentiating those templates downstream. Thus, we also introduce an additional template
embedding of size dfree, which is learned end-to-end as opposed to being produced by the template
encoder, and concatenate that to htpl. Finally, we linearly project graph-level representations of both
input and template into a shared dimension dclf; those projections are then used for the classification
objective. Network sizes vary across datasets, and were informed by overfitting concerns on USPTO-
50K, and memory considerations on larger datasets (Table 1).

Classification objective For classification, the input representation is multiplied by stacked template
representations, and the resulting dot products are interpreted as unnormalized template selection
scores. Unlike MHNreact [39], our template processing is learned, and thus templates used for
classification have to be repeatedly encoded in each batch. The cost to do so grows with the number
of templates and at sufficient scale becomes prohibitive. While on USPTO-50K we can encode
all templates afresh in each forward pass, on USPTO-FULL and Pistachio doing so would require
excessive amounts of GPU memory. Therefore, on larger datasets we only include a subset of
templates in the classification objective, which include the ground-truth answers in a given batch and
rclf randomly sampled templates per batch input as additional negatives; those negatives participate
in classification for all inputs, not only those they were sampled for. While we use a simple softmax
cross-entropy classification loss for the case of including all templates in each forward pass, when
including a subset we found that the losses stemming from different templates have to be re-weighted
according to template frequency to allow for learning appropriate marginals. In this case we use a
sigmoid pairwise classification loss inspired by prior work [77]. We found increasing rclf generally
tends to improve results, and so we set it as high as possible given memory constraints (Table 1).
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Localization objective Localization requires assigning each atom in the left-hand side of the
template (VL) an appropriate atom in the input (V ). To that end, we multiply htpl

v for v ∈ VL with
hin
u for u ∈ V , and interpret resulting dot products as unnormalized localization scores, which are

passed through a softmax along the template atoms dimension. The primary purpose of localization
is to differentiate outputs resulting from applying a single template, but during inference we use a
combination of classification and localization to rerank all outputs globally; thus it is beneficial for the
localization subnetwork to be exposed to other templates beyond the ground-truth one during training.
Therefore, in practice we use not only the node representations extracted for the ground-truth template,
but also include rloc other templates from the current batch that best match a given input according
to classification scores; this requires minimal additional computation as node representations for
those templates were already computed for classification. The final localization loss is as a sum of
cross-entropy losses over the template nodes. For nodes in the ground-truth template the target is to
select the corresponding atom in V , whereas for nodes in additional negative templates the network
is trained to instead select an auxiliary htpl

neg representation, which is concatenated to hin
v and trained

end-to-end. Often there may be several localizations of the ground-truth template that result in correct
predicted reactants; we label all of those localizations during preprocessing, so that the loss for atoms
in the ground-truth template can use a uniform distribution over all correct choices in V as the target.

Parameter USPTO-50K USPTO-FULL Pistachio

dclf 256 256 256
dfree 0 32 32
Number of templates 9735 228 127 146 256

GNNin

Layer type GPS + PNA PNA PNA
Number of layers 3 5 5
Hidden dim 64 768 1024
Output dim (node-level) 256 128 128
Output dim (graph-level) 512 1024 1024
Aggregation heads 8 8 8
Dropout (inter-layer) 0.1 0.0 0.05
Dropout (post aggregation) 0.4 0.4 0.4

GNNtpl

Layer type GPS + PNA PNA PNA
Number of layers 4 5 5
Hidden dim 64 192 192
Output dim (node-level) 256 128 128
Output dim (graph-level) 512 512 512
Aggregation heads 8 8 8
Dropout (inter-layer) 0.1 0.0 0.0
Dropout (post aggregation) 0.4 0.4 0.4

Batch size 128 256 512
Number of epochs 600 130 85
Initial learning rate 10−3 10−3 10−3

Loss type softmax sigmoid sigmoid
rclf - 30 18
rloc 1 4 4
rapp 100 10 10

Total parameter count 1.9M 103M 165M

Table 1: Architectural, training and inference hyperparameters of the NeuralLoc model across the datasets
investigated in this work.

Training We train NeuralLoc by minimizing a sum of the classification and localization losses.
Training proceeds for a fixed number of epochs followed by checkpoint selection according to
validation MRR. Following prior work [21] we select several best checkpoints (typically 5-10), and
perform checkpoint averaging in parameter space to produce the final weights.

18



Inference During training, atom- and graph-level template representations evolve with each update
to GNNtpl, and thus have to be recomputed each time they are used downstream. However, upon
saving each checkpoint we encode all templates in the library and include the resulting outputs in
the checkpoint file; this allows for fast inference as GNNtpl no longer needs to be used. Given a test
input, we first multiply hin with template representations and extract rapp · n top-scoring templates to
apply, where n is the number of results requested downstream; this step is identical to performing
inference in the NeuralSym model. rapp is set to 1 during search, and to a larger value for single-step
evaluation (Table 1). After applying the selected templates – which can be done efficiently using
multiprocessing – for each template we group the predictions based on the resulting reactants, in
order to account for several localizations producing the same result. Next, we rerank all unique
outputs according to sclf +wloc · sloc, where sclf is the normalized template log-probability, sloc is the
average normalized localization log-probability over template atoms, and wloc = 2.25 is a coefficient
chosen empirically. When computing sloc we sum localization probabilities over potentially several
correct choices, as highlighted by the aforementioned grouping. Finally, we truncate the output list to
n results (100 for single-step benchmarking, 50 during search).

C De-Novo submodel (R-SMILES 2)

Architecture We build upon R-SMILES [21], and train an encoder-decoder model based on a
Transformer backbone [50] (Figure 8). Unlike previous work [53] we reimplement the model
from scratch using PyTorch [62], allowing us to freely customize the architecture. We applied key
modifications described in the main text, which were inspired by the recent success of large language
models such as Llama [51] and Mistral [52].

Parameter USPTO-50K USPTO-FULL Pistachio

Vocab size 72 235 346
Number of layers 6 6 8
Hidden dim 256 512 512
Feedforward dim 512 2048 2048
Number of heads 8 8 8
Number of KV heads 8 2 2

Batch size 128 128 512
Number of epochs 30 60 30
Learning rate scheduler Noam Noam Noam
Learning rate 1.0 1.0 1.0
Warmup steps 8000 8000 8000
Dropout 0.3 0.1 0.1

Number of augmentations 20 5 10
Beam size 10 50 20

Total parameter count 17.4M 44.5M 66.7M

Table 2: Architectural, training, and inference hyperparameters of the R-SMILES 2 model across the datasets
investigated in this work.

Data augmentation Previous studies [21, 29] have shown that the general-purpose SMILES
neglects the characteristics of chemical reactions, where the molecular graph topology remains
largely unchanged from reactants to products. To address this, we employ root-aligned SMILES [21],
which ensures an aligned mapping between product and reactant SMILES. This strict mapping, along
with a reduced edit distance, simplifies the task for the transformer, allowing it to focus on learning
the chemistry involved in reactions rather than syntax. We generate multiple input-output pairs as
augmented training data by enumerating different product atoms as the root of SMILES. We apply
20× augmentation to the USPTO-50K dataset, 5× to USPTO-FULL, and 10× to Pistachio.

Tokenization We follow Schwaller et al.’s [15] regular expression to tokenize products and reactants
SMILES into meaningful tokens. The regular expression is defined as:
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Figure 8: Architecture of the de-novo model (R-SMILES 2). The input product is converted to a SMILES
string and tokenized into a sequence of tokens. Before the sequence is processed further, sinusoidal positional
embeddings are incorporated to infuse positional information. The sequence then undergoes transformation
through layers composed of grouped multi-query attention, RMS normalization, and feedforward layers with
SwiGLU activations. The autoregressive decoder predicts the SMILES sequence of reactants utilizing self-
attention over already produced tokens and cross-attention over encoder output. The model is trained using a
cross-entropy loss.

token_regex = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|
\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])".

This pattern accounts for the diverse range of symbols and characters within SMILES strings, includ-
ing brackets, elemental symbols, numbers, and special characters. Notably, it matches sequences
within brackets, elemental symbols (including Br, Cl, N, O, S, P, F, I), lower-case letters (b, c, n,
o, s, p), parentheses, dot, other symbols (=, #, -, +, \, /, :, ~, @, ?, >, *, $), and two-digit numbers
preceded by a percentage symbol, as well as single-digit numbers.

Training objective We train R-SMILES 2 to minimize a standard cross-entropy loss with respect
to the token sequence describing ground-truth reactants.

Inference During inference we use beam search to find the top k predicted reactant sequences;
however, we tailored the beam search logic to retrosynthesis. Unlike OpenNMT, which keeps
completed sequences until two conditions are met – the pool size equals the beam size and the top-
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rated sequence in the beam is lower in quality than all in the pool – we maintain finished sequences
in the beam and end only when each sequence in the beam finishes with the EOS token.

We found that this new design makes the top-k list more reliable and significantly improves accuracy,
particularly for k ≥ 20, without visibly increasing inference time.

D Datasets and baselines

USPTO-50K As baselines for USPTO-50K we selected models integrated into the syntheseus
library [45], and additionally included our NeuralSym implementation for completeness, and RetroEx-
plainer [23] due to strong performance. We did not include RetroWISE [28] as a baseline, as it utilized
extra data from the larger USPTO database. However, it is worth noting that our best ensemble
outperforms RetroWISE for k ≥ 5 despite not using additional data. We note that some prior works
do not compare to R-SMILES on USPTO-50K as the corresponding paper discusses pretraining on
USPTO-FULL [21], but our investigation suggests the checkpoint evaluated in syntheseus did not use
pretraining, and so it is fully comparable with other USPTO-50K-trained models (this is consistent
with the fact that, as seen in Figure 7, our R-SMILES checkpoint retrained from scratch reached
performance close to the released one).

For large ensembles shown in Table 3 we included all baseline models from the corresponding table
apart from RetroKNN, as its adapter network was trained on Dval, which artificially inflates the
model’s validation result and degrades the performance of ensembles containing RetroKNN.

USPTO-FULL Although commonly reported on in prior work, we find many versions of USPTO-
FULL are in use, utilizing different methods for filtering and processing; this can be seen through the
varying size of the test fold (94696 [78], 95389 [79], 95988 [29], or 96023 [21]). Due to this, most
reported results on USPTO-FULL are not fully comparable to each other due to using a different test
set. For a fair comparison we select a single version of the dataset [21] and only include baselines
numbers reported on that version [19, 21, 28], which includes the method with the highest reported
top-1 accuracy [28]. Note that EditRetro [29] reused the preprocessing script from R-SMILES [21],
but additionally removed 35 test samples with duplicate atom mappings, resulting in a slightly smaller
test fold size of 95988 compared to the original 96023. Since the difference between the two test
folds is minimal, we included the values reported by EditRetro in their paper in our table. Finally,
similarly to USPTO-50K, we also included our NeuralSym implementation as a baseline, which we
found to produce much stronger performance than reported in prior work.

Pistachio test set Time-split validation is considered to be the gold standard for ML model
validation in chemistry, as it most closely mimics the prospective use of the models [80]. In contrast,
random splitting can lead to over-optimistic assessments, especially as reaction data is usually
published in clusters, often from the same document (paper or patent), where similar routes are used
towards related products.

To construct the time-split test set, we selected reactions added to Pistachio in 2024 as part of the
Q2-2024 release. Based on the Pistachio quality tier assignment we used all reactions from tiers S, A,
B; for tiers C and D only reactions with an assigned namerxn name reaction label were used. All other
reactions, including the entire tier E, were rejected. Finally, we removed reactions of type resolution
(RXNO class 11).

We then used fingerprint similarity folded modulo 4093 to filter out products whose maximum
similarity to a training product was at least 0.95. Finally, the remaining reactions were processed by
the same filtering and deduplication pipeline as the training data.

Bucketing test data To produce Figure 3b, we bucket Pistachio test data in two ways: based
on maximum fingerprint similarity sim to a training product, and based on the frequency of the
ground-truth template in the training template library.

Note that NeuralLoc only considers templates that appear in training data at least twice, so it is unable
to predict a template that occurs once or does not occur at all. Despite this, as seen in Figure 3b
(middle), NeuralLoc still shows non-zero accuracy on samples with template frequency less than 2.
This is explained by the fact that several distinct templates could potentially yield the same reactants
after being applied to a particular product; hence even if the canonically determined template for a
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test sample is not available to NeuralLoc, there may be another template in the library that gives rise
to the right reactant set.

E Additional results
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Figure 9: a, Accuracy on USPTO-50K (left) and USPTO-FULL (right), shown as improvement over the best
baseline result (selected for each k separately). RetroChimera++ is an ensemble of both our models and
baselines (m = 10). b, Accuracy on the random split test set of Pistachio proposed by Maziarz et al [45]. Some
performance differences are accentuated compared to our time-split test set, but the model ranking is largely
preserved.

Model top-1 top-3 top-5 top-10 top-20 top-50

 

NeuralSym 45.6% 68.1% 75.5% 82.5% 87.9% 92.7%
MEGAN 48.7% 72.3% 79.5% 86.7% 90.9% 93.5%
LocalRetro 51.5% 76.5% 84.3% 91.0% 95.0% 96.7%
GLN 52.4% 74.6% 81.2% 88.0% 91.8% 93.1%
RetroChimeraEdit

∗ 53.3% 74.1% 80.7% 87.1% 91.6% 93.8%
Graph2Edits 54.6% 76.6% 82.8% 88.7% 91.1% 91.7%
RetroKNN 55.3% 77.9% 85.0% 91.5% 94.8% 96.6%
RetroExplainer† 57.7% 79.2% 84.8% 91.4% - -

#

Chemformer 55.0% 70.9% 73.7% 75.4% 75.9% 76.0%
R-SMILES 56.0% 79.1% 86.1% 91.0% 93.3% 94.2%
EditRetro† 60.8% 80.6% 86.0% 90.3% - -
RetroChimeraDeNovo

∗ 56.9% 79.9% 86.9% 92.3% 95.5% 96.4%

⊙
RetroChimera∗ 56.7% 80.7% 87.6% 93.2% 96.3% 97.9%
Ensemble of baselines∗ 59.3% 82.3% 89.0% 94.1% 97.0% 98.6%
RetroChimera++∗ 59.6% 82.8% 89.2% 94.2% 97.2% 98.6%

Table 3: Results on the USPTO-50K dataset with reaction class unknown. Models are grouped by type denoted
via the icon on the left: edit-based ( ), de-novo (#), and ensemble (⊙). Within groups models are sorted by
top-1 accuracy. Best result for each top-k accuracy is shown in bold; results that are best within a model type but
not best overall are underlined. Results marked with ∗ utilize techniques proposed in this paper, those marked
with † are taken from prior work, and others were computed using syntheseus [45].
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Model top-1 top-3 top-5 top-10 top-20 top-50

 
LocalRetro† 39.1% 53.3% 58.4% 63.7% 67.5% 70.7%
NeuralSym 44.1% 61.4% 66.6% 71.5% 74.6% 77.1%
RetroChimeraEdit

∗ 46.2% 62.0% 66.7% 71.2% 74.7% 77.7%

#

R-SMILES† 48.9% 66.6% 72.0% 76.4% 80.4% 83.1%
EditRetro† 52.2% 67.1% 71.6% 74.2% - -
RetroChimeraDeNovo

∗ 51.1% 68.1% 73.3% 78.2% 81.6% 84.8%
RetroWISE† 52.3% 68.7% 73.5% 77.9% 80.9% 83.6%

⊙ RetroChimera∗ 51.4% 69.5% 74.6% 79.5% 82.8% 85.6%

Table 4: Results on the USPTO-FULL dataset, following the same format as Table 3 above. Note that RetroWISE
was pretrained on additional synthetic data; our understanding of the original work of Zhang et al [28]. is that
this data was created based on USPTO, thus it may be fair to compare RetroWISE with other models trained on
USPTO-FULL. We were not able to confirm this due to the exact code and data not being open-source.

F Fingerprint similarity

We make use of fingerprint similarity in several aspects of our work: filtering out near matches when
constructing the Pistachio test set, bucketing the test samples for Figure 3b, and generating synthetic
negative reactions for training the feasibility model.

In all cases we use count-based Morgan fingerprints with radius 2 folded modulo a large prime. To
compute similarity between x and y we employ Tanimoto similarity adapted to count fingerprints [81,
82]:

sim(x, y) =
∑

i xiyi∑
i x

2
i +

∑
i y

2
i −

∑
i xiyi

In practice we care about all-pairs similarities between two large sets of molecules; we thus make use
of an efficient GPU-based implementation that pads the fingerprints to the nearest power of 2 and
rephrases computing sim in terms of matrix multiplication.

G Quality assessment

Method Analysing quality of k top predictions can be confounded by some models having higher
top-k accuracy, while others returning less than k outputs altogether. To study the quality of non-
ground-truth predictions directly, we filter the test products to those where all compared models return
at least k outputs and recover the ground-truth answer within that; after removing the ground-truths
from the output lists, we obtain k − 1 non-ground-truth predictions for each input, which are fed into
subsequent analysis.

For the comparison in Figure 3c we set k = 10 and filter the Pistachio test set down to 113 135
products (≈ 66.7%) according to the aforementioned criteria, with 9 non-ground-truth predictions
associated with each. We then run both quality assessment models on the ground-truth reactions
for those products, and calibrate so that each accepts around 95% of ground-truths; for the forward
model this translates to accepting a reaction if its product is within top 2 predicted products given the
reactants, while for the feasibility model if the predicted feasibility is above 0.1.

Forward model We utilized the same Pistachio reaction dataset and model architecture as the
R-SMILES 2 model for the forward model development. This involved applying 10× R-SMILES
augmentation to the Pistachio data in the forward direction. After a training for 10 epochs, we used
the final checkpoint for quality assessment. To validate the performance of the forward model, we
evaluated the trained model on the USPTO-50K test dataset, resulting in top-1 accuracy of 88.6%,
top-3 accuracy of 97.8%, and top-50 accuracy of 99.9%. When evaluated on the Pistachio test set, the
model achieved top-1 accuracy of 70.76%, top-3 accuracy of 81.3%, and top-50 accuracy of 87.3%.
We deemed this accuracy sufficient for conducting convincing quality assessments.
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Feasibility model To build our feasibility model, we scaled up the approach from prior work [26]
developed on USPTO-50K to the larger Pistachio dataset. The feasibility model encodes the reactants
and product using two separate GNNs, concatenates their aggregated representations, and predicts
a single feasibility probability value. We train it using a standard cross-entropy loss on a dataset
consisting of both positive and negative reactions. We use the Pistachio training data for the former,
while the latter is generated synthetically; we gather approximately 10 negative examples for each
positive example, for a total of 32M training data points.

We use two separate sources of negative examples: forward template application and similarity-
based replacement. Both hinge on the assumption that if a reaction R → P is observed in the
data, then other products P ′ are not formed, i.e. R → P ′ is a negative example. For the forward
template application we follow prior work [12] and use the same templates as used by NeuralLoc, but
applied in the forward direction to reactants sampled from the training data. For the similarity-based
replacement, given a positive reaction (R,P ), we find several similar examples (R′, P ′) maximizing
sim(R,R′)+sim(P, P ′) where sim is fingerprint similarity defined previously. We then use (R′, P )
as the negative example; intuitively, due to the high similarity between R and R′, this gives rise to a
sample that is more difficult than if one were to pair reactants and products randomly.

H Search benchmark

Target set construction To build a challenging test set for search, we started with 146 393 Pistachio
test products and performed the following steps:

• Filter out building blocks (138 699 targets left).

• Filter out products whose SAScore is below 4 (25 482 targets left).

• Filter out products containing deuterium atoms (23 850 targets left).

• Cluster products with HDBSCAN [83] (minimum cluster size 3, cluster merge threshold
0.15) using fingerprint similarity sim to define a distance measure. Discard 4437 noisy
(unclustered) products, and pick the highest SAScore product in each non-trivial cluster
(1784 targets left).

• Filter out products for which shallow search using Retro* [31] (depth of 6 nodes, equivalent
to 3 reactions) with the NeuralSym model can find any routes in one minute (951 targets
left).

We then randomly split the resulting hard targets into 151 targets for validation and 800 for testing.
Simple random split was justified as due to the clustering any two targets at this stage had fingerprint
similarity below 0.87.

Hyperparameter tuning We found that varying the policy temperature T can have a large ef-
fect on the behaviour of Retro*, with low temperatures promoting deep greedy exploration of
the few most likely steps, while higher temperatures leading to a balanced exploration closer
to a breadth-first search. To ensure a fair comparison, for each model we first ran 10-minute
searches on the 151 validation targets with T sampled approximately uniformly in log-scale i.e.
T ∈ {0.25, 0.35, 0.5, 0.71, 1.0, 1.41, 2.0, 2.83, 4.0}. We then computed solve rate at the 30, 60, 120,
300 and 600 second mark, and for each model selected the value of T yielding largest area under
the solve rate curve. We used this setting to produce the final results on 800 test targets shown in
Figure 3d.

I Assessment by domain experts

The study participants were 9 PhD-level organic chemists (including 5 working for major pharma-
ceutical companies), with a track record of publications and several years of hands-on experience
in synthetic organic chemistry. We first collected outputs on the Pistachio test set from five sources:
dataset ground truth, our models (NeuralLoc, R-SMILES 2 and RetroChimera), and a dummy baseline
which applies only rare reaction templates (omitting the most common 4000) without any ranking.
This allows to compare between our models to ground truth, as well as ground the results in a null
baseline which, despite respecting basic syntactic rules due to the use of templates, achieves close to

24



zero recall and leads to mostly nonsensical suggestions which an attentive chemist should be able
to spot. For every pair of sources we sample several test products, and for each consider the top
15 model predictions, only comparing between predictions at the same rank. Cases when the two
predictions from the two sources are the same are discarded.

Given a dataset of pairs of predictions, we ask the chemists to judge which one they prefer. They
were given no indication as to the source of each reaction, and order within the pairs was randomized
to remove bias. Coverage of different ranks and pairs of sources was not uniform, chosen to focus on
important cases such as RetroChimera vs ground-truth (Figure 10). We used comparisons against the
dummy baseline to confirm that raters are attentive, but not in the following analysis.

To summarize the preference data, we group by rank (rank 1, rank 2, and ranks 3 through 15). and
use the Bradley-Terry model to estimate scores si that fit pairwise win rates:

P (source i wins with source j) ≈ esi

esi + esj
(3)

We count a tie (i.e. chemist rating both predictions as good, or both as bad) as half a win for both
sources. As we only score pairs where the predictions from the two sources are distinct, observed win
rates focus on the cases where the sources diverge, which can be a minority; we found that computing
Bradley-Terry scores directly can be sensitive to the distribution of source pairs. To address this, given
the number of scored pairs and the empirical agreement frequency for a given rank bucket and pair of
sources, we determine the expected number of agreement cases, and include these as additional ties
before computing the Bradley-Terry scores. Finally, for each model we compute the probability of
winning with the dataset (Equation 3), and use the aforementioned agreement frequency to convert
this to win rate conditioned on the predictions being different (Figure 3e).
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Figure 10: Raw win rate (left) and number of scored pairs (right) describing the data used for the analysis shown
in Figure 3e. Whiskers next to each win rate correspond to 95% confidence interval computed using an exact
binomial test, which take into account only results for a particular rank bucket and pairs of sources. Note that
in some cases the result is not significant due to low number of pairs, but a joint analysis (Figure 3e) leads to
improved statistical significance.
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J Model errors

When looking for model errors further, we found cases of copy errors (Figure 11), implausible
bond-breaking reactions (Figure 12), and duplicating one of the reactants (Figure 13); all produced
by one submodel and downranked in RetroChimera. However, we note these erroneous examples
were highly cherry-picked, representing a tiny minority of all predictions.

Product

(1, 1) -> 1 (2, 2) -> 2 (3, 7) -> 3 (4, 8) -> 4 (5, X) -> 8

(1, 1) -> 1 (2, 2) -> 2 (3, 7) -> 3 (4, 8) -> 4 (X, 3) -> 5

(1, 1) -> 1 (2, 2) -> 2 (X, 3) -> 5 (8, 4) -> 6 (7, 5) -> 7
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Product

(1, 1) -> 1 (2, 9) -> 2 (3, 14) -> 4 (4, 4) -> 5 (5, X) -> 8

(1, 1) -> 1 (2, 9) -> 2 (18, 2) -> 3 (3, 14) -> 4 (4, 4) -> 5

(1, 1) -> 1 (18, 2) -> 3 (X, 3) -> 6 (4, 4) -> 5 (7, 5) -> 7
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Figure 11: Extended examples of ensembling improving over individual models. Similarly to Figure 5, we see
R-SMILES 2 can fail to correctly reproduce the right bond pattern in a ring copied from the input product.
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Product

(1, 1) -> 1 (2, 2) -> 2 (3, 4) -> 3 (4, X) -> 5 (5, X) -> 6

(1, 1) -> 1 (2, 2) -> 2 (3, 4) -> 3 (6, 3) -> 4 (4, X) -> 5

(1, 1) -> 1 (2, 2) -> 2 (6, 3) -> 4 (3, 4) -> 3 (X, 5) -> 8
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Product

(1, 1) -> 1 (2, 37) -> 2 (3, X) -> 4 (4, 29) -> 6 (5, X) -> 7

(1, 1) -> 1 (2, 37) -> 2 (28, 2) -> 3 (3, X) -> 4 (X, 3) -> 5

(1, 1) -> 1 (28, 2) -> 3 (X, 3) -> 5 (X, 4) -> 9 (16, 5) -> 8
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Figure 12: For certain inputs, the R-SMILES 2 model might predict bond-breaking reactions which are chemically
implausible (ranks 4 and 5 in the top example; rank 5 in the bottom one). These cases are downweighed during
model ensembling as they are not predicted by NeuralLoc. In contrast, NeuralLoc can fail due to noise in
the underlying data and incorrect template extraction (ranks 3 and 4 in the bottom example), which is in turn
down-ranked by R-SMILES 2, highlighting the power of the ensembling approach.
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Product

(1, 1) -> 1 (2, 2) -> 2 (3, X) -> 3 (4, X) -> 5 (5, X) -> 6

(1, 1) -> 1 (2, 2) -> 2 (3, X) -> 3 (X, 3) -> 4 (4, X) -> 5

(1, 1) -> 1 (2, 2) -> 2 (X, 3) -> 4 (X, 4) -> 7 (X, 5) -> 10
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Product

(1, 3) -> 1 (2, 98) -> 3 (3, 7) -> 5 (4, 2) -> 4 (5, X) -> 7

(1, 3) -> 1 (10, 1) -> 2 (2, 98) -> 3 (4, 2) -> 4 (3, 7) -> 5

(10, 1) -> 2 (4, 2) -> 4 (1, 3) -> 1 (16, 4) -> 6 (X, 5) -> 12
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Figure 13: In certain cases, the R-SMILES 2 model appears to produce the same reactant twice, either as an
exact copy or with minor variation.
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K Denoising of potentially erroneous data

In past work, AI retrosynthesis models have been criticized for their potential inability to deal with
noise in the training data, which is expected to be present in large reaction datasets [10]. However,
correctly trained probabilistic models, such as the ensemble component models in this work, can
become robust towards errors in the training set, and effectively denoise the data. For this purpose,
we qualitatively inspected random test reactions for given products from the Pistachio dataset that our
model was unable to recover in its top 50 predictions, and asked expert chemists for an assessment
(Figure 14). We found that representative erroneous ground truth test reactions for example contain
stereochemistry or other assignment errors, while our model returns the reactions that the chemist
would expect, highlighting the ability of the model to deal robustly with partially noisy data and align
with scientists’ expectations.

a b

c d

e f

g h

i j

Figure 14: Examples of the denoising behaviour of RetroChimera. Left column (a, c, e, g, i) are model
predictions, in each case preferred by expert chemists. Ground truth examples (right column; b, d, f, h, j)
are taken from test set. Examples a-h demonstrate denoising for stereochemistry assignments. Our model
has learned to ignore likely incorrect assignments (right) and instead is aligned with expert expectations (left).
Furthermore, the model exhibits the ability to infer missing reactants. In example j the test data does not specify
the exact alkylating agent, whereas the model infers to use methyl iodide (Example i).

L Limitations

Despite increased robustness, ML-based retrosynthesis models are not free from hallucinated outputs,
especially far away from the training distribution. This can partially be mitigated by combining
retrosynthesis models in a pipeline with reaction feasibility and forward prediction models, as
demonstrated in prior work [12, 13]. Another limitation stems from systematic errors in the training
data, which can be mitigated by improved data curation.

M Compute requirements

Both of our backward models (NeuralLoc and R-SMILES 2), as well as the forward model based on
R-SMILES 2, took up to a week to train on a single node with 4-8 A100 GPUs. The feasibility model
was trained in a few days using a single A100 GPU. Ensembling was done on CPU based on saved
model outputs for the underlying models; this allows for learning θ and evaluating the ensemble
without the need to run inference of the original models. Each search experiment was parallelized
over 4-8 GPUs, with each GPU responsible for a subset of targets; we used V100 GPUs for the
SimpRetro benchmark and A100 GPUs for our new benchmark based on Pistachio.
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