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Abstract

Chemical synthesis remains a critical bottleneck in the discovery and manufacture1

of functional small molecules. AI-based synthesis planning models could be a2

potential remedy to find effective syntheses, and have made progress in recent years.3

However, they still struggle with less frequent, yet critical reactions for synthetic4

strategy, as well as hallucinated, incorrect predictions. This hampers multi-step5

search algorithms that rely on models, and leads to misalignment with chemists’6

expectations. Here we propose RetroChimera: a frontier retrosynthesis model,7

built upon two newly developed components with complementary inductive biases,8

which we fuse together using a new framework for integrating predictions from9

multiple sources via a learning-based ensembling strategy. Through experiments10

across several orders of magnitude in data scale and splitting strategy, we show11

RetroChimera outperforms all major models by a large margin, demonstrating12

robustness outside the training data, as well as for the first time the ability to learn13

from even a very small number of examples per reaction class. Moreover, industrial14

organic chemists prefer predictions from RetroChimera over the reactions it was15

trained on in terms of quality, revealing high levels of alignment. With the new16

dimensions that our model unlocks, we anticipate further acceleration towards full17

lab-in-the-loop automation of synthesis planning and execution.18

1 Introduction19

Chemical synthesis is central to the discovery and supply of small molecule-based therapeutics,20

materials, and fine chemicals. However, as syntheses often fail, and thus constitute a critical21

bottleneck, using computational methods to propose better synthesis routes is highly desirable [1–3].22

Computer-aided synthesis planning has a long research history, with tools traditionally implemented23

via rule-based expert systems [4–6]. However, over several decades progress had been limited [6].24

Since 2017, significant advancements have been made, along two directions. First, the expert25

system approach of manually coding reaction rules has been reimplemented [7, 8] by Szymkuc26

and coworkers, and has been experimentally validated [9, 10]. Second, by re-framing synthesis27

planning as a machine learning (ML) problem, where deep neural networks are trained on large28

reaction datasets to predict synthetic disconnections and reaction outcomes, which are then coupled29

with neural-guided search, a paradigm shift has been achieved [11–13]. Since then, several new30

ML models [14–30] and search algorithms [31–34] have been introduced. Incorporated into readily31

available tools for retrosynthetic search, which are increasingly used in computational workflows and32

as a source of inspiration for chemists during route planning, ML-based synthesis planning has also33

been experimentally validated [2, 13, 35, 36].34

While conceptually ML-based synthesis planning promises favorable scaling with the ever-growing35

body of organic chemistry knowledge in the literature, patents, and electronic laboratory notebooks,36
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Figure 1: a, In retrosynthesis, potentially multiple reactions towards the same target molecule need to be
predicted. b, Prior work on computer-aided synthesis demonstrated limitations. c, Our framework for ensemble-
based retrosynthesis with learned reranking which underpins RetroChimera. The ensemble receives a target
molecule as the input, which is then processed by the constituent models. The model outputs are then aggregated
using a learning-to-rank strategy. While in this work we only investigate deep learning models as prediction
sources (solid boxes), it is possible to add additional sources, for example calls to reaction databases or human-
in-the-loop queries, which will be addressed in future work (dashed box).

so far, compared to hand-coded expert systems, ML-based planning suffered from requiring very37

large datasets, limited accuracy in particular for rarer reaction classes, limited robustness further away38

from the training distribution, and reduced acceptance by chemists [3]. In addition, chemists often39

combine multiple strategies, from direct pattern matching to envisioning new transformations, which40

computational approaches currently do not reflect.41

In this work, we present a framework for retrosynthesis prediction that ensembles models with42

diverse inductive biases using a learning-to-rank strategy. Instantiated with two new state-of-the-art43

models, also introduced here – one based on Graph Neural Networks using molecular edit rules44

and one on de-novo generation using a modern Transformer – we obtain RetroChimera, which45

achieves high accuracy on common and rare reactions alike, increased robustness, as well as superior46

performance in multi-step search. Furthermore, we show quantitatively that organic chemists prefer47

RetroChimera over reported reactions from the literature, and elucidate the ability of our probabilistic48

model to learn robustly even when presented with partially noisy training data.49

2 Computer-Aided Synthesis Planning50

Systems for Computer-Aided Synthesis Planning usually perform retrosynthesis, i.e. predicting51

transformations which correspond to reverse chemical reactions starting with the target molecule,52

and have four components: (1) a single-step model or algorithm to propose transformations that53

correspond to feasible reactions in the forward direction, (2) a search algorithm that chains together54

transformations into multi-step routes, (3) ranking criteria for the routes, and (4) admissible building55

block molecules into which the target has to be deconstructed [3, 37]. Thus, an accurate single-step56

model is crucial as it defines the search space of possible reactions to explore. As the model is called57

recursively during search, the requirements for accuracy are very strict, as errors compound with58

multiple steps, and a single error will invalidate the entire route. In addition, it is critical for the model59

to cover a large chemical reaction space, so that strategic yet rare transformations are not missed.60

Current single-step models can be classified into editing models, which change only the parts of the61

molecule involved in the reaction, e.g. make or break bonds and add leaving groups, or de-novo62

models, which generate the reactant structures from scratch, including regeneration of the unchanged63

parts. While in recent years several models have been proposed, high accuracy still poses a significant64

challenge, especially for reaction types of lower precedence [10, 12, 38–41]. However, rarer reactions65

are often highly specific and strategically useful [10].66
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3 Ensembling67

Model ensembling is a technique where models trained to perform the same task are combined to68

obtain better performance than any of them would in isolation [42]. Generally, ensembles work best69

when the models are diverse [43]. In retrosynthesis prediction, several options of ensembling exist.70

Instead of directly ensembling in token probability space, which can only be applied to autoregressive71

models, we can perform count-based ensembling in molecule space by aggregating outputs shared by72

ensembled models, which we hypothesize to be more expressive. Moreover, count-based ensembling73

is more versatile, as it can ensemble any set of models, as well as non-model sources of reactions; for74

example, it would allow to mix in proposals coming from lookups in reaction databases.75

Here, we propose to merge several output lists based on overlaps between them, which for the first76

time leads to substantial gains over the ensembled models. Given outputs ri,k from m models where77

ri,k is the k-th prediction from the i-th model, we rank unique reactant sets r by decreasing score(r):78

score(r) =
m∑
i=1

kmax∑
k=1

1[r = ri,k] · θi,k, (1)

79

where kmax is maximum number of predictions considered per model and θ ∈ Rm×kmax
+ ; we omit80

the dependence on θ for clarity. In other words, reactant set predicted at rank k by model i is assigned81

score θi,k, with scores summed across models. Intuitively, reactions ranking highly across several82

models will be assigned a larger score than those suggested by a single model. Inspired by work on83

learning to rank [44], we learn θ from predictions on the validation set Dval by minimizing84

Lrank = E(p,r+)∈Dval

∑
r−∈R−

σ

(
score(r−)− score(r+) + ϵ

T

)
, (2)

85

where R− = {ri,k : ri,k ̸= r+} are predictions differing from ground-truth r+ and ϵ is a small86

constant. For ϵ, T → 0, Lrank(r
+, r−) → 1[score(r−) > score(r+)], i.e. indicator of whether87

r+ and r− are ordered incorrectly. In the limit Lrank lacks useful gradients, thus we start with T > 088

and linearly anneal to 0 over the course of optimization. To avoid overfitting to Dval we constrain89

each θi to be decreasing and convex. In the experiments we optimize θ on the validation set and90

evaluate on the test set; we defer implementation details and further results to Appendix A.91

Ensembling public models To test our strategy, we consider models trained on USPTO-50K92

available in syntheseus [45]: Chemformer [46], GLN [16], Graph2Edits [47], LocalRetro [19],93

MEGAN [18], RetroKNN [24] and R-SMILES [21]; we also include our reimplementation of94

NeuralSym [11]. Remarkably, ensembling any pair of models results in performance better than95

attained by either (Appendix A Figure 7), even when combining a strong model with a weaker one: for96

example, top-5 accuracy of R-SMILES can be improved by 1.5% by ensembling with GLN, despite it97

being significantly weaker. However, models employing similar modeling show limited benefit from98

being combined, which suggests diversity is key to a strong ensemble, and motivates us to propose99

two models – one based on molecule editing and one on de-novo generation – and investigate the100

performance of their ensemble at scale. Prior work often deems ensembles incomparable to individual101

models due to higher cost [15], but we challenge this assumption noting that ensembling a fast editing102

model with a de-novo Transformer leads to a negligible cost increase over the latter. In the following103

sections, we introduce our models, and benchmark them at increasing data scales.104

Ensembles discussed above already set a new state of the art on USPTO-50K, even outperform-105

ing model-reranker combinations [48]. However, in the following sections we show even better106

performance by utilizing our newly proposed models.107

4 Model architecture108

We instantiate RetroChimera as an ensemble of two separately trained models – one based on109

molecule editing and one on de-novo generation – each designed to address specific limitations in110

their respective modeling classes. As the edit-based model can be implemented very efficiently,111

RetroChimera delivers inference cost comparable to a single de-novo model such as R-SMILES,112

however – as seen in the later sections – with superior predictive performance.113
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Figure 2: a, Architecture of NeuralLoc. Product and templates are encoded through Graph Neural Network
encoders to produce contextualized atom representations. Template scores are computed by multiplying product
representation with template representations. Localization scores are computed as products of product atom
representations and template left-hand side atom representations. All templates in the batch are used for
classification, a subset is used for localization. b-e, Inference process. b, Product is input into the network
(atom IDs are not part of model input; shown to contextualize the localization). c, Classification head selects a
template from the library. d, Atom representations determine localization scores (shown for first 15 atoms). e,
As the template is symmetric, application produces two reactant sets depending on how the C:5-C:6 bond is
matched. Localization differentiates them, suggesting to match C:5 in the product with C:5 in the template (red
square in d). This proceeds for several top templates; resulting reactants are ranked based on a combination of
classification and localization. In this case, NeuralLoc prefers the result that is more chemically plausible.

Editing Model Molecule-editing models tend to stay closer to the data distribution due to reliance114

on symbolic transformations with support in training data, especially when edits are limited to stricter115

reaction rules or templates. Even though they were the first ML-based retrosynthesis model, template116

classification continues to be a default choice in modern workflows. However, two limitations hinder117

these models at scale: (1) weights responsible for choosing the template are treated as free parameters,118

precluding representational transfer between templates; and (2) applying a template can produce119

more than one prediction due to multiple matches in the input molecule, and these alternatives are not120

differentiated. Prior work has explored partial solutions: (1) by using a template encoder [39]; and (2)121

by separately predicting the reaction centre to constrain template match [16, 19, 49] or introducing a122

separate module to rank the final reactant sets [16]. However, narrowing template application to the123

reaction centre may not be enough to uniquely specify the reactants due to symmetry (Figure 2c).124

Inspired by these works we design NeuralLoc, a new template classification model (Figure 2a). Apart125

from a product encoder, NeuralLoc contains a separate template encoder; unlike MHNreact [39],126

this encoder directly processes the template as a graph using a tailored featurization. Our model127

uses aggregated product and template representations for template classification, and atom-level128

representations for localization by computing pairwise assignment probabilities between product and129

template atoms. During inference (Figure 2b-e) we call the classification branch, apply a number of130

top-scoring templates, and reorder all results taking localization into account; see Appendix B for131

architectural details, hyperparameters, and description of model training and inference.132

De-Novo Model We build our new de-novo model upon the Seq2Seq framework pioneered by Liu133

et al [14], and the successful R-SMILES model [15, 21], which utilizes an aligned SMILES format to134
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represent input products and ground-truth reactants. This involves training an encoder-decoder model135

based on the Transformer architecture [50–52] using a cross-entropy loss. Unlike previous work136

relying on OpenNMT [53], we employ three architectural modifications to improve accuracy and137

inference speed: (1) Group-Query Attention (GQA) [54] instead of standard multi-head attention to138

reduce computational complexity; (2) pre-normalization using RMSNorm [55] instead of LayerNorm;139

and (3) SwiGLU activation [56] instead of ReLU in feedforward layers. We also refined the beam140

search termination condition to better suit the domain, improving top-k accuracy for large k. We141

refer to our updated model as R-SMILES 2; see Appendix C for more details.142

5 Results on reaction prediction143

To test the performance of our framework and models, we start with small-scale experiments on144

USPTO-50K, and then scale to the largest public dataset and a better curated proprietary dataset. We145

defer a detailed discussion of these datasets and choice of baselines to Appendix D.146

USPTO For a comparison on public data we use USPTO-50K and USPTO-FULL datasets prepro-147

cessed by prior work [16]. We find that NeuralLoc and R-SMILES 2 generally match or surpass the148

state of the art within their own model classes, while RetroChimera performs better than both and sets149

new state of the art for k > 1 on both USPTO-50K and USPTO-FULL, pushing the top-10 accuracy150

by 1.7% and 1.6%, respectively (see Appendix E for full results). To test the scaling of our ensembling151

strategy, we also evaluated an ensemble containing both our proposed models and most of the base-152

lines, and found it pushes the state of the art even further, although it may not be practical due to ex-153

cessive resource requirements. Nevertheless, this result may inspire future work on model distillation.154

To obtain a good trade-off between resource requirements and accuracy, we focus on ensembling two155

models and scale RetroChimera to larger and more diverse datasets.156

Pistachio We scale our models to the proprietary Pistachio dataset, which is better curated and157

represents a 3.5x increase in number of samples compared to USPTO-FULL. We use the data prepared158

by Maziarz et al [45], where reactions present in the database as of June 2023 were grouped by159

product and randomly split into three folds. We reuse the training and validation sets, and build a160

new time-split test set: we take reactions added to Pistachio in 2024, marked as high quality by the161

database curator, and whose product had fingerprint similarity to a training product below 0.95 (see162

Appendix F). This gave rise to a high quality test set of 146 393 reactions temporally and structurally163

separate from data used for training and validation; we use it as our default test set and defer results164

on the original test set to Appendix E. As there are no published results on this version of Pistachio,165

we also train and evaluate selected, strong baselines (LocalRetro, R-SMILES, NeuralSym).166

Similarly to the results on USPTO, our models establish state-of-the-art performance within their167

respective classes (Figure 3a). RetroChimera matches R-SMILES 2 for small k while outperforming it168

for larger k due to the pooling of diverse inductive biases. With only 10 results, RetroChimera reaches169

the accuracy of considering 50 results from R-SMILES.170

To further understand the strengths of the individual models, we analysed top-50 recall as a function171

of fingerprint similarity to training data, as well as frequency of the ground-truth template (Figure 3b;172

see Appendix D for details). All models perform better on reactions more similar to the training data,173

or those utilizing more common templates. Far from training data de-novo models degrade less than174

edit-based ones, giving credence to a hypothesis that the former generalize better [27, 57]. While175

R-SMILES 2 outperforms NeuralLoc on reactions with little to no template precedence, for moderate176

template support the trend reverses, showing that our editing model can use a template effectively177

from just a few examples.178

When the models are combined into RetroChimera, their complementary inductive biases lead to179

superior performance for both frequent and rare reaction types alike, effectively addressing the “rare180

reactions problem”. Moreover, RetroChimera reaches close to optimal recall on well-precedented181

reactions, indicating the model can be seen as a “soft reaction database”.182

Reaction quality Accuracy tests if a model can recall the ground-truth, but not whether its non-183

ground-truth predictions are reasonable, which is arguably more important for search [45]. To assess184

how feasible model outputs are overall, one can feed predicted reactants to a forward model to185

5



a

1 3 5 10 20 50
k

40%

50%

60%

70%

80%

90%

Top-k prediction accuracy on Pistachio b

<.6 .6-.8 .8-.9 >.9
Similarity to train sample

70%

80%

90%

100%

vs proximity to train set

0 1 2 3 10 50 1k 5k
Frequency (lower bound)

20%

40%

60%

80%

100%

vs template support

Ne
ur

alS
ym

Re
tro

Ch
im

er
a E

di
t

R-
SM

ILE
S

Re
tro

Ch
im

er
a D

eN
ov

o
Re

tro
Ch

im
er

a

Da
tas

et

Model
0%

20%

40%

60%

80%

100%

split by template support

0 1 2 10+

Top-50 prediction accuracy on Pistachio

RetroChimera RetroChimeraDeNovo (R-SMILES 2) RetroChimeraEdit (NeuralLoc) R-SMILES NeuralSym LocalRetro SimpRetro

c

1 2 3 4 5 6 7 8 9

70%

75%

80%

85%

90%

95% Ground truth
forward model

1 2 3 4 5 6 7 8 9

Ground truth

feasibility model

Rank in output list

Prediction acceptance rate d

60 120 300 600 1800

75%

80%

85%

90%

95%

100%

So
lve

 ra
te

SimpRetro

30 60 120 300 600

0%

20%

40%

60%

80%

100%

Pistachio

Time limit (seconds)

Search benchmarking e

1 2 3-15
Rank

20%

30%

40%

50%

60%

70%

W
in 

ra
te 

vs
 d

ata
se

t

Expert comparison

Figure 3: Benchmarking Pistachio-trained models (ours shown as solid lines, baselines as dashed). a, Accuracy
on Pistachio. b, Top-50 accuracy when grouping by Morgan fingerprint similarity (Tanimoto, radius 2) to a
training product (left) or template frequency (middle, right). c, Fraction of non-ground-truth predictions accepted
by forward (left) and feasibility (right) models, as a function of rank; dashed line shows the acceptance rate of
dataset ground-truths. d, Solve rate on the SimpRetro dataset (left) and on hard products from Pistachio (right).
e, Win rate against dataset ground-truth conditioned on the prediction being different from the dataset, estimated
from expert comparison data. Whiskers correspond to 95% confidence interval from 1000 bootstrap resamples.

measure round-trip accuracy [19, 58], or feed entire reactions to a feasibility model [26]. In general,186

feasibility models are preferred as those are trained with both positive and negative reactions, and can187

handle cases where reactants would not react. Here we explore both routes: we use a forward model188

based on the R-SMILES 2 architecture and a feasibility model based on prior work [26]. Both were189

trained on Pistachio and calibrated to accept ∼95% of ground-truths; see Appendix G for details.190

We compute acceptance rate for each model and rank (Figure 3c). Interestingly, the scoring models191

partially disagree: both consider RetroChimera of higher quality than R-SMILES 2, but the forward192

model judges NeuralLoc much more highly. This highlights that while the two scoring approaches193

correctly distinguish generated predictions from ground-truths, they leverage disparate heuristics.194

6 Results on multi-step search195

SimpRetro To benchmark RetroChimera in multi-step search we integrate our models into synthe-196

seus, and start with an initial exploration of success rate on a dataset collected by Li et al [59]. We197

reuse the experimental setup from SimpRetro, including the choice of the search algorithm, building198

blocks (23.1M commercially available molecules from eMolecules), GPU type, and time limit. We199

consistently see higher success rates than SimpRetro, with RetroChimera also outperforming its200

constituents, and obtaining close to 100% solve rate under the largest time limit (Figure 3d). However,201

the creation of the SimpRetro test set did not control for similarity to Pistachio training data. To202

supplement this analysis, we move to a dataset of targets based on Pistachio.203

Pistachio To collect a challenging search dataset sufficiently distinct from training data, we used204

Pistachio test products that had high SAScore [60] and could not be easily solved through search205

with NeuralSym, and selected a diverse subset based on fingerprint similarity (Appendix H). This206

procedure left us with 951 hard targets which we split into 151 for validation and 800 for testing.207
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Figure 4: Example routes identified by RetroChimera. Targets were selected from the Pistachio test set, and
represent commonly observed challenges in medicinal chemistry. Note that route a (5 → 6) uses a less frequent
Hemetsberger–Knittel indole synthesis, which highlights the ability of the model to also propose reasonable
reactions that chemists would likely not immediately think of. As reagents, solvents and reaction conditions
were not predicted in this study, they were omitted from the depiction. Boc is tert-butyloxycarbonyl.

We search with Retro* [31] using the same building block set as in SimpRetro. To ensure a fair208

comparison, we first tuned temperature for every model on validation targets, and then used the209

best value for test targets. Generally, all of our models yield a better solve rate than baselines, with210

NeuralLoc performing best early on due to its higher efficiency, but losing to R-SMILES 2 and211

RetroChimera in the long run (Figure 3d). RetroChimera performs best for medium-to-long search212

times, and finds routes for even highly challenging molecules (Figure 4).213

7 Qualitative analysis214

In order to understand the complementary strengths of our proposed models and how ensembling215

manages to improve upon them, we run qualitative analyses using the models trained on Pistachio.216

Quality and alignment assessment by experts To measure the quality of model predictions, we217

conducted double-blind AB-tests comparing pairs of models or a single model with dataset ground-218

truth. Here, predictions for the same target from two sources were presented to PhD-level organic219

chemists, who were asked to express preference for one of the options.220

After gathering 599 comparisons from 9 experts covering various pairs of sources, we grouped221

based on prediction rank in the corresponding model, and mapped results within each group to222

Bradley-Terry scores, which we used to estimate the probability of each model beating ground-truth223

(Figure 3e). We find that chemists significantly prefer RetroChimera’s top prediction over the dataset224

(P < 0.05, mean preference rate ≈ 64%); RetroChimera also outperforms its submodels but that225

does not reach statistical significance. As a control, we employed a baseline which naively applies226

uncommon templates without any ranking, and mixed 46 baseline pairs into 599 described above;227

we find that baseline predictions were rejected in over 93% of cases, confirming that raters were228

staying attentive. See Appendix I for details and raw results. This is the first time a model can provide229

predictions more aligned to chemists’ expectations than the reference reactions it has been trained on.230

Ensembling visualization To visualize what errors are being made by our models and how en-231

sembling helps to mitigate them, we used an early version of the feasibility model to mine unlikely232
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Figure 5: Visualization of how predictions from R-SMILES 2 and NeuralLoc are combined by RetroChimera.
Molecule in row i and column j is the j-th reactant set predicted by the i-th model. (A, B) → C denotes that
a prediction was rank A in the output of R-SMILES 2, rank B in the output of NeuralLoc, and rank C in the
combined output (X signifies a prediction was not found in one of the lists). Segments connect molecules that are
shared. Green box is ground-truth, red box highlights a hallucinated prediction which is chemically implausible.

predictions on Pistachio test data. In a selected example (Figure 5) all models correctly predict the233

ground-truth as their top prediction, but diverge further down the list, where the 5th output from234

R-SMILES 2 is an erroneous version of the ground truth with one of the rings turned aromatic. As235

this is chemically implausible and not covered by templates, it is not predicted by NeuralLoc, and236

thus downweighed in RetroChimera’s outputs in favour of predictions shared by the submodels. The237

unlikely prediction still appears in RetroChimera’s output; while in this case it may seem undesirable,238

many predictions made only by R-SMILES 2 are correct, which is reflected in the ensembling weights.239

Our ensembling formalism permits a solution in which all outputs shared by both models are ranked240

above those predicted by one, but empirically this is suboptimal.241

We present further examples in Appendix J, demonstrate RetroChimera’s ability to denoise its training242

data in Appendix K, discuss limitations in Appendix L, and compute requirements in Appendix M.243

8 Conclusion244

In this work, we introduced a framework for building powerful retrosynthesis models by ensem-245

bling. Instantiated with two new models with different inductive biases, each exhibiting favorable246

performance in their own categories, we introduced RetroChimera, and demonstrated its efficacy on247

commonly used datasets, providing key insight into the strengths of different model classes. For the248

first time, we have demonstrated close to optimal retrieval for rare reaction classes, thus allowing249

retrosynthesis models to essentially become soft reaction databases, and shown that the ensemble is250

preferred by expert organic chemists in terms of quality. In experiments on both existing and new251

benchmarks, we validated that RetroChimera’s strong performance carries over to multi-step search.252

Our results open up ensembling strategies as a new dimension to improve retrosynthesis models,253

and demonstrate that deep learning method development, leveraging latest progress in Transformers254

and powerful representation learning for chemical transformations, continues to be a fruitful path255

to improving model performance. Importantly, compared to prior data-hungry ML models, the256

demonstration of few-shot transfer learning allows one to significantly reduce the required number257

of training examples for new reaction classes. In fact, the parallel development of standardized258

high-quality high-throughput experimentation data collection will make the generation of such data259

fully tractable already in the near future. We thus anticipate further acceleration towards the goal of260

fully closed-loop, self-improving systems for synthesis planning, orchestration and execution.261

Upon acceptance, code and model weights will be released under a permissive license.262
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A Ensembling527

We learn ensembling parameters θ using Adam [61] to minimize Lrank +wreg · Lreg , where Lreg is528

a regularization term to ensure relative model importance does not change too rapidly across ranks529

Lreg =
1

m(m− 1)

∑
i ̸=j

1

kmax − 1

kmax−1∑
k=1

∣∣∣∣ θi,kθj,k
− θi,k+1

θj,k+1

∣∣∣∣
We find that a regularization of this form gives a modest improvement for m = 2 and is roughly530

neutral for large m; we thus use a small weight of wreg = 0.2.531

Due to correlations between the rankings produced by the different models, in the majority of cases532

the relative ordering of r+ and r− is preserved across all models, especially when m is small. Those533

cases, while contributing non-zero gradient to Lrank for T > 0, are bound to be ranked in the same534

way for any row-wise decreasing θ. Thus, in practice we skip those pairs (r+, r−) in Equation 2 to535

reduce variance.536

Constraining θ One could minimize Lrank directly, but small validation set size and poor cov-537

erage of cases where r+ appears at higher ranks lead to overfitting and poor generalization. To538

fix this, we constrain each θi to be decreasing and convex (θi,k > θi,k+1 and θi,k − θi,k+1 >539

θi,k+1 − θi,k+2), expressing the intuition that lower ranks are less likely to be correct, and dif-540

ferences between ranks are more pronounced closer to the top. Formally, we parameterize θi as541

flip(cumsum(cumsum(exp(xi))), where xi ∈ Rkmax are free parameters, cumsum computes a542

cumulative sum, and flip reverses the vector.543

Implementation details To optimize θ, we first map the entire validation set into a single tensor544

containing ranks of r+ and r− across all models, which allows Lrank to be computed efficiently545

through a handful of PyTorch [62] primitives. We do not use batching, and instead optimize the full546

loss directly for 1000 steps. Both the learning rate and the temperature T start at 0.1 and decay by a547

factor of 0.9 every 25 steps. We set the margin ϵ in Equation 2 to 10−4.548

Additional results We find that our strategy consistently outperforms other approaches, and learns549

non-trivial schemes where relative model importance depends on k (Figure 6).550
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Figure 6: a, Ablation study for ensembling weight optimization on USPTO-50K. We consider the same models
as in Figure 7 together with NeuralLoc and R-SMILES 2, a total of 11 models. For every k, we show average
accuracy gain (over 55 model pairs) compared to a baseline formed by taking maximum accuracy among the
models in the pair. Our proposed method performs better than a naive approach (no monotonicity or convexity
constraints, wreg = 0), and several hand-designed weighting schemes: linear (θi,k = kmax +1− k), reciprocal
(θi,k = 1

k
), and weighted reciprocal (θi,k = ci

k
where ci is set to 2 for the model with higher top-1 accuracy and

1 for the weaker model). b, Learned weights for combining R-SMILES and LocalRetro on USPTO-50K. We see
that the curves cross: R-SMILES is assigned higher weight than LocalRetro for k ≤ 2 but lower for larger k.
This highlights that it is not enough to learn the relative model strengths without dependence on rank. We find a
similar trend whenever ensembling a de-novo model with an edit-based one.
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Figure 7: Top-5 (a) and top-50 (b) accuracy of ensembles of pairs of models. All values are in percent; color
palette blue-to-yellow corresponds to low-to-high accuracy (best results shown in bold). 2x2 squares correspond
to model clusters which show a limited benefit from being combined: NeuralSym and GLN (both based on
standard reaction templates), LocalRetro and RetroKNN (based on minimal templates), and the two checkpoints
of R-SMILES. Models are ordered by their result when evaluated in isolation (shown on the main diagonal), with
the exception of swapping GLN and MEGAN in the left plot to make the model cluster consecutive. R-SMILES’
denotes our retraining of R-SMILES. Off-diagonal entries show ensemble results.

Prior work While ensembling for reaction prediction and retrosynthesis has been attempted, results551

have been limited so far. Schwaller et al. [15] ensemble up to 20 forward models, but report only552

minimal gains at the cost of significantly slower inference. However, they employ the default method553

in OpenNMT [53], which averages next token probability distributions predicted by the different554

models, and is limited to models sharing the same output space.555

Combinations of models have been reported with specialized models for ring-forming reactions [63]556

or enzymatic catalysis [64, 65]. Lin et al. [48] combine outputs from different models, but determining557

the final order relies on a separately trained ranking model, discarding the rich information present558

in the order predicted by the original models. Torren-Peraire observed differences in the solutions559

different single-step models find [66]. In a recent paper by Saigiridharan et al., it was explicitly560

pointed out that while different models have been combined ad-hoc [66], no principled ensembling561

approach is available [67].562

B Editing submodel (NeuralLoc)563

Input featurization To featurize the input product, we follow prior work [19] and represent a564

molecule as a graph G = (V,E) with nodes V and edges E corresponding to atoms and bonds,565

respectively. To construct domain-specific node and edge features, we employ the featurizers566

available in the dgllife library [68]. Specifically, we use WeaveAtomFeaturizer for atoms and567

CanonicalBondFeaturizer for bonds. Following LocalRetro [19] we set the atom types supported568

by the atom featurizer to dgllife.data.uspto.atom_types extended by Tantalum. We do not569

include loops in G by setting self_loop=False.570

Template extraction Templates were extracted with rdchiral [69]. We note that alternative ap-571

proaches for template extraction [70, 71], minimal templates [12, 19], or manually coded rules [11]572

in combination with template prediction have been described in prior work and could potentially lead573

to improved results in future work.574

Template featurization Prior work has explored simple template featurization by converting both575

sides to molecular fingerprints [39]. This offers limited flexibility, and only produces aggregate576

representations, while NeuralLoc requires node embeddings to perform localization; we therefore577

design a new template featurization method to meet this desiderata, which turns an input template578

into a graph.579
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As both sides of the template resemble molecular structures, a starting point is to convert them into580

two graphs GL = (VL, EL) and GR = (VR, ER), respectively. Structures involved in templates are581

often not fully complete or valid molecules, thus it is not possible to reuse the input featurizer directly.582

However, we find that if we switch to a basic atom featurizer (CanonicalAtomFeaturizer without583

the chiral tag feature), it is enough to parse the molecules using MolToSmarts followed by calling584

UpdatePropertyCache(strict=False) to get the graph featurization to work successfully. Apart585

from standard features that are taken into account by the atom featurizer, an atom on the left-hand586

side of a template can also be associated with an atom SMARTS – a logical pattern describing more587

nuanced match conditions. In principle, these patterns could be parsed and encoded via a specialized588

procedure invariant to equivalent logical transformations; for simplicity, we instead opt for a simple589

one-hot encoding over a vocabulary of atom SMARTS patterns that occur in the data. Next, we590

add binary features distinguishing VL from VR to encode directionality. The last ingredient is to591

relate GL to GR by converting the atom mapping to a set of edges M = {(u, v) : u ∈ VL, v ∈592

VR, u is matched to v}; these edges are assigned a special edge feature to clearly differentiate from593

EL ∪ ER. We define the graph representing the entire template as G = (VL ∪ VR, EL ∪ ER ∪M).594

We note that our template featurization procedure is invariant under certain operations that do not595

affect the semantics of the template, including varying the linearization of the graphs, and permuting596

the atom mapping identifiers. Two syntactically different representations of the same template will597

therefore be mapped to the same graph, which can serve a similar purpose to template canonicalization598

algorithms [71].599

Architecture Bulk of the neural processing in NeuralLoc is performed by two separate GNNs,600

GNNin and GNNtpl, which – after several message passing layers interleaved with normalization601

and dropout – produce atom representations hin
v and htpl

v , respectively for atoms in the input product602

and the template. Both GNNs have a similar architecture based on the PNA [72] message passing603

scheme as implemented in PyTorch Geometric [73]. We experimented with a GPS layer [74] from604

Graphium [75] to extend PNA with global attention, and found it results in a minor performance605

improvement but significantly higher memory requirement. This trade-off was only beneficial on the606

small USPTO-50K dataset, thus we use PNA combined with GPS on USPTO-50K, and only PNA on607

USPTO-FULL and Pistachio. As one of the downstream objectives is graph-level, representations hin
v608

and htpl
v are aggregated similarly to prior work [76] using two separate aggregation layers based on609

multi-head attention to form hin and htpl, respectively. Due to a slight deficiency in the expressivity of610

our graph-level aggregation method, disconnected templates formed by repeating a fixed component611

a varying number of times are assigned the same representation, which would prevent the model612

from differentiating those templates downstream. Thus, we also introduce an additional template613

embedding of size dfree, which is learned end-to-end as opposed to being produced by the template614

encoder, and concatenate that to htpl. Finally, we linearly project graph-level representations of both615

input and template into a shared dimension dclf; those projections are then used for the classification616

objective. Network sizes vary across datasets, and were informed by overfitting concerns on USPTO-617

50K, and memory considerations on larger datasets (Table 1).618

Classification objective For classification, the input representation is multiplied by stacked template619

representations, and the resulting dot products are interpreted as unnormalized template selection620

scores. Unlike MHNreact [39], our template processing is learned, and thus templates used for621

classification have to be repeatedly encoded in each batch. The cost to do so grows with the number622

of templates and at sufficient scale becomes prohibitive. While on USPTO-50K we can encode623

all templates afresh in each forward pass, on USPTO-FULL and Pistachio doing so would require624

excessive amounts of GPU memory. Therefore, on larger datasets we only include a subset of625

templates in the classification objective, which include the ground-truth answers in a given batch and626

rclf randomly sampled templates per batch input as additional negatives; those negatives participate627

in classification for all inputs, not only those they were sampled for. While we use a simple softmax628

cross-entropy classification loss for the case of including all templates in each forward pass, when629

including a subset we found that the losses stemming from different templates have to be re-weighted630

according to template frequency to allow for learning appropriate marginals. In this case we use a631

sigmoid pairwise classification loss inspired by prior work [77]. We found increasing rclf generally632

tends to improve results, and so we set it as high as possible given memory constraints (Table 1).633
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Localization objective Localization requires assigning each atom in the left-hand side of the634

template (VL) an appropriate atom in the input (V ). To that end, we multiply htpl
v for v ∈ VL with635

hin
u for u ∈ V , and interpret resulting dot products as unnormalized localization scores, which are636

passed through a softmax along the template atoms dimension. The primary purpose of localization637

is to differentiate outputs resulting from applying a single template, but during inference we use a638

combination of classification and localization to rerank all outputs globally; thus it is beneficial for the639

localization subnetwork to be exposed to other templates beyond the ground-truth one during training.640

Therefore, in practice we use not only the node representations extracted for the ground-truth template,641

but also include rloc other templates from the current batch that best match a given input according642

to classification scores; this requires minimal additional computation as node representations for643

those templates were already computed for classification. The final localization loss is as a sum of644

cross-entropy losses over the template nodes. For nodes in the ground-truth template the target is to645

select the corresponding atom in V , whereas for nodes in additional negative templates the network646

is trained to instead select an auxiliary htpl
neg representation, which is concatenated to hin

v and trained647

end-to-end. Often there may be several localizations of the ground-truth template that result in correct648

predicted reactants; we label all of those localizations during preprocessing, so that the loss for atoms649

in the ground-truth template can use a uniform distribution over all correct choices in V as the target.650

Parameter USPTO-50K USPTO-FULL Pistachio

dclf 256 256 256
dfree 0 32 32
Number of templates 9735 228 127 146 256

GNNin

Layer type GPS + PNA PNA PNA
Number of layers 3 5 5
Hidden dim 64 768 1024
Output dim (node-level) 256 128 128
Output dim (graph-level) 512 1024 1024
Aggregation heads 8 8 8
Dropout (inter-layer) 0.1 0.0 0.05
Dropout (post aggregation) 0.4 0.4 0.4

GNNtpl

Layer type GPS + PNA PNA PNA
Number of layers 4 5 5
Hidden dim 64 192 192
Output dim (node-level) 256 128 128
Output dim (graph-level) 512 512 512
Aggregation heads 8 8 8
Dropout (inter-layer) 0.1 0.0 0.0
Dropout (post aggregation) 0.4 0.4 0.4

Batch size 128 256 512
Number of epochs 600 130 85
Initial learning rate 10−3 10−3 10−3

Loss type softmax sigmoid sigmoid
rclf - 30 18
rloc 1 4 4
rapp 100 10 10

Total parameter count 1.9M 103M 165M

Table 1: Architectural, training and inference hyperparameters of the NeuralLoc model across the datasets
investigated in this work.

Training We train NeuralLoc by minimizing a sum of the classification and localization losses.651

Training proceeds for a fixed number of epochs followed by checkpoint selection according to652

validation MRR. Following prior work [21] we select several best checkpoints (typically 5-10), and653

perform checkpoint averaging in parameter space to produce the final weights.654
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Inference During training, atom- and graph-level template representations evolve with each update655

to GNNtpl, and thus have to be recomputed each time they are used downstream. However, upon656

saving each checkpoint we encode all templates in the library and include the resulting outputs in657

the checkpoint file; this allows for fast inference as GNNtpl no longer needs to be used. Given a test658

input, we first multiply hin with template representations and extract rapp · n top-scoring templates to659

apply, where n is the number of results requested downstream; this step is identical to performing660

inference in the NeuralSym model. rapp is set to 1 during search, and to a larger value for single-step661

evaluation (Table 1). After applying the selected templates – which can be done efficiently using662

multiprocessing – for each template we group the predictions based on the resulting reactants, in663

order to account for several localizations producing the same result. Next, we rerank all unique664

outputs according to sclf +wloc · sloc, where sclf is the normalized template log-probability, sloc is the665

average normalized localization log-probability over template atoms, and wloc = 2.25 is a coefficient666

chosen empirically. When computing sloc we sum localization probabilities over potentially several667

correct choices, as highlighted by the aforementioned grouping. Finally, we truncate the output list to668

n results (100 for single-step benchmarking, 50 during search).669

C De-Novo submodel (R-SMILES 2)670

Architecture We build upon R-SMILES [21], and train an encoder-decoder model based on a671

Transformer backbone [50] (Figure 8). Unlike previous work [53] we reimplement the model672

from scratch using PyTorch [62], allowing us to freely customize the architecture. We applied key673

modifications described in the main text, which were inspired by the recent success of large language674

models such as Llama [51] and Mistral [52].675

Parameter USPTO-50K USPTO-FULL Pistachio

Vocab size 72 235 346
Number of layers 6 6 8
Hidden dim 256 512 512
Feedforward dim 512 2048 2048
Number of heads 8 8 8
Number of KV heads 8 2 2

Batch size 128 128 512
Number of epochs 30 60 30
Learning rate scheduler Noam Noam Noam
Learning rate 1.0 1.0 1.0
Warmup steps 8000 8000 8000
Dropout 0.3 0.1 0.1

Number of augmentations 20 5 10
Beam size 10 50 20

Total parameter count 17.4M 44.5M 66.7M

Table 2: Architectural, training, and inference hyperparameters of the R-SMILES 2 model across the datasets
investigated in this work.

Data augmentation Previous studies [21, 29] have shown that the general-purpose SMILES676

neglects the characteristics of chemical reactions, where the molecular graph topology remains677

largely unchanged from reactants to products. To address this, we employ root-aligned SMILES [21],678

which ensures an aligned mapping between product and reactant SMILES. This strict mapping, along679

with a reduced edit distance, simplifies the task for the transformer, allowing it to focus on learning680

the chemistry involved in reactions rather than syntax. We generate multiple input-output pairs as681

augmented training data by enumerating different product atoms as the root of SMILES. We apply682

20× augmentation to the USPTO-50K dataset, 5× to USPTO-FULL, and 10× to Pistachio.683

Tokenization We follow Schwaller et al.’s [15] regular expression to tokenize products and reactants684

SMILES into meaningful tokens. The regular expression is defined as:685
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Figure 8: Architecture of the de-novo model (R-SMILES 2). The input product is converted to a SMILES
string and tokenized into a sequence of tokens. Before the sequence is processed further, sinusoidal positional
embeddings are incorporated to infuse positional information. The sequence then undergoes transformation
through layers composed of grouped multi-query attention, RMS normalization, and feedforward layers with
SwiGLU activations. The autoregressive decoder predicts the SMILES sequence of reactants utilizing self-
attention over already produced tokens and cross-attention over encoder output. The model is trained using a
cross-entropy loss.

token_regex = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|686

\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])".687

This pattern accounts for the diverse range of symbols and characters within SMILES strings, includ-688

ing brackets, elemental symbols, numbers, and special characters. Notably, it matches sequences689

within brackets, elemental symbols (including Br, Cl, N, O, S, P, F, I), lower-case letters (b, c, n,690

o, s, p), parentheses, dot, other symbols (=, #, -, +, \, /, :, ~, @, ?, >, *, $), and two-digit numbers691

preceded by a percentage symbol, as well as single-digit numbers.692

Training objective We train R-SMILES 2 to minimize a standard cross-entropy loss with respect693

to the token sequence describing ground-truth reactants.694

Inference During inference we use beam search to find the top k predicted reactant sequences;695

however, we tailored the beam search logic to retrosynthesis. Unlike OpenNMT, which keeps696

completed sequences until two conditions are met – the pool size equals the beam size and the top-697
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rated sequence in the beam is lower in quality than all in the pool – we maintain finished sequences698

in the beam and end only when each sequence in the beam finishes with the EOS token.699

We found that this new design makes the top-k list more reliable and significantly improves accuracy,700

particularly for k ≥ 20, without visibly increasing inference time.701

D Datasets and baselines702

USPTO-50K As baselines for USPTO-50K we selected models integrated into the syntheseus703

library [45], and additionally included our NeuralSym implementation for completeness, and RetroEx-704

plainer [23] due to strong performance. We did not include RetroWISE [28] as a baseline, as it utilized705

extra data from the larger USPTO database. However, it is worth noting that our best ensemble706

outperforms RetroWISE for k ≥ 5 despite not using additional data. We note that some prior works707

do not compare to R-SMILES on USPTO-50K as the corresponding paper discusses pretraining on708

USPTO-FULL [21], but our investigation suggests the checkpoint evaluated in syntheseus did not use709

pretraining, and so it is fully comparable with other USPTO-50K-trained models (this is consistent710

with the fact that, as seen in Figure 7, our R-SMILES checkpoint retrained from scratch reached711

performance close to the released one).712

For large ensembles shown in Table 3 we included all baseline models from the corresponding table713

apart from RetroKNN, as its adapter network was trained on Dval, which artificially inflates the714

model’s validation result and degrades the performance of ensembles containing RetroKNN.715

USPTO-FULL Although commonly reported on in prior work, we find many versions of USPTO-716

FULL are in use, utilizing different methods for filtering and processing; this can be seen through the717

varying size of the test fold (94696 [78], 95389 [79], 95988 [29], or 96023 [21]). Due to this, most718

reported results on USPTO-FULL are not fully comparable to each other due to using a different test719

set. For a fair comparison we select a single version of the dataset [21] and only include baselines720

numbers reported on that version [19, 21, 28], which includes the method with the highest reported721

top-1 accuracy [28]. Note that EditRetro [29] reused the preprocessing script from R-SMILES [21],722

but additionally removed 35 test samples with duplicate atom mappings, resulting in a slightly smaller723

test fold size of 95988 compared to the original 96023. Since the difference between the two test724

folds is minimal, we included the values reported by EditRetro in their paper in our table. Finally,725

similarly to USPTO-50K, we also included our NeuralSym implementation as a baseline, which we726

found to produce much stronger performance than reported in prior work.727

Pistachio test set Time-split validation is considered to be the gold standard for ML model728

validation in chemistry, as it most closely mimics the prospective use of the models [80]. In contrast,729

random splitting can lead to over-optimistic assessments, especially as reaction data is usually730

published in clusters, often from the same document (paper or patent), where similar routes are used731

towards related products.732

To construct the time-split test set, we selected reactions added to Pistachio in 2024 as part of the733

Q2-2024 release. Based on the Pistachio quality tier assignment we used all reactions from tiers S, A,734

B; for tiers C and D only reactions with an assigned namerxn name reaction label were used. All other735

reactions, including the entire tier E, were rejected. Finally, we removed reactions of type resolution736

(RXNO class 11).737

We then used fingerprint similarity folded modulo 4093 to filter out products whose maximum738

similarity to a training product was at least 0.95. Finally, the remaining reactions were processed by739

the same filtering and deduplication pipeline as the training data.740

Bucketing test data To produce Figure 3b, we bucket Pistachio test data in two ways: based741

on maximum fingerprint similarity sim to a training product, and based on the frequency of the742

ground-truth template in the training template library.743

Note that NeuralLoc only considers templates that appear in training data at least twice, so it is unable744

to predict a template that occurs once or does not occur at all. Despite this, as seen in Figure 3b745

(middle), NeuralLoc still shows non-zero accuracy on samples with template frequency less than 2.746

This is explained by the fact that several distinct templates could potentially yield the same reactants747

after being applied to a particular product; hence even if the canonically determined template for a748
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test sample is not available to NeuralLoc, there may be another template in the library that gives rise749

to the right reactant set.750

E Additional results751
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Figure 9: a, Accuracy on USPTO-50K (left) and USPTO-FULL (right), shown as improvement over the best
baseline result (selected for each k separately). RetroChimera++ is an ensemble of both our models and
baselines (m = 10). b, Accuracy on the random split test set of Pistachio proposed by Maziarz et al [45]. Some
performance differences are accentuated compared to our time-split test set, but the model ranking is largely
preserved.

Model top-1 top-3 top-5 top-10 top-20 top-50

 

NeuralSym 45.6% 68.1% 75.5% 82.5% 87.9% 92.7%
MEGAN 48.7% 72.3% 79.5% 86.7% 90.9% 93.5%
LocalRetro 51.5% 76.5% 84.3% 91.0% 95.0% 96.7%
GLN 52.4% 74.6% 81.2% 88.0% 91.8% 93.1%
RetroChimeraEdit

∗ 53.3% 74.1% 80.7% 87.1% 91.6% 93.8%
Graph2Edits 54.6% 76.6% 82.8% 88.7% 91.1% 91.7%
RetroKNN 55.3% 77.9% 85.0% 91.5% 94.8% 96.6%
RetroExplainer† 57.7% 79.2% 84.8% 91.4% - -

#

Chemformer 55.0% 70.9% 73.7% 75.4% 75.9% 76.0%
R-SMILES 56.0% 79.1% 86.1% 91.0% 93.3% 94.2%
EditRetro† 60.8% 80.6% 86.0% 90.3% - -
RetroChimeraDeNovo

∗ 56.9% 79.9% 86.9% 92.3% 95.5% 96.4%

⊙
RetroChimera∗ 56.7% 80.7% 87.6% 93.2% 96.3% 97.9%
Ensemble of baselines∗ 59.3% 82.3% 89.0% 94.1% 97.0% 98.6%
RetroChimera++∗ 59.6% 82.8% 89.2% 94.2% 97.2% 98.6%

Table 3: Results on the USPTO-50K dataset with reaction class unknown. Models are grouped by type denoted
via the icon on the left: edit-based ( ), de-novo (#), and ensemble (⊙). Within groups models are sorted by
top-1 accuracy. Best result for each top-k accuracy is shown in bold; results that are best within a model type but
not best overall are underlined. Results marked with ∗ utilize techniques proposed in this paper, those marked
with † are taken from prior work, and others were computed using syntheseus [45].
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Model top-1 top-3 top-5 top-10 top-20 top-50

 
LocalRetro† 39.1% 53.3% 58.4% 63.7% 67.5% 70.7%
NeuralSym 44.1% 61.4% 66.6% 71.5% 74.6% 77.1%
RetroChimeraEdit

∗ 46.2% 62.0% 66.7% 71.2% 74.7% 77.7%

#

R-SMILES† 48.9% 66.6% 72.0% 76.4% 80.4% 83.1%
EditRetro† 52.2% 67.1% 71.6% 74.2% - -
RetroChimeraDeNovo

∗ 51.1% 68.1% 73.3% 78.2% 81.6% 84.8%
RetroWISE† 52.3% 68.7% 73.5% 77.9% 80.9% 83.6%

⊙ RetroChimera∗ 51.4% 69.5% 74.6% 79.5% 82.8% 85.6%

Table 4: Results on the USPTO-FULL dataset, following the same format as Table 3 above. Note that RetroWISE
was pretrained on additional synthetic data; our understanding of the original work of Zhang et al [28]. is that
this data was created based on USPTO, thus it may be fair to compare RetroWISE with other models trained on
USPTO-FULL. We were not able to confirm this due to the exact code and data not being open-source.

F Fingerprint similarity752

We make use of fingerprint similarity in several aspects of our work: filtering out near matches when753

constructing the Pistachio test set, bucketing the test samples for Figure 3b, and generating synthetic754

negative reactions for training the feasibility model.755

In all cases we use count-based Morgan fingerprints with radius 2 folded modulo a large prime. To756

compute similarity between x and y we employ Tanimoto similarity adapted to count fingerprints [81,757

82]:758

sim(x, y) =
∑

i xiyi∑
i x

2
i +

∑
i y

2
i −

∑
i xiyi

In practice we care about all-pairs similarities between two large sets of molecules; we thus make use759

of an efficient GPU-based implementation that pads the fingerprints to the nearest power of 2 and760

rephrases computing sim in terms of matrix multiplication.761

G Quality assessment762

Method Analysing quality of k top predictions can be confounded by some models having higher763

top-k accuracy, while others returning less than k outputs altogether. To study the quality of non-764

ground-truth predictions directly, we filter the test products to those where all compared models return765

at least k outputs and recover the ground-truth answer within that; after removing the ground-truths766

from the output lists, we obtain k − 1 non-ground-truth predictions for each input, which are fed into767

subsequent analysis.768

For the comparison in Figure 3c we set k = 10 and filter the Pistachio test set down to 113 135769

products (≈ 66.7%) according to the aforementioned criteria, with 9 non-ground-truth predictions770

associated with each. We then run both quality assessment models on the ground-truth reactions771

for those products, and calibrate so that each accepts around 95% of ground-truths; for the forward772

model this translates to accepting a reaction if its product is within top 2 predicted products given the773

reactants, while for the feasibility model if the predicted feasibility is above 0.1.774

Forward model We utilized the same Pistachio reaction dataset and model architecture as the775

R-SMILES 2 model for the forward model development. This involved applying 10× R-SMILES776

augmentation to the Pistachio data in the forward direction. After a training for 10 epochs, we used777

the final checkpoint for quality assessment. To validate the performance of the forward model, we778

evaluated the trained model on the USPTO-50K test dataset, resulting in top-1 accuracy of 88.6%,779

top-3 accuracy of 97.8%, and top-50 accuracy of 99.9%. When evaluated on the Pistachio test set, the780

model achieved top-1 accuracy of 70.76%, top-3 accuracy of 81.3%, and top-50 accuracy of 87.3%.781

We deemed this accuracy sufficient for conducting convincing quality assessments.782
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Feasibility model To build our feasibility model, we scaled up the approach from prior work [26]783

developed on USPTO-50K to the larger Pistachio dataset. The feasibility model encodes the reactants784

and product using two separate GNNs, concatenates their aggregated representations, and predicts785

a single feasibility probability value. We train it using a standard cross-entropy loss on a dataset786

consisting of both positive and negative reactions. We use the Pistachio training data for the former,787

while the latter is generated synthetically; we gather approximately 10 negative examples for each788

positive example, for a total of 32M training data points.789

We use two separate sources of negative examples: forward template application and similarity-790

based replacement. Both hinge on the assumption that if a reaction R → P is observed in the791

data, then other products P ′ are not formed, i.e. R → P ′ is a negative example. For the forward792

template application we follow prior work [12] and use the same templates as used by NeuralLoc, but793

applied in the forward direction to reactants sampled from the training data. For the similarity-based794

replacement, given a positive reaction (R,P ), we find several similar examples (R′, P ′) maximizing795

sim(R,R′)+sim(P, P ′) where sim is fingerprint similarity defined previously. We then use (R′, P )796

as the negative example; intuitively, due to the high similarity between R and R′, this gives rise to a797

sample that is more difficult than if one were to pair reactants and products randomly.798

H Search benchmark799

Target set construction To build a challenging test set for search, we started with 146 393 Pistachio800

test products and performed the following steps:801

• Filter out building blocks (138 699 targets left).802

• Filter out products whose SAScore is below 4 (25 482 targets left).803

• Filter out products containing deuterium atoms (23 850 targets left).804

• Cluster products with HDBSCAN [83] (minimum cluster size 3, cluster merge threshold805

0.15) using fingerprint similarity sim to define a distance measure. Discard 4437 noisy806

(unclustered) products, and pick the highest SAScore product in each non-trivial cluster807

(1784 targets left).808

• Filter out products for which shallow search using Retro* [31] (depth of 6 nodes, equivalent809

to 3 reactions) with the NeuralSym model can find any routes in one minute (951 targets810

left).811

We then randomly split the resulting hard targets into 151 targets for validation and 800 for testing.812

Simple random split was justified as due to the clustering any two targets at this stage had fingerprint813

similarity below 0.87.814

Hyperparameter tuning We found that varying the policy temperature T can have a large ef-815

fect on the behaviour of Retro*, with low temperatures promoting deep greedy exploration of816

the few most likely steps, while higher temperatures leading to a balanced exploration closer817

to a breadth-first search. To ensure a fair comparison, for each model we first ran 10-minute818

searches on the 151 validation targets with T sampled approximately uniformly in log-scale i.e.819

T ∈ {0.25, 0.35, 0.5, 0.71, 1.0, 1.41, 2.0, 2.83, 4.0}. We then computed solve rate at the 30, 60, 120,820

300 and 600 second mark, and for each model selected the value of T yielding largest area under821

the solve rate curve. We used this setting to produce the final results on 800 test targets shown in822

Figure 3d.823

I Assessment by domain experts824

The study participants were 9 PhD-level organic chemists (including 5 working for major pharma-825

ceutical companies), with a track record of publications and several years of hands-on experience826

in synthetic organic chemistry. We first collected outputs on the Pistachio test set from five sources:827

dataset ground truth, our models (NeuralLoc, R-SMILES 2 and RetroChimera), and a dummy baseline828

which applies only rare reaction templates (omitting the most common 4000) without any ranking.829

This allows to compare between our models to ground truth, as well as ground the results in a null830

baseline which, despite respecting basic syntactic rules due to the use of templates, achieves close to831
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zero recall and leads to mostly nonsensical suggestions which an attentive chemist should be able832

to spot. For every pair of sources we sample several test products, and for each consider the top833

15 model predictions, only comparing between predictions at the same rank. Cases when the two834

predictions from the two sources are the same are discarded.835

Given a dataset of pairs of predictions, we ask the chemists to judge which one they prefer. They836

were given no indication as to the source of each reaction, and order within the pairs was randomized837

to remove bias. Coverage of different ranks and pairs of sources was not uniform, chosen to focus on838

important cases such as RetroChimera vs ground-truth (Figure 10). We used comparisons against the839

dummy baseline to confirm that raters are attentive, but not in the following analysis.840

To summarize the preference data, we group by rank (rank 1, rank 2, and ranks 3 through 15). and841

use the Bradley-Terry model to estimate scores si that fit pairwise win rates:842

P (source i wins with source j) ≈ esi

esi + esj
(3)

We count a tie (i.e. chemist rating both predictions as good, or both as bad) as half a win for both843

sources. As we only score pairs where the predictions from the two sources are distinct, observed win844

rates focus on the cases where the sources diverge, which can be a minority; we found that computing845

Bradley-Terry scores directly can be sensitive to the distribution of source pairs. To address this, given846

the number of scored pairs and the empirical agreement frequency for a given rank bucket and pair of847

sources, we determine the expected number of agreement cases, and include these as additional ties848

before computing the Bradley-Terry scores. Finally, for each model we compute the probability of849

winning with the dataset (Equation 3), and use the aforementioned agreement frequency to convert850

this to win rate conditioned on the predictions being different (Figure 3e).851

RetroChimeraDeNovo vs RetroChimeraEdit

RetroChimeraEdit vs RetroChimera
RetroChimeraDeNovo vs RetroChimera

Dataset vs RetroChimeraEdit

Dataset vs RetroChimeraDeNovo

Dataset vs RetroChimera

Ra
nk

 1

18
19
18

8
7

158

RetroChimeraDeNovo vs RetroChimeraEdit

RetroChimeraEdit vs RetroChimera
RetroChimeraDeNovo vs RetroChimera

Dataset vs RetroChimeraEdit

Dataset vs RetroChimeraDeNovo

Dataset vs RetroChimera

Ra
nk

 2

25
20

2
15

7
51

0% 25% 50% 75% 100%
Empirical win rate

RetroChimeraDeNovo vs RetroChimeraEdit

RetroChimeraEdit vs RetroChimera
RetroChimeraDeNovo vs RetroChimera

Dataset vs RetroChimera

Ra
nk

s 3
 to

 15

0 50 100 150 200
Number of comparisons

75
40

52
84

 left wins right wins 

Figure 10: Raw win rate (left) and number of scored pairs (right) describing the data used for the analysis shown
in Figure 3e. Whiskers next to each win rate correspond to 95% confidence interval computed using an exact
binomial test, which take into account only results for a particular rank bucket and pairs of sources. Note that
in some cases the result is not significant due to low number of pairs, but a joint analysis (Figure 3e) leads to
improved statistical significance.
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J Model errors852

When looking for model errors further, we found cases of copy errors (Figure 11), implausible853

bond-breaking reactions (Figure 12), and duplicating one of the reactants (Figure 13); all produced854

by one submodel and downranked in RetroChimera. However, we note these erroneous examples855

were highly cherry-picked, representing a tiny minority of all predictions.856

Product

(1, 1) -> 1 (2, 2) -> 2 (3, 7) -> 3 (4, 8) -> 4 (5, X) -> 8

(1, 1) -> 1 (2, 2) -> 2 (3, 7) -> 3 (4, 8) -> 4 (X, 3) -> 5

(1, 1) -> 1 (2, 2) -> 2 (X, 3) -> 5 (8, 4) -> 6 (7, 5) -> 7
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Product

(1, 1) -> 1 (2, 9) -> 2 (3, 14) -> 4 (4, 4) -> 5 (5, X) -> 8

(1, 1) -> 1 (2, 9) -> 2 (18, 2) -> 3 (3, 14) -> 4 (4, 4) -> 5

(1, 1) -> 1 (18, 2) -> 3 (X, 3) -> 6 (4, 4) -> 5 (7, 5) -> 7
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Figure 11: Extended examples of ensembling improving over individual models. Similarly to Figure 5, we see
R-SMILES 2 can fail to correctly reproduce the right bond pattern in a ring copied from the input product.
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Product

(1, 1) -> 1 (2, 2) -> 2 (3, 4) -> 3 (4, X) -> 5 (5, X) -> 6

(1, 1) -> 1 (2, 2) -> 2 (3, 4) -> 3 (6, 3) -> 4 (4, X) -> 5

(1, 1) -> 1 (2, 2) -> 2 (6, 3) -> 4 (3, 4) -> 3 (X, 5) -> 8
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Product

(1, 1) -> 1 (2, 37) -> 2 (3, X) -> 4 (4, 29) -> 6 (5, X) -> 7

(1, 1) -> 1 (2, 37) -> 2 (28, 2) -> 3 (3, X) -> 4 (X, 3) -> 5

(1, 1) -> 1 (28, 2) -> 3 (X, 3) -> 5 (X, 4) -> 9 (16, 5) -> 8
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Figure 12: For certain inputs, the R-SMILES 2 model might predict bond-breaking reactions which are chemically
implausible (ranks 4 and 5 in the top example; rank 5 in the bottom one). These cases are downweighed during
model ensembling as they are not predicted by NeuralLoc. In contrast, NeuralLoc can fail due to noise in
the underlying data and incorrect template extraction (ranks 3 and 4 in the bottom example), which is in turn
down-ranked by R-SMILES 2, highlighting the power of the ensembling approach.
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Product

(1, 1) -> 1 (2, 2) -> 2 (3, X) -> 3 (4, X) -> 5 (5, X) -> 6

(1, 1) -> 1 (2, 2) -> 2 (3, X) -> 3 (X, 3) -> 4 (4, X) -> 5

(1, 1) -> 1 (2, 2) -> 2 (X, 3) -> 4 (X, 4) -> 7 (X, 5) -> 10
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Product

(1, 3) -> 1 (2, 98) -> 3 (3, 7) -> 5 (4, 2) -> 4 (5, X) -> 7

(1, 3) -> 1 (10, 1) -> 2 (2, 98) -> 3 (4, 2) -> 4 (3, 7) -> 5

(10, 1) -> 2 (4, 2) -> 4 (1, 3) -> 1 (16, 4) -> 6 (X, 5) -> 12
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Figure 13: In certain cases, the R-SMILES 2 model appears to produce the same reactant twice, either as an
exact copy or with minor variation.
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K Denoising of potentially erroneous data857

In past work, AI retrosynthesis models have been criticized for their potential inability to deal with858

noise in the training data, which is expected to be present in large reaction datasets [10]. However,859

correctly trained probabilistic models, such as the ensemble component models in this work, can860

become robust towards errors in the training set, and effectively denoise the data. For this purpose,861

we qualitatively inspected random test reactions for given products from the Pistachio dataset that our862

model was unable to recover in its top 50 predictions, and asked expert chemists for an assessment863

(Figure 14). We found that representative erroneous ground truth test reactions for example contain864

stereochemistry or other assignment errors, while our model returns the reactions that the chemist865

would expect, highlighting the ability of the model to deal robustly with partially noisy data and align866

with scientists’ expectations.867

a b

c d

e f

g h

i j

Figure 14: Examples of the denoising behaviour of RetroChimera. Left column (a, c, e, g, i) are model
predictions, in each case preferred by expert chemists. Ground truth examples (right column; b, d, f, h, j)
are taken from test set. Examples a-h demonstrate denoising for stereochemistry assignments. Our model
has learned to ignore likely incorrect assignments (right) and instead is aligned with expert expectations (left).
Furthermore, the model exhibits the ability to infer missing reactants. In example j the test data does not specify
the exact alkylating agent, whereas the model infers to use methyl iodide (Example i).

L Limitations868

Despite increased robustness, ML-based retrosynthesis models are not free from hallucinated outputs,869

especially far away from the training distribution. This can partially be mitigated by combining870

retrosynthesis models in a pipeline with reaction feasibility and forward prediction models, as871

demonstrated in prior work [12, 13]. Another limitation stems from systematic errors in the training872

data, which can be mitigated by improved data curation.873

M Compute requirements874

Both of our backward models (NeuralLoc and R-SMILES 2), as well as the forward model based on875

R-SMILES 2, took up to a week to train on a single node with 4-8 A100 GPUs. The feasibility model876

was trained in a few days using a single A100 GPU. Ensembling was done on CPU based on saved877

model outputs for the underlying models; this allows for learning θ and evaluating the ensemble878

without the need to run inference of the original models. Each search experiment was parallelized879

over 4-8 GPUs, with each GPU responsible for a subset of targets; we used V100 GPUs for the880

SimpRetro benchmark and A100 GPUs for our new benchmark based on Pistachio.881
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