
Demeaned Sparse: Efficient Anomaly Detection by Residual Estimate

Yifan Fang * 1 2 Yifei Fang * 3 Ruizhe Chen * 1 4 Haote Xu 1 2 Xinghao Ding 1 2 4 Yue Huang 1 2 4

Abstract

Frequency-domain image anomaly detection
methods can substantially enhance anomaly de-
tection performance, however, they still lack an
interpretable theoretical framework to guarantee
the effectiveness of the detection process. We
propose a novel test to detect anomalies in struc-
tural image via a Demeaned Fourier transform
(DFT) under factor model framework, and we
proof its effectiveness. We also briefly give the
asymptotic theories of our test, the asymptotic
theory explains why the test can detect anoma-
lies at both the image and pixel levels within
the theoretical lower bound. Based on our test,
we derive a module called Demeaned Fourier
Sparse (DFS) that effectively enhances detection
performance in unsupervised anomaly detection
tasks, which can construct masks in the Fourier
domain and utilize a distribution-free sampling
method similar to the bootstrap method. The ex-
perimental results indicate that this module can
accurately and efficiently generate effective masks
for reconstruction-based anomaly detection tasks,
thereby enhancing the performance of anomaly
detection methods and validating the effectiveness
of the theoretical framework.

1. Introduction
Anomaly detection techniques, employed to capture anoma-
lous structural changes within data that lead to deviations
from nonanomalous distributions, are widely applied across
various domains (Khan & Alkhathami, 2024; Jiang et al.,
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2023; Wu et al., 2024). The scarcity and diversity of anoma-
lous data present significant challenges to collecting suf-
ficient quantities for model training. Consequently, unsu-
pervised anomaly detection methods, which utilize only
nonanomalous samples as the training set, have emerged as
a key research focus in this field (Zhang et al., 2024; Ristea
et al., 2022; Reiss & Hoshen, 2023). Among these methods,
reconstruction-based anomaly detection represents one of
the mainstream approaches (Zavrtanik et al., 2022; 2021a;
Madan et al., 2023). It detects anomalies by measuring
differences between samples before and after reconstruc-
tion. The underlying assumption is that the model cannot
accurately reconstruct anomalous structures not encountered
during the training phase (Zavrtanik et al., 2021b).

Recently, Kascenas et al. (2023) proposed that anomalies
can be viewed as noise added to the nonanomalous distribu-
tion, i.e., anomalous structures are considered an ‘additive’
phenomenon. Anomalies are detected by calculating the
residuals between the reconstructed and original images.
Furthermore, using residuals for structural change tests is
very common in time series analysis, such as the Chow
test (Toyoda, 1974), Ljung-Box test (Hassani & Yeganegi,
2020), and Breusch-Pagan test (Halunga et al., 2017). By
the same way, anomalies in images can be considered a
form of structural change, since the task can be regarded
as a regression problem like the aforementioned tests. Fu
et al. (2023) used a DFT-based method to detect structural
changes in factor model, they gave a framework in factor
level by capturing information from residuals which con-
tain both the time and individual dimension. However, this
test is not suitable for image anomaly detection tasks, as
anomaly detection in images requires the application of a
multi-dimensional DFT across two cross-sectional dimen-
sions, which differs from the approach used in time series
analysis.

In this paper, we follow the method from Fu et al. (2023)
and incorporate a multi-DFT dual cross-sectional dimension
of positional information as our primary method. we first
demonstrate why anomaly detection can be effectively per-
formed at the factor level using by capturing information
from residuals. We also derive the test for such issue, as
well as asymptotic properties of the statistics under null
hypothesis and alternative hypothesis. The null hypothe-
sis result let us compare with zero spectrum when there
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is no anomaly, the global power and local power of our
test show the effectiveness and the accuracy of our test, re-
spectively. Our method reconsider the similarity between
structure change and image anomaly detection. Following
this motivation, we propose a general optimization module
called the Demeaned Fourier Sparse (DFS) module, which
is specifically designed to enhance reconstruction-based
anomaly detection tasks.

Due to the advantage of residual-based test this module
does not require consistent estimation of anomalous factors
or prior knowledge of anomaly types to effectively detect
anomalous samples. By applying our DFS module, we im-
plemented the unsupervised anomaly detection task, the
result shows our theoretical properties are robust, also the
effectiveness of this module compared to the existing litera-
ture, which highlighting its strong capabilities in real-world
applications.

The contributions of this paper are as follows.

• Theoretical Contributions. Inspired by the structural
changes’ detection of factor models, we propose an ap-
proach for detecting image anomalies by projecting resid-
uals to a multi-fourier space. We derive the asymptotic
properties of our test to ensure theoretical completeness,
which demonstrates why anomaly can be detected at the
factor level by using residuals. We also illustrate how this
theory can be applied to reconstruction-based anomaly
detection issues.

• Practical Contributions. We propose a factor model-
based approach for reconstruction-based anomaly detec-
tion and have developed an effective module called De-
meaned Fourier Sparse (DFS). Our method is simple and
easy to implement. Our experimental results demonstrate
the effectiveness of this approach, which is applicable to
general reconstruction-based anomaly detection task.

The related work of factor models and unsupervised
anomaly detection methods is presented in Appendix A.
Section 2 introduces the hypothesis testing framework and
statistical metrics. The asymptotic properties of the pro-
posed method are detailed in Section 3. In Section 4, we
design the DFS-AD method based on our testing frame-
work. Finally, the experimental results presented in Section
5 demonstrate the accuracy of anomaly detection as well as
the localization capabilities of DFS-AD.

2. Preliminaries
In this section, we propose a test-based approach in the
factor model, which can detect anomalies at the factor level
through residual analysis. The core concept involves apply-
ing the Discrete Fourier Transform (DFT) method to the
factors and residuals from the factor model.

2.1. Hypothesis Testing

For an image X ∈ RH×W , it can be interpreted as a se-
quence {Xhw, h = 1, 2, . . . ,H;w = 1, 2, . . . ,W}, con-
sisting of observed values, where the (h,w)-th element
represents the pixel located at the (h,w)-th position. We
assume that Xhw is generated according to the following
data generating process:

Xhw = λ⊤hwFw + εhw, (1)

where Fw is a R× 1 vector of unobserved common factors
(To facilitate the expression of formulas and proofs, we
assume that the direction of the common factor is consistent
withW . In practical implementation, λ andF are mixed and
difficult to distinguish, the factor direction can be arbitrary,
this assumption does not affect our theory or proof), λhw
is a R × 1 vector of factor loadings that may vary across
global or local features, R is the factor number, and εhw is
the idiosyncratic error. The null hypothesis of no anomaly
is given by:

H0 : λhw = λh0 for all h = 1, 2, ...H and allw = 1, 2...W .

The alternative hypothesis is

HA : λhw ̸= λh0 for some h ∈ H and w ∈ W,

where λh0 represents a factor loading that is not anomalous.
W and H denote the sets of indices (h,w) where λhw ̸=
λh0. The alternative hypothesis HA encompasses various
types of unknown loadings across different factors.

2.2. Test Statistic

Let ε†hw = (λhw − λh0)
⊤F + εhw. Then (1) can be written

as
Xhw = λ⊤h0Fw + ε†hw. (2)

Let F̂w and λ̂h0 denote the estimation of Fw and λh0,
respectively. Then, the estimated residual is given by
ε̂hw = Xhw − λ̂⊤h0F̂w.

Under the null hypothesis H0, ε†hw = εhw for all h and w,
and (2) represents a normal pixel. Consequently, F̂w and
λ̂h0 are consistent estimators of the true common factors Fw

and factor loadings λh0. Under the alternative hypothesis
HA, we have: ε†hw = F⊤

w (λhw−λh0)+εhw. In this expres-
sion, the first term contains anomalous information. There-
fore, our goal is to estimate (2) and subsequently project the
anomalous signals in the residuals into the spectral space.

Let B̂Xhw = ε̂hw. It is straightforward to show that B̂ is
functioned as an annihilator matrix that project Xhw into
the estimated residual ε̂hw. The following complex-valued
empirical process can then be constructed:
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where φ(u, v) is a demeaned Fourier process, and u, v ∈ R
are nuisance parameters such that 2π

(
u
H + v

W

)
represents

a Fourier frequency. Here, combining the common factors
and the residuals helps prevent the residuals from summing
to zero.

φ(u, v) = ei2π(
uh
H + vw

W ) − 1

HW

H∑
m=1

W∑
n=1

ei2π(
um
H + vn

W ).

Intuitively, after we project an image into the Fourier do-
main, we can interpret C1(u, v) as the “signal” correspond-
ing to the anomalous factor loadings and its behavior is
approximate to a zero spectral under H0, under HA it will
not. C2(u, v) as the “noise”, contributing to a well-defined
asymptotic distribution of the Discrete Fourier Transform
(DFT) under H0. The anomalous characteristics of λhw are
reflected through various patterns in the DFT within the
frequency domain. Therefore, we can detect unknown types
of anomalies by analyzing the deviation of the DFT from
the zero spectrum across all frequencies.

In order to ensure the detection of unknown types of anoma-
lies, it is necessary to estimate the order of magnitude that
each u, v ∈ R deviates from Ĉ(u, v) and in order to fa-
cilitate the subsequent use of deep learning methods. The
following test statistic is constructed:

D̂ = HW

∫∫
R
∥Ĉ(u, v)∥2W (u, v) du dv. (4)

The weight function W (·) : R → R+ is a function designed
to ensure the consistent integrability of Ĉ(u, v), and D̂ is a
measure used to evaluate the effectiveness of our test.

3. Asymptotic Theory
This section presents the asymptotic theory underlying
our test statistic and explores some of its key proper-
ties. To address the practical considerations and require-
ments of anomaly detection tasks, we make the following
assumptions:(i) Common factor: The high order moments
of the factor is bounded, and its covariance matrix of factor

loading {λhw}H,W
h=1,w=1 is positive definite, and the eigen-

values of the product of their covariance are distinct; (ii)
The error term {εhw}H,W

h=1,w=1 has weak dependence. (iii)
εhw and Fw is strong mixing. (iv) the residual terms form
a Martingale Difference Sequence. Such an assumption is
appropriate for anomaly detection, where the objective is to
identify irregular, random, and unpredictable anomalies. (v)
The higher-order moments of the W (·) are finite, this guar-
antees the absolute integrability of the Fourier series. Under
these assumptions, our goal is to maintain as mild condi-
tions as possible. This approach ensures that the theoretical
results remain valid under a broad range of conditions with-
out imposing overly restrictive model specifications, thereby
enhancing the applicability of this approach. Furthermore,
it supports the analysis of anomaly detection tasks within
the deep learning framework. Details of the proofs can be
found in Appendix B.

3.1. Asymptotic Null Distribution

The asymptotic null distribution shows the properties of our
test and its decision-making behavior under non-anomalous
conditions. Under H0, when the factor loadings are non-
anomalous, we assume that we choose the true number of
factors.
Proposition 3.1. Let δ = [−q, q] be a compact subset of R
for any constant q > 0. Under the assumptions mentioned
above and H0,

Ĉ(u, v) ⇒ H−1/2W−1/2G(u, v),

as (H,W ) → ∞, where G(u, v) is a joint mean-zero joint
complex-valued Gaussian process.

Proposition 3.1 demonstrates that under H0, the term
Cb(u, v), which represents the anomalous factor load-
ing “noise” in C(u, v) is dominant. For any com-
pact set δ = [−q, q] with q > 0,

√
HWĈ(u, v)

weakly converges to a joint mean-zero, joint complex-
valued Gaussian process. The covariance kernel K
is equivalent to the product of the asymptotic vari-
ance of 1√

HW

∑H
h=1

∑W
w=1 F̂wεhwB̂φ(u, v) and a pseudo-

covariance induced by the Fourier transform.

Based on Proposition 3.1, the asymptotic distribution of the
test statistic D̂ under H0 is given by the following theorem.
Theorem 3.2. When the conditions of Proposition 3.1 hold,
under H0,

D̂
d−→
∫∫

R
∥G(u, v)∥2W (u, v) du dv.

as (H,W ) → ∞, where “ d−→” means convergence in distri-
bution.

Theorem 3.2 presents the asymptotic null distribution of the
test statistic D̂. It is important to note that the integration
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is carried out over R. While Proposition 3.1 establishes
weak convergence on any compact subset of R, in practical
applications, we use D̂ to ensure that weak convergence
holds as (u, v) tends to infinity.

3.2. Asymptotic Global Power

The asymptotic global power provides the properties and
behaviors of our test under HA. It also offers an explanation
of the asymptotic limit of the detection performance given
by our test. As the number(size) of pixels(images) being
analyzed increases, the detection task transitions from a
pixel-level analysis to a more comprehensive image-level
analysis.

The number of common factors selected under the alterna-
tive hypothesis HA may not be the same as the true value,
but our test still has power in most cases. At the image level,
pixel-based anomaly detection tasks can be formulated as
follows:

X = FΛ⊤ + ε. (5)

Here, F is the matrix of common factors, composed of
Fw, and Λ is the factor loading matrix, composed of λhw.
Next, We assume that the number of common factors to be
estimated is K.
Proposition 3.3. When K < R for any compact set
δ = [−q, q] with an arbitrarily large constant q > 0,

as (H,W ) → ∞, supu,v∈δ

∥∥∥Ĉ(u, v)− C(u, v)
∥∥∥ = op(1),

where C(u, v) denotes a nonzero spectrum.

The non-zero spectrum provides the convergence of our test
under HA, ensuring that the constructed complex-valued
empirical process is significantly different to the zero spec-
trum. Specifically, this means that the estimator Ĉ(u, v)
almost surely converges to the true value C(u, v). Intu-
itively, the factor model is under-fitted when K < R. In
such a case, the estimated residuals capture sufficient in-
formation about the unexplained common components. As
a result, the DFT Ĉ(u, v) converges to a complex-valued
process with non-zero mean value. Otherwise, when it is
over-fitted with K > R, our test may has less power.

In practical applications, the goal is typically to reconstruct
the complete image using as little information as possible.
This implies estimatingRwith a smaller value ofK, thereby
promoting information sparsity. In practice, sparsity is often
used to describe the relationship between the information uti-
lized and the information reconstructed. Therefore, within
the context of this analysis, we do not consider the case
where K > R in the asymptotic analysis.
Theorem 3.4. When K < R, P (D̂ > cHW ) −→ 1, as
(H,W ) → ∞, for any cHW = o(HW ).

Theorem 3.4 presents the properties of the test statistic D̂
under the alternative hypothesis HA. It indicates that when

K < R, our test statistic D̂ remains effective for image-
level detection. Specifically, our power increases with the
growth of HW , which enhances its ability to detect devi-
ations from the distribution under H0, then increases the
probability of rejecting the null hypothesis under HA. This
theorem explains why, as the number of pixels (i.e., the
image size) increases, our test is able to detect anomalies at
the image level.

3.3. Asymptotic Local Power

The asymptotic local power provides an asymptotic lower
bound for image anomaly detection. Even when the anomaly
is very small(not under the lower bound), the residual-based
test remains effective. We now consider the following set-
ting for the anomaly factor loadings:

HA(τHW ) = λhw = λh0 + τHW ghw. (6)

Here, τHW is a scalar that depends on H and W which
controls the strength of the anomalies, while ghw represents
the anomaly features for each pixel (h,w) it represents the
components that deviate from the normal pixel. In general,
λh0 is not identifiable in the presence of anomalies, as the
anomalies can obscure the true underlying factor loadings.
Thus, we assume that H−1W−1

∑H
h=1

∑W
w=1 ghw = 0. It

ensures that ghw does not introduce a shift in the overall
data, maintaining the balance of the data. In particular, it
indicates that the impact of ghw does not cause significant
effects on λh0. This condition rules out the possibility of
overestimating the number of common factors, as it en-
sures that the anomaly features ghw cannot be eliminated
through projection onto B. Intuitively, this indicates that
the anomaly feature ghw lies in the null space of λh0.

Proposition 3.5. Let δ = [−q, q] be a compact subset
of R for any constant q > 0. Then under assumptions
given above and HA(τHW ) with τHW = H−1/2W−1/2, as
(H,W ) → ∞,

Ĉ(u, v) ⇒ H−1/2W−1/2(ϕ(u, v) +G(u, v)),

where ϕ(u, v) denotes a pseudo-covariance between the
Fourier series ei2π(

uh
H + vw

W ) and ghwB. and G(u, v) is as
defined in Proposition 3.1.

τHW = H−1/2W−1/2 provides an lower bound for the
estimation with K = R. Proposition 3.5 implies that the
asymptotic distribution of

√
HWĈ(u, v) under HA(τHW )

with K = R is equivalent to a non-centralized complex-
valued Gaussian process ϕ(u, v) +G(u, v). When there ex-
ists anomaly, which means ϕ(u, v) ̸= 0 for a non-negligible
subset (u, v), Ĉ(u, v) can capture the anomalous behavior
of the factor loadings λhw, provided that the subset is in-
cluded in δ. To ensure the consistency of the DFT for all
u, v ∈ R, we have:

4



Demeaned Sparse: Efficient Anomaly Detection by Residual Estimate

Theorem 3.6. Under HA(τHW ) with τHW =
H−1/2W−1/2, ϕ(u, v) and G(u, v) are as defined in
Proposition 3.5 and Proposition 3.1

D̂
d−→
∫∫

R
∥ϕ(u, v) +G(u, v)∥2W (u, v) du dv,

as (H,W ) → ∞, where “ d−→” means convergence in distri-
bution.

Theorem 3.6 provides the asymptotic distribution of D̂
under the local alternative hypothesis HA(τHW ). This
indicates that as long as the proportion of anomalies in
λhw − λh0 is not too small, our test still has power. Intu-
itively, even if the anomalous characteristics of the factor
loadings do not accumulate with the increasing sample size,
the spatial information of a single sample still plays a cru-
cial role in detecting anomalous changes. Since our test
effectively leverages spatial information, it is capable of
identifying anomalies at individual pixel locations. This
indicates that our detection method is more sensitive to
smaller anomalies. Furthermore, the theorem establishes
the test’s detection lower bound.

4. Methodology
Based on the aforementioned theory, we propose a hypoth-
esis test along with its corresponding asymptotic theory.
We argue that anomalies can be detected at the factor level
through the analysis of residuals. Given the powerful fit-
ting capabilities of deep learning networks, they are well-
equipped to learn and approximate the factor structure of
pixel-level data within the neural network. This allows for
effective anomaly detection by leveraging the learned factor
representations, facilitating the identification of deviations
from the expected patterns in the data.

In this section, we revisit the theoretical foundations of
anomaly detection tasks based on reconstruction methods.
Reconstruction-based anomaly detection approaches ef-
fectively identify anomalies by accurately reconstructing
nonanomalous samples during the inference phase, while
anomalous samples fail to be reconstructed effectively. We
propose the construction of a mask in the Fourier domain,
which acts as an auxiliary mechanism for anomaly detec-
tion. The mask sparsifies the main information by reducing
the number of estimated common factors and manipulates
the image through element-wise multiplication. The mask
construction follows our proposed progressive theory, and
its selection is iteratively optimized using a joint loss func-
tion. Conceptually, this approach is similar to the bootstrap
method commonly employed in non-parametric statistical
techniques. DFS processes the input imageX into X̂ , which
is also an estimate of X . Subsequently, the output of recon-
struction network Xrec is used to examine whether the λ

Element-wise
Substraction

Element-wise Multiplication

Fourier
Transform

Inverse Fourier
Transform

DFS Module

Input Image

 in Fourier Domain  in Fourier Domain

Reconstruction
Network

Output Image

Figure 1. Overall framework of our method. The framework has
two components: (1) DFS module is a specific implementation de-
rived from the factor model theory, which adaptively learns Fourier
space masks to construct the nonanomalous factors and residuals.
(2) Reconstruction network aims at reconstructing normal regions.
The predicted anomaly map Pred = X −XRec.

of each pixel in X belongs to λh0. Figure 1 illustrates the
pipeline of our method:

Assume that each element Mhw in the mask matrix M fol-
lows a Bernoulli distribution, i.e., Mhw ∼ Bernoulli(phw),
where phw is obtained through iterative optimization within
the module. Specifically, Mhw = 1A(x), where 1A(x) is
an indicator function, and A denotes the sample probability
shw, with the condition shw < phw. This setup ensures
that the mask elements are selected based on the probability
phw, which is dynamically updated during the optimization
process.

Sampling Method Firstly, we random sampling a tensor
ω ∈ RH×W from the [0,1] distribution and then map it to
an optimizable variable ω̂ via the inverse function of the
sigmoid function σ(·). Then sampling shw from (0, 1). In
fact, there are no restrictions on the sampling distribution,
referring to the Bootstrap method, the sampling distribu-
tion has no restrictions. Theoretically, any commonly used
distribution on the interval (0,1) can be applied.

Decentralization Thus, the probability map p = σ(ω̂) can
be constructed using ω̂, where σ(·) is the sigmoid function.
The mask elements Mhw = 1A(x) can then be approxi-
mated in the following optimizable form:

M = σ (σ(ω̂)− s) , s ∼ (0, 1). (7)

Intuitively, as the number of iterations T → ∞ increases,
the sampling of shw during the iteration process will con-
verge to the sample mean. This convergence ensures that
the distribution of the sampled values stabilizes, aligning
with the expected values. This concept is consistent with the
Demeaned Fourier process introduced in Section 2.2, Our
goal is to enable the model to optimize the residuals during
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Table 1. Anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric on MvTec-AD. The best and second
best performance are highlighted in bold and underline, respectively.

Category PatchCore PyramidFlow SSNF DRAEM IFgNet TransFusion Ours-Base Ours

Te
xt

ur
e

carpet 98.60 / 98.79 / 96.18 91.68 / 96.49 / 91.33 98.60 / 98.21 / 96.03 96.63 / 95.71 / 94.82 94.86 / 93.92 / 95.87 97.99 / 96.27 / 92.27 97.27 / 99.35 / 91.25 99.00 / 99.45 / 96.77

Grid 98.12 / 98.31 / 95.60 86.17 / 96.11 / 92.78 99.52 / 96.10 / 95.04 99.99 / 99.34 / 97.89 100.00 / 99.19 / 92.30 100.00 / 99.58 / 98.51 99.67 / 99.08 / 93.12 100.00 / 98.90 / 94.91

Leather 100.00 / 99.01 / 98.69 99.80 / 97.81 / 98.37 99.61 / 97.70 / 94.83 99.97 / 98.80 / 98.23 100.00 / 98.67 / 94.57 100.00 / 99.11 / 96.62 100.00 / 99.29 / 96.68 100.00 / 99.68 / 99.08

Tile 98.91 / 94.12 / 87.80 99.39 / 95.58 / 88.80 99.90 / 94.43 / 87.82 99.92 / 99.39 / 97.10 99.93 / 99.22 / 95.33 100.00 / 99.65 / 98.80 99.35 / 97.77 / 90.79 100.00 / 98.69 / 95.13

Wood 99.10 / 93.73 / 88.31 99.50 / 95.33 / 88.17 98.81 / 94.79 / 91.31 99.61 / 96.69 / 91.68 99.39 / 96.64 / 90.72 98.95 / 94.23 / 94.81 100.00 / 95.18 / 85.18 99.82 / 97.52 / 91.25

O
bj

ec
t

Pill 96.29 / 97.58 / 93.60 81.49 / 93.58 / 76.52 98.09 / 98.62 / 94.63 97.50 / 97.48 / 91.41 96.54 / 96.33 / 91.38 98.34 / 98.03 / 97.92 91.84 / 91.63 / 79.71 99.59 / 98.79 / 97.64

Transistor 100.00 / 92.94 / 81.03 92.88 / 96.71 / 75.43 94.42 / 96.11 / 79.12 92.38 / 86.22 / 72.19 94.58 / 77.71 / 62.48 99.54 / 77.04 / 83.22 96.12 / 93.45 / 72.49 99.42 / 95.32 / 84.98

Cable 99.57 / 97.50 / 92.02 75.13 / 91.32 / 65.41 96.40 / 96.94 / 89.21 92.30 / 95.68 / 83.63 95.35 / 97.45 / 86.40 98.50 / 98.03 / 92.71 90.50 / 93.85 / 72.03 99.03 / 98.62 / 91.10

Zipper 99.41 / 98.60 / 96.99 94.70 / 96.23 / 86.03 94.61 / 96.60 / 94.33 99.91 / 98.70 / 96.62 100.00 / 98.93 / 94.31 100.00 / 98.95 / 96.54 95.75 / 99.32 / 91.97 98.35 / 99.25 / 97.56

Toothbrush 99.80 / 98.03 / 92.71 95.42 / 97.01 / 86.22 90.62 / 98.39 / 89.47 99.98 / 98.63 / 91.60 100.00 / 98.76 / 92.68 100.00 / 98.09 / 93.99 100.00 / 95.22 / 75.13 99.17 / 99.05 / 93.62

Metal Nut 99.92 / 97.90 / 90.29 77.33 / 94.70 / 71.01 99.90 / 97.01 / 92.01 99.10 / 99.18 / 96.11 98.88 / 99.21 / 81.68 100.00 / 96.62 / 95.83 92.42 / 96.29 / 71.29 97.41 / 96.87 / 84.97

Hazelnut 100.00 / 97.92 / 91.04 82.20 / 94.62 / 81.30 98.22 / 97.79 / 87.12 99.99 / 99.42 / 95.52 99.82 / 99.27 / 91.17 100.00 / 99.57 / 98.84 95.75 / 94.73 / 79.40 98.57 / 99.10 / 93.95

Screw 98.01 / 99.42 / 97.90 53.44 / 86.10 / 56.11 88.80 / 98.03 / 93.59 95.70 / 98.61 / 96.49 92.60 / 97.24 / 93.05 98.63 / 99.17 / 96.79 69.62 / 97.63 / 90.44 96.02 / 99.23 / 96.69

Capsule 97.73 / 98.70 / 96.41 94.21 / 98.40 / 93.92 94.21 / 97.79 / 94.38 97.02 / 92.88 / 90.50 94.69 / 98.88 / 94.51 99.40 / 97.96 / 94.74 97.25 / 97.78 / 87.67 94.10 / 96.25 / 88.18

Bottle 100.00 / 98.03 / 95.80 85.70 / 95.79 / 79.13 100.00 / 95.81 / 86.03 98.59 / 99.21 / 96.39 96.51 / 95.96 / 90.66 100.00 / 99.00 / 97.81 100.00 / 98.30 / 84.39 99.92 / 98.05 / 92.75

Average 98.96 / 97.37 / 92.96 87.27 / 95.05 / 82.04 96.78 / 96.95 / 90.99 97.91 / 97.06 / 92.68 97.54 / 96.49 / 89.81 99.42 / 96.75 / 95.29 95.04 / 96.59 / 84.10 98.69 / 98.32 / 93.24

the iteration process and use the mask to sparsify the main
information.

Sparsification The obtained mask is applied to the test sam-
ple x in the Fourier domain, resulting in a masked image
signal. Since the masking in the Fourier domain targets
global information, it is equivalent to weakening the main
information while increasing the residual, effectively in-
troducing a sparsification operation. Such that (K < R)
ensures the validity of our test. Thus, a binary mask M for
suppressing main information is obtained through decentral-
ization, which adjusts the common factors in the Fourier
space. The real and imaginary parts of the Fourier space
after suppression are given by:

R̂(x) = R(x)⊙M, Î(x) = I(x)⊙M, (8)

here, ⊙ represents element-wise multiplication. The masked
image is then transformed back into the image domain by
the inverse Fourier transform. For the residual estimation,
this highlights the deviations introduced by anomalies, al-
lowing the detection method to more effectively distinguish
between normal and anomalous patterns.

Optimization In this section, we use the iterative optimiza-
tion process of the loss function to approximate the bootstrap
resampling process. This substitution is conceptually simi-
lar as it transforms the simulation process into an iterative
optimization problem. The training process is constrained
by two main losses: the reconstruction loss LRec and the
regularization loss LReg:

L = LRec + αLReg, (9)

where LRec = L2+LSSIM +LMSGMS includes the three
terms, consisting of pixel-wise L2 loss, structural similar-
ity loss LSSIM (Wang et al., 2004), and multiscale gradi-
ent magnitude similarity (MSGMS) loss (Xue et al., 2013)

LMSGMS . The regularization loss LReg = ||M ||1, aiming
at making the mask more sparse. The LReg is applied in the
first half of the training process. In the second half of the
training process, the mask is fixed, only the LRec is applied
to continue training the reconstruction network.

5. Experiments
5.1. Experimental Settings

Datasets The experiments were performed on two widely
used anomaly detection datasets: (1) MVTec-AD dataset
(Bergmann et al., 2019a) serves as a benchmark for AD,
which contains 10 object categories and 5 texture categories,
totaling 5,354 colour images. (2) VisA dataset (Zou et al.,
2022) is a large industrial anomaly detection dataset that
contains 9,621 normal and 1,200 anomalous samples, cover-
ing 12 objects in 3 domains: Complex structure, Multiple
instances and Single instance. Division of training and test-
ing sets about the datasets can be found in Appendix C.

Implementation Details The framework were implemented
in PyTorch (Paszke et al., 2019) and trained on two datasets
with the same settings. Resolution of all input images are
set to 256 × 256. The reconstruction network is a vanilla
U-Net. Training epochs are set to 800, with batchsize of
2. Adam optimizer are used with an initial learning rate of
10−4, the learning rate decays with a factor of 0.2 at the 640
and 720 epoch. The regularization coefficient α is set to
10−6. The mask M is binarized at epoch 400 and fixed after
binarization. The binarization strategy is to count N epochs
before the mask is fixed, when the elements in Mhw exceed
the threshold shw, where shw denotes the element in swhich
illustrated in Equation 7, its count is incremented by 1.
When the 400th epoch ends, if the count of theMhw element
is greater than the preset sampling threshold multiplied by
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Table 2. Anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric on VisA. The best and second best
performance are highlighted in bold and underline, respectively.

Category PatchCore PyramidFlow SSNF DRAEM IFgNet TransFusion Ours-Base Ours

C
om

pl
ex

PCB1 97.70 / 99.82 / 95.03 85.19 / 98.02 / 72.88 91.12 / 99.40 / 92.69 78.42 / 85.30 / 25.64 95.29 / 98.70 / 78.53 99.96 / 99.04 / 96.41 97.08 / 99.45 / 86.89 97.46 / 99.42 / 93.04

PCB2 95.31 / 97.80 / 91.62 94.21 / 97.42 / 89.03 92.03 / 98.21 / 84.30 89.13 / 77.04 / 24.72 96.64 / 95.75 / 74.81 99.06 / 98.98 / 93.27 98.90 / 98.15 / 79.23 99.22 / 98.70 / 87.33

PCB3 97.14 / 98.43 / 93.21 81.33 / 98.20 / 91.39 88.24 / 98.15 / 87.42 89.60 / 98.83 / 91.50 94.89 / 97.82 / 91.51 98.88 / 97.92 / 95.37 96.30 / 98.71 / 87.66 98.89 / 99.14 / 95.34

PCB4 99.52 / 97.20 / 87.19 96.22 / 94.63 / 81.44 94.82 / 96.39 / 82.55 98.11 / 96.93 / 81.44 98.80 / 98.52 / 91.98 99.75 / 98.07 / 92.71 99.15 / 93.14 / 79.13 99.28 / 94.59 / 80.87

M
ul

tip
le

Macaroni 1 94.41 / 99.12 / 96.72 82.80 / 98.72 / 93.89 95.10 / 99.53 / 96.12 88.52 / 99.70 / 97.41 99.68 / 99.76 / 97.98 99.89 / 99.76 / 97.87 92.46 / 99.52 / 97.28 96.94 / 99.78 / 98.82

Macaroni 2 70.22 / 97.20 / 94.61 73.01 / 94.03 / 85.72 83.24 / 97.05 / 91.40 77.63 / 99.69 / 98.54 86.43 / 99.90 / 98.38 98.43 / 99.80 / 98.99 72.27 / 97.76 / 93.51 90.08 / 99.74 / 98.81

Capsules 77.11 / 98.80 / 87.22 87.94 / 96.12 / 89.60 92.41 / 99.50 / 92.94 73.81 / 98.03 / 92.23 90.68 / 99.41 / 94.58 98.70 / 99.77 / 99.37 95.23 / 99.70 / 95.40 95.92 / 99.87 / 98.19

Candle 98.69 / 98.71 / 96.42 84.03 / 87.22 / 75.54 90.50 / 98.01 / 91.30 91.04 / 95.24 / 87.52 92.93 / 97.17 / 87.94 98.20 / 98.61 / 92.72 95.89 / 93.78 / 75.95 88.44 / 95.84 / 89.20

Si
ng

le

Cashew 97.56 / 98.20 / 94.12 93.40 / 95.93 / 89.31 87.54 / 98.20 / 90.82 90.20 / 78.33 / 45.24 90.72 / 99.19 / 91.18 92.82 / 96.54 / 94.66 97.72 / 99.03 / 88.92 96.04 / 98.80 / 87.36

Chewinggum 99.22 / 98.63 / 91.03 91.33 / 94.91 / 82.03 99.00 / 98.78 / 90.13 88.23 / 97.04 / 70.53 98.96 / 98.53 / 83.45 99.98 / 98.36 / 91.44 96.32 / 98.58 / 79.52 97.28 / 98.29 / 80.10

Fryum 94.09 / 93.41 / 88.73 91.84 / 94.02 / 87.78 97.70 / 92.42 / 78.61 86.20 / 91.63 / 86.04 92.68 / 96.61 / 84.05 98.66 / 98.98 / 86.58 98.36 / 95.20 / 81.94 97.84 / 94.71 / 88.93

Pipe fryum 99.69 / 98.58 / 97.70 76.93 / 96.68 / 88.12 95.13 / 98.22 / 92.70 94.72 / 93.11 / 90.32 97.78 / 99.28 / 93.74 99.90 / 95.45 / 96.62 98.84 / 98.54 / 88.23 98.68 / 99.41 / 95.82

Average 93.39 / 97.99 / 92.80 86.52 / 95.46 / 85.56 92.24 / 97.82 / 89.25 87.13 / 92.57 / 74.26 94.62 / 98.39 / 89.01 98.69 / 98.44 / 94.67 94.88 / 97.63 / 86.13 96.34 / 98.19 / 91.15
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Figure 2. Average performance of anomaly detection and localiza-
tion under different µs.

the number of iterations during the statistical period, it is
assigned to 1, otherwise 0, the preset sampling threshold is
0.5. All experiments were conducted on an NVIDIA RTX
3090 GPU. Details about the hyperparameter selection study
can be found in Appendix D.

Compared Methods We compare our method with feature-
based methods PatchCore (Roth et al., 2022), Pyramid-
Flow (Lei et al., 2023), SSNF (Chiu & Lai, 2023), and
Reconstruction-based methods DRAEM (Zavrtanik et al.,
2021a), IFgNet (Chen et al., 2024), TransFusion (Fučka
et al., 2024), in order to illustrate the effectiveness of DFS
module, we added an extra setting for our method, that is,
removing DFS from our framework (Noted as Ours-Base),
only retaining the reconstruction network.

Evaluation Metrics We use the area under the receiver op-
erating characteristic (ROC) curve at the testing stage as
a substitute for the power of the test statistic D̂ to evalu-
ate the proposed method. This substitution is conceptually

straightforward as it allows us to translate the theoretical
framework into an optimization problem suitable for train-
ing machine learning models. We evaluate our method using
three metrics. Among them, the image-level area under the
receiver operator curve (Img-AUROC) reports the perfor-
mance of image-level anomaly detection. The pixel-level
AUROC (Pix-AUROC) and per-region-overlap (PRO) report
the performance and the accuracy of pixel-level anomaly
localization, respectively. (PS:Note that statistical signifi-
cance testing of the reported metrics is necessary, since the
main contribution of this paper lies in the statistical theory.
Moreover, because the method must be validated on practi-
cal detection problems, more comprehensive measures are
required to assess overall performance. In particular, when
verifying the asymptotic global theory (i.e., for the entire
image), contributions from individual pixel p-values may
be obscured (p-values are poorly adapted to imbalanced
data, as they typically fail to account for anomaly sparsity).
Therefore, we opt to use evaluation metrics commonly em-
ployed in the anomaly detection literature as our assessment
criteria.)

5.2. Benchmarking

Table 1 presents a comprehensive summary of the anomaly
detection and anomaly localization results on the MVTec-
AD dataset. The average scores across all categories demon-
strate that our method is competitive to most of the com-
pared featured-based and reconstruction-based approaches.
Table 2 provides the corresponding results on the VisA
dataset, which are also competitive.

Both the MVTec-AD and VisA datasets feature complex
structures and a diverse set of anomalies, highlighting the
robustness of our approach and validating the theoretical
foundations underpinning our method. To further assess
the efficacy of the proposed DFS module, we report the
results of the baseline model (Ours-Base) in Table 1 and

7
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Figure 3. Qualitative comparison for anomaly localization on two datasets. From left to right: the input images, ground-truth, and the
anomaly maps produced by all compared methods.

Table 2. The improvements achieved by our method over
Ours-Base are 3.65%, 1.73%, and 9.14% for MVTec-AD,
and 1.46%, 0.56%, and 5.02% for VisA, across the Img-
AUROC, pix-AUROC, and PRO metrics, respectively. The
PRO metric, being particularly sensitive to subtle anomalies,
further substantiates the effectiveness of the asymptotic local
power in the asymptotic theory we proposed.

To further validate our proposed asymptotic global power,
we compared our method against baseline approaches on
varying image sizes using the MVTec-AD dataset. The re-
sults in Table 3 demonstrate that, compared to the baselines,
our method maintains high efficacy and exhibits greater
stability as image size increases, thereby confirming the
validity of the proposed asymptotic global theory.

In general, feature-based methods are typically fine-tuned
using pretrained models, leading to relatively stable per-
formance. In contrast, reconstruction-based methods often
require data augmentation during the training process, and
the external images introduced for augmentation tend to lack
sufficient diversity, resulting in inconsistent performance
across different datasets. Guided by the theory we have
proposed, our method constructs a residual using the model
itself to detect anomalies without the need for additional
data, enabling precise anomaly detection. Furthermore, as
shown in Table 4, our approach significantly reduces both
model parameters and floating-point operations compared to
other reconstruction-based methods.(PS:Note that the back-
bone of PatchCore is WideResNet50 (Zagoruyko, 2016), the
coreset subsampling phase of PatchCore uses 1% feature
vectors which are then indexed and stored in GPU memory
to enable a fast search for nearest neighbors during infer-
ence. Therefore, the mechanism of PatchCore makes its
Params and FLOPs varies with the amount of data, therefore

Input GT Pred

Figure 4. Visualization results of intermediate step in our method.

Table 4 only contains the computational cost of the layer
used for computing features in Patchcore, the core subset of
PatchCore and the kNN search is not reported.)

5.3. Hyperparameter Selection Study

Section 4 mentions that our resampling method is inspired
by the Bootstrap method in nonparametric statistics, which
does not assume a specific distribution for the signal. To
evaluate the influence of the sampling function, we conduct
experiments with different sampling functions, different
means of mask sampling threshold s as well as the number
of sampling epochsN to assess their impact on performance.
The detailed results are provided in Appendix D.2. The
results of sampling functions show that resampling using
uniform and normal distributions yields nearly identical per-
formance. The results of the mean mask sampling threshold
s (µs) are shown in Figure 2. As µs changes from 0.1 to 0.9,
the three metrics remain nearly identical trends across both
datasets. This indicates that the DFS module is largely un-
affected by the expected value of the sampling distribution.
Additionally, results for varying the number of sampling
epochs N indicate that performance remains stable as N in-

8
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Table 3. Anomaly detection/localization results Img-AUROC / Pix-AUROC / PRO (in %) on MvTec-AD at different resolutions.

Resolution 256×256 512×512 1024×1024

Category Ours-Base Ours Ours-Base Ours Ours-Base Ours

carpet 97.27 / 99.35 / 91.25 99.00 / 99.45 / 96.77 77.89 / 86.57 / 67.97 98.27 / 98.66 / 96.73 62.08 / 76.48 / 46.53 94.78 / 95.02 / 90.11

grid 99.67 / 99.08 / 93.12 100.00 / 98.90 / 94.91 97.33 / 97.49 / 79.79 99.67 / 99.29 / 96.86 96.74 / 91.22 / 61.34 100.00 / 99.40 / 97.69

leather 100.00 / 99.29 / 96.68 100.00 / 99.68 / 99.08 100.00 / 99.45 / 93.82 100.00 / 99.68 / 99.35 98.06 / 91.60 / 87.56 99.18 / 97.31 / 97.16

tile 99.35 / 97.77 / 90.79 100.00 / 98.69 / 95.13 96.83 / 96.67 / 86.95 100.00 / 98.58 / 96.16 93.65 / 88.87 / 73.62 98.70 / 96.57 / 92.84

wood 100.00 / 95.18 / 85.18 99.82 / 97.52 / 91.25 63.86 / 84.21 / 66.59 99.91 / 93.93 / 88.99 98.16 / 85.26 / 69.69 97.54 / 90.31 / 84.33

pill 91.84 / 91.63 / 79.71 99.59 / 98.79 / 97.64 82.38 / 74.72 / 58.93 99.78 / 98.55 / 96.99 77.93 / 58.43 / 40.51 96.15 / 94.91 / 79.84

transistor 96.12 / 93.45 / 72.49 99.42 / 95.32 / 84.98 87.46 / 83.69 / 46.11 97.96 / 87.09 / 76.14 60.38 / 62.66 / 29.21 95.38 / 75.71 / 74.58

cable 90.50 / 93.85 / 72.03 99.03 / 98.62 / 91.10 71.44 / 85.75 / 50.73 97.34 / 95.42 / 84.47 52.44 / 80.73 / 46.61 94.04 / 87.00 / 76.11

zipper 95.75 / 99.32 / 91.97 98.35 / 99.25 / 97.56 97.14 / 99.09 / 81.13 95.46 / 98.58 / 95.99 97.30 / 92.80 / 87.50 94.38 / 97.25 / 93.71

toothbrush 100.00 / 95.22 / 75.13 99.17 / 99.05 / 93.62 92.78 / 89.78 / 60.22 100.00 / 98.70 / 94.06 81.94 / 82.32 / 43.05 98.89 / 97.11 / 86.00

metal nut 92.42 / 96.29 / 71.29 97.41 / 96.87 / 84.97 90.47 / 95.62 / 63.76 97.07 / 91.86 / 82.40 88.51 / 92.53 / 52.80 98.68 / 85.01 / 79.10

hazelnut 95.75 / 94.73 / 79.40 98.57 / 99.10 / 93.95 80.00 / 69.99 / 53.06 99.07 / 99.12 / 96.39 68.25 / 60.73 / 38.33 98.79 / 97.91 / 95.45

screw 69.62 / 97.63 / 90.44 96.02 / 99.20 / 96.69 51.98 / 96.26 / 87.43 96.74 / 97.82 / 93.77 63.05 / 95.91 / 85.01 96.18 / 96.32 / 89.82

capsule 97.25 / 97.78 / 87.67 94.10 / 96.25 / 88.18 87.16 / 92.80 / 74.78 97.85 / 88.76 / 88.71 87.91 / 91.44 / 77.31 96.22 / 67.43 / 79.97

bottle 100.00 / 98.30 / 84.29 99.92 / 98.05 / 92.75 100.00 / 97.48 / 67.35 98.73 / 95.98 / 88.37 98.41 / 91.53 / 42.78 98.89 / 95.06 / 85.56

average 95.04 / 96.59 / 84.10 98.69 / 98.32 / 93.24 85.11 / 89.97 / 69.24 98.52 / 96.13 / 91.69 81.65 / 82.83 / 58.79 97.19 / 91.49 / 86.82

creases from 5 to 35. To optimize computational efficiency,
we select µs = 0.5 and N = 5 for our experiments.

5.4. Qualitative Results

Some qualitative comparison results are presented in Figure
3. The proposed DFS-AD demonstrates visually accurate
localization performance. Additionally, the intermediate
steps in our method are visualized in Figure 4. The anoma-
lous image X is initially masked in the Fourier domain
using DFS module. The resulting image X̂ is treated as
the nonanomalous factor and subsequently reconstructed
by the reconstruction network to generate the correspond-
ing nonanomalous sample XRec. This approach effectively
removes the abnormal residual, enabling precise anomaly
detection and localization. Further qualitative results are
provided in Appendix E.

Table 4. Computational cost evaluation of comparison methods.
Number of model parameters (Params) and floating-point opera-
tions (FLOPs) are reported.

PatchCore PyramidFlow SSNF DRAEM IFgNet TransFusion Ours

Params (M) 24.86 22.64 294.67 97.42 69.58 54.53 28.37

FLOPs (G) 9.24 479.20 243.77 198.66 135.23 148.38 38.20

6. Conclusion
In this work, we propose a novel method for detecting im-
age anomalies using a demeaned Fourier transform (DFT)

and provide a theoretical demonstration of its effectiveness.
The asymptotic theory elucidates why this test can detect
anomalies at both the image and pixel levels within the
theoretical lower bound. Then we discuss the relationship
between the test and practical problems, we propose DFS
as an optimized reconstruction anomaly detection module
and develop the DFS-AD framework. Furthermore, we in-
troduce a Bootstrap-like resampling method to optimize
our framework. We quantitatively and qualitatively demon-
strate the effectiveness of our method in reconstruction-
based anomaly detection tasks.
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Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth,
U., and Langs, G. Unsupervised anomaly detection with
generative adversarial networks to guide marker discov-
ery. In International conference on information process-
ing in medical imaging, pp. 146–157. Springer, 2017.

Stock, J. H. and Watson, M. Forecasting in dynamic factor
models subject to structural instability. The Methodology
and Practice of Econometrics. A Festschrift in Honour of
David F. Hendry, 173:205, 2009.

Toyoda, T. Use of the chow test under heteroscedasticity.
Econometrica: Journal of the Econometric Society, pp.
601–608, 1974.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

Wu, P., Liu, J., He, X., Peng, Y., Wang, P., and Zhang, Y.
Toward video anomaly retrieval from video anomaly de-
tection: New benchmarks and model. IEEE Transactions
on Image Processing, 33:2213–2225, 2024.

Xue, W., Zhang, L., Mou, X., and Bovik, A. C. Gradient
magnitude similarity deviation: A highly efficient percep-
tual image quality index. IEEE transactions on image
processing, 23(2):684–695, 2013.

Ye, F., Huang, C., Cao, J., Li, M., Zhang, Y., and Lu, C.
Attribute restoration framework for anomaly detection.
IEEE Transactions on Multimedia, 24:116–127, 2020.

Zagoruyko, S. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Zavrtanik, V., Kristan, M., and Skočaj, D. Draem-a discrim-
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A. Related Work
Unsupervised Anomaly Detection Unsupervised Anomaly Detection (AD) can be categorized into reconstruction-based AD
methods, flow-based AD methods, and feature-based AD methods. Reconstruction-based AD methods identify anomalies
by comparing the differences between reconstructed images and the original images. To enhance the reconstruction accuracy
of the network, Bergmann et al. (2019b) utilized the L2 norm and the Structure Similarity Index Measure (SSIM) as
the loss function. Furthermore, AnoGAN (Schlegl et al., 2017) constructs a latent space representing the distribution
of normal images and employs an optimization-based approach to search for the closest embedding of the input image
within this space, then the embedding is decoded to obtain the reconstructed image. In addition, DRAEM (Zavrtanik
et al., 2021a) enhances the network’s reconstruction capability through the use of synthetic anomalies. Moreover, this
method trains a discriminator sub-network to detect anomalies. Considering the potential presence of background noise in
real-world scenarios, IFgNet (Chen et al., 2024) adopts a multi-task framework that enables the network to simultaneously
detect anomalies and extract foreground objects, which can eliminate interference effectively. Recently, to address the
issues of overgeneralization and loss of detail commonly seen in reconstruction models, ? proposed a method based on
a transparency-based diffusion process that improves the detection accuracy significantly. Flow-based methods utilize
pre-trained models to extract features from nonanomalous samples and model their probability distributions, attributing
to the detection of out-of-distribution anomalies. A notable example is PyramidFlow (Lei et al., 2023), which employs
pyramid-like normalizing flows and volume normalization to facilitate high-resolution anomaly localization. Similarly,
Chiu & Lai (2023) introduced a self-supervised normalizing flow-based model that integrates synthetic anomalies into the
flow-based framework. This approach conditionally optimizes the model by maximizing the likelihood of nonanomalous
features while minimizing the likelihood of synthetic anomaly features, allowing the model to capture the distribution
of nonanomalous features more accurately. Feature-based anomaly detection methods detect anomalies by comparing
the differences in features between normal and abnormal images. PatchCore (Roth et al., 2022) extracts a core subset of
patch-level features from training images using a pre-trained network. Anomaly scores are calculated by measuring the
distance between the features of the test images and the core subset. OCGAN (Perera et al., 2019) proposes to add Gaussian
noise to the input, while ARNet (Ye et al., 2020) uses some transformations to erase some important attributes in the images.
However, they do not provide interpretability or theoretical underpinning for the method.

Factor Model Factor models are commonly used for analyzing structured data (Bai & Perron, 1998), such as in finance,
economics (Forni et al., 2000), and weather forecasting. Most studies assume that factor loadings are time-invariant (Bai,
2003), capturing the relationship between observed data and unobserved common factors. In recent years, research in such
field has increasingly focused on testing and estimating factor models with structural changes (Stock & Watson, 2009;
Breitung & Eickmeier, 2011; Cheng et al., 2016). However, such tests and estimations often specify on a certain type of
structural change, like abrupt structural changes or smooth structural changes. Fu et al. (2023) proposed tests for structural
changes in time-varying factor loadings scenarios, considering both abrupt and smooth structural changes. In the context
of common image anomaly detection tasks, the data can be considered structured (Bergmann et al., 2021), as these tasks
usually assume that anomalies occur according to the practical scenario. Compared to economic data, this is reflected
on dimensionality, structural changes in panel data can be mapped to anomalies in images. For example, a structural
change corresponds to anomaly in certain pixel positions within the image, while in panel data it reflects the break in both
cross-sectional level and time-series level.

Discrete Fourier Transform The Discrete Fourier Transform (DFT) is commonly used in image processing, with the
goal of transforming image information into the spectral domain for further analysis (Rao et al., 2011). The coefficients
in the frequency domain contain global information about the image (Lin et al., 2019). Signal decomposition methods
can be employed to decouple the image’s features in the frequency domain. Li et al. (2023) proposed an embedded
Fourier enhancement method to improve low-light images, aiming to enhance illumination information at the feature level
using Fourier methods. Abdulaal et al. (2021) introduced an asynchronous multivariate time series anomaly detection and
localization method for asynchronous multivariate time series data. Based on the theory of factor models, we reconsider the
theoretical construction of reconstruction-based anomaly detection by projecting the image features into the Fourier domain,
representing the image information as a combination of signal and noise. In this way, we propose a simple and effective
mask-based anomaly detection method.
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B. Proofs
B.1. Proof of Proposition 3.1

Let Φ(u) be an W ×W diagonal matrix, where the m-th diagonal element in Φ(u) is φ(u), with φ(m)(u) = ei2π(
um
H ) −

1
H

∑H
h=1 e

i2π(uh
H ) representing a demeaned Fourier process. Let Φ(v) be an H × H diagonal matrix, where the n-th

diagonal element in Φ(v) is φ(v), with φ(n)(v) = ei2π(
vn
W )− 1

W

∑W
w=1 e

i2π( vw
W ) representing a demeaned Fourier process.

α is an H × 1 vector with each entry being 1
H . The matrix Λ0 contains the set of non-anomalous factor loadings. BHW is a

matrix containing the K largest eigenvalues of the matrix H−1W−1XX⊤, and A = H−1W−1(Λ⊤
0 Λ0)(F

⊤F̂ )B−1
HW is a

rotation matrix.

Based on the definition of Ĉ(u, v), under the null hypothesis H0,

Ĉ(u, v) =
F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
XΦ(v)α

=

[
F̂⊤Φ(u)F

W
− F̂⊤Φ(u)F̂

W

F̂⊤F

W

]
Λ⊤
0 Φ(v)α+

[
F̂⊤Φ(u)

W
− F̂⊤Φ(u)F̂

W

F̂⊤

W

]
εΦ(v)α

= Ĉa(u, v) + Ĉb(u, v).

Similar to Sec.2, we decompose the complex-valued empirical process at the matrix level into the form of “signal” and
“noise”. Under the null hypothesis H0, (2) represents a non-anomalous factor model. Based on this, we consider Ĉa(u, v)
and proceed to decompose it as follows:

Ĉa(u, v) =

[
F̂⊤Φ(u)F

W
− F̂⊤Φ(u)F̂

W

F̂⊤F

W

]
Λ⊤
0 Φ(v)α,

it represents the error between the estimated common factor F̂ and the true factors F . The difference between the common
factor and the residuals is represented as F − F̂A−1. This operation is a standard factor model error decomposition, we have

Ĉa(u, v) =

[
F̂⊤Φ(u)(F − F̂A−1)

W
− F̂⊤Φ(u)F̂

W

F̂⊤(F − F̂A−1)

W

]
Λ⊤
0 Φ(v)α

=

[
F̂⊤Φ(u)F̂

W

F̂⊤(F̂ − FA)

W
− F̂⊤Φ(u)(F̂ − FA)

W

]
A−1Λ⊤

0 Φ(v)α

= [Ĉaa(u, v)− Ĉab(u, v)]A
−1Λ⊤

0 Φ(v)α,

the asymptotically dominant term of Ĉa(u, v) is Ĉab(u, v). Next, we focus on Ĉab(u, v). Under the null hypothesis H0,

we have the expression: F̂ − FA = [ εε
⊤F̂

HW +
FΛ⊤

0 ε⊤F̂
HW + εΛ0F

⊤F̂
HW ]B−1

HW , it represents the error term between the factor
loadings and the true factors, and is modeled through the residuals ε and the matrix Λ0, then we have

−Ĉab(u, v)A
−1Λ⊤

0 Φ(v)α =
F̂⊤Φ(u)(F̂ − FA)

W
A−1Λ⊤

0 Φ(v)α

= −

[
F̂⊤Φ(u)

W

(ε+ FΛ⊤
0 )ε

⊤F̂

HW
+
F̂⊤Φ(u)

W

εΛ0F
⊤F̂

HW

]
B−1

HWA−1Λ⊤
0 Φ(v)α

= −[Ĉaba(u, v) + Ĉabb(u, v)+]B−1
HWA−1Λ⊤

0 Φ(v)α.

By comparing the orders of the decomposition terms, we identify the asymptotically dominant term:

Ĉabb(u, v)B
−1
HWA−1Λ⊤

0 Φ(v)α = F̂⊤Φ(u)εΛ0

HW

(
Λ⊤

0 Λ0

H

)−1

Λ⊤
0 Φ(v)α according to the definition of A. Now, we proceed to

consider Ĉb(u, v).

Ĉb(u, v) =
F̂⊤Φ(u)εΦ(v)

W
− F̂⊤Φ(u)F̂

W

F̂⊤εΦ(v)

W

= Ĉba(u, v)− Ĉbb(u, v),
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we obtain the asymptotic dominant term Ĉba(u, v). By the way, we combine Ĉabb(u, v)B
−1
HWA−1Λ⊤

0 Φ(v)α and Ĉba(u, v)
and have

Ĉba(u, v)− Ĉabb(u, v)B
−1
HWA−1Λ⊤

0 Φ(v)α =
1

HW

H∑
h=1

W∑
w=1

F̂wεhwBφ(u, v)

=
1

HW

H∑
h=1

W∑
w=1

(F̂w −A⊤Fw)εhwBφ(u, v) +
1

HW

H∑
h=1

W∑
w=1

A⊤FwεhwBφ(u, v),

where B = limH,W→∞ B̂, the asymptotic leading term of Ĉba(u, v) − Ĉabc(u, v)B
−1
HWA−1Λ⊤

0 Φ(v)α is given by:
1

HW

∑H
h=1

∑W
w=1A

⊤FwεhwBφ(u, v). We can therefore conclude that

sup
u,v∈δ

∥∥∥∥∥√HWĈ(u, v)− 1√
HW

H∑
h=1

W∑
w=1

A⊤Fwεhwφ(u, v)B

∥∥∥∥∥ = op(1).

It represents the difference between
√
HWĈ(u, v) and the second term, which converges at a rate of op(1) in the

large sample limit, consistent with the weak convergence theory of the complex-valued empirical process. Let
A0 = plimH,W→∞A, and define Ĝ(u, v) = A⊤

0

[
1√
HW

∑H
h=1

∑W
w=1 FwBεhwφ(u, v)

]
, it is straightforward to show

that 1√
HW

∑H
h=1

∑W
w=1 FwBεhwφ(u, v) is asymptotically tight in G(δ), where G(δ) denotes the space of complex-valued

continuous functions on δ. For any u1, u2, v1, v2 ∈ δ, we apply the Lagrange mean value theorem to obtain:

H∑
h=1

W∑
w=1

FwBεhw [φ(u1, v1)− φ(u2, v2)] =

H∑
h=1

W∑
w=1

FwBεhw

[
∂φ(u, v)

∂u
(ξ, η)(u1 − u2) +

∂φ(u, v)

∂v
(ξ, η)(v1 − v2)

]
,

where (ξ, η) is a point on the intermediate path of (u1, v1) and (u2, v2), then

E

∥∥∥∥∥ 1√
HW

H∑
h=1

W∑
w=1

FwBεhwφ(u1, v1)−
1√
HW

H∑
h=1

W∑
w=1

FwBεhwφ(u2, v2)

∥∥∥∥∥
2

=
1

HW

H∑
h=1

W∑
w=1

E ∥FwBεhw∥2
(
∂φ(u, v)

∂u
(ξ, η)(u1 − u2) +

∂φ(u, v)

∂v
(ξ, η)(v1 − v2)

)2

.

By the assumption that the residual terms form a Martingale Difference Sequence and applying the Cauchy-Schwarz
inequality, we can derive the following:

1

HW

H∑
h=1

W∑
w=1

E ∥FwBεhw∥2 ≤ max
(
E ∥Fw∥4

) 1
2

max
(
E ∥εhw∥4

) 1
2

max ∥B∥2 ,

where the order of last term is O(1). Thus,

E

∥∥∥∥∥ 1√
HW

H∑
h=1

W∑
w=1

FwBεhwφ(u1, v1)−
1√
HW

H∑
h=1

W∑
w=1

FwBεhwφ(u2, v2)

∥∥∥∥∥
2

≤ C ∥(u1, v1)− (u2, v2)∥2 ,

therefore, 1√
HW

∑H
h=1

∑W
w=1 FwBεhwφ(u, v) is stochastically equicontinuous (Newey, 1991). It ensures the uniform

behavior of the complex-valued empirical process over the space δ, as the sample sizes H and W increase, the process
does not exhibit large fluctuations at different points, thus providing essential control conditions for proving the weak
convergence and tightness of the process. Next, let ℓ(u, v) = BFwεhwd

⊤φ(u, v), where d is an arbitrary nonrandom vector
with ∥d∥ = 1. Then, we have: d⊤

[
1√
HW

∑H
h=1

∑W
w=1 FwBεhwφ(u, v)

]
= 1√

HW

∑H
h=1

∑W
w=1 ℓ(u, v). We assume that

E[ℓ(u, v)] = 0. For some r ≥ 2, applying the Cauchy-Schwarz inequality we also have the following bound:

E[|ℓ(u, v)|r] ≤ E[|Bεhw|2r]
1
2E[|d⊤Fwφ(u, v)|2r]

1
2 <∞.
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This allows us to handle the higher-order moments and ensure their existence. Let H(u, v) =

Var
[

1√
HW

∑H
h=1

∑W
w=1 ℓ(u, v)

]
> 0 for each fixed u, v. Then, according to Central Limit Theorem, we have:

1√
HW ·

√
H(u, v)

H∑
h=1

W∑
w=1

ℓ(u, v)
d−→ N(0, I).

Based on the Cramer-Wold device,

Ĝ(u, v) =
1√
HW

H∑
h=1

W∑
w=1

A⊤
0 FwBεhwφ(u, v)

d−→ N(0,Σ),

for each fixed u, v, where Σ = limH,W→∞ Var
(

1√
HW

∑H
h=1

∑W
w=1A

⊤
0 FwBεhw

) [(
1−

∫ 1

0
ei2πuτ dτ

)(
1−

∫ 1

0
ei2πvτ dτ

)]
,

where τ follows the uniform distribution U(0, 1). Given that δ is totally bounded, we have: Ĝ(u, v) ⇒ G(u, v) in G,
where G(u, v) is a joint mean-zero, complex-valued Gaussian process. Therefore, we conclude that:

√
HWĈ(u, v) ⇒

G(u, v) in G as (H,W ) → ∞ under H0.

B.2. Proof of Theorem 3.2

Given Proposition 3.1 under H0

D̂ =

∫∫
R

∥∥∥Ĝ(u, v)∥∥∥2W (u, v)dudv + op(1),

where op(1) denotes a small term that converges to zero in probability. To establish weak convergence, we need to prove
that D̂ converges in distribution to D as (H,W ) → ∞, there exists a compact subset δ ∈ R large enough such that∫∫

δc
∥G(u, v)∥2W (u, v)dudv < ϵ2

2 . for any positive value ϵ, δc denotes the complement of δ in R and we have:

D̂ =

∫∫
δ

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv +

∫∫
δc

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv,

and similarly for D:

D =

∫∫
δ

∥G(u, v)∥2W (u, v) du dv +

∫∫
δc
∥G(u, v)∥2W (u, v) du dv.

Thus, we need to show: D̂δ =
∫∫

δ

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv converges in distribution to Dδ =∫∫
δ
∥G(u, v)∥2W (u, v) du dv; and D̂δc =

∫∫
δc

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv converges in distribution to Dδc =∫∫
δc
∥G(u, v)∥2W (u, v) du dv.

We start by analyzing the part over δ:

D̂δ =

∫∫
δ

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv.

From Proposition 3.1, we know that Ĝ(u, v) converges to G(u, v) in distribution as (H,W ) → ∞, i.e. Ĝ(u, v) d−→ G(u, v).
To show that D̂δ converges to Dδ, we need to ensure that the integrals of Ĝ(u, v) and G(u, v) converge, and that the
integrands remain uniformly integrable. For any fixed u, v, we assume Ĝ(u, v) andG(u, v) are integrable. By using Jensen’s
inequality and Fubini’s theorem, we can bound the expectation For some r ≥ 2:

E
∥∥∥Ĝ(u, v)∥∥∥r ≤ ∥A0∥r E

∥∥∥∥∥ 1√
HW

H∑
h=1

W∑
w=1

FwBεhw

∥∥∥∥∥
r

( sup
u,v∈δ

max |φ(u, v))r < C.
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This inequality ensures that Ĝ(u, v) is uniformly integrable over δ. With the dominated convergence theorem, we can then
show that: ∫∫

δ

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv
d−→
∫∫

δ

∥G(u, v)∥2W (u, v) du dv.

By the dominated convergence theorem, we can establish that: D̂δ
d−→ Dδ . Next, we consider the part over δc:

D̂δc =

∫∫
δc

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv.

We have that: E
(∫∫

δc

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv

)
→ E

(∫∫
δc
∥G(u, v)∥2W (u, v) du dv

)
. By uniform integrability,

we know: E
(∫∫

δc

∥∥∥Ĝ(u, v)∥∥∥2W (u, v) du dv

)
→
∫∫

δc
E ∥G(u, v)∥2W (u, v) du dv. Therefore, D̂δc is also uniformly

integrable, and by applying the dominated convergence theorem again, we can conclude that: D̂δc
d−→ Dδc . By combining

the results from D̂δ and D̂δc , we get:
D̂ = D̂δ + D̂δc

d−→ Dδ +Dδc = D.

Thus, D̂ converges in distribution to D, i.e. D̂ d−→ D.

B.3. Proof of Proposition 3.3

Consider the singular value decomposition (SVD) of Λ: Λ = USV⊤ where U and V are unitary matrices containing the
left- and right-singular vectors of Λ, respectively. S is an H ×W diagonal matrix with singular values sHW,1, . . . , sHW,L

along the diagonal, arranged in descending order, where L = rank(S). Here, we assume that the first R singular values
exert the most significant influence on the features, thereby preserving the maximum amount of information.

Λ =

R∑
r=1

sHW,RURV
⊤
R +

L∑
l=R+1

sHW,lUlV
⊤
l = Λ(R) + Λ(−R).

Then we have
X = FΛ(R)⊤ + FΛ(−R)⊤ + ε.

This implies that the factor loading matrix is effectively represented in a R-dimensional space, where the asymptotic
leading terms of Λ can be captured by the first R singular values. Given A = H−1W−1(Λ⊤Λ)(F⊤F̂ )B−1

HW , under HA,
X = FΛ⊤ + ε. We can decompose Ĉ(u, v) like what we do in Proposition 3.1:

Ĉ(u, v) =
F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
XΦ(v)α

=
F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
FΛ⊤Φ(v)α+

F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
εΦ(v)α

= Ĉa(u, v) + Ĉb(u, v).

Similarly, when K < R, we obtain Ĉa(u, v) is the asymptotic leading term, we can decompose Ĉa(u, v) as:

Ĉa(u, v) =Ĉaa(u, v) +

(
(FA)⊤Φ(u)

W

)[
I− FA(FA)⊤

W

]
FΛ⊤Φ(v)α

=Ĉaa(u, v) + Ĉab(u, v).

By comparing the order of each decomposed term, we found that Ĉab(u, v) serves as the asymptotic leading term. As we
have mentioned Λ = Λ(R) +Λ(−R), we have

A =
Λ(R)⊤Λ(R)F⊤F̂

HW
B−1

HW +
Λ(−R)⊤Λ(−R)F⊤F̂

HW
B−1

HW

= Aa +Ab.
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Then

Ĉab(u, v) =

(
(FA)⊤Φ(u)

W

)[
I− FA(FA)⊤

W

]
FΛ⊤Φ(v)α

=

(
(FAa)

⊤Φ(u)

W

)[
I− FAa(FAa)

⊤

W

]
FΛ⊤Φ(v)α

−
(
(FAb)

⊤Φ(u)

W

)[
[(FAa)

⊤ + (FAb)
⊤][FAa + FAb]

W
− I
]
FΛ⊤Φ(v)α

−
(
(FAa)

⊤Φ(u)

W

)[
(FAa)

⊤FAb + (FAb)
⊤FAa + (FAb)

⊤FAb

W

]
FΛ⊤Φ(v)α

=Ĉaba(u, v)− Ĉabb(u, v)− Ĉabc(u, v).

By comparing the order of each decomposed term, the Ĉaba(u, v) is the asymptotic leading term of Ĉab(u, v). The same
operation can be applied:

Ĉaba(u, v) =B
−1
HW

F̂⊤FΛ(R)⊤Λ(R)F⊤Φ(u)FΛ⊤Φ(v)α

HW 2

−B−1
HW

F̂⊤FΛ(R)⊤Λ(R)F⊤Φ(u)FΛ(R)⊤Λ(R)F⊤F̂

H2W 3
B−2

HW

F̂⊤FΛ(R)⊤Λ(R)F⊤FΛ⊤Φ(v)α

HW 2

.

By spilting Λ = Λ(R)+Λ(−R), we have Ĉaba(u, v) = Ĉabaa(u, v)+ Ĉabab(u, v). Obviously Ĉabaa(u, v) is the asymptotic
leading term of Ĉaba(u, v).

Ĉabaa(u, v) =B
−1
HW

F̂⊤FV(R)S(R)2V(R)⊤F⊤Φ(u)FV(R)S(R)U(R)Φ(v)α

HW 2

−B−1
HW

F̂⊤FV(R)S(R)2V(R)⊤F⊤Φ(u)FV(R)S(R)2V(R)⊤F⊤F̂

H2W 3

×B−2
HW

F̂⊤FV(R)S(R)2V(R)⊤F⊤FV(R)S(R)U(R)Φ(v)α

HW 2

→ Ĉabaa(u, v) ∝(B
− 1

2

HW )(
1

HW
S(R)V(R)⊤F⊤Φ(u)FV(R)S(R))(

√
HU(R)⊤Φ(v)α) + op(1).

Each decomposition term in matrix Ĉabaa(u, v) has a nonzero order. , thus Ĉabaa(u, v) ⇒ C(u, v) is a non-zero spectrum.

B.4. Proof of Theorem 3.4

When K < R, C(u, v) is a nonzero spectrum. In the vast majority of cases, C(u, v) is non-zero and meaningful, thus
ensuring that C(u, v) > cHW holds true in the limit. As (H,W ) → ∞, D̂ = HW

∫∫
R ∥Ĉ(u, v)∥2W (u, v) du dv. and

cHW → 0 Therefore, for the majority of samples, D̂ will inevitably be greater than a small cHW This leads to the probability
P (D̂ > cHW ) −→ 1.

B.5. Proof of Proposition 3.5

Let g† is a set of ghw, Then under HA(τHW ), ε† = ε+ τHW ghw, and X = FΛ⊤
0 + ε†, then

Ĉ(u, v) =
F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
FΛ⊤

0 Φ(v)α+
F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
ε†Φ(v)α

= Ĉ ′
a(u, v) + Ĉ ′

b(u, v).
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We can follow the procedure outlined in Proposition 3.1 and decompose Ĉ ′
a(u, v).

Ĉ ′
a(u, v) =

[
F̂⊤Φ(u)(F − F̂A−1)

W
− F̂⊤Φ(u)F̂

W

F̂⊤(F − F̂A−1)

W

]
Λ⊤
0 Φ(v)α

=

[
F̂⊤Φ(u)F̂

W

F̂⊤(F̂ − FA)

W
− F̂⊤Φ(u)(F̂ − FA)

W

]
A−1Λ⊤

0 Φ(v)α

= [Ĉ ′
aa(u, v)− Ĉ ′

ab(u, v)]A
−1Λ⊤

0 Φ(v)α.

By comparing the order of each term, we find that Ĉ ′
ab(u, v) is the asymptotic leading term of Ĉ ′

a(u, v).

F̂ − FA =

[
ε†ε†

⊤
F̂

HW
+
FΛ⊤

0 ε
†⊤F̂

HW
+
ε†Λ0F

⊤F̂

HW

]
B−1

HW .

Thus,

−Ĉ ′
ab(u, v)A

−1Λ⊤
0 Φ(v)α =

F̂⊤Φ(u)(F̂ − FA)

W
A−1Λ⊤

0 Φ(v)α

= −

[
F̂⊤Φ(u)

W

ε†
⊤
F̂ (ε† + FΛ⊤

0 )

HW
+
F̂Φ(u)

W

ε†Λ0F
⊤F̂

HW

]
B−1

HWA−1Λ⊤
0 Φ(v)α

= −
[
Ĉ ′

aba(u, v) + Ĉ ′
abb(u, v)

]
B−1

HWA−1Λ⊤
0 Φ(v)α.

By the same way, the Ĉ ′
abb(u, v) is the asymptotic leading term of Ĉ ′

ab(u, v). We have

Ĉ ′
abb(u, v)B

−1
HWA−1Λ⊤

0 Φ(v)α =
(F̂ −AF )⊤Φ(u)ε†Λ0

HW
(
Λ⊤
0 Λ0

H
)−1Λ⊤

0 Φ(v)α+
A⊤F⊤Φ(u)ε†Λ0

HW
(
Λ⊤
0 Λ0

H
)−1Λ⊤

0 Φ(v)α

= Ĉ ′
abba(u, v) + Ĉ ′

abbb(u, v),

and Ĉ ′
abbb(u, v) is the asymptotic leading term. Next, we consider Ĉ ′

b(u, v).

Ĉ ′
b(u, v) =

F̂⊤Φ(u)

W

(
I− F̂ F̂⊤

W

)
ε†Φ(v)α

=
F̂⊤Φ(u)ε†Φ(v)α

W
− F̂⊤Φ(u)F̂

W

F̂⊤ε†Φ(v)α

W

= Ĉ ′
ba(u, v)− Ĉ ′

bb(u, v).

By comparing the order, we obtain Ĉ ′
ba(u, v) is the asymptotic leading term of Ĉ ′

b(u, v), then we decompose Ĉ ′
ba(u, v).

Ĉ ′
ba(u, v) =

(F̂ −AF )⊤Φ(u)ε†Φ(v)α

W
+
A⊤F⊤Φ(u)ε†Φ(v)α

W

= Ĉ ′
baa(u, v) + Ĉ ′

bab(u, v),

and the asymptotic leading term is Ĉ ′
bab(u, v), then we combine the asymptotic terms Ĉ ′

bab(u, v) and −Ĉ ′
abbb(u, v) and

obtain

Ĉ ′
bab(u, v)− Ĉ ′

abbb(u, v) =
A⊤F⊤Φ(u)ε†Φ(v)α

W
− A⊤F⊤Φ(u)ε†Λ0

HW
(
Λ⊤
0 Λ0

H
)−1Λ⊤

0 Φ(v)α

=
1

HW

H∑
h=1

W∑
w=1

A⊤FwεhwBφ(u, v) +
τHW

HW

H∑
h=1

W∑
w=1

A⊤FwF
⊤
w ghwBφ(u, v).

We have

sup
u,v∈δ

∥∥∥∥∥√HWĈ(u, v)− 1√
HW

H∑
h=1

W∑
w=1

A⊤
0 FwεhwBφ(u, v)−

1

HW

H∑
h=1

W∑
w=1

A⊤
0 FwF

⊤
w ghwBφ(u, v)

∥∥∥∥∥ = op(1).
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Let Ĝ(u, v) = 1√
HW

∑H
h=1

∑W
w=1A

⊤
0 FwεhwBφ(u, v) and ϕ̂(u, v) = 1

HW

∑H
h=1

∑W
w=1A

⊤
0 FwF

⊤
w ghwBφ(u, v). As we

have mentioned in Proposition 3.1 that Ĝ(u, v) ⇒ G(u, v), Such that

ϕ̂(u, v) =
1

HW

H∑
h=1

W∑
w=1

A⊤
0 FwF

⊤
w ghwBφ(u, v)

=
1

HW

H∑
h=1

W∑
w=1

A⊤
0 (FwF

⊤
w − ψF )ghwBφ(u, v) +

1

HW

H∑
h=1

W∑
w=1

A⊤
0 ψF ghwBφ(u, v).

We have H−1W−1
∑H

h=1

∑W
w=1 ghw = 0 it is straightforward to show that

E
[

1
HW

∑H
h=1

∑W
w=1A

⊤
0 (FwF

⊤
w − ψF )ghwBφ(u, v)

]
= 0, andE

∥∥∥ 1
HW

∑H
h=1

∑W
w=1A

⊤
0 (FwF

⊤
w − ψF )ghwBφ(u, v)

∥∥∥2 =

O(H−1W−1). Thus,

sup
u,v∈δ

∥∥∥∥∥ 1

HW

H∑
h=1

W∑
w=1

A⊤
0 (FwF

⊤
w − ψF )ghwBφ(u, v)

∥∥∥∥∥ = Op(H
−1/2W−1/2).

It follows that ϕ̂(u, v) ⇒ ϕ(u, v), where ϕ(u, v) denotes a pseudo-covariance between the Fourier series e2πi(
uh
H + vw

W ) and
ghwB. So we have

√
HWĈ(u, v) ⇒ ϕ(u, v) +G(u, v) under HA(τHW ) with τHW = H−1/2W−1/2.

B.6. Proof of Theorem 3.6

Under HA(τHW ):HA(τHW ) = λhw = λ0 + τHW ghw. By Proposition 3.5, we have
√
HWĈ(u, v) ⇒ ϕ(u, v) +G(u, v).

By the continuous mapping theorem, we have∫∫
δ

∥
√
HWĈ(u, v)∥2W (u, v) du dv

d−→
∫∫

δ

∥ϕ(u, v) +G(u, v)∥2W (u, v) du dv.

By similar arguments in the Proof of Theorem 3.2, it follows

D̂
d−→
∫∫

R
∥ϕ(u, v) +G(u, v)∥2W (u, v) du dv

.

C. The Division of Datasets
MVTec-AD Dataset: MVTec-AD dataset (Bergmann et al., 2019a) is collected for real-world industrial production scenarios
unsupervised anomaly detection. There are 10 object types: Bottle, Cable, Capsule, Hazelnut, Metal Nut, Pill, Screw,
Toothbrush, Transistor, Zipper. And 5 texture types: Carpet, Grid, Leather, Tile, Wood. The dataset has totaling 5,354
images with pixel-level annotations. Among them, the training set contains 3,629 anomaly-free images, and the testing set
contains 1,725 images with both normal and anomaly samples.

VisA Dataset: VisA dataset (Zou et al., 2022) is a large dataset collected for industrial anomaly detection, covering 12
objects in 3 domains: Complex structure, Multiple instances and Single instance. Among them, Complex structure domain
has 4 objects: PCB1, PCB2, PCB3, PCB4. Multiple instances domain has 4 objects: Macaroni 1, Macaroni 2, Capsules,
Candles. Single instance domain has 4 objects: Cashew, Chewing gum, Fryum, Pipe fryum. The dataset has 10,821 images
with pixel-level annotations. Among them, the training set contains 8,721 anomaly-free images, and the testing set contains
2,100 images with both normal and anomaly samples.

D. Hyperparameter Selection Study Results
D.1. Hyperparameter Selection Settings

Equation 7 defined the decentralization strategy. This section reports the results of different sampling functions of mask
sampling threshold s, different mean of mask sampling threshold s, as well as the number of sampling epochs N . We first
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conduct experiments with standard uniform (U(0, 1)) and standard normal distribution (N(0, 1)) sampling functions with
the same setting of µs on MvTec-AD dataset, where µs changes from 0.1 to 0.9 increasing by 0.1 at a time, and the number
of sampling epochs N are both set to 5 by default. Then we further conduct experiments for different µs on VisA dataset, as
well as different N on both MvTec-AD and VisA dataset where sampling function is set to uniform distribution by default.
When exploring one of the two hyperparameters, the other is set to the default, the settings are as follows: the µs changes
from 0.1 to 0.9 increasing by 0.1 at a time, and the number of sampling epochs N changes from 5 to 35, increasing by 5 at a
time, the default µs is 0.5, and the default N is 5. Meanwhile, we conducted parameter selection experiments for different
regularization coefficients α

D.2. Detailed Results

Table 5. Detailed anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric of different µs on
MvTec-AD under sampling function with Uniform Distribution.

Category µs = 0.1 µs = 0.2 µs = 0.3 µs = 0.4 µs = 0.5 µs = 0.6 µs = 0.7 µs = 0.8 µs = 0.9

carpet 97.99 / 99.59 / 97.46 99.16 / 99.51 / 97.29 93.10 / 99.43 / 97.61 96.11 / 99.55 / 97.37 99.00 / 99.45 / 96.77 97.03 / 99.50 / 97.46 98.07 / 99.43 / 97.38 99.36 / 99.33 / 96.96 95.71 / 99.17 / 95.75

Grid 100.00 / 99.07 / 95.60 100.00 / 99.02 / 95.67 100.00 / 99.07 / 96.03 100.00 / 99.15 / 96.24 100.00 / 98.90 / 94.91 99.83 / 98.31 / 91.64 99.83 / 98.03 / 90.23 98.75 / 98.11 / 91.22 95.91 / 97.55 / 90.10

Leather 100.00 / 99.57 / 98.79 90.46 / 98.91 / 97.38 100.00 / 99.55 / 98.78 100.00 / 99.68 / 99.12 100.00 / 99.68 / 99.08 100.00 / 99.67 / 99.11 100.00 / 99.67 / 99.11 100.00 / 99.68 / 99.17 100.00 / 99.69 / 99.24

Tile 100.00 / 98.88 / 95.93 100.00 / 98.68 / 95.15 100.00 / 98.46 / 94.44 100.00 / 98.72 / 95.35 100.00 / 98.69 / 95.13 100.00 / 98.40 / 94.95 100.00 / 98.49 / 94.86 100.00 / 98.76 / 95.38 99.82 / 98.48 / 94.94

Wood 100.00 / 97.61 / 92.37 100.00 / 96.91 / 91.39 99.82 / 97.27 / 91.72 99.74 / 97.24 / 91.37 99.82 / 97.52 / 91.25 99.82 / 96.39 / 90.65 99.91 / 96.66 / 91.71 99.82 / 96.44 / 91.87 99.56 / 96.42 / 92.38

Pill 99.15 / 98.91 / 96.58 99.59 / 99.11 / 97.48 98.91 / 99.00 / 97.54 99.51 / 98.91 / 97.53 99.59 / 98.79 / 97.64 99.32 / 98.73 / 97.70 98.47 / 98.59 / 97.51 98.61 / 98.54 / 97.48 94.84 / 98.29 / 97.11

Transistor 98.62 / 94.75 / 82.43 99.29 / 94.73 / 84.15 99.33 / 95.27 / 84.55 99.67 / 94.41 / 84.11 99.42 / 95.32 / 84.98 98.92 / 96.10 / 86.33 98.88 / 96.06 / 85.79 98.62 / 96.67 / 86.20 98.67 / 95.67 / 85.63

Cable 95.80 / 96.14 / 85.23 97.40 / 97.67 / 88.63 98.16 / 98.31 / 90.36 98.52 / 98.50 / 91.46 99.03 / 98.62 / 91.10 99.46 / 98.54 / 92.00 98.80 / 98.60 / 91.49 98.67 / 98.79 / 92.78 97.62 / 98.76 / 92.59

Zipper 98.98 / 99.28 / 96.03 98.50 / 99.28 / 96.50 98.69 / 99.35 / 97.52 95.48 / 99.33 / 97.59 98.35 / 99.25 / 97.56 98.21 / 99.23 / 97.50 98.35 / 99.14 / 97.43 98.19 / 98.87 / 96.81 93.17 / 98.33 / 95.19

Toothbrush 100.00 / 98.23 / 89.54 99.44 / 98.51 / 91.85 99.72 / 98.48 / 91.19 100.00 / 99.03 / 94.45 99.17 / 99.05 / 93.62 100.00 / 99.23 / 95.01 100.00 / 99.21 / 94.98 100.00 / 99.23 / 94.92 100.00 / 99.24 / 94.81

Metal Nut 97.12 / 96.99 / 84.89 97.75 / 96.57 / 85.07 97.90 / 96.42 / 83.71 97.12 / 96.60 / 85.31 97.41 / 96.87 / 84.97 97.56 / 97.09 / 86.12 96.63 / 97.12 / 86.03 96.63 / 96.82 / 85.50 94.82 / 96.80 / 84.79

Hazelnut 99.93 / 98.99 / 93.92 98.32 / 99.07 / 93.71 99.89 / 99.25 / 94.39 98.82 / 99.05 / 93.74 98.57 / 99.10 / 93.95 98.82 / 99.00 / 93.73 98.82 / 99.11 / 93.79 99.14 / 99.09 / 93.52 98.71 / 99.25 / 94.44

Screw 85.00 / 97.96 / 91.58 92.38 / 98.11 / 91.62 92.21 / 98.55 / 94.36 93.93 / 98.91 / 95.69 96.02 / 99.23 / 96.69 94.32 / 99.24 / 96.74 94.63 / 99.13 / 96.33 90.72 / 98.98 / 95.47 87.93 / 98.72 / 94.40

Capsule 96.17 / 91.14 / 81.96 94.73 / 95.79 / 86.96 94.89 / 96.60 / 88.00 94.18 / 96.12 / 88.04 94.10 / 96.25 / 88.18 94.30 / 96.53 / 88.24 93.82 / 97.28 / 89.60 94.38 / 97.63 / 90.78 95.97 / 97.77 / 91.73

Bottle 99.84 / 98.03 / 92.71 99.92 / 97.87 / 92.11 99.68 / 97.87 / 92.18 99.68 / 97.69 / 91.61 99.92 / 98.05 / 92.75 99.92 / 97.97 / 92.72 100.00 / 97.82 / 92.40 100.00 / 97.82 / 92.20 100.00 / 97.78 / 91.90

Average 97.91 / 97.68 / 91.67 97.80 / 97.98 / 92.33 98.15 / 98.19 / 92.83 98.18 / 98.19 / 93.27 98.69 / 98.32 / 93.24 98.50 / 98.26 / 93.33 98.41 / 98.29 / 93.24 98.19 / 98.32 / 93.35 96.85 / 98.13 / 93.00

Table 6. Detailed anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric of different µs on
MvTec-AD under sampling function with Normal Distribution.

Category µs = 0.1 µs = 0.2 µs = 0.3 µs = 0.4 µs = 0.5 µs = 0.6 µs = 0.7 µs = 0.8 µs = 0.9

carpet 99.52 / 99.53 / 97.13 97.03 / 99.44 / 96.92 95.47 / 99.19 / 95.63 98.48 / 99.43 / 96.91 99.40 / 99.49 / 96.89 96.79 / 99.43 / 97.01 94.82 / 99.30 / 96.62 89.04 / 98.53 / 94.41 72.79 / 95.65 / 84.69

Grid 100.00 / 99.04 / 96.36 99.92 / 99.11 / 96.39 99.83 / 99.14 / 96.68 100.00 / 98.98 / 95.58 100.00 / 98.43 / 93.16 99.50 / 97.35 / 86.77 98.66 / 97.35 / 87.03 98.83 / 97.57 / 87.38 98.58 / 97.65 / 90.84

Leather 100.00 / 99.64 / 98.94 100.00 / 99.69 / 99.20 100.00 / 99.68 / 99.23 100.00 / 99.68 / 99.19 100.00 / 99.68 / 99.18 100.00 / 99.68 / 99.20 100.00 / 99.68 / 99.24 100.00 / 99.66 / 99.22 99.93 / 99.52 / 99.01

Tile 93.25 / 96.99 / 93.78 100.00 / 98.51 / 94.92 99.86 / 98.70 / 95.66 100.00 / 98.68 / 95.22 100.00 / 98.64 / 95.29 100.00 / 98.40 / 95.36 100.00 / 97.80 / 93.50 99.68 / 98.26 / 94.88 99.93 / 96.67 / 91.75

Wood 100.00 / 97.35 / 91.15 100.00 / 97.49 / 91.81 99.56 / 96.18 / 90.74 99.74 / 96.76 / 91.05 99.30 / 96.67 / 91.30 100.00 / 96.64 / 91.76 100.00 / 96.39 / 91.45 100.00 / 96.21 / 91.42 98.25 / 95.34 / 90.10

Pill 95.36 / 98.72 / 95.91 99.32 / 98.78 / 96.49 99.97 / 98.89 / 97.26 99.65 / 98.78 / 97.58 99.18 / 98.68 / 97.77 97.98 / 98.56 / 97.36 98.17 / 98.51 / 97.37 92.20 / 98.54 / 97.36 97.49 / 98.48 / 97.12

Transistor 99.42 / 96.64 / 85.07 99.38 / 95.59 / 84.96 99.33 / 95.31 / 84.75 99.42 / 95.00 / 84.69 99.17 / 95.28 / 85.38 99.12 / 95.57 / 85.80 98.92 / 95.39 / 85.49 98.58 / 96.02 / 85.74 98.62 / 95.65 / 86.35

Cable 98.65 / 98.54 / 91.17 98.24 / 98.35 / 90.59 98.71 / 98.32 / 90.53 97.75 / 98.49 / 91.15 98.61 / 98.29 / 90.39 98.67 / 98.37 / 90.82 97.88 / 98.51 / 91.44 98.29 / 98.80 / 92.50 99.12 / 98.73 / 92.39

Zipper 95.67 / 99.32 / 97.24 98.77 / 99.33 / 97.57 95.61 / 99.28 / 97.74 95.77 / 99.17 / 97.50 95.56 / 99.10 / 97.35 95.64 / 98.85 / 96.95 93.78 / 98.46 / 95.69 91.65 / 98.00 / 94.43 92.99 / 98.18 / 95.00

Toothbrush 100.00 / 99.11 / 90.90 100.00 / 99.05 / 93.70 100.00 / 99.01 / 94.48 100.00 / 99.10 / 94.87 100.00 / 99.27 / 95.19 100.00 / 99.24 / 95.13 99.72 / 99.26 / 95.20 99.72 / 99.28 / 95.16 100.00 / 99.26 / 95.16

Metal Nut 96.68 / 96.46 / 83.19 96.73 / 97.27 / 85.01 97.02 / 96.15 / 84.26 97.56 / 96.90 / 85.53 97.31 / 96.89 / 85.79 95.85 / 96.62 / 85.08 96.87 / 96.23 / 84.49 96.73 / 96.38 / 84.54 94.48 / 96.41 / 83.76

Hazelnut 98.61 / 98.55 / 93.28 98.43 / 99.03 / 93.93 98.43 / 99.04 / 94.15 98.57 / 99.02 / 94.33 98.82 / 99.00 / 94.00 98.96 / 99.19 / 93.97 99.11 / 99.40 / 94.54 99.21 / 99.39 / 94.06 99.11 / 99.31 / 94.05

Screw 87.09 / 98.31 / 92.97 93.11 / 98.66 / 94.70 93.65 / 98.85 / 95.33 92.91 / 99.20 / 96.72 94.77 / 99.39 / 97.16 94.20 / 99.37 / 97.20 93.87 / 99.21 / 96.71 91.23 / 99.22 / 96.46 94.10 / 99.22 / 96.51

Capsule 96.13 / 95.67 / 88.72 97.25 / 96.13 / 87.62 94.89 / 95.24 / 87.64 93.18 / 96.88 / 88.69 93.94 / 96.39 / 88.20 94.65 / 97.10 / 89.07 93.82 / 96.22 / 88.42 93.74 / 97.14 / 89.56 94.26 / 97.12 / 89.59

Bottle 99.92 / 98.51 / 93.91 99.92 / 98.39 / 93.68 100.00 / 97.89 / 92.31 99.52 / 98.08 / 92.68 99.92 / 98.05 / 92.98 99.92 / 97.82 / 92.33 99.92 / 97.73 / 92.10 99.92 / 97.75 / 92.02 99.92 / 97.75 / 92.03

Average 97.35 / 98.16 / 92.65 98.54 / 98.32 / 93.17 98.16 / 98.06 / 93.09 98.17 / 98.28 / 93.45 98.40 / 98.22 / 93.34 98.09 / 98.15 / 92.92 97.70 / 97.96 / 92.62 96.59 / 98.05 / 92.61 95.97 / 97.66 / 91.89
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Figure 5. Average performance of anomaly detection and localization of the mask sampling function with uniform distribution and normal
distribution as the µs changes, U represents uniform distribution, N represents normal distribution.

Table 7. Detailed anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric on VisA under different µs.

Category µs = 0.1 µs = 0.2 s = 0.3 µs = 0.4 µs = 0.5 µs = 0.6 µs = 0.7 µs = 0.8 µs = 0.9

PCB1 98.03 / 99.43 / 91.76 98.32 / 99.38 / 91.77 97.00 / 99.37 / 91.33 97.30 / 99.53 / 92.77 97.46 / 99.42 / 93.04 98.34 / 99.58 / 93.78 98.15 / 99.60 / 93.74 97.32 / 99.57 / 93.78 97.51 / 99.55 / 93.61

PCB2 99.43 / 98.61 / 86.74 99.38 / 98.59 / 86.52 99.53 / 98.46 / 84.49 99.17 / 98.73 / 88.74 99.22 / 98.70 / 87.33 98.60 / 98.88 / 90.30 99.01 / 99.03 / 91.27 99.16 / 99.01 / 91.54 98.50 / 98.98 / 90.97

PCB3 98.78 / 99.22 / 94.35 98.42 / 99.21 / 94.56 98.25 / 99.13 / 94.56 98.68 / 99.21 / 94.95 98.89 / 99.14 / 95.34 99.00 / 99.25 / 95.23 99.29 / 99.26 / 95.04 98.94 / 99.23 / 94.75 97.41 / 99.22 / 94.36

PCB4 99.53 / 96.23 / 84.98 99.36 / 93.21 / 77.71 99.27 / 94.45 / 79.99 99.31 / 93.62 / 77.98 99.28 / 94.59 / 80.87 99.06 / 96.37 / 82.61 99.24 / 97.54 / 85.67 99.42 / 97.67 / 86.61 99.72 / 98.08 / 87.78

Macaroni 1 96.50 / 99.73 / 98.57 96.75 / 99.72 / 98.37 97.58 / 99.74 / 98.59 97.84 / 99.72 / 98.41 96.94 / 99.78 / 98.82 97.51 / 99.80 / 98.83 95.36 / 99.68 / 97.48 96.02 / 99.66 / 96.89 94.38 / 99.59 / 96.27

Macaroni 2 91.44 / 99.78 / 99.16 88.22 / 99.67 / 98.91 89.85 / 99.74 / 98.99 91.14 / 99.79 / 99.16 90.08 / 99.74 / 98.81 93.76 / 99.82 / 99.24 87.62 / 99.81 / 99.14 84.61 / 99.83 / 99.11 83.47 / 99.81 / 99.04

Capsules 96.22 / 99.69 / 98.00 95.50 / 99.77 / 97.88 96.37 / 99.82 / 97.97 97.13 / 99.85 / 98.46 95.92 / 99.87 / 98.19 94.80 / 99.87 / 98.35 93.50 / 99.85 / 98.59 92.72 / 99.87 / 98.30 92.57 / 99.84 / 97.48

Candle 94.67 / 94.68 / 87.65 93.49 / 94.72 / 87.08 89.55 / 95.96 / 87.18 88.95 / 96.28 / 88.47 88.44 / 95.84 / 89.20 85.71 / 95.28 / 88.93 88.52 / 95.85 / 89.23 89.08 / 95.74 / 88.53 88.22 / 95.72 / 88.68

Cashew 97.28 / 97.62 / 83.92 98.00 / 98.93 / 85.69 97.06 / 98.71 / 84.51 97.40 / 99.15 / 88.24 96.04 / 98.80 / 87.36 94.62 / 98.93 / 88.92 97.88 / 99.18 / 88.26 99.28 / 99.21 / 90.10 97.96 / 99.11 / 89.39

Chewinggum 97.54 / 97.82 / 76.77 98.08 / 97.70 / 76.34 97.36 / 98.10 / 78.29 97.40 / 98.11 / 78.79 97.28 / 98.29 / 80.10 97.52 / 98.45 / 81.98 97.78 / 98.46 / 84.03 97.20 / 98.49 / 83.72 96.02 / 98.33 / 82.81

Fryum 97.96 / 95.34 / 88.91 99.04 / 94.30 / 88.84 99.62 / 94.26 / 88.63 98.92 / 94.95 / 88.54 97.84 / 94.71 / 88.93 98.32 / 94.68 / 88.56 98.12 / 95.76 / 89.20 97.18 / 96.42 / 89.96 90.04 / 96.81 / 91.65

Pipe fryum 97.66 / 99.31 / 94.91 97.62 / 99.35 / 94.94 98.12 / 99.35 / 94.96 96.88 / 99.39 / 95.48 98.68 / 99.41 / 95.82 98.20 / 99.39 / 95.97 98.18 / 99.46 / 95.75 97.58 / 99.43 / 96.03 96.36 / 99.46 / 95.80

Average 97.09 / 98.12 / 90.48 96.85 / 97.88 / 89.88 96.63 / 98.09 / 89.96 96.68 / 98.19 / 90.83 96.34 / 98.19 / 91.15 96.29 / 98.36 / 91.89 96.05 / 98.62 / 92.28 95.71 / 98.68 / 92.44 94.35 / 98.71 / 92.32

Table 8. Detailed anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric on MvTec-AD under
different N .

Category N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35

carpet 99.00 / 99.45 / 96.77 97.71 / 99.49 / 97.18 99.16 / 99.40 / 97.18 91.93 / 99.20 / 96.00 87.96 / 98.94 / 95.14 98.39 / 99.43 / 97.05 98.84 / 99.51 / 97.20

Grid 100.00 / 98.90 / 94.91 99.92 / 98.91 / 95.61 100.00 / 98.93 / 95.11 99.75 / 98.98 / 95.18 99.83 / 98.96 / 95.50 99.75 / 98.96 / 95.26 99.92 / 98.99 / 95.37

Leather 100.00 / 99.68 / 99.08 100.00 / 99.64 / 98.96 100.00 / 99.67 / 99.10 100.00 / 99.67 / 99.11 100.00 / 99.67 / 99.10 100.00 / 99.66 / 99.05 100.00 / 99.67 / 99.10

Tile 100.00 / 98.69 / 95.13 100.00 / 98.12 / 93.29 100.00 / 98.40 / 94.29 100.00 / 98.80 / 95.74 100.00 / 97.79 / 92.57 100.00 / 98.75 / 95.72 100.00 / 98.78 / 95.21

Wood 99.82 / 97.52 / 91.25 99.47 / 95.84 / 89.61 99.47 / 97.20 / 91.07 99.39 / 94.68 / 87.71 100.00 / 97.01 / 90.99 99.47 / 95.88 / 90.35 99.82 / 96.27 / 89.77

Pill 99.59 / 98.79 / 97.64 99.37 / 98.82 / 97.48 99.73 / 98.79 / 97.58 99.73 / 98.79 / 97.53 99.56 / 98.74 / 97.56 99.65 / 98.79 / 97.66 99.54 / 98.76 / 97.59

Transistor 99.42 / 95.32 / 84.98 99.25 / 95.30 / 84.61 99.58 / 95.18 / 84.63 99.25 / 95.33 / 84.70 99.50 / 95.39 / 85.35 99.42 / 95.27 / 84.57 99.25 / 95.04 / 84.99

Cable 99.03 / 98.62 / 91.10 98.54 / 98.28 / 90.23 98.58 / 98.38 / 90.85 99.06 / 98.47 / 90.97 98.29 / 98.59 / 91.89 98.43 / 98.45 / 91.35 98.76 / 98.43 / 90.89

Zipper 98.35 / 99.25 / 97.56 95.67 / 99.23 / 97.46 98.53 / 99.28 / 97.58 95.98 / 99.27 / 97.54 98.71 / 99.31 / 97.57 95.69 / 99.24 / 97.52 97.11 / 99.24 / 97.39

Toothbrush 99.17 / 99.05 / 93.62 100.00 / 99.21 / 94.84 100.00 / 99.20 / 94.92 100.00 / 99.15 / 94.95 100.00 / 99.21 / 95.06 100.00 / 99.19 / 94.80 100.00 / 99.18 / 94.95

Metal Nut 97.41 / 96.87 / 84.97 97.02 / 96.82 / 85.14 97.90 / 97.01 / 86.09 97.36 / 96.73 / 84.57 97.07 / 97.02 / 84.98 97.17 / 96.78 / 85.32 97.36 / 96.85 / 85.25

Hazelnut 98.57 / 99.10 / 93.95 99.29 / 98.82 / 93.26 98.36 / 98.93 / 93.57 97.89 / 99.16 / 94.10 98.64 / 98.98 / 93.43 98.64 / 98.91 / 93.50 98.68 / 99.01 / 93.98

Screw 96.02 / 99.23 / 96.69 93.85 / 99.28 / 96.91 93.65 / 99.15 / 96.43 94.02 / 99.16 / 96.50 94.16 / 99.16 / 96.52 94.55 / 99.17 / 96.69 93.54 / 99.07 / 96.04

Capsule 94.10 / 96.25 / 88.18 94.34 / 96.84 / 88.30 94.22 / 95.22 / 87.41 93.58 / 96.48 / 88.19 94.18 / 96.76 / 88.65 94.30 / 96.73 / 88.07 94.30 / 96.89 / 88.35

Bottle 99.92 / 98.05 / 92.75 99.84 / 98.06 / 92.74 99.84 / 98.06 / 92.87 99.76 / 98.08 / 92.78 100.00 / 98.06 / 92.72 99.84 / 98.06 / 92.81 99.84 / 98.03 / 92.66

Average 98.69 / 98.32 / 93.24 98.28 / 98.18 / 93.04 98.60 / 98.19 / 93.25 97.85 / 98.13 / 93.04 97.86 / 98.24 / 93.14 98.35 / 98.22 / 93.31 98.46 / 98.25 / 93.25

21



Demeaned Sparse: Efficient Anomaly Detection by Residual Estimate

Table 9. Detailed anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric on VisA under different N .

Category N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35

PCB1 97.46 / 99.42 / 93.04 97.51 / 99.49 / 93.29 98.11 / 99.46 / 93.42 97.69 / 99.43 / 93.12 97.70 / 99.44 / 92.76 97.55 / 99.45 / 93.01 98.19 / 99.50 / 93.72

PCB2 99.22 / 98.70 / 87.33 99.11 / 98.27 / 83.12 99.22 / 98.78 / 88.76 98.86 / 98.42 / 84.79 99.43 / 98.46 / 84.68 99.58 / 98.57 / 86.14 99.01 / 98.10 / 82.24

PCB3 98.89 / 99.14 / 95.34 98.85 / 99.10 / 95.41 99.01 / 99.09 / 95.44 99.06 / 99.23 / 95.15 99.17 / 99.18 / 95.30 98.90 / 99.27 / 95.39 98.82 / 99.21 / 95.35

PCB4 99.28 / 94.59 / 80.87 99.21 / 94.96 / 80.08 99.12 / 93.89 / 78.62 99.17 / 94.11 / 79.26 99.25 / 93.78 / 78.00 99.41 / 94.20 / 79.06 99.13 / 94.00 / 79.36

Macaroni 1 96.94 / 99.78 / 98.82 97.04 / 99.76 / 98.64 96.90 / 99.77 / 98.71 97.17 / 99.72 / 98.20 96.63 / 99.78 / 98.66 97.35 / 99.76 / 98.55 96.46 / 99.79 / 98.49

Macaroni 2 90.08 / 99.74 / 98.81 87.98 / 99.73 / 98.90 89.76 / 99.72 / 98.84 89.78 / 99.72 / 98.78 87.63 / 99.72 / 98.82 89.59 / 99.74 / 98.93 89.59 / 99.75 / 98.94

Capsules 95.92 / 99.87 / 98.19 95.77 / 99.86 / 98.58 95.95 / 99.88 / 98.33 95.98 / 99.88 / 98.38 96.88 / 99.87 / 98.44 95.73 / 99.88 / 98.40 96.45 / 99.87 / 98.37

Candle 88.44 / 95.84 / 89.20 87.06 / 95.56 / 89.20 87.40 / 95.68 / 88.93 86.90 / 95.48 / 89.18 86.89 / 95.63 / 88.55 88.06 / 95.58 / 89.18 87.30 / 95.46 / 88.38

Cashew 96.04 / 98.80 / 87.36 95.64 / 98.81 / 88.46 96.70 / 99.17 / 89.77 95.84 / 99.16 / 88.28 95.86 / 99.13 / 88.24 94.82 / 99.05 / 88.19 94.34 / 99.06 / 88.07

Chewinggum 97.28 / 98.29 / 80.10 98.56 / 98.39 / 80.69 98.74 / 98.25 / 80.15 98.74 / 98.32 / 80.41 97.86 / 98.25 / 79.77 98.34 / 98.41 / 80.36 97.70 / 98.50 / 79.96

Fryum 97.84 / 94.71 / 88.93 98.98 / 94.87 / 89.08 99.56 / 94.83 / 89.45 97.92 / 95.23 / 89.71 98.88 / 94.92 / 89.25 99.36 / 94.98 / 89.35 98.74 / 94.81 / 89.26

Pipe fryum 98.68 / 99.41 / 95.82 98.46 / 99.32 / 95.49 98.34 / 99.36 / 95.32 98.92 / 99.27 / 95.93 98.88 / 99.41 / 95.71 98.02 / 99.40 / 95.80 98.34 / 99.31 / 95.37

Average 96.34 / 98.19 / 91.15 96.18 / 98.18 / 90.91 96.57 / 98.16 / 91.31 96.34 / 98.16 / 90.93 96.25 / 98.13 / 90.68 96.39 / 98.19 / 91.03 96.17 / 98.11 / 90.63

Table 10. Detailed anomaly detection/localization results with Img-AUROC / Pix-AUROC / PRO (in %) metric on MvTec-AD under
different α.

Category α = 1e− 2 α = 1e− 3 α = 1e− 4 α = 1e− 5 α = 1e− 6 α = 1e− 7 α = 1e− 8

carpet 65.17 / 89.93 / 84.99 65.77 / 92.34 / 84.61 79.21 / 96.16 / 86.39 95.95 / 98.68 / 93.79 99.00 / 99.45 / 96.77 97.15 / 99.14 / 96.08 97.99 / 99.28 / 96.94

Grid 100.00 / 99.31 / 93.59 100.00 / 99.31 / 93.39 98.50 / 96.16 / 84.33 99.83 / 98.03 / 89.63 100.00 / 98.90 / 94.91 100.00 / 99.21 / 96.25 99.42 / 99.20 / 95.41

Leather 100.00 / 99.67 / 98.12 100.00 / 99.68 / 98.52 100.00 / 99.69 / 98.19 100.00 / 99.59 / 99.15 100.00 / 99.68 / 99.08 100.00 / 99.52 / 97.91 100.00 / 99.62 / 98.83

Tile 96.07 / 97.76 / 92.53 98.70 / 97.83 / 92.82 94.23 / 87.81 / 72.86 100.00 / 97.82 / 94.01 100.00 / 98.69 / 95.13 99.13 / 97.68 / 93.36 99.42 / 96.86 / 91.80

Wood 100.00 / 95.51 / 88.55 96.75 / 93.52 / 86.31 97.46 / 91.57 / 82.31 98.77 / 95.42 / 90.09 99.82 / 97.52 / 91.25 100.00 / 95.61 / 89.36 100.00 / 94.72 / 86.83

Pill 94.76 / 90.26 / 81.69 94.33 / 88.49 / 79.56 98.94 / 98.68 / 96.56 98.15 / 98.59 / 97.54 99.59 / 98.79 / 97.64 99.07 / 97.69 / 92.43 97.27 / 89.58 / 83.11

Transistor 99.75 / 96.61 / 83.25 99.71 / 96.91 / 83.75 98.88 / 96.05 / 85.53 99.12 / 95.10 / 85.02 99.42 / 95.32 / 84.98 99.87 / 96.36 / 84.57 99.87 / 95.43 / 83.58

Cable 98.16 / 98.39 / 89.14 98.20 / 98.43 / 88.79 99.53 / 98.07 / 89.13 95.91 / 98.02 / 90.50 99.03 / 98.62 / 91.10 98.84 / 98.24 / 86.98 98.63 / 98.18 / 85.29

Zipper 98.69 / 99.32 / 94.01 96.32 / 99.31 / 93.77 95.04 / 98.60 / 95.96 98.48 / 98.86 / 96.81 98.35 / 99.25 / 97.56 97.11 / 99.31 / 97.30 97.64 / 99.33 / 97.19

Toothbrush 100.00 / 99.22 / 95.66 99.44 / 99.33 / 95.64 99.72 / 99.26 / 95.32 100.00 / 99.17 / 95.01 99.17 / 99.05 / 93.62 100.00 / 99.18 / 94.67 100.00 / 99.18 / 94.49

Metal Nut 95.65 / 96.42 / 74.36 95.89 / 96.40 / 75.66 95.99 / 94.44 / 83.17 93.26 / 94.62 / 83.35 97.41 / 96.87 / 84.97 96.14 / 96.38 / 75.24 93.21 / 95.26 / 69.19

Hazelnut 97.54 / 98.41 / 88.22 97.43 / 98.31 / 82.92 97.64 / 98.19 / 88.04 98.82 / 99.26 / 94.23 98.57 / 99.10 / 93.95 95.64 / 95.54 / 86.40 97.86 / 92.97 / 81.64

Screw 91.10 / 98.98 / 95.57 94.45 / 98.95 / 95.42 93.20 / 98.97 / 95.58 96.23 / 99.53 / 97.80 96.02 / 99.23 / 96.69 86.94 / 98.57 / 93.09 77.06 / 97.79 / 89.28

Capsule 95.69 / 98.12 / 90.58 94.81 / 98.18 / 90.62 94.58 / 96.84 / 88.57 94.26 / 96.41 / 87.64 94.10 / 96.25 / 88.18 96.89 / 98.61 / 93.25 97.05 / 98.56 / 93.39

Bottle 99.92 / 98.68 / 88.78 100.00 / 98.69 / 89.27 100.00 / 98.22 / 93.22 100.00 / 97.64 / 91.75 99.92 / 98.05 / 92.75 100.00 / 98.66 / 93.48 100.00 / 98.63 / 92.82

Average 95.50 / 97.10 / 89.27 95.45 / 97.04 / 88.74 96.19 / 96.58 / 89.01 97.92 / 97.78 / 92.42 98.69 / 98.32 / 93.24 97.79 / 97.98 / 91.36 97.03 / 96.97 / 89.32
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E. More Qualitative Results
This section reports more qualitative Results on the MvTec-AD and VisA dataset. Figure 6 depicted results from different
categories of the compared methods. Figure 7 depicted intermediate step and anomaly localization results under different
sampling function and different µs. Due to the different sparsity of different channel masks, some X̂ will show color cast or
brightness reduction.

Figure 6. Qualitative comparison for anomaly localization on two datasets. From left to right: the input images, ground-truth, and the
anomaly maps produced by all compared methods.
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Figure 7. Intermediate step and anomaly localization results under different sampling function and different µs.
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