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ABSTRACT

Model-based reinforcement learning has shown promise for improving sample ef-
ficiency and decision-making in complex environments. However, existing meth-
ods face challenges in training stability, robustness to noise, and computational
efficiency. In this paper, we propose Bisimulation Metric for Model Predictive
Control (BS-MPC), a novel approach that incorporates bisimulation metric loss in
its objective function to directly optimize the encoder. This time-step-wise direct
optimization enables the learned encoder to extract intrinsic information from the
original state space while discarding irrelevant details and preventing the gradients
and errors from diverging. BS-MPC improves training stability, robustness against
input noise, and computational efficiency by reducing training time. We evaluate
BS-MPC on both continuous control and image-based tasks from the DeepMind
Control Suite, demonstrating superior performance and robustness compared to
state-of-the-art baseline methods.

1 INTRODUCTION

Reinforcement learning (RL) has become a central framework for solving complex sequential
decision-making problems in diverse fields such as robotics, autonomous driving, and game play-
ing. Among RL methods, model-based reinforcement learning (MBRL) gets its attention thanks to
its ability to achieve higher sample efficiency and better generalization. Representation learning fur-
ther enhances MBRL by encoding high-dimensional information into compact latent spaces, which
can accelerate learning by focusing on essential aspects of the environment. However, achieving
stable and robust representations remains a challenge, especially in high-dimensional or partially
observable environments, where noise and irrelevant features can degrade performance.

One prominent MBRL method, Temporal Difference Model Predictive Control (TD-MPC) (Hansen
et al., 2022), combines temporal difference learning with model predictive control to improve pol-
icy performance by simulating future trajectories in the learned latent space. TD-MPC sets itself
apart from other methods by leveraging the learned latent value function as a long-term reward
estimate to approximate cumulative rewards, allowing for the efficient computation of optimal ac-
tions. Despite its successes, TD-MPC suffers from several limitations, including instability during
training, vulnerability to noise, and expensive computational costs, which are shown in Fig 1. The
first graph illustrates TD-MPC’s performance degradation during training, demonstrating a notable
collapse after a certain number of steps. The second set of results focuses on an image-based task,
where the addition of background noise (adding a completely irrelevant image to the background)
led to TD-MPC’s failure to achieve a high reward in the noisy environment. The third picture shows
that TD-MPC suffers from a long calculation time. These problems are attributed to the encoder’s
training method and the objective function’s structure.

To address these issues, we introduce Bisimulation Metric for Model Predictive Control (BS-MPC),
a new approach that leverages π∗-bisimulation metric (on-policy bisimulation metric) (Zhang et al.,
2021) to improve the stability and robustness of latent space representations. Bisimulation met-
rics measure behavioral equivalence between states by comparing their immediate rewards and next
state distributions, providing a formal way to ensure that the learned latent representations retain
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meaningful and essential information from the original states. In BS-MPC, we minimize the mean
square error between the on-policy bisimulation metric and ℓ1-distance in latent space at each time
step, directly optimizing the encoder to improve stability and noise resistance. Integration of the
bisimulation metric gives BS-MPC a theoretical guarantee, ensuring that the difference in cumula-
tive rewards between the original state space and the learned latent space can be upper-bounded over
a trajectory. This value function difference bound validates the fidelity of the encoder projection.
Additionally, the proposed method reduces training time by making the computation of the objec-
tive function parallelizable, leading to less computational cost than TD-MPC. All these performance
improvements are also summarized in Fig 1.

We implement BS-MPC using the Model Predictive Path Integral (MPPI) (Williams et al., 2016;
2018) framework and evaluate its performance on a variety of continuous control tasks from Deep-
Mind Control Suite (Tassa et al., 2018). Our results show that BS-MPC outperforms existing model-
free and model-based methods in terms of performance and robustness, making it a promising new
approach for model-based reinforcement learning.

Figure 1: Three open problems of TD-MPC. (Left) TD-MPC initially performs well but collapses after 4 mil-
lion steps, while BS-MPC steadily improves. (Middle) With added distraction in the input image,
TD-MPC fails to gain rewards, whereas BS-MPC remains robust. (Right) BS-MPC reduces training
time by removing sequential computation in objective function.

2 RELATED WORK

Reinforcement Learning Reinforcement Learning (RL) (Sutton & Barto, 2018) has two main
approaches: model-free methods (Silver et al., 2014; Fujimoto et al., 2018; Haarnoja et al., 2018a;
Schulman et al., 2015; 2017; Kalashnkov et al., 2021; Kalashnikov et al., 2018; Mnih et al., 2015;
Hessel et al., 2018; Yarats et al., 2021; 2022; Laskin et al., 2020) and model-based methods (Sutton,
1991; Hafner et al., 2020; 2021; 2024; Luo et al., 2019; Janner et al., 2019; Chua et al., 2018; Schrit-
twieser et al., 2019; Wang & Ba, 2020). While model-free methods focus on learning the value
function and policy, model-based methods aim to learn the underlying model of the environment,
using this learned model to compute optimal actions. This paper focuses on the model-based ap-
proach, specifically methods that combine planning and MBRL (Hansen et al., 2022; 2024), which
learns the underlying model in the latent space and applies sampling-based Model Predictive Con-
trol (MPC) (Williams et al., 2016; Kobilarov, 2012) to solve the trajectory optimization problem.
Several variants of TD-MPC have been proposed (Lancaster et al., 2024; Zhao et al., 2023; Chitnis
et al., 2023; Feng et al., 2023; Wan et al., 2024), but none fully address all the challenges outlined in
Fig. 1. To the best of our knowledge, BS-MPC is the first approach to tackle all three open problems
in TD-MPC, as discussed in Section 1.
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Representation Learning Learning models in the latent space is an efficient way to approximate
internal models, especially for image-based tasks. One approach to learning latent space projections
is by training both the encoder and decoder to minimize the reconstruction loss (Lange & Ried-
miller, 2010; Lange et al., 2012; Hafner et al., 2019; 2024; Lee et al., 2020). However, this method
often suffers model errors and instability and has difficulties in long-term predictions. An alterna-
tive approach is to train only the encoder to obtain the latent representation. Bisimulation (Larsen
& Skou, 1989) is a state abstraction technique defined in Markov Decision Processes (MDPs) that
clusters states producing identical reward sequences for any given action sequence. Ferns et al.
(2011); Ferns & Precup (2014) defined a bisimulation metric that measures the similarity between
two states based on the Wasserstein distance between their empirically measured transition distri-
butions. However, computing this metric can be computationally expensive in high-dimensional
spaces. To address this, Castro (2020) proposed an on-policy bisimulation metric, which considers
the distribution of future states under the current policy, providing a scalable way to measure state
similarity. Zhang et al. (2021) extend this idea to π∗-bisimulation metric by minimizing MSE loss
between bisimulation metric and ℓ1-distance in latent space to train the encoder. Following this ap-
proach, we use the on-policy bisimulation metric to train the encoder in model-based reinforcement
learning architecture.

3 PRELIMINARIES

This section provides a brief introduction to reinforcement learning and its associated notations,
along with an explanation of bisimulation concepts.

3.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) aims to optimize agents that interact with a Markov Decision Process
(MDP) defined by a tuple (S,A,P,R, ρ0, γ), where S represents the set of all possible states, A
is the set of possible actions, R is a reward function, ρ0 is the initial state distribution, and γ is the
discount factor. When action a ∈ A is executed at state s ∈ S, the next state is generated according
to s′ ∼ P(·|s, a), and the agent receives stochastic reward with mean r(s, a) ∈ R.

The Q-function Qπ(s, a) for a policy π(·|s) represents the discounted long-term reward
attained by executing a given observation history s and then following policy π there-
after. Qπ satisfies the Bellman recurrence: Qπ(s, a) = BπQπ(s, a) = r(s, a) +
γEs′∼P (·|s,a),a′∼π(·|s′) [Qh+1(s

′, a′)] . The value function V π considers the expectation of the Q-
function over the policy V π(h) = Ea∼π(·|s) [Qπ(s, a)]. Meanwhile, the Q-function of the opti-
mal policy Q∗ satisfies: Q∗(s, a) = r(s, a) + γEs′∼P (·|s,a) [maxa′ Q

∗(s′, a′)], and the optimal
value function is V ∗(s) = maxaQ

∗(s, a). Finally, the expected cumulative reward is given by
J(π) = Es1∼ρ1 [V π(s1)]. The goal of RL is to optimize a policy π(· | s) that maximizes the
cumulative reward π∗(· | s) = argmax

π
J(π).

In large-scale or continuous environments, solving reinforcement learning (RL) problems can be
challenging due to the prohibitively high computational cost. To address this issue, function approx-
imation is often employed to estimate value functions and policies. With function approximation,
we present Qπ, π as QθQ , πψ , with θQ and ψ as their parameters. With a replay buffer B, the policy
evaluation and improvement steps at iteration k can be expressed as:

θQk+1 ←argmin
θQ

E(s,a,r,s′)∼B

[(
QθQ(s, a)−R(s, a)− γEa′∼πθπ

k
(·|s)[Qθ̄Qk

(s, a′)]
)2

]
ψk+1 ←argmax

ψ
Es∼B,a∼πψ(·|s)

[
QθQk+1

(s, a)
]
,

(1)

where θ̄Qk are target parameters that are a slow-moving copy of θQk . Note that in this paper, we
denote •̄ as target parameters in this paper.

3.2 BISIMULATION METRIC

When working with high-dimensional state problems, it is often helpful to group ”similar” states
into the same set. Bisimulation is a type of state abstraction that groups state si and sj if they are
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”behaviorally equivalent” (Li et al., 2006). A more concise definition states that two states are bisim-
ilar if they yield the same immediate rewards and have equivalent distributions over future bisimilar
states(Larsen & Skou, 1989; Givan et al., 2003). Bisimulation metric quantifies the bisimilarity of
two states si and sj . It is defined with p-th Wasserstein metric Wp(P1,P2), which represents the
distance between two probability distribution P1 and P2:
Definition 1. (Bisimulation metric (Ferns et al., 2011)). The following metric exists and is unique,
given R : S ×A→ [0, 1] and c ∈ (0, 1) for continuous MDPs:

d(si, sj) = max
a∈A

(1− c)|R(si, a)−R(sj , a)|+ cW1(P(·|si, a),P(·|sj , a)). (2)

In high-dimensional and continuous environments, analytically computing the max operation in
Eq. 2 is challenging. In response to this difficulty, Castro (2020) proposed a new approach, known
as the on-policy bisimulation metric (or π-bisimulation).
Definition 2. (On-Policy bisimulation metric (Castro, 2020)). Given a fixed policy π, the following
bisimulation metric uniquely exists

d(si, sj) = |rπsi − r
π
sj |+ γW1(Pπ(·|si),Pπ(·|sj)). (3)

where
rπs =

∑
a

π(a|s)R(s, a), Pπ(·|s) =
∑
a

π(a|s)
∑
s′∈S
P(s′|s, a) (4)

Recently, (Zhang et al., 2021) extended the concept of the on-policy bisimulation metric (referred to
as the π∗-bisimulation metric) to learn a comparable metric in the latent space Z . In their approach,
the encoder ϕ is learned by minimizing the mean square error between the on-policy bisimulation
metric and ℓ1-distance in the latent space.

J(ϕ) =
(
∥ϕ(si)− ϕ(sj)∥1 − |rπsi − r

π
sj | − γW2

(
P̂(·|ϕ̄(si), ai), P̂(·|ϕ̄(sj), aj)

))2

(5)

where the latent dynamics model P̂ is modeled with a Gaussian distribution. In Eq. 5, 2-Wasserstein
metric W2 is used because it has a convenient closed form for Gaussian distribution. Following this
approach, we train our encoder similarly by including this MSE loss (Eq. 5) in our objective function.

4 BISIMULATION METRIC FOR MODEL PREDICTIVE CONTROL

We introduce Bisimulation Metric Model Predictive Control (BS-MPC), a robust and efficient
model-based reinforcement learning algorithm. This section provides a detailed explanation of the
BS-MPC algorithm. Furthermore, we present a theoretical analysis that bounds the suboptimality
of cumulative rewards in the learned latent space under our architecture. Finally, we highlight three
key distinctions between BS-MPC and TD-MPC that contribute to their performance differences.

4.1 BISIMULATION METRIC FOR MODEL PREDICTIVE CONTROL

We introduce BS-MPC, an improvement over TD-MPC that employs π∗-bisimulation metrics to
train the encoder. The training flow for BS-MPC is detailed in Appendix C.

Components BS-MPC shares the same five core components as TD-MPC: encoder, latent dynam-
ics, reward, state-action value and policy.

Encoder: zk = hθh(sk) Latent dynamics: zk+1 = dθd(zk, ak)

Reward: r̂k = RθR(zk, ak) State-action value: Q̂k = QθQ(zk, ak)

Policy: âk ∼ πψ(zk)
(6)

When the input sk is a state vector, the encoder is modeled as a multi-layer perceptron (MLP) and as
a convolutional neural network (CNN) when sk is an image. Given the latent state zk and action ak,
we compute the next latent state zk+1 using the latent dynamics model dθd(zk, ak), parameterized
by θd. Following other model-based reinforcement learning methods, we model the latent dynamics
with an MLP. BS-MPC estimates the reward r̂k and state-action value Q̂k based on zk and ak,
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modeling both RθR and QθQ with MLPs. Finally, we train a policy that outputs the estimated
optimal action âk given zk; the policy is also parameterized as an MLP.

At each time step k, the original observation sk is encoded into the latent state zk. Using zk and the
action ak, we compute the rewards, state-action values, and the next latent state. As highlighted in
prior work, these values are computed in the latent space rather than the original observation space,
as the latent state zk captures the essential information from the high-dimensional original state.
Since the latent space typically has more compact dimensions, this approach is commonly used in
image-based tasks where input images are high-dimensional. However, state-based tasks, despite
being represented more compactly, also benefit from this structure by utilizing latent states learned
through temporal consistency (Zhao et al., 2023).

Objective function We jointly train the encoder, latent dynamics model, reward model, and state-
action value model. BS-MPC minimizes the following loss function:

θ∗ = argmin
θ
L(θ) = argmin

θ
E(s,a,r,s′)∼B

[
H∑
k=0

λkLk(θ)

]
(7)

where θ = [θR, θQ, θd, θh]. This objective function is identical to the one proposed in TD-MPC.
However, BS-MPC has an additional bisimulation metric loss term at every time step, as shown in
Eq. 5.

Lk(θ) = c1 ||RθR(zk, ak)− rk||22︸ ︷︷ ︸
(A) reward loss

+c2 ∥QθQ(zk, ak)− (rk + γQθ̄Q(zk+1, πθπ (zk+1)))∥22︸ ︷︷ ︸
(B) state-action value loss

+ c3 ∥dθd(zk, ak)− hθ̄h(sk+1)∥22︸ ︷︷ ︸
(C) consistency loss

+c4
(
∥hθh(sk)− hθh(śk)∥1 − |rk − ŕk| − γ||z̄k+1 − ¯́zk+1||22

)2︸ ︷︷ ︸
(D) bisimulation metric loss

(8)

where •́k = permute(•k) and z̄k+1 = dθ̄d(zk, ak). c1, c2, c3, c4 are parameters that can change
the weight of each loss. The last term is an expansion of Eq. 5, under the assumption that the
model outputs deterministic predictions, corresponding to a Dirac delta distribution (i.e., a Gaussian
distribution with zero variance). As in TD-MPC, we use the same three loss components: (A) reward
loss, (B) state-value action loss, and (C) consistency loss. Each training loss aims to update its
corresponding parameters, i.e. reward parameter θR, state-action value parameter θQ, and dynamics
parameter θd. These losses also help to update the encoder parameter θh by using the derivative of
the composition function. In addition to these losses, BS-MPC includes a bisimulation metric loss
in its objective function, which explicitly depends on the encoder parameters θh. This bisimulation
metric loss (D) is designed to train the encoder to learn a representation space where the ℓ1-distance
corresponds to the π∗-bisimulation metric.

For policy training, we use the following loss function to update the policy parameter ψ.

ψ∗ = argmin
ψ
Jπ(ψ) = argmin

ψ
−

H∑
k=0

λkQθQ (zk, πψ(z̄k)) (9)

In Section. 4.3, we give details about the benefit of using Eq. 8 as the objective function for BS-MPC
and the differences between our approach and TD-MPC.

Model Predictive Control with Learned Model Following TD-MPC, our method has a closed-
loop controller using the learned latent dynamics model, reward model, state-value function, and
prior policy to compute the optimal action. Due to the high affinity between reinforcement learning
and sampling-based planners, we design a closed-loop controller using MPPI, a type of sampling-
based MPC, following the approach of TD-MPC. MPPI is a derivative-free method that samples a
large number of trajectories, calculates the weight for each, and then generates the optimal trajectory
by taking the weighted average of these trajectories. This framework enables us to solve the local
trajectory optimization problem.

First, it encodes the current observed state st into the latent space with the trained encoder zt =
hθh(st). After that, we sample M action sets from Gaussian distribution N (µ0, σ0) based on the
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initial mean µ0 and standard deviation σ0, and each set contains H length actions ajt:t+H where j ∈
M . Starting from the initial latent state zt, we use the learned latent dynamics zt+1 = dθd(zt, at)
and sample M trajectories. We then calculate the weight of each trajectory based on its cost and
compute the weighted mean of the sampled trajectories to get the updated optimal trajectory. The
parameter µk and σk is updated by maximizing the following equations:

µk+1, σk+1 = argmax
(µ,σ)

E(at,at+1,...,at+H)∼N (µ,σ2)

[
γHV (zt+H) +

H−1∑
h=t

γhRθR(zh, ah)

]
(10)

where V (zt+H) = QθQ (zt+H , πψ(zt+h)). We continue this calculation until it reaches the given
number of iterations. More details can be found in (Hansen et al., 2022; Williams et al., 2016; 2018).

4.2 THEORETICAL ANALYSIS

It is important to measure the quality of the learned representation space. In this section, we show
that BS-MPC upper-bounds expected cumulative reward by leveraging value function bounds de-
rived from the on-policy bisimulation metric. This property, absent in TD-MPC, strongly differenti-
ates BS-MPC.

We assume that the learned policy in BS-MPC continuously improves throughout training and even-
tually converges to the optimal policy π∗, which supports Theorem 1.
Theorem 1. (Theorem 1 in (Zhang et al., 2021)) Let’s assume a policy π in BS-MPC continuously
improves over time, converging to the optimal policy π∗. Under this assumption, the following
bisimulation metric has a least fixed point d̃ and that is a π∗-bisimulation metric.

d(si, sj) = (1− c)|rπsi − r
π
sj |+ cWp(d)(Pπ(·|si),Pπ(·|sj)). (11)

whereWp(d)(Pi,Pj) =
(
infγ′∈Γ(Pi,Pj)

∫
S×S d(si, sj)

p dγ′(si, sj)
)1/p

and Γ(Pi,Pj) is the set of
all couplings of Pi and Pj .

Proof can be found in (Zhang et al., 2021). Under this π∗-bisimulation metric, we can divide the
latent space into n partitions based on some ϵ > 0, where 1

n < (1 − c)ϵ. Let ϕ represent the
encoder that maps each original state from the state space S to a corresponding ϵ-cluster. With these
notations, (Zhang et al., 2021) shows the following value bound based on bisimulation metrics.
Theorem 2. (Theorem 2 in (Zhang et al., 2021)) Consider an MDP M̄, which is formed by clus-
tering states within an ϵ-neighborhood, along with an encoder ϕ that maps states from the original
MDPM to these clusters. Under the same assumption in Theorem 1, optimal value functions for
the two MDPs are bounded by

|V ∗(s)− V ∗(ϕ(s))| ≤ 2ϵ+ 2L
(1− γ)(1− c)

(12)

where L := supsi,sj∈S | ∥ϕ(si)− ϕ(sj)∥ − d̃(si, sj)| is the learning error for encoder ϕ. Note that
this theorem assumes access to the true dynamics model P and reward functionR.

Proof can also be found in (Zhang et al., 2021). This result demonstrates that the optimal value
function in the original state space and the optimal value function in the latent space, projected by
the π∗-bisimulation metric, is bounded from above. Leveraging Theorem 1 and Theorem 2, we can
bound the cumulative reward of a trajectory under the original MDPM and the latent MDP M̄.
Theorem 3. Consider a trajectory τ = (s0, a0, s1, a1, . . . , sH−1, aH−1, sH) in the original state
space S, and its corresponding encoded trajectory ϕ(τ) = (z0, a0, z1, a1, . . . , zH−1, aH−1, zH),
where ak ∼ π∗(· | sk) and zk = ϕ(sk), with ϕ defined as in Theorem 2. Under the same assumption
as in Theorem 1 and Theorem 2, the following expected cumulative rewards

S(τ) = Eτ

[
γHV ∗(sH) +

H−1∑
h=0

γhR(sh, ah)

]
,

S(ϕ(τ)) = Eτ

[
γHV ∗(ϕ(sH)) +

H−1∑
h=0

γhR(ϕ(sh), ah)

]
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can be bounded as follows:

|S(τ)− S(ϕ(τ))| ≤ 2γH(ϵ+ L)
(1− γ)(1− c)

+
2ϵ(1− γH)

(1− γ)(1− c)
. (13)

Proof can be found in Appendix A.1. This theorem states that if the cluster radius ϵ and the en-
coder error L are sufficiently small, the learned representation space Z does not change the original
cumulative rewards over the same trajectory τ . This suggests that the latent space retains essential
information from the original space.

4.3 DIFFERENCE BETWEEN BS-MPC AND TD-MPC

The main difference between BS-MPC and TD-MPC lies in its objective function and computation
flow. Specifically, BS-MPC updates the encoder parameter by minimizing MSE loss between on-
policy bisimulation metric and ℓ1-distance in the latent space at every time step k, which is shown
in Eq. 7. These differences result in the following improvements.

Improved training stability In TD-MPC, the encoder is only updated indirectly through gradi-
ents propagated from the latent dynamics loss, as the objective function lacks explicit encoder loss
term and only consists of the first three terms in Eq. 8. This indirect update makes it challenging to
effectively optimize the encoder parameters at each training step, potentially leading to significant
inconsistencies in the latent dynamics and destabilizing the learning process. Such model inconsis-
tencies have also been reported in Zhao et al. (2023). In contrast, BS-MPC has an explicit encoder
loss in its objective function thanks to the inclusion of bisimulation metric loss. This allows the
gradients of the encoder parameters to be directly computed from the objective function, ensur-
ing continuous improvement of the encoder. As a result, the learned encoder effectively maps the
original state s to the latent space z, leading to reduced model discrepancies. The encoder update
difference is shown in Fig. 2a and Fig. 2b.

Theoretical support of the latent space The encoder in BS-MPC generates a latent representation
Z where the ℓ1-distance corresponds to the bisimulation metric. This indicates that the encoder
efficiently filters out irrelevant information from the original state s and preserves intrinsic details
in the latent state z. Consequently, BS-MPC exhibits robust resilience to noise. Additionally, this
property guarantees that the cumulative reward difference between the learned representation space
and the original space over a trajectory is upper-bounded, as discussed in Section 4.2. In contrast,
the encoder in TD-MPC lacks theoretical guarantees in its learned representation space, potentially
leading to the projection of irrelevant details into the latent space. This absence of theoretical validity
in the encoder contributes to increased sensitivity to noise, as shown in our experimental results
(Section. 5.3).

Ease of parallelization TD-MPC predicts the latent state ẑk+1 by applying the dynamics model
to the previous predicted latent state ẑk, introducing a sequential dependency that hinders parallel
computation (see Lines 12 to 17 of Algorithm 2 in Hansen et al. (2022)). In contrast, BS-MPC
generates the predicted latent state ẑk+1 by encoding the current state into the latent state zk =
hθh(sk) and using it as input to the dynamics model, which removes the sequential dependency and
allows for parallel computation across time steps. Fig. 2a and Fig. 2b show the calculation flow
difference between TD-MPC and BS-MPC. Consequently, BS-MPC achieves faster computational
times compared to TD-MPC.

5 EXPERIMENTS

We evaluate BS-MPC across various continuous control tasks using the DeepMind Control Suite
(DM Control (Tassa et al., 2018)). The inputs in these experiments include both high-dimensional
state vectors and images, with some tasks set in sparse-reward environments. The objective of this
section is to demonstrate that BS-MPC maintains its performance over time and remains robust
to noise. Additionally, we aim to confirm that it outperforms TD-MPC in terms of computational
efficiency. In this experiment, we focus specifically on comparing BS-MPC with TD-MPC. For
a fair comparison, BS-MPC uses the same model architecture as TD-MPC, with an identical
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(a) TD-MPC calculation flow (b) BS-MPC calculation flow

Figure 2: Calculation flow comparison. The black line shows the forward calculation flow, and the red arrows
represent the gradient of θh. While TD-MPC needs sequential calculation in its forward compu-
tational flow, BS-MPC can process all the calculation parallel. Moreover, BS-MPC has explicit
encoder loss in its cost function, so its derivative directly updates the parameters of the encoder.
Note that TD-MPC only encodes the original observation at the initial time step and predicts latent
states by using the latent dynamics model.

number of parameters and tuning parameters set to the same values. We also run BS-MPC
and TD-MPC using the same random seeds. The only difference between BS-MPC and TD-MPC
is explicit encoder loss in the objective function with an additional parameter c4. We adopt the same
environmental settings as those used in the original TD-MPC paper (Hansen et al., 2022). Detailed
experimental configurations are provided in Appendix D.

For the baselines, we use the model-free RL algorithm SAC (Haarnoja et al., 2018a;b; 2019), the
model-based RL algorithm Dreamer-v3 (Hafner et al., 2024), and the planning-based model-based
RL approach TD-MPC Hansen et al. (2022) and its successor TD-MPC2 Hansen et al. (2024),
evaluating them on both state-based and image-based tasks. Note that we use a model with 5 million
parameters for TD-MPC2 because it is their default model. In addition to these algorithms, we also
compare BS-MPC with DrQ-v2 (Yarats et al., 2022) and CURL (Laskin et al., 2020) on image-
based tasks. We publicly release the value of episode return at each time step and code for training
BS-MPC agents.

5.1 RESULT ON STATE-BASED TASKS

We evaluate BS-MPC across 26 diverse continuous control tasks with state inputs, comparing its
performance to other baseline methods. In this setting, agents have direct access to all internal states
of the environment.

Fig. 3 shows the average performance of each algorithm across 10 tasks, along with the individual
scores from 9 specific tasks. We ran 10 million time steps for the dog experiment and 8 million
time steps for the humanoid experiment. For the other tasks, the experiments were run for 4 million
time steps. The results demonstrate that BS-MPC consistently outperforms existing model-based
and model-free reinforcement learning methods, particularly in high-dimensional environments. On
complex tasks involving dog and humanoid environments, BS-MPC significantly outperforms TD-
MPC, SAC, and Dreamer-v3. In particular, BS-MPC achieves higher episode returns early in train-
ing and maintains superior performance throughout, whereas the other methods either plateau or
display instability. TD-MPC performs well in the early stages of training, achieving competitive
results up to approximately 1 million steps. However, in many tasks, its performance suddenly col-
lapses after this point, leading to high variance and reduced episode returns. Both BS-MPC and
TD-MPC2 resolve the issue of performance divergence observed in TD-MPC; however, TD-MPC2
requires many more parameters and employs more complex model architectures. Additionally, TD-
MPC2 requires significantly more computation time than both TD-MPC and BS-MPC due to its
reliance on discrete regression for optimizing the reward and value function models. It is important
to note that BS-MPC and TD-MPC share the exact same model architecture, hyperparameters, and
number of parameters. The only difference between them lies in the cost function: BS-MPC explic-
itly minimizes the bisimulation metric loss at every time step to train the encoder, whereas TD-MPC
only calculates the encoder loss at the initial time step. Appendix. B shows all the results from 26
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continuous control tasks, computation time comparison, and detailed analysis of the training failure
of TD-MPC.

Figure 3: Performance comparison on the average over 26 state-based tasks and 9 DM Control tasks with state
input. At each evaluation step, the episode return is computed over 10 episodes. The results are
averaged over 3 seeds, with shaded regions representing the standard deviation. Results for SAC and
Dreamer-v3 are obtained from (Hansen et al., 2024), and results for TD-MPC are reproduced using
their official code with the same architecture and hyperparameters for BS-MPC. We use the same
seeds for evaluation.

5.2 RESULTS ON IMAGE-BASED TASKS

Next, we evaluate BS-MPC and other baseline methods on image-based tasks from 10 DM Control
environments. In these tasks, the encoders of both BS-MPC and TD-MPC are modeled by CNN to
project high-dimensional image data into a compact latent space. To ensure a fair comparison, we
use the same model architecture, hyperparameters, and number of parameters for both BS-MPC and
TD-MPC, and we use identical seeds for evaluation. We run 3 million environmental steps for all
tasks. Fig. 4 shows the results across 10 image-based tasks. BS-MPC demonstrates performance
competitive with TD-MPC, DrQ-v2 and Dreamer-v3, consistently outperforming CURL and SAC.
TD-MPC2 converges faster than BS-MPC in certain tasks (e.g., quadruped-run and walker-run);
however, BS-MPC achieves comparable or slightly better performance overall with fewer parame-
ters than TD-MPC2.

Figure 4: Performance comparison on 10 DM Control image-based tasks. At each evaluation step, the episode
return is computed over 10 episodes. The results are averaged over 3 seeds, with shaded regions
representing the standard deviation. Results for DrQ-v2 are obtained from their official results, and
results for CURL, SAC and Dreamer-v3 are obtained from Dreamer-v3 code (Hafner et al., 2024).

9
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5.3 RESUTLS ON IMAGE INPUT WITH DISTRACTIONS

Finally, we evaluate the robustness of the proposed method in the presence of distracting informa-
tion. The goal of this experiment is to show that BS-MPC has better resilience against irrelevant data
in the input. We benchmark BS-MPC on 5 DM Control tasks by introducing irrelevant information
into the input as noise. Following (Zhang et al., 2018; 2021), driving videos from the Kinetics
dataset (Kay et al., 2017) are used as background for the original images. In this experiment, the
same parameters and architecture as in Section 5.2 are employed, and the performance of BS-MPC
is compared to that of TD-MPC.

Figure 5 shows the experimental results, which reveal that BS-MPC constantly outperforms TD-
MPC in every environment. Since TD-MPC does not have an explicit objective function for its
encoder, its encoder simply learns representation space to keep the latent dynamics consistent.
Therefore, its encoder struggles to filter out the noise during training. BS-MPC, however, learns
its encoder by minimizing the bisimulation metric loss to retain bisimulation information in the
learned representation space. This architectural modification enhances performance and increases
robustness to noise compared to TD-MPC.

Figure 5: Performance comparison on 5 DM Control image-based tasks with distracted information from Ki-
netics dataset. At each evaluation step, the episode return is computed over 10 episodes. The results
are averaged over 5 seeds, with shaded regions representing the standard deviation. (Top) Original
Image. (Middle) Distracted Image. (Bottom) Performance results. BS-MPC constantly outperforms
TD-MPC when the input is disturbed.

6 CONCLUSION

In this paper, we propose a novel model-based reinforcement learning method called Bisimulation
Metric for Model Predictive Control (BS-MPC). While inheriting several properties from TD-MPC,
our approach differentiates it from the previous method in three key areas: inclusion of explicit en-
coder loss term, adaptation of bisimulation metric, and parallelizing the computational flow. These
improvements stabilize the learning process and enhance the model’s robustness to noise while re-
ducing the training time. Experimental results on continuous control tasks from DM Control demon-
strate that BS-MPC has superior stability and robustness, whereas TD-MPC and other baselines fail
to achieve comparable performance.

Limitations. Despite the theoretical foundations and experimental results supporting BS-MPC, it
has one notable limitation: the need for extensive parameter tuning of c4 across different environ-
ments. In this paper, we employ a grid search to identify the optimal parameter values; however,
future research should focus on developing methods for automatic parameter adjustment.
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A PROOF AND ANALYSIS

In this section, we provide proof of our statement and some analysis to give a theoretical difference
between BS-MPC and TD-MPC.

A.1 PROOF OF THEOREM 3

Our proof uses the following Lemma.
Lemma 1. Assume action a is sampled from optimal policy a ∼ π∗(·|s). With the same assumption
in Theorem 2, the difference between R(s, a) and R(ϕ(s), a) under the π∗-bisimulation metric has
the following upper bound.

(1− c)|R(s, a)−R(ϕ(s), a)| ≤ 2ϵ (14)

Proof. From Theorem 1, the fixed point d̃ satisfies
d̃(s, ϕ(s)) = (1− c)|R(s, a)−R(ϕ(s), a)|+ cWp(d)(Pπ

∗
(·|si),Pπ

∗
(·|sj)). (15)

Since the second term is always positive, we can get
(1− c)|R(s, a)−R(ϕ(s), a)| ≤ d̃(s, ϕ(s))

≤ 2ϵ
(16)

Theorem 3. Consider a trajectory τ = (s0, a0, s1, a1, . . . , aH−1, sH) in the original state
space S, and its corresponding encoded trajectory ϕ(τ) = (z0, a0, z1, a1, . . . , aH−1, zH),
where ak ∼ π∗(·|sk) and zk = ϕ(sk), with ϕ defined in Theorem 2. Under the
assumption that both the reward model and dynamics model have no approximation er-
ror, the cumulative rewards S(τ) = Eτ

[
γHV ∗(sH) +

∑H−1
h=0 γ

hR(sh, ah)
]

and S(ϕ(τ)) =

Eτ
[
γHV ∗(ϕ(sH)) +

∑H−1
h=0 γ

hR(ϕ(sh), ah)
]

can be bounded as follows.

|S(τ)− S(ϕ(τ))| ≤ 2γH(ϵ+ L)
(1− γ)(1− c)

+
2ϵ(1− γH−1)

(1− γ)(1− c)
(17)

Proof. Simply calculating the difference between S(τ) and S(ϕ(τ))

|S(τ)− S(ϕ(τ))| =

∣∣∣∣∣Eτ
[
γH (V ∗(sH)− V ∗(ϕ(sH))) +

H−1∑
h=0

γh(R(sh, ah)−R(ϕ(sh), ah))

]∣∣∣∣∣
=

∣∣∣∣∣Eτ [γH (V ∗(sH)− V ∗(ϕ(sH)))
]
+ Eτ

[
H−1∑
h=0

γh(R(sh, ah)−R(ϕ(sh), ah))

]∣∣∣∣∣
≤

∣∣Eτ [γH (V ∗(sH)− V ∗(ϕ(sH)))
]∣∣+ ∣∣∣∣∣Eτ

[
H−1∑
h=0

γh(R(sh, ah)−R(ϕ(sh), ah))

]∣∣∣∣∣
(Triangle inequality)

≤ Eτ
[
γH |V ∗(sH)− V ∗(ϕ(sH))|

]
+ Eτ

[
H−1∑
h=0

γh |R(sh, ah)−R(ϕ(sh), ah)|

]
(Jensen’s inequality)

= γHEτ [|V ∗(sH)− V ∗(ϕ(sH))|] +
H−1∑
h=0

γhEτ [|R(sh, ah)−R(ϕ(sh), ah)|]

≤ 2γH(ϵ+ L)
(1− γ)(1− c)

+
2ϵ

1− c

H−1∑
h=0

γh (From Theorem 2 and Lemma 1)

≤ 2γH(ϵ+ L)
(1− γ)(1− c)

+
2ϵ(1− γH−1)

(1− γ)(1− c)
(18)
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ALL STATE-BASED TASKS RESULT

Figure 6: State-based tasks result from DMControl Suite. Performance comparison on 26 DM Control tasks
with state input. At each evaluation step, the episode return is computed over 10 episodes. The
results are averaged over 3 seeds, with shaded regions representing the standard deviation.
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B.2 COMPUTATIONAL TIME

Table. 1 shows the computational time of BS-MPC and TD-MPC. We use RTX-4090 for our exper-
iments.

Table 1: Computational time between BS-MPC and TD-MPC in state-based tasks. The table shows how many
hours the training takes.

Cartpole-Swingup Cheetah-run Finger-Spin Walker-run
BS-MPC 2.0 4.0 8.3 8.3
TD-MPC 2.4 4.8 10.0 10.1

B.3 DETAILED ANALYSIS FOR THE FAILURE OF TD-MPC

In this section, we analyze the reason why TD-MPC failed to achieve the same performance as
BS-MPC in our experiments. First, we look at the losses of both BS-MPC and TD-MPC in the
Humanoid-Walk environment. Fig 7 shows the average value of each loss over the batches. From
this image, it can be observed that the consistency loss in TD-MPC gradually increases and diverges.
In contrast, BS-MPC has much smaller values for every component, resulting in more stable perfor-
mance. One possible cause is that TD-MPC fails to learn the encoder, leading to large errors, which
in turn result in the failure to train the latent dynamics model properly. BS-MPC, on the contrary, has
explicit encoder loss in its objective function, thus enabling it to actively update the encoder. Fig 8
shows the learned Q values and gradient norm of the objective function. As it shows, TD-MPC is
vulnerable to exploding gradients, which leads to the divergence of the loss. Moreover, the learned
Q values drop significantly when the gradient norm explodes.

Figure 7: Comparative analysis of loss components between BS-MPC and TD-MPC across training steps in
Humanoid-walk environment. Each graph presents different loss types—consistency loss, reward
loss, value loss, encoder loss, and total loss—plotted against training steps. Note that TD-MPC does
not have encoder loss, and it only exists in BS-MPC. See Eq. 8 for more details.

Figure 8: Average values of the learned Q functions and gradient norm of the loss function between BS-MPC
and TD-MPC across training steps in Humanoid-walk environment.
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C BS-MPC TRAINING ALGORITHM FLOW

In this section, we describe the algorithm flow of BS-MPC and compare it with TD-MPC.

C.1 ALGORITHM FLOW

The training algorithm flow is described in Algorithm. 1.

Algorithm 1 BS-MPC (Model training)
Require: θ = [θh, θR, θQ, θd], ψ: randomly initialized network parameters,

Episode Length L, Number of parameter update K, Buffer B

1: while the training is not complete do
2: // Collect episode
3: for t = 0 . . . L do
4: at ∼ BSMPC(hθh(st)) {Compute action with BS-MPC}
5: (st+1, rt) ∼ P(st, at),R(st, at) {Execute action against the environment}
6: B ← B ∪ (st, at, rt, st+1) {Add to buffer}
7: end for
8: // Update model parameters
9: θ0 = θ {Initialize θ0 with current parameter}

10: for k = 0 . . .K do
11: {st:t+H+1, at:t+H , rt:t+H} ∼ B {Sample a trajectory with horizon H from the buffer B}
12: zt:t+H+1 = hθhk (st:t+H+1) {Encode all observations with online encoder}
13: r̂t:t+H = RθRk (zt:t+H , at:t+H) {Estimated rewards}
14: Q̂t:t+H = QθQk

(zt:t+H , at:t+H) {Estimated state-action value}
15: ẑt+1:t+H+1 = dθdk(zt:t+H , at:t+H) {Estimated next latent state}
16: θk+1 = argminθk L(θk) {Update θk by minimizing Eq. 7}
17: ψk+1 = argminψk Jπ(ψk) {Update ψk by minimizing Eq. 9}
18: end for
19: θ = θK+1 {Update current parameter}
20: end while

C.2 COMPARISON WITH TD-MPC

As discussed in Section 4.3, BS-MPC facilitates parallel computation. Algorithm 2 outlines the
calculation flow of TD-MPC. While TD-MPC shares many similarities with BS-MPC, the primary
distinction lies in how it computes the estimated values and the model cost L.

In BS-MPC, the observed state variables st:t+H over H steps are first projected into a sequence
of latent states zt:t+H . Subsequently, the rewards, state-action values, and predicted next states for
these H latent states are computed collectively. Since all calculations are performed simultaneously
across the H steps, parallel computation is effectively utilized, resulting in high computational effi-
ciency. This computation process is detailed in Lines 12 to 15 of Algorithm 1.

Conversely, in TD-MPC, only the initial state st is encoded into the latent state zt (see Line 12 of Al-
gorithm 2), and the subsequent latent states ẑt+1 are computed sequentially using the latent dynam-
ics. As a result, TD-MPC requires sequential computation when calculating rewards, state-action
values, and the cost L, which limits its ability to leverage parallel computation. This sequential
computation process is described in Lines 14 to 19 of Algorithm 2.

In summary, BS-MPC obtains the sequence of latent states zt:t+H by encoding the entire sequence
of observed states st:t+H using the encoder hθh . In contrast, TD-MPC encodes only the initial state
st into zt and derives the remaining latent states zt+1:t+H sequentially using the latent dynamics
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dθdk . Therefore, while BS-MPC enjoys parallel computations to speed up its calculation, TD-MPC
suffers from the bottleneck of the sequential computation in the cost calculation.

Algorithm 2 TD-MPC (Model training)
Require: θ = [θh, θR, θQ, θd], ψ: randomly initialized network parameters,

Episode Length L, Number of parameter update K, Buffer B

1: while the training is not complete do
2: // Collect episode
3: for t = 0 . . . L do
4: at ∼ TDMPC(hθh(st)) {Compute action with TD-MPC}
5: (st+1, rt) ∼ P(st, at),R(st, at) {Execute action against the environment}
6: B ← B ∪ (st, at, rt, st+1) {Add to buffer}
7: end for
8: // Update model parameters
9: θ0 = θ {Initialize θ0 with current parameter}

10: for k = 0 . . .K do
11: {st:t+H+1, at:t+H , rt:t+H} ∼ B {Sample a trajectory with horizon H from the buffer B}
12: ẑt = hθhk (st) {Encode the initial observation with online encoder}
13: L = 0 {Initialize the cost}
14: for i = t . . . t+H do do
15: r̂i = RθRk (zi, ai) {Estimated rewards}
16: q̂i = QθQk (zi,ai)

{Estimated state-action value}
17: ẑi+1 = dθdk(ẑi, ai) {Estimated next latent state}
18: L ← L+ λi−tLi(ẑi+1, r̂i, q̂i, ai) {Add to the cost}
19: end for
20: θk+1 = argminθk L(θk) {Update θk by minimizing Eq. 7}
21: ψk+1 = argminψk Jπ(ψk) {Update ψk by minimizing Eq. 9}
22: end for
23: θ = θK+1 {Update current parameter}
24: end while

D IMPLEMENTATION DETAILS

Here we give details about the hyper-parameters and model architectures.

D.1 HYPERPARAMETERS

Shared Parameters: First, we outline the parameters that are common to both TD-MPC and BS-
MPC. They are described in Table. 2.

BS-MPC specific parameters: Next, we list the parameter that is used for tuning the weight for
bisimulation metric loss (c4). We change the value based on the environment and tune the weighting
coefficient c4 across 10−8, 0.0001, 0.001, 0.01, 0.1, 0.5 with grid search. All of the numbers are
listed in Table. 3.

D.2 MODEL ARCHITECTURE

In our experiments, both BS-MPC and TD-MPC utilize the same model architecture and the number
of trainable parameters. We employ multi-layer perceptrons (MLPs) to represent the underlying
environment models P and R, the state-action value function Q, and the policy π. The architecture
details are shown in Table. 4. More details can be found in our official code.

20



Published as a conference paper at ICLR 2025

Table 2: Hyperparameters used for TD-MPC and BS-MPC in the experiment.

Hyperparameter Value
Discount factor (γ) 0.99
Seed steps 5,000
Replay buffer size 1,000,000 (state-based tasks)

100,000 (image-based tasks)
Sampling technique Uniform Sampling
Planning horizon (H) 5
Initial parameters (µ0, σ0) (0, 2)
Population size 512
Elite fraction 64
MPPI Update Iterations 12 (Humanoid, Dog)

6 (otherwise)
Policy fraction 5%
Number of particles 1
Temperature (τ ) 0.5
Latent dimension 100 (Humanoid, Dog)

50 (otherwise)
Learning rate 3e-4 (pixels)

1e-3 (otherwise)
Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)
Temporal coefficient (λ) 0.5
Reward loss coefficient (c1) 0.5
Value loss coefficient (c2) 0.1
Consistency loss coefficient (c3) 0.5
Exploration schedule (ϵ) 0.5→ 0.05 (25k steps)
Planning horizon schedule 1→ 5 (25k steps)
Batch size 512 (State-based tasks)

256 (Image-based tasks)
Momentum coefficient (ζ) 0.99
Steps per gradient update 1
Target parameter θ̄ update frequency 2

Table 3: Bisimulation metric parameter used in the experiment.

Environment Value (c4)

Acrobot 0.0001
Cartpole 0.5
Cheetah 0.001
Cup 0.5
Finger 0.001
Fish 0.001
Hopper 0.1
Humanoid 0.001
Pendulum 0.01
Quadruped 0.1
Reacher 0.01
Walker 0.001
Dog 10−8
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Table 4: Model Architecture used in the experiment.

Models Number of Layers Hidden Dim Activation

Latent Model Dynamics P 3 512 ELU
Reward ModelR 3 512 ELU
State-action value function Q 3 512 ELU + LayerNorm
Policy π 3 512 ELU
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