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Abstract
We introduce in-context denoising, a task that
refines the connection between attention-based ar-
chitectures and dense associative memory (DAM)
networks, also known as modern Hopfield net-
works. Using a Bayesian framework, we show the-
oretically and empirically that certain restricted
denoising problems can be solved optimally even
by a single-layer transformer. We demonstrate
that a trained attention layer processes each de-
noising prompt by performing a single gradient
descent update on a context-aware DAM energy
landscape, where context tokens serve as asso-
ciative memories and the query token acts as an
initial state. This one-step update yields better
solutions than exact retrieval of either a context
token or a spurious local minimum, providing a
concrete example of DAM networks extending
beyond the standard retrieval paradigm. Overall,
this work solidifies the link between associative
memory and attention mechanisms first identified
by Ramsauer et al., and demonstrates the rele-
vance of associative memory models in the study
of in-context learning.

1. Introduction
The transformer architecture (Vaswani et al., 2017) has
achieved remarkable success across diverse domains, from
natural language processing (Devlin et al., 2019; Brown
et al., 2020; Touvron et al., 2023) to computer vision (Doso-
vitskiy et al., 2021). Despite their practical success, un-
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derstanding the mechanisms behind transformer-based net-
works remains an open challenge. This challenge is exacer-
bated by the growing scale and complexity of modern large
networks. Toward addressing this, researchers studying sim-
plified architectures have identified connections between the
attention operation that is central to transformers and asso-
ciative memory models (Ramsauer et al., 2021), providing
not only an avenue for understanding how such architectures
encode and retrieve information but also potentially ways to
improve them further.

The most celebrated model for associative memories in sys-
tems neuroscience is the so-called Hopfield model (Amari,
1972; Nakano, 1972; Little, 1974; Hopfield, 1982). This
model has a capacity to store “memories” (stable fixed
points of a recurrent update rule) proportional to the number
of nodes (Hopfield, 1982; Amit et al., 1985). In the last
decade, new energy functions (Krotov & Hopfield, 2016;
Demircigil et al., 2017) were proposed for dense associative
memories with much higher capacities. These energy func-
tions are often referred to as modern Hopfield models. Ram-
sauer et al. (2021) pointed out the similarity between the
one-step update rule of a certain modern Hopfield network
(Demircigil et al., 2017) and the softmax attention layer of
transformers, generating interest in the statistical physics
and systems neuroscience communities (Krotov & Hopfield,
2021; Krotov, 2023; Lucibello & Mézard, 2024; Millidge
et al., 2022). Recent work has extended this concept to
improve retrieval by incorporating sparsity (Hu et al., 2023;
Wu et al., 2024b; Santos et al., 2024; Wu et al., 2024a), while
others have leveraged associative memory principles to de-
sign new energy-based transformer architectures (Hoover
et al., 2023). However, these extensions and the founda-
tional construction in Ramsauer et al. (2021) primarily focus
on the specific task of exact retrieval (converging to a fixed
point), while in practice transformers may tackle many other
tasks.

To explore this connection beyond retrieval, we intro-
duce in-context denoising, a task that bridges the behav-
ior of trained transformers and associative memory net-
works through the lens of in-context learning (ICL). In
standard ICL, a sequence model is trained to infer an un-
known function g from contextual examples, predicting
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g(XL+1) given a sequence of input-output pairs E =
((X1, g(X1)), ..., (XL, g(XL)), (XL+1,−)). Crucially, g
is implied solely through the context and differs across
prompts – performant models are therefore said to “learn
g(x) in context”. While ICL has been extensively stud-
ied in supervised settings (Garg et al., 2022; Zhang et al.,
2024; Akyürek et al., 2023; Reddy, 2024), recent work
suggests that transformers may internally emulate gradient
descent over a context-specific loss function during infer-
ence (Von Oswald et al., 2023; Dai et al., 2023; Ahn et al.,
2023). This general perspective aligns with our findings.

In this work, we generalize ICL to an unsupervised setting
where the prompt consists of L samples from a random dis-
tribution and the query is a noise-corrupted sample from the
same distribution. This shift allows us to probe how trained
transformers internally approximate Bayes optimal infer-
ence, while deepening the connection to associative mem-
ory models which are prototypical denoisers. By setting up
this problem in this way, we also attempt to answer a few
questions. One concerns the memorization-generalization
dilemma in denoising: a Hopfield model’s success is usually
measured by successful memory recovery, while in-context
learning may have to solve a completely new problem. An-
other question has to do with the number of iterations of
the corresponding Hopfield model: why does the Ramsauer
et al. (2021) correspondence involve only one iteration of
Hopfield energy minimization and not many?

In summary, our contributions are as follows: In Sec-
tion 2, we introduce in-context denoising as a framework for
understanding how transformers perform implicit inference
beyond memory retrieval. In Section 3, we establish that
single-layer transformers with one attention head are expres-
sive enough to optimally solve certain denoising problems.
We then empirically demonstrate that standard training from
random weights can recover the Bayes optimal predictors.
The trained attention layers are mapped back to dense asso-
ciative memory networks in Section 4. Our results refine the
general connection pointed out in previous work, offer new
mechanistic insights into attention, and provide a concrete
example of dense associative memory networks extending
beyond the standard memory retrieval paradigm to solve a
novel in-context learning task.

2. Problem formulation: In-context denoising
In this section, we describe our general setup. Recurring
common notation is described in Appendix A.1.

2.1. Setup

Each task corresponds to a distribution D over the proba-
bility distribution of data: pX ∼ D. Let X1, · · · , XL+1

iid∼
pX , define the sampling of the tokens. Let the noise cor-

ruption be defined by X̃ ∼ pnoise(·|XL+1). The random
sequence E = (X1, X2, ..., XL, X̃) are given as “context”
(input) to a sequence model F (·; θ) which outputs an esti-
mate X̂L+1 of the original (L + 1)-th token . The task is
to minimize the expected loss E[l(X̂L+1, XL+1)] for some
loss function l(·, ·). Namely, our problem is to find

min
θ

EpX∼D,X1:L+1∼pL+1
X ,X̃∼pnoise(·|XL+1)

[l(F (E, θ), XL+1)].

(1)

In practice, we choose X̃ = XL+1 + Z, a pure token cor-
rupted by the addition of isotropic Gaussian noise Z ∼
N (0, σ2

ZIn), and our objective function to minimize is the
mean squared error (MSE) E[||X̂L+1 −XL+1||2].

In the following subsection, we explain the pure token dis-
tributions for three specific tasks. These tasks are of course
structured so that a one-layer transformer has the expres-
sivity to capture a solution, which, as L → ∞, provides
an optimal solution, in some sense. To that end, we derive
Bayes optimal estimators for each of the three tasks, under
the assumption that we know the original distribution pX of
pure tokens. In Section 3, we use these estimators as base-
lines to evaluate the performance of the denoiser f(E, θ)
based on a one-layer transformer trained on finite datasets.

2.2. Task-specific token distributions

We consider three elementary in-context denoising tasks,
where the data (vectors in Rn) comes from:

1. Linear manifolds (d-dimensional subspaces)

2. Nonlinear manifolds (d-spheres)

3. Small noise Gaussian mixtures (clusters) where the
component means have fixed norm

Below we describe the task-specific distributions pX and the
process for sampling tokens {xt}. The same corruption pro-
cess applies to all cases: X̃ = XL+1+Z,Z ∼ N (0, σ2

ZIn).

2.2.1. CASE 1 - LINEAR MANIFOLDS

A given training prompt consists of pure tokens sampled
from a random d-dimensional subspace S of Rn.

• Let P be the orthogonal projection operator to a ran-
dom d-dim subspace S of Rn, sampled according to
the uniform measure, induced by the Haar measure on
the coset space O(n)/O(n− d)×O(d), on the Grass-
manian G(d, n), the manifold of all d-dimensional sub-
spaces of Rn.

• Let Y ∼ N (0, σ2
0In) and define X = PY ; we

use this procedure to construct the starting sequences
(X1, ..., XL+1) of L+ 1 independent tokens.
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(a) (b)

 Case 1:
Linear manifolds

 Case 2:
Nonlinear manifolds

 Case 3:
Gaussian mixtures

Prompt: Pure tokens from a data distribution and a single corrupted example

target
query

Prediction

Target  

Problem formulation

sample context
tokens

Query
(prompts are randomly constructed from a pre-specified task distribution)

corruption of
final token

sample a task from a task distribution

Figure 1. (a) Problem formulation for a general in-context denoising task. (b) The three denoising tasks considered here include instances
of linear and non-linear manifolds as well as Gaussian mixtures. In each case, the task embedding E(i) consists of a sequence of pure
tokens from the data distribution p

(i)
X ∼ D where D denotes the task distribution, along with a single query token that has been corrupted

by Gaussian noise. The objective is to predict the target (i.e. denoise the query) given information contained only in the prompt.

We thus have pX = N (0, σ2
0P ), with the Haar distribution

of P characterizing the task ensemble associated with D.

2.2.2. CASE 2 - NONLINEAR MANIFOLDS

We focus on the case of d-dimensional spheres of fixed
radius R centered at the origin in Rn.

• Choose a random d+1-dimensional subspace V of Rn,
sampled according to the uniform measure, as before,
on the Grassmanian G(d + 1, n). The choice of this
random subspace generates the distribution of tasks D.

• Inside V , sample uniformly from the radius R sphere
(once more, a Haar induced measure on a coset space
O(d + 1)/O(d)). We use this procedure to construct
input sequences X1:L+1 = (x1, ..., xL+1) of L + 1
independent tokens.

In practice, we uniformly sample points with fixed norm in
Rd and embed them in Rn by concatenating zeros. We then
rotate the points by selecting a random orthogonal matrix
Q ∈ Rn×n.

2.2.3. CASE 3 - GAUSSIAN MIXTURES (CLUSTERING)

Pure tokens are sampled from a weighted mixture of
isotropic Gaussians in n-dimensions, {wa, (µa, σ

2
a)}Ka=1.

The density is

pX(x) =

K∑
a=1

waCae
−∥x−µa∥2/2σ2

a ,

where Ca = (2πσ2
a)

−n/2 are normalizing constants. The
µa are independently chosen from a uniform distribution on
the radius R sphere of dimension n − 1, centered around

zero. The distribution of tasks D, is decided by the choice
of {µa}Ka=1.

For our ideal case, we will consider the limit that the vari-
ances go to zero. In that case, the density is simply

pX0
(x) =

K∑
a=1

waδ(x− µa).

2.3. Bayes optimal denoising baselines for each case

The first L tokens in E are “pure samples” from p that
should provide information about the distribution for our
denoising task. Our performance is expected to be no better
than that of the best method, in the case that the token dis-
tribution and also the corrupting process are exactly known.
This is where the Bayesian optimal baseline comes in. As
is well-known, the Bayes optimal predictor of a quantity is
given by the posterior mean. We use that fact to compute
the Bayes optimal loss.

In particular, we seek a function f : Rn → Rn such that
EX,X̃

[
∥X − f(X̃)∥2

]
is minimized. Since the perturba-

tion Z is Gaussian, the posterior distribution of X , given X̃
is

pX|X̃(x | x̃) = C(x̃)pX(x)e−∥x−x̃∥2/2σ2
Z ,

where C(x̃) is a normalizing factor (see Appendix A.2 for
more explanation). The following proposition sets up a
baseline to which we expect to compare our results as L →
∞. The proof is in Appendix B.1.

Proposition 1. For each task, specified by the input distri-
bution pX , and the noise model pX̃|X ,

EX,X̃

[
∥X − f(X̃)∥2

]
≥ EX̃

[
TrCov(X | X̃)

]
. (2)
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This lower bound is met when f(X̃) = E[X | X̃].

Thus, the Bayes optimal denoiser is the posterior expectation
for X given X̃ . The expected loss is found by computing
the posterior sum of variances.

These optimal denoisers can be computed analytically for
both the linear and nonlinear manifold cases (given the
variances and dimensionalities). In the Gaussian mixture
(clustering) case, it depends on the choice of the centroids
which then needs to be averaged over.

Linear case. For the linear denoising task, pure samples
X are drawn from an isotropic Gaussian in a restricted
subspace. The following result provides the Bayes optimal
predictor in this case, the proof of which is in Appendix
C.1.
Proposition 2. For pX corresponding to Subsection 2.2.1,
the Bayes optimal answer is

fopt(X̃) = E[X|X̃] =
σ2
0

σ2
0 + σ2

Z

PX̃, (3)

and the expected loss is

E
[
∥PX̃ −XL+1∥2

]
= dσ2

0σ
2
Z/(σ

2
0 + σ2

Z). (4)

Projection 

Projection (shrunk)

Figure 2. Baseline estimators for the case of random linear mani-
folds with projection operator P (i).

Manifold case. In the nonlinear manifold denoising prob-
lem, we focus on the case of lower dimensional spheres S
(e.g. the circle S1 ⊂ R2). For such manifolds, the Bayes
optimal answer is given by the following proposition.
Proposition 3. For pX defined as in Subsection 2.2.2, with
P being the orthogonal projection operator to V , the d+ 1
dimensional linear subspace, with R being the radius of
sphere S, the Bayes optimal answer is

fopt(X̃) = E[X | X̃]

=

∫
e⟨x,X̃∥⟩/σ2

Z x dSx∫
e⟨x,X̃∥⟩/σ2

Z dSx

(5)

=
I d+1

2

(
R ∥X̃∥∥

σ2
Z

)
I d−1

2

(
R ∥X̃∥∥

σ2
Z

)R X̃∥

∥X̃∥∥
, (6)

where X̃∥ = PX̃ and Iν is the modified Bessel function of
the first kind.

Clustering case. For clustering with isotropic Gaussian
mixtures {wa, (µa, σ

2
a)}

p
a=1, the Bayes optimal predictors

for some important special cases are as follows. See Ap-
pendix C.3 for the general case.

Proposition 4. For general isotropic Gaussian model with
σa = σ0, ||µa|| = R for all a = 1, . . . ,K.

fopt(X̃) = E[X|X̃]

=
σ2
0

σ2
0 + σ2

Z

X̃ +
σ2
Z

σ2
0 + σ2

Z

∑
a wae

⟨µa,X̃⟩/(σ2
0+σ2

Z) µa∑
a wae⟨µa,X̃⟩/(σ2

0+σ2
Z)

.

(7)

If σ0 → 0,

fopt(X̃) = E[X | X̃] =

∑
a wae

⟨µa,X̃⟩/σ2
Z µa∑

a wae⟨µa,X̃⟩/σ2
Z

. (8)

In all three cases, we notice similarities between the form
of the Bayes optimal predictor, and attention operations in
transformers, a connection which we explore below.

3. In-context denoising with one-layer
transformers – Empirical results

In this section, we provide simple constructions of one-layer
transformers that approximate (and under certain conditions,
exactly match) the Bayes optimal predictors above.

Input: Let p(1)X , . . . , p
(N)
X

iid∼ D, be distributions sampled
for one of the tasks. For each distribution p

(i)
X , we sample

E(i) := (X
(i)
1 , . . . , X

(i)
L , X̃(i)) taking value in Rn×(L+1)

be an input to a sequence model. We also retain the true
(L+ 1)-th token X

(i)
L+1 for each i.

Objective: Given an input sequence E(i), return the
uncorrupted final token X

(i)
L+1. We consider the mean-

squared error loss over a collection of N training pairs,
{E(i), X

(i)
L+1}Ni=1,

C(θ) =

N∑
i=1

∥F (E(i), θ)− x
(i)
L+1∥

2, (9)

where F (E(i), θ) denotes the parametrized function predict-
ing the target final token based on input sequence E(i).

3.1. One-layer transformer and the attention between
the query and pure tokens

To motivate our choice of architecture, let us start by dis-
cussing the linear case.
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There we have fopt(X̃) =
σ2
0

σ2
0+σ2

Z
PX̃ . Note that, by the

strong law of large numbers, P̂ = 1
σ2
0L

∑L
t=1 XtX

T
t is a

random matrix that almost surely converges component-by-
component to the orthogonal projection P as L → ∞, since,
for each t, XtX

T
t has the expectation σ2

0P and that Xt is
a Gaussian random variable with zero mean and a finite
covariance matrix. So we could propose

f(X̃) =
σ2
0

σ2
0 + σ2

Z

P̂ X̃ =
1

(σ2
0 + σ2

Z)L

L∑
t=1

Xt⟨Xt, X̃⟩.

(10)

We now consider a simplified one-layer linear transformer
(see Appendices D.1 and D.2 for more detailed discussions)
which still has sufficient expressive power to capture our
finite sample approximation to the Bayes optimal answer.
We define

X̂ = FLin(E, θ) :=
1

L
WPV X1:LX

T
1:LWKQX̃ (11)

taking values in Rn, where X1:L := [X1, . . . , XL] taking
values in Rn×L, with learnable weights WKQ,WPV ∈
Rn×n abbreviated by θ. Note that, when WPV =
αIn,WKQ = βIn, and αβ = 1

σ2
0+σ2

Z
, F (E, θ) should ap-

proximate the Bayes optimal answer fopt(X̃) as L → ∞.
For a detailed discussion of the convergence rate, see Ap-
pendix E, in general, and Proposition 5, in particular.

Similarly, we could argue that the second two problems,
the d-dimesional spheres and the σ0 → 0 zero limit of the
Gaussian mixtures could be addressed by softmax attention

X̂ = F (E, θ) := WPV X1:Lsoftmax(XT
1:LWKQX̃) (12)

taking values in Rn. The function softmax(z) :=
1∑n

i=1 ezi (e
z1 , . . . , ezn)T ∈ Rn is applied column-wise.

For both problems, namely the spheres and the σ0 → 0
Gaussian mixtures, we could have WPV = αIn,WKQ =
βIn with α = 1, β = 1/σ2

Z providing Bayes optimal an-
swers as L → ∞.

In fact, we could make a more general statement about
distributions pX where the norm of X is fixed.
Theorem 3.1. If we have a task distribution D so that the
support of each pX is the subset of some sphere, centered
around the origin, with a pX -dependent radius R, then the
function

F (({Xt}Lt=1, x̃), θ
∗) =

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z∑L

t=1 e
⟨Xt,x̃⟩/σ2

Z

(13)

converges almost surely to the Bayes optimal answer fopt(x̃)
for all x̃ ∈ Rn, as L → ∞. The optimal parameter θ∗

refers to WPV = In,WKQ = 1
σ2
Z
In.

The proof of the theorem is in Appendix D.3. See Ap-
pendix E, particularly Proposition 6, for consideration of
convergence rates. Note that the condition of pX being
supported on a sphere is not artificial as, in many practical
transformers, pre-norm with RMSNorm gives you inputs on
the sphere, up to learned diagonal multipliers.

Note that the natural form of attention that is suggested
by our formulation of in-context denoising would involve
Gaussian kernels:

X̂ = FG(E, θ) :=

∑
t WPV Xte

− 1
2 ||WKXt−WQX̃||2∑

t e
− 1

2 ||WKXt−WQX̃||2
.

(14)
The relation between softmax attention and the Gaussian
kernel has been noted in (Choromanski et al., 2021; Am-
brogioni, 2024) and a Gaussian kernel-based attention is
implemented in (Chen et al., 2021). A related Hopfield
energy, with WK , WQ, and WPV proportional to identity
matrices, is proposed in (Hoover et al., 2024a).

For the linear case, we use linear attention, but that may
not be essential. Informally speaking, the softmax atten-
tion model has the capacity to subsume the linear attention
model.
Proposition 3.2. As ϵ → 0,

F
(
E,
(1
ϵ
WPV , ϵWKQ

))
=

1

ϵ
WPV X̄

+
1

L
WPV

L∑
t=1

Xt(Xt − X̄)TWKQX̃ +O(ϵ), (15)

where X̄ = 1
L

∑L
t=1 Xt is the empirical mean.

See Appendix F for the details of small WKQ expansion
and Appendix F.1 for the proof of Proposition 3.2.

For case 1, note that E[Xt] = 0 and covariance of Xt is
finite, E[X̄] = 0, and E[||X̄||2] = O( 1

L ), allowing us to
drop X̄ as L → ∞. If, in addition, ϵ is small, only the
second term survives. Thus, F

(
E, ( 1ϵWPV , ϵWKQ)

)
starts

to approximate FLin
(
E, (WPV ,WKQ)

)
when L is large

and ϵ is small, with ϵ
√
L large. We therefore could use the

softmax model for all three cases.

3.2. Case 1 – Linear manifolds

The Bayes optimal predictor for the linear denoising task
from Section 2.3 suggests that the linear attention weights
should be scaled identity matrices with their product sat-
isfying αβ = 1

σ2
0+σ2

Z
. Fig. 3 shows that a one-layer net-

work of size n = 16 trained on tasks with σ2
Z = 1, σ2

0 =
2, d = 8, L = 500 indeed achieves this bound, train-
ing to nearly diagonal weights with the appropriate scale
⟨w(ii)

KQ⟩⟨w
(ii)
PV ⟩ = 0.327 ≈ 1/3 (similar weights are learned

for each seed, up to a sign flip).
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Case 1: Linear manifolds Case 2: Nonlinear manifolds Case 3: Gaussian mixtures(a)

(b)
Epoch Epoch Epoch

Initial weights Final weights (≈ diagonal) Initial weights Final weights

train

softmax
test

train

linear
test

Final weights:  linear softmax

Figure 3. (a) Training dynamics for the studied cases using one-layer softmax attention (circles) as well as linear attention (triangles).
Solid lines represent the average loss over six seeds, with the shaded area indicating the range for cases 2 and 3. For each case, the
grey dashed baseline indicates the 0-predictor, and the pink line indicates the Bayes optimal predictor. All cases use a context length
of L = 500, ambient dimension n = 16, and are trained with Adam on a dataset of size 800 with batch size 80 and standard weight
initialization wij ∼ U [−1/

√
n, 1/

√
n]. (b) Final attention weights WKQ and WPV are shown. For each, we indicate the mean of the

diagonal elements. Representative initial weights are displayed for the second and third case.

Fig. 4(a) displays how this bound is approached as the
context length L of training samples is increased. In Fig.
4(b) we study how the performance of a model trained to
denoise random subspaces of dimension d = 8 is affected
by shifts in the subspace dimension at inference time. We
find that when provided sufficient context, such models can
adapt with mild performance loss to solve more challenging
tasks not present in the training set.

It is evident from Fig. 3(a) that the softmax network per-
forms similarly to the linear one for this task. We can un-
derstand this through the small argument expansion of the
softmax function mentioned above. The learned weights dis-
played in Fig. 3(b) indicate that βsoftmax ≈ 0.194 becomes
small (note it decreases by a factor ϵ ≈ 0.344 relative to
βlinear), while the value scale αsoftmax ≈ 1.607 becomes
larger by a similar factor ∼ 1/ϵ to compensate. Thus, al-
though the optimal denoiser for this case is intuitively ex-
pressed through linear self-attention, it can also be achieved
with softmax self-attention in the appropriate limit.

Moreover, we find that when the entire prompt undergoes
a global invertible transformation A ̸= I , the optimal at-
tention weights are no longer scaled identity matrices but
acquire a structured form determined by A. Both linear and
softmax attention layers are able to recover this structure
through training; see Appendix H for details and empirical
verification.

3.3. Case 2 – Nonlinear manifolds

Fig. 3 (case 2) shows networks of size n = 16 trained
to denoise subspheres of dimension d = 8 and radius
R = 1, with corruption σ2

Z = 0.1 and context length
L = 500. Once again, the network trains to have scaled
identity weights.

We note that although the network nearly achieves the opti-
mal MSE on the test set, the weights appear at first glance
to deviate slightly from the Bayes optimal predictor of Sec-
tion 2.3, which indicated WPV = αI , WKQ = βI with
α = 1, β = 1/σ2

Z . To better understand this, we consider a
coarse-grained MSE loss landscape by scanning over α and
β. See Fig. 6(a) in Appendix G. We find that the 2D loss
landscape has roughly hyperbolic level sets which is sug-
gestive of the linear attention limit, where the weight scales
become constrained by their product αβ. Reflecting the
symmetry of the problem, we also note mirrored negative
solutions (i.e. one could also identify α = −1, β = −1/σ2

Z

from the analysis in Section 2.3). Importantly, the plot
shows that the trained network lies in the same valley of the
loss landscape as the optimal predictor, in agreement with
Fig. 3. Moreover, the shape of the loss landscape suggested
that linear attention might also be applicable to this case,
which we demonstrate and discuss further in Appendix G.

3.4. Case 3 – Gaussian mixtures

Figure 3 (case 3) shows networks of size n = 16 trained
to denoise balanced Gaussian mixtures with p = 8 compo-
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train              test

L=50

L=30

L=500

Performance
maintained away
from d=8

Train n=16 model:
         d=8, L=500 

Loss of trained network

linear projection

E�ect of context length L on training Shifting the subspace dimension at inference time(a)

in-context learning

 subspace provided only via context

subspace dimension can vary

(b)
Predict
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Figure 4. (a) Trained linear attention network converges to Bayes optimal estimator as context length increases (n = 16, d = 8,
σ2
0 = 2, σ2

z = 1). (b) A network trained to denoise subspaces of dimension d = 8 can accurately denoise subspaces of different
dimensions presented at inference time, given sufficient context.

nents that have isotropic variance σ2
0 = 0.02 and centers

randomly placed on the unit sphere in Rn. The corruption
magnitude is σ2

Z = 0.1 and context length is L = 500. The
baselines show the zero predictor (dashed grey line) as well
as the optimum from Proposition (4) (pink) and its σ2

0 → 0
approximation Eq. (8) (grey).

The trained weights qualitatively approach the optimal esti-
mator for the zero-variance limit but with a slightly different
scaling: while the scale of WPV is α ≈ 1, the WKQ scale is
β ≈ 5.127 < 1/σ2

Z . To study this, we provide a correspond-
ing plot of the 2D loss landscape in Fig. 6(a) in Appendix G.
While the symmetry of the previous case has been broken
(the context cluster centers {µa} will not satisfy ⟨µ⟩ = 0),
we again find that the trained network lies in the anticipated
global valley of the MSE loss landscape.

4. Connection to dense associative memory
networks

In each of the denoising problems studied above, we have
shown analytically and empirically that the optimal weights
of the one-layer transformer are scaled identity matrices
WPV ≈ αI,WKQ ≈ βI . In the softmax case, the trained
denoiser can be concisely expressed as

x̂ = g(X1:L, x̃) := αX1:Lsoftmax(βXT
1:Lx̃),

re-written such that X ∈ Rn×L stores pure context tokens.

We now demonstrate that such denoising corresponds to
one-step gradient descent (with specific step sizes) of energy
models related to dense associative memory networks, also
known as modern Hopfield networks (Ramsauer et al., 2021;
Demircigil et al., 2017; Krotov & Hopfield, 2016).

Consider the energy function:

E(X1:L, s) =
1

2α
∥s∥2 − 1

β
log

(
L∑

t=1

eβX
T
t s

)
, (16)

which mirrors the Ramsauer et al. (2021) construction but
with a Lagrange multiplier added to the first term. Figure 5
illustrates this energy landscape for the spherical manifold
case.

query target prediction trajectories

Num. steps: 1 Num. steps: 50
context tokens

Figure 5. Gradient descent denoising for the nonlinear manifold
case (spheres) in n = 2 with d = 1. A context-aware dense asso-
ciative memory network E(X1:L, s) is constructed whose gradient
corresponds to the Bayes optimal update (trained attention layer).
Note that the density of sampled context tokens sculpts the valleys
of the energy landscape. Left: the attention step of a one-layer
transformer trained on the denoising task corresponds to a single
gradient descent step. Right: Iterating the denoising process—as
is conventional for Hopfield networks—can potentially degrade
the estimate by causing it to become query-independent (e.g. con-
verging to a distant minimum). Here R = 1, σ2

Z = 10, L = 20
and α = 1, β = 1/σ2

Z .
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An operation inherent to the associative memory perspective
is the recurrent application of a denoising update. Gradient
descent iteration s(t + 1) = s(t) − γ ∇sE

(
X1:L, s(t)

)
yields

s(t+ 1) =
(
1− γ

α

)
s(t) + γX1:Lsoftmax

(
βXT

1:Ls(t)
)
.

(17)

It is now clear that initializing the state to the query s(0) = x̃
and taking a single step with size γ = α recovers the be-
havior of the trained attention model (Fig. 5). The attention
mechanism here is thus mechanistically interpretable: the
context tokens X1:L induce a context-dependent associa-
tive memory landscape, while the query acts as an initial
condition for inference-time gradient descent. One could
naturally consider alternative step sizes and recurrent itera-
tion. However, Fig. 5 demonstrates that naive iteration of
Eq. (17) has the potential to degrade performance.

Additional details are provided in Appendix I. In particu-
lar, the energy model for linear attention is discussed in
Appendix I.1.

5. Discussion
Motivated by the connection between attention mechanisms
and dense associative memories, here we have introduced in-
context denoising, a task that distills their relationship. We
first analyze the general problem, deriving Bayes optimal
predictors for certain restricted tasks. We identify that one-
layer transformers using either softmax or linearized self-
attention are expressive enough to describe these predictors.
We then empirically demonstrate that standard training of
attention layers from random initial weights will readily
converge to scaled identity weights with scales that approach
the derived optima given sufficient context. Accordingly,
the rather minimal transformers studied here can perform
optimal denoising of novel tasks provided at inference time
via self-contained prompts. This work therefore sheds light
on other in-context learning phenomena, a point we return
to below.

While practical transformers differ in various ways from
the minimal models studied here, we note several key con-
nections. Intriguingly, the self-attention heads of trained
transformers sometimes exhibit weights WKQ, WPV that
resemble scaled identity matrices, i.e. cI+ ϵ with small fluc-
tuations ϵij ∼ N (0, σ2), an observation noted in Trockman
& Kolter (2023). This phenomenon motivated their pro-
posal of “mimetic” weight initialization schemes mirroring
this learned structure. Relatedly, connections to associative
memory concepts have been explored in other architectures
(Smart & Zilman, 2021), which enabled data-dependent
weight initialization strategies to be identified and leveraged.

More broadly, our study suggests that trained attention lay-
ers can readily adopt structures that facilitate context-aware
associative retrieval. We have also noted preliminary con-
nections between our work and other architectural features
of modern transformers, namely layer normalization and
residual streams, which warrant further study.

In-context denoising and generative modeling both involve
learning about an underlying distribution, suggesting poten-
tial relationships between these two tasks. Recently, Pham
et al. (2024) invoked spurious states of the Hopfield model
as a way of understanding how one can move away from
retrieving individual memorized patterns towards general-
ization via appropriate mixtures of multiple similar “mem-
ories”. In our work, one-step updates do not have to land
in a spurious minimum, but we often operate under cir-
cumstances where there are such states (see, for example,
the energy landscape in Fig. 5). More generally, analo-
gies between energy-based associative memory and diffu-
sion models have recently been noted (Ambrogioni, 2024;
Hoover et al., 2024b). Lastly, Bayes optimal denoisers play
an important role in the analysis (Ghio et al., 2024) of a
very related generative model that is based on stochastic
interpolants (Albergo & Vanden-Eijnden, 2023). Although
this work focuses on the case where it is possible to sample
enough tokens from the relevant distributions for certain
functions to converge, generative models become important
when the distribution is in a prohibitively high-dimensional
space making direct sampling difficult. Nonetheless, in-
vestigating the precise relationship between our work and
different generative modeling approaches would be an inter-
esting direction to pursue.

Overall, this work refines the connection between dense
associative memories and attention layers first identified
in (Ramsauer et al., 2021). While we show that one en-
ergy minimization step of a particular DAM (associated
with a trained attention layer) is optimal for the denoising
tasks studied here, it remains an open question whether
multilayer architectures with varying or tied weights could
extend these results to more complex tasks by effectively
performing multiple iterative steps. This aligns with re-
cent studies on in-context learning, which have considered
whether transformers with multiple layers emulate gradient
descent updates on a context-specific objective (Von Oswald
et al., 2023; Shen et al., 2024; Dai et al., 2023; Ahn et al.,
2023), and may provide a bridge to work on emerging archi-
tectures guided by associative memory principles (Hoover
et al., 2023). Investigating when and how multilayer atten-
tion architectures perform such gradient descent iterations
in a manner that is both context-dependent and informed by
a large training set represents an exciting direction for fu-
ture research at the intersection of transformer mechanisms,
associative memory retrieval, and in-context learning.
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Software and Data
Python code underlying this work is available at
https://github.com/mattsmart/in-context-denoising.
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A. Notation
A.1. Recurring notation

• n – ambient dimension of input tokens.

• xt ∈ Rn – the value of the t-th random input token.

• E = (X1, ..., XL, X̃) – the random variable input to the sequence model. The “tilde” indicates that the final token has
in some way been corrupted. E takes values (x1, ..., xL, x̃) ∈ Rn×(L+1). Note: while capital X or Xi here denotes a
random variable, in Section D use X1:L or simply X to refer to the realized matrix of input tokens.

• L – context length = number of uncorrupted tokens.

• d – dimensionality of manifold S that xt are sampled from

• N – number of training pairs

A.2. Bayes posterior notation

• pX(x) is task-dependent (the three scenarios considered here are introduced above).

• pX̃(x̃) where x̃ = x + z. For a sum of independent random variables, Y = X1 + X2, their pdf is a convolution
pY (y) =

∫
pX1(x)pX2(y − x)dx. Thus:

pX̃(x̃) =

∫
pZ(z)pX(x̃− z)dz

= CZ

∫
e−∥z∥2/2σ2

ZpX(x̃− z)dz

where CZ = (2πσ2
Z)

−n/2 is a constant.

• pX̃|X(x̃ | x): This is simply

pZ(x̃− x) = CZe
−∥x̃−x∥2/2σ2

Z .

• pX|X̃(x | x̃): By Bayes’ theorem, this is

pX|X̃(x | x̃) =
pX̃|X(x̃ | x)pX(x)

pX̃(x̃)

=
e−∥x̃−x∥2/2σ2

ZpX(x)∫
e−∥x̃−x′∥2/2σ2

ZpX(x′)dx′
.

• Posterior mean:

EX|X̃ [X | X̃] =

∫
x pX|X̃(x | X̃)dx

=

∫
x e−∥X̃−x∥2/2σ2

ZpX(x)dx∫
e−∥X̃−x∥2/2σ2

ZpX(x)dx
.
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B. Bayes optimal predictors for square loss
B.1. Proof of Proposition 1

Proof. Observe that

E
[
∥X − f(X̃)∥2

]
= EX̃

[
EX|X̃

[
∥X − f(X̃)∥2 | X̃

]]
= EX̃

[
EX|X̃

[
∥X − E[X | X̃]∥2 | X̃

]
+ ∥E[X | X̃]− f(X̃)∥2

]
≥ EX̃

[
EX|X̃

[
∥X − E[X | X̃]∥2 | X̃

]]
= EX̃

[
TrCov(X | X̃)

]
.

Note the final line is independent of f . This inequality becomes an equality when f(X̃) = E[X | X̃].

C. Details of Bayes optimal denoising baselines for each case
C.1. Proof of Proposition 2

Proof. The linear denoising task is a special case of the result in Proposition 1. Here, X is an isotropic Gaussian in a
restricted subspace,

pX|X̃(x | x̃) = C(x̃)pX(x)e
− ∥x−x̃∥2

2σ2
Z

where C(x̃) is a normalizing factor. The noise can be decomposed into parallel and perpendicular parts using the projection
P onto S, i.e.

X̃ = X̃∥ + X̃⊥ = PX̃ + (I − P )X̃,

so that

e
− ∥x−x̃∥2

2σ2
Z = e

− ∥x−x̃∥∥2

2σ2
Z e

− ∥x̃⊥∥2

2σ2
Z .

Only the first factor matters for pX|X̃(x | x̃) since it depends on x. Then, for x ∈ S, the linear subspace supporting pX ,
dropping the x independent x̃⊥ contribution,

pX(x)e
− ∥x−x̃∥∥2

2σ2
Z ∝ e

− ∥x∥2

2σ2
0

− ∥x−x̃∥∥2

2σ2
Z

∝ exp

−
∥x− σ2

0

σ2
0+σ2

Z
x̃∥∥2

2
σ2
0σ

2
Z

σ2
0+σ2

Z

 .

Thus, f(X̃) =
σ2
0

σ2
0+σ2

Z
X̃∥ =

σ2
0

σ2
0+σ2

Z
PX̃ .

Using X̃ = X + Z, X = PX , and the independence of X and Z

E
[
∥X − σ2

0

σ2
0 + σ2

Z

PX̃∥2
]
= E

[
∥ σ2

Z

σ2
0 + σ2

Z

PX∥2
]
+ E

[
∥ σ2

0

σ2
0 + σ2

Z

PZ∥2
]
=

σ4
Zdσ

2
0 + σ4

0dσ
2
Z

(σ2
0 + σ2

Z)
2

=
dσ2

0σ
2
Z

σ2
0 + σ2

Z

.
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C.2. Proof of Proposition 3

Proof. In the nonlinear manifold denoising problem, we focus on the case of lower dimensional spheres S (e.g. the circle
S1 ⊂ R2). For such manifolds, we have

E[X | X̃ = x̃] =

∫
e
− ∥x−x̃∥∥2

2σ2
Z x pX(x)dx∫

e
− ∥x−x̃∥∥2

2σ2
Z pX(x)dx

=

∫
e⟨x,x̃∥⟩/σ2

Z x dSx∫
e⟨x,x̃∥⟩/σ2

Z dSx

.

We have used the fact that ∥x− x̃∥∥2 = ∥x∥2 + ∥x̃∥∥2 − 2⟨x, x̃∥⟩ and that ∥x∥ is fixed on the sphere.

The integrals can be evaluated directly once the parameters are specified. If S is a d–sphere of radius R, then the optimal
predictor is again a shrunk projection of x̃ onto S,

∫ π

0
eR∥x̃∥∥ cos θ/σ2

Z cos θ sin(d−1) θ dθ∫ π

0
eR∥x̃∥∥ cos θ/σ2

Z sin(d−1) θ dθ
R

x̃∥

∥x̃∥∥

=
I d+1

2

(
R ∥x̃∥∥

σ2
Z

)
I d−1

2

(
R ∥x̃∥∥

σ2
Z

)R x̃∥

∥x̃∥∥
,

where we used identities involving Iν(y), modified Bessel function of the first kind of order ν (Gradshteyn & Ryzhik, 2007).
The vector R x̃∥

∥x̃∥∥ is the point on S in the direction of x∥.

C.3. Proof of Proposition 4

Proof. For the clustering case involving isotropic Gaussian mixtures with parameters {wa, (µa, σ
2
a)}

p
a=1,

E[X | X̃ = x̃] =

∫
e
− ∥x−x̃∥2

2σ2
Z

∑
a

(
waCae

− ∥x−µα∥2

2σ2
a

)
x dx

∫
e
− ∥x−x̃∥2

2σ2
Z

∑
a

(
waCae

− ∥x−µa∥2
2σ2

a

)
dx

,

where Ca = (2πσ2
a)

−n
2 .

We can simplify this expression by completing the square in the exponent and using the fact that the integral of a Gaussian
about its mean is zero. This yields

E[X | X̃ = x̃] =

∑
a waCama

∫
exp(−ga) dx∑

a waCa

∫
exp(−ga) dx

where we have introduced

ga =
1

2

(σ2
Z + σ2

a

σ2
Zσ

2
a

)
∥x−mα∥2 +

1

2(σ2
Z + σ2

a)
∥x̃− µa∥2,

with

ma =
σ2
a x̃+ σ2

Z µa

σ2
a + σ2

Z

.
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Doing the integrals and using the expressions for Ca,ma

E[X | X̃ = x̃] =

∑
a wa

(σ2
Z+σ2

a

σ2
a

)n/2
exp

(
− ∥x̃−µa∥2

2(σ2
Z+σ2

a)

)(σ2
a x̃+σ2

Z µa

σ2
a+σ2

Z

)
∑

a wa

(σ2
Z+σ2

a

σ2
a

)n/2
exp

(
− ∥x̃−µa∥2

2(σ2
Z+σ2

a)

)
In the case that the center norms ∥µa∥ are independent of a and variances σ2

a = σ0, we have

E[X | X̃ = x̃] =
σ2
0

σ2
0 + σ2

Z

x̃+
σ2
Z

σ2
0 + σ2

Z

∑
a waµa exp

(
⟨x̃,µa⟩
σ2
Z+σ2

0

)
∑

a wa exp
(

⟨x̃,µa⟩
σ2
Z+σ2

0

) .

Note that in the limit that σ0 → 0 , this becomes expressible by one-layer self-attention, since one can simply replace the
matrix of cluster centers M = [µ1 . . . µp] implicit in the expression with the context X1:L itself,

E[X | X̃] =

∑
a wae

⟨µα,X̃⟩/σ2
Zµa∑

a wae⟨µα,X̃⟩/σ2
Z

.

D. Additional details on attention layers and softmax expansion
D.1. Standard self-attention

Given a sequence of Lseq input tokens xi ∈ Rn represented as a matrix X ∈ Rn×Lseq , standard self-attention defines query,
key, and value matrices

K = WKX,Q = WQX,V = WV X (A.1)

where WK ,WQ ∈ Rnattn×n and WV ∈ Rnout×n. The softmax self-attention map (Vaswani et al., 2017) is then

Attn(X,WV ,W
T
KWQ) := V softmax(KTQ) ∈ Rnout×Lseq . (A.2)

On merging WK , WQ into WKQ = WT
KWQ: The simplification WKQ = WT

KWQ (made here and elsewhere) is general
only when nattn ≥ n; in that case, the product WKQ can have rank n and thus it is reasonable to work with the combined
matrix. On the other hand, if nattn < n, then the rank of their product is at most nattn and thus there are matrices in Rn×n

that cannot be expressed as WT
KWQ. A similar point can be made about WPV . We note that while nattn < n may be used

in practical settings, one often also uses multiple heads which when concatenated could be (roughly) viewed as a single
higher-rank head.

We will also use the simplest version of linear attention (Katharopoulos et al., 2020),

AttnLin(X,WV ,W
T
KWQ) :=

1

Lseq
V (KTQ) ∈ Rnout×Lseq . (A.3)

D.2. Minimal transformer architecture for denoising

We now consider a simplified one-layer linear transformer in term of our variable E = (X1:L, X̃) taking values in Rn×(L+1)

and start with the linear transformer which still has sufficient expressive power to capture our finite sample approximation to
the Bayes optimal answer in the linear case. Inspired by Zhang et al. (2024), we define

AttnLin(E,WPV ,WKQ) :=
1

L
WPV EMLinE

TWKQE (A.4)

taking values in Rn×(L+1). The additional aspect compared to the last subsection is the masking matrix MLin ∈
R(L+1)×(L+1) which is of the form

MLin =

[
IL 0L×1

01×L 0

]
, (A.5)
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preventing WPV X̃ from being added to the output.

Note that this more detailed expression is equivalent to the form used in the main text.

X̂ = FLin(E, θ) :=
1

L
WPV X1:LX

T
1:LWKQX̃

With learnable weights WKQ,WPV ∈ Rn×n abbreviated by θ, we define

F (E, θ) := [AttnLin(E,WPV ,WKQ)]:,L+1. (A.6)

Note that, when WPV = αIn,WKQ = βIn, and αβ = 1
σ2
0+σ2

Z
, F (E, θ) should approximate the Bayes optimal answer

fopt(X̃) as L → ∞.

Similarly, we could argue that the second two problems, the d-dimesional spheres and the σ0 → 0 zero limit of the Gaussian
mixtures could be addressed by the full softmax attention

Attn(E,WPV ,WKQ) = WPV Esoftmax(ETWKQE +M) (A.7)

taking values in Rn×(L+1) where M ∈ R̄(L+1)×(L+1) is a masking matrix of the form

M =

[
0L×(L+1)

(−∞)11×L+1

]
, (A.8)

once more, preventing the contribution of X̃ value to the output. The function softmax(z) := 1∑n
i=1 ezi (e

z1 , . . . , ezn)T ∈ Rn

is applied column-wise.

We then define
F (E, θ) := [Attn(E,WPV ,WKQ)]:,L+1, (A.9)

which is equivalent to the simplified form used in the main text:

X̂ = F (E, θ) := WPV X1:Lsoftmax(XT
1:LWKQX̃).

D.3. Proof of Theorem 3.1

Proof. Let the support of pX be a subset of a sphere, centered around the origin, of radius R. Then the function

g({Xt}Lt=1, x̃) =

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z∑L

t=1 e
⟨Xt,x̃⟩/σ2

Z

=
1
L

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z

1
L

∑L
t=1 e

⟨Xt,x̃⟩/σ2
Z

. (A.10)

Both the numerator 1
L

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z and the denominator 1

L

∑L
t=1 e

⟨Xt,x̃⟩/σ2
Z are averages of independent and

identically distributed bounded random variables. By the strong law of large numbers, as L → ∞, the average vector in the
numerator converges to almost surely to

∫
e⟨x,x̃∥⟩/σ2

Z x dpX(x) for each component, while the average in the denominator
almost surely converges

∫
e⟨x,x̃∥⟩/σ2

Z dpX(x), which is positive. So, as L → ∞, the ratio in Eq. A.10 converges almost
surely to ∫

e⟨x,x̃∥⟩/σ2
Z x dpX(x)∫

e⟨x,x̃∥⟩/σ2
Z dpX(x)

,

which is the Bayes optimal answer fopt(x̃) for all x̃ ∈ Rn.

E. Further discussion of convergence rates as L → ∞ and the dependence on dimensions
Our analysis primarily focused on the asymptotic behavior as L → ∞ using the strong law of large numbers, which
just requires the mean to exist (Loève, 1977). However, in the linear example, our tokens are Gaussian, and in the two
nonlinear cases they are bounded. Intuitively, we expect error O( 1√

L
). In fact, we can give precise results of the form that

the probability of the difference between the empirical sum for the ideal weights departing from the expectation by less
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than C(x̃)

√
f
(
d,ln

1
δ

)
L is greater than 1− δ. The function C of the query vector and the function f depend on the problem.

Interestingly, these bounds depend on d, the dimension spanned by the tokens, not the ambient dimension n.

As mentioned before, the results of the previous paragraph refer to the convergence of the finite sample attention expressions
for ideal weights, namely those corresponding to Bayes optimal answer. There is a second source of error associated with
finite sample estimation of weights, which should also get small as L becomes large. Once more the expectation is that the
weights are known to error O( 1√

L
) for well-converged training procedures, although this is more difficult to guarantee or

quantify analytically. Overall we expect the loss (MSE) to go down inversely with some power of L. Fig. 4(a) provides
some empirical evidence for this relationship, showing how performance improves with increasing context length.

Notice that the one-layer transformer output is a linear combination of the uncorrupted samples. Hence, if the distribution
pX is supported by a d-dimensional linear subspace, the estimate X̂ is also in that subspace. We can therefore look at
convergence restricted to the supporting subspace. Therefore, it is the dimensionality of the supporting subspace that matters.

Let a d-dimensional vector space V be a linear subspace of Rn. We define the maximum norm for V with respect to some
orthonormal basis {vi}di=1 in V as ||x||∞,V := maxi∈{1,...,d} |⟨vi, x⟩| for any x ∈ V . The conventional maximum norm for
Rn, of course, is defined with respect to the standard orthonormal basis {ej}nj=1. Since |⟨vi, x⟩| ≤ ||x||∞,V , for all i,

||x||22 =

d∑
i=1

(⟨vi, x⟩)2 ≤ d||x||2∞,V =⇒ ||x||2 ≤
√
d||x||∞,V .

Then, for any x ∈ V ⊆ Rn, ||x||∞ ≤
√
d||x||∞,V , since |⟨x, ej⟩| ≤ ||x||2 ≤

√
d||x||∞,V , for all j ∈ {1 . . . , n}. Thus,

controlling component-wise error in any orthonormal basis in V controls component-wise error in Rn, in an n-independent
but d-dependent manner. In the following, we give a flavor of how we can analyze finite sample estimate errors in V . The
maximum norm || · ||∞ is to be understood as || · ||∞,V for some orthonormal basis choice. Here is the result relevant to the
linear case described Subsubsection 2.2.1.

Proposition 5. Let Xt
i.i.d∼ N (0, σ2

0Id), t = 1, . . . , L and let Π̂ := 1
σ2
0L

∑L
t=1 XtX

T
t . Then, for any δ ∈ (0, 1),

Pr

[
||Π̂x̃− x̃||∞ < C||x̃||2 max

{√
d+ ln( 2δ )

L
,
d+ ln( 2δ )

L

}]
> 1− δ

for some C > 0.

Proof. We start by bounding the maximum norm of the difference,

||Π̂x̃− x̃||∞ ≤ ||Π̂x̃− x̃||2 ≤ ||Π̂− Id||op||x||2,

where || · ||op is the operator norm.

It can be shown that, for any δ ∈ (0, 1)

Pr

[
||Π̂− Id||op < Cmax

{√
d+ ln( 2δ )

L
,
d+ ln( 2δ )

L

}]
> 1− δ

for some C > 0 (Rigollet & Hütter, 2023). Combining with the first bound, we get our result.

As to the nonlinear cases, the key result of Theorem 3.1 is the convergence of the numerator 1
L

∑L
t=1 Xte

⟨Xt,x̃∥⟩/σ2
Z

to E[Xe⟨X,x̃∥⟩/σ2
Z ] =

∫
e⟨x,x̃∥⟩/σ2

Z x dpX(x) and the denominator 1
L

∑L
t=1 e

⟨Xt,x̃∥⟩/σ2
Z to E[e⟨X,x̃∥⟩/σ2

Z ] =∫
e⟨x,x̃∥⟩/σ2

ZdpX(x).

In the following, we assume that the support of pX is inside a vector space V whose dimension we denote by d (instead of
d+ 1, as in the sphere problem). In addition, we refer to the projection of the query on V by x̃ ∈ V , instead of x̃∥. As usual,
the maximum norm in V is with respect to some orthonormal basis choice
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Proposition 6. Let Xt
i.i.d∼ pX and ||Xt||2 ≤ R for t = 1, . . . , L.

Then, for any δ ∈ (0, 1),

Pr

[∣∣∣ 1
L

L∑
t=1

e⟨Xt,x̃⟩/σ2
Z − E[e⟨X,x̃⟩/σ2

Z ]
∣∣∣ < sinh

(
R||x̃||2
σ2
Z

)√
2

L
ln

(
2

δ

)]
≥ 1− δ

and

Pr

[∣∣∣∣∣∣ 1
L

L∑
t=1

Xte
⟨Xt,x̃⟩/σ2

Z − E[Xe⟨X,x̃⟩/σ2
Z ]
∣∣∣∣∣∣
∞

< Re
R||x̃||2

σ2
Z

√
2

L
ln

(
2d

δ

)]
≥ 1− δ.

Proof. We provide the sketch of our proof here, the key ingredient of which is the Hoeffding inequality (Hoeffding, 1994).

For the average 1
L

∑L
t=1 e

⟨Xt,x̃⟩/σ2
Z , each term in the sum is bounded above and below by e

±R||x̃||2
σ2
Z . So, the Hoeffding

inequality leads to

Pr

[∣∣∣ 1
L

L∑
t=1

e⟨Xt,x̃⟩/σ2
Z−E[e⟨X,x̃⟩/σ2

Z ]
∣∣∣ ≥ ϵ] ≤ 2 exp

[
− 2Lϵ2(

exp
(R||x̃||2

σ2
Z

)
− exp

(
− R||x̃||2

σ2
Z

))2
]
= 2 exp

[
− Lϵ2

2 sinh2
(R||x̃||2

σ2
Z

)].
Setting δ = 2 exp

[
− Lϵ2

2 sinh2
(R||x̃||2

σ2
Z

)], we get ϵ = sinh
(R||x̃||2

σ2
Z

)√
2
L ln

(
2
δ

)
, which gives our first probabilistic inequality.

For each component of the vector average 1
L

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z , the terms in the sum are bounded above and below

by ±R
R||x̃||2

σ2
Z . We use similar arguments involving the Hoeffding inequality, combined with the union bound over all d

coordinates

Pr

[∣∣∣∣∣∣ 1
L

L∑
t=1

Xte
⟨Xt,x̃⟩/σ2

Z − E[Xe⟨X,x̃⟩/σ2
Z ]
∣∣∣∣∣∣
∞

≥ ϵ] ≤ 2d exp

[
− Lϵ2

2R2 exp
( 2R||x̃||2

σ2
Z

)].
Once more, setting the RHS to δ and solving for ϵ, we get our second probabilistic inequality.

F. Limiting behaviors of the softmax function and softmax attention
For small argument

A Taylor expansion of the softmax function at zero gives

softmax(βv) =
1

Z

(
1L + βv +O(β2)

)
,

where Z =
∑

i

(
1 + βvi +O(β2))

)
= L(1 + βv̄ + O(β2)) is a normalizing factor, with v̄ = 1

L

∑
i vi. The notation 1L

stands for an L-dimensional vector of ones.

Thus, we have

Lemma F.1 (Small argument expansion of softmax). As β → 0,

softmax(βv) =
1

L (1 + βv̄ +O(β2))

(
1L + βv +O(β2)

)
=

1

L

(
1L + β(v − v̄1) +O(β2)

)
.

F.1. Proof of Proposition 3.2

Proof.

F
(
E,
(1
ϵ
WPV , ϵWKQ

))
:=

1

ϵ
WPV X1:Lsoftmax(ϵXT

1:LWKQX̃).
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Using Lemma F.1, as ϵ → 0,

F
(
E,
(1
ϵ
WPV , ϵWKQ

))
=

1

ϵ
WPV X1:L

[
1

L

(
1L + ϵ

(
XT

1:LWKQX̃ − (
1

L

∑
t

XT
t WKQX̃)1L

)
+O(ϵ2)

)]

=
1

ϵ
WPV X̄ +

1

L
WPV

L∑
t=1

Xt(Xt − X̄)TWKQX̃ +O(ϵ), (A.11)

where X̄ = 1
L

∑L
t=1 Xt is the empirical mean and the notation 1L emphasizes that it is a column vector of ones with

dimension L.

For large argument

As β → ∞, the softmax function simply selects the maximum over its inputs (as long as the the maximum is unique):

softmax(βv) ≈

{
1 if i = argmaxj vj ,

0 otherwise.

In this case, all attention weight is given to a single element, and the others are effectively ignored.

G. MSE Loss landscape for scaled identity weights

heuristic_KQ
heuristic_PV
trained model
heuristic (theory)
2D scan min

MSE loss landscape for Fig. 3 (Case 2) MSE loss landscape for Fig. 3 (Case 3)(a) (b)

Figure 6. Loss landscape corresponding to Case 2 and Case 3 of Fig. 3. The MSE is numerically evaluated by assuming scaled identity
weights WKQ = βIn (x-axis) and WPV = αIn (y-axis) and scanning over a 50× 50 grid. The green point corresponds to the heuristic
minimizer identified from the posterior mean. In Case 2 it is exact, while in case 3 it is an approximation that neglects the residual term
(see Proposition 4). The orange point corresponds to the learned weights displayed in Fig. 3(b), while the white point corresponds to the
numerically identified minimum from this 2D scan. These can fluctuate due to the finite context (L = 500) and sampling (N = 800 here).
In both panels, it is apparent that the trained weights and the heuristic estimator co-occur in a broad valley (contour) of the loss landscape.

The loss landscapes in Fig. 6 exhibit large, low-cost valleys with a roughly hyperbolic structure that is especially apparent in
Case 2. This indicates a multiplicative tradeoff in the scales of WKQ and WPV , which suggests that linear attention might
be applicable here as well. For completeness, Figure 7 shows linear attention performance for both cases, demonstrating that
it performs quite similarly to softmax for sub-sphere denoising, but less well in the Gaussian mixtures case.

H. Structured optimal weights under prompt transformation
We find that one-layer transformers can learn to undo arbitrary invertible coordinate transformations that warp the denoising
tasks. Focusing on the subspace denoising case, suppose each prompt is transformed by a fixed invertible square matrix
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Epoch Epoch

softmax (train/test) 
     linear (train/test) 

Case 3: Gaussian mixturesCase 2: Nonlinear manifolds(a)

(b) Final weights:  linear Final weights:  softmax Final weights:  linear Final weights:  softmax

Figure 7. Linear attention performance for Cases 2 and 3. Additional empirical results for the nonlinear manifolds case (left) and the
Gaussian mixtures case (right). (a) Loss dynamics for randomly initialized softmax and linear attention layers. Solid lines represent the
average loss over six seeds, with shaded area indicating the range. Training details and parameters follow Fig. 3(a). (b) Representative
final attention weights for each layer.

A, i.e. E = (X1:L, x̃) → E′ = (AX1:L, Ax̃). If the target remains xL+1 in the untransformed space, then the optimal
attention weights are no longer diagonal, but instead take a structured form determined by the transformation matrix:

WPV = αA−1, WKQ = β(AAT )−1, (A.12)

where αβ = 1
σ2
0+σ2

Z
as before.

Softmax attentionLinear attention

(a)

(b) (d)(c)

Figure 8. (a) Example transformation A used to globally alter the in-context denoising prompts. (b) Structure of the optimal attention
weights for this transformed subspace-denoising task. (c,d) Empirically, we find that both linear attention and softmax attention layers are
able to learn these structured targets, but with distinct scalings α, β. Final weights after 500 epochs using Adam, random initializations,
and context length L = 500; other parameters follow Fig. 3(a).

Notably, we find that both the linear and softmax attention layers are able to learn these structures; see Fig. 8 for an example.
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We use the same basic training procedure as the limiting case of A = I (no additional coordinate transformation) assumed
throughout the main text.

Suppose we still work with transformed coordinates Yt = AXt and Ỹ = AX̃ , but now intend to retrieve YL+1 = AXL+1

in the new coordinate space (rather than XL+1 as above). In this case, we would be dealing with variables with covariance
matrices Σ ∝ AAT . We would need weight matrices that are not simply proportional to identity to deal with the covariance
structure. This is also the case for in-context learning of linear functions when the input has an anisotropic covariance matrix
(Zhang et al., 2024; Ahn et al., 2023). Recall in the original setting, we had the sample covariance E[XXT ] ≡ ΣX = σ2

0P

and noise ΣZ ≡ σ2
ZI , leading to the estimator, Eq. (10): X̂ = 1

(σ2
0+σ2

Z)L

∑L
t=1 Xt⟨Xt, X̃⟩ . Here, the sample covariance

is ΣY ≡ σ2
0APAT , and the noise V ≡ AZ has covariance ΣV ≡ σ2

ZAAT . One can show the generalized solution is
Ŷ = ΣY (ΣY +ΣV )

−1Ỹ . Thus, in the transformed coordinates, the denoising estimate is

Ŷ =
1

(σ2
0 + σ2

Z)L

L∑
t=1

Yt⟨A−1Yt, A
−1Ỹ ⟩. (A.13)

For the relationship of this denoising result in Y to energy models, as discussed in Section 4 and Subsection I.1, we need a
modified energy E(Y1:L, s) =

1
2γ ∥s∥

2 − 1
2L

∑L
t=1⟨A−1Yt, A

−1s⟩2 and a preconditioner proportional to AAT .

I. Additional comments on the mapping from attention to associative memory models
I.1. Linear attention and traditional Hopfield model

We have considered a trained network with linear attention, relating the query X̃ and the estimate of the target X̂ , of the
form

X̂ = f(X̃) :=
γ

L

L∑
t=1

Xt⟨Xt, X̃⟩ (A.14)

with γ = 1
σ2
0+σ2

Z
.

With

E(X1:L, s) :=
1

2γ
∥s∥2 − 1

2L
sT (

L∑
t=1

XtX
T
t )s (A.15)

gradient descent iteration s(t+ 1) = s(t)− γ ∇sE
(
X1:L, s(t)

)
gives us

s(t+ 1) =
γ

L

∑
t

Xt⟨Xt, s(t)⟩

making the one-step iteration our denoising operation.

We will call this energy function the Naive Spherical Hopfield model for the following reason. For random memory patterns
X1:L, and the query denoting Ising spins s ∈ {−1, 1}n, the so-called Hopfield energy is

EHopfield(X1:L, s) := − 1

2L
sT (

L∑
t=1

XtX
T
t )s. (A.16)

We could relax the Ising nature of the spins by letting s ∈ Rn, with a constraint ||s||2 = n. This is the spherical model
(Fischer & Hertz, 1993) since the spin vector s lives on a sphere. If we minimize this energy the optimal s would be
aligned with the dominant eigenvector of the matrix 1

L (
∑L

t=1 XtX
T
t ) (Fischer & Hertz, 1993), and the model will not have

a retrieval phase (see Bollé et al. (2003) for a similar model that does). A soft-constrained variant can also be found in
Section 3.3, Model C of Krotov & Hopfield (2021).

We could reformulate the optimization problem of minimizing the Hopfield energy, subject to ||s||2 = R2, as

argmin
s∈Rn

[
max
λ

{
− 1

2L
sT (

L∑
t=1

XtX
T
t )s+ λ(sT s−R2)

}]
.

21



In-Context Denoising with One-Layer Transformers: Connections between Attention and Associative Memory Retrieval

The s-dependent part of the Lagrangian, with λ replaced by 1
2γ gives us the energy function in Eq. A.15 which we have

called the Naive Spherical Hopfield model.

E(X1:L, s) :=
1

2γ
∥s∥2 − 1

2L
sT (

L∑
t=1

XtX
T
t )s =

1

2
sT
[
(σ2

0 + σ2
Z)In − 1

L
(

L∑
t=1

XtX
T
t )
]
s. (A.17)

For L much larger than n, 1
L

∑L
t=1 XtX

T
t ≈ σ2

0P , so its eigenvalues are either 0 or are very close to σ2
0 . Hence, for large L

and σZ > 0, this quadratic function is very likely to be positive definite. One-step gradient descent brings s down to the
d-dimensional linear subspace S spanned by the patterns, but repeated gradient descent steps would take s towards zero.

I.2. Remarks on the softmax attention case (mapping to dense associative memory networks)

Regarding the mapping discussed in the main text, we note that there is a symmetry condition on the weights WKQ,WPV

that is necessary for the softmax update to be interpreted as a gradient descent (i.e. a conservative flow). In general, a flow
ds/dt = f(s) is conservative if it can be written as the gradient of a potential, i.e. f(s) = −∇sV (s) for some V . For this
to hold, the Jacobian of the dynamics Jf (s) = ∇sf must be symmetric.

The softmax layer studied in the main text is f(s) = WPV X softmax(XTWKQs). We will denote z(s) = XTWKQ s and
g(s) = softmax(z(s)), both in RL. Then the Jacobian is

J(s) = WPV X
∂g

∂s
= WPV X

(
diag(g)− ggT

)
XTWKQ. (A.18)

Observe that Y = X
(
diag(g)− ggT

)
XT is symmetric (keeping in mind that g(s) depends on WKQ). The Jacobian

symmetry requirement J = JT therefore places the following constraint on feasible WKQ,WPV :

WPV Y WT
KQ = WKQ Y WT

PV . (A.19)

It is clear that this condition holds for the scaled identity attention weights discussed in the main text. Potentially, it could
allow for more general weights that might arise from non-isotropic denoising tasks to be cast as gradient descent updates.

The mapping discussed in the main text involves discrete gradient descent steps, Eq. (17). In general, this update rule
retains a “residual” term in s(t) if we choose a different descent step size γ ̸= α. Thus, taking K recurrent updates could
be viewed as the depthwise propagation of query updates through a K-layer architecture if one were to use tied weights.
Analogous residual streams are commonly utilized in more elaborate transformer architectures to help propagate information
to downstream attention heads.
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