

000 SKILL: STRUCTURAL KNOWLEDGE INJECTION INTO 001 002 LARGE LANGUAGE MODELS FOR INDUCTIVE KNOWL- 003 004 EDGE GRAPH REASONING

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Knowledge Graph Reasoning (KGR) aims to predict missing (head, relation, tail)
014 triples by inferring new facts from existing ones within a knowledge graph. While
015 recent methods embed entities and relations into vectors or model multi-hop paths,
016 they predominantly rely on statistical co-occurrence patterns, yielding logically
017 inconsistent or semantically implausible paths that degrade prediction quality. We
018 introduce SKILL, a new framework that revolutionizes KGR by injecting struc-
019 tural knowledge into large language models (LLMs) through inductive reasoning,
020 thereby optimizing the reasoning process with LLMs' semantic understanding ca-
021 pabilities. Our novel rule-miner module extracts and semantically validates sym-
022 bolic reasoning rules from closed paths using LLM-based one-shot prompting,
023 effectively filtering out invalid patterns. This innovative rule injection fine-tunes
024 LLMs with explicit symbolic guidance, leading to a comprehension of KG struc-
025 tures required for downstream reasoning. Extensive experiments on three standard
026 inductive benchmarks show that SKILL surpasses competing baselines by up to 5
027 absolute Hit@1 points, establishing a new state of the art for inductive knowledge
028 graph reasoning.

029 1 INTRODUCTION

030 Knowledge Graphs (KGs) are structured representations of real-world entities and their relation-
031 ships, typically modeled as directed graphs where nodes denote entities and edges correspond to
032 relations. Each fact in a KG is represented as a triple (h, r, t) , indicating that a head entity h is
033 linked to a tail entity t via a relation r . KGs have been widely applied in various downstream
034 tasks, such as question answering Luo et al. (2024), dialogue systems Xu et al. (2019), and recom-
035 mendation systems Guo et al. (2020). However, real-world KGs are often incomplete, motivating
036 Knowledge Graph Reasoning (KGR), which seeks to infer missing facts from existing structures.

037 Traditional KGR approaches mainly rely on embedding models that encode entities and relations
038 into low-dimensional vector spaces, learning scoring functions to assess the plausibility of candidate
039 triples Bordes et al. (2013); Yang et al. (2015). More recent efforts have integrated path-based
040 reasoning, modeling relational paths between entities as a structured source of relational knowledge
041 Zhang et al. (2022); Cheng et al. (2023). Despite their notable progress, existing KGR methods face
042 two fundamental limitations that hinder their effectiveness in real-world applications.

043 First, embedding-based models effectively capture local statistical patterns but often exhibit limited
044 inductive generalization, especially in scenarios involving previously unseen entities Chen et al.
045 (2023). Since these models operate in a latent embedding space, they offer little interpretability of
046 the reasoning process and typically assume a closed-world setting. Consequently, they are unreliable
047 in dynamic or incomplete KGs, as shown in Fig. 1. This limitation restricts their applicability in
048 real-world settings, where new entities frequently emerge and explicit reasoning is often required.

049 Second, while path-based reasoning enhances structural awareness by leveraging relational paths,
050 many existing approaches depend on co-occurrence heuristics to extract or rank them without veri-
051 fying semantic validity Liang et al. (2024). As a result, they often propagate noisy or spurious paths
052 that lack meaningful logical dependencies, thereby weakening the reliability of the inferred triples.

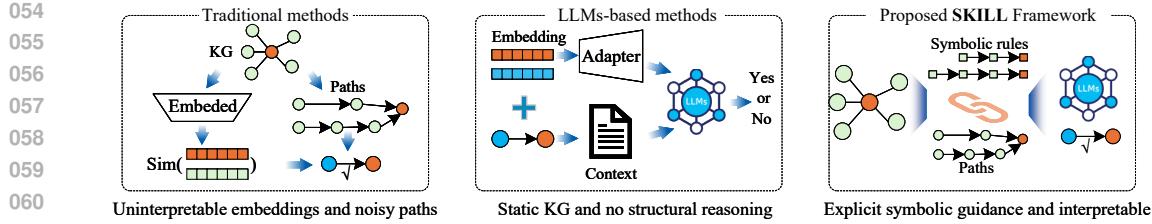


Figure 1: An illustration of current KGR methods. SKILL bridges KGs and LLMs with logical reasoning patterns.

Recent advances in LLMs have demonstrated impressive capabilities in understanding and generalizing from symbolic and natural language patterns. To incorporate structured information from Knowledge Graphs (KGs), recent works Zhang et al. (2024a;b); Guo et al. (2025) introduce adapter modules that map KG embeddings into the token representations of LLMs, enabling effective utilization of KG semantics. However, these methods usually rely on static KG embeddings, which are pre-trained independently of LLMs and often misaligned with contextualized token representations. Moreover, such approaches tend to treat the KG as an external memory rather than integrating its relational structure into the reasoning process, limiting the model’s ability to perform relational and inductive reasoning over unseen entities or facts. Beyond adapter-based methods, recent works Pan et al. (2024); Luo et al. (2025) have explored using LLMs to directly mine reasoning rules from KGs, but often encounter issues of insufficient supervision and reduced robustness in noisy KG settings.

To address these challenges, we advocate a structural perspective on how KGs should support LLM-based reasoning. Real-world KGs typically involve numerous entities and complex relational structures, posing significant challenges for LLMs in accurately recognizing entities and relationships. Without explicit structural guidance, LLMs often fail to capture underlying logical patterns, limiting their inductive generalization ability. Instead of serving merely as static memory, KGs should provide symbolic relational patterns to explicitly guide LLMs toward structurally grounded reasoning. Such an approach requires extracting high-quality symbolic rules explicitly capturing the inherent logic of the KG. Injecting this structured knowledge into LLMs enhances interpretability and substantially improves inductive reasoning, particularly over unseen entities and sparse subgraphs.

Motivated by this structural perspective, we propose SKILL, a novel framework that explicitly injects structural knowledge from KGs into LLMs to enhance inductive reasoning capabilities. SKILL first identifies closed paths in the KG to derive candidate symbolic rules, then leverages one-shot prompting with an LLM to verify their semantic validity and filter out noisy or spurious patterns. The validated rules are then injected into LLMs via a logic-enhanced reasoning module, directly facilitating inductive generalization. By bridging symbolic reasoning and neural language modeling, SKILL enables robust and interpretable reasoning over KGs. Our contributions are threefold:

- We propose **SKILL**, a novel framework that explicitly injects structurally grounded symbolic rules from KGs into LLMs via one-shot prompting and logic-enhanced fine-tuning, significantly improving inductive reasoning.
- We introduce a logic-enhanced reasoning module that leverages semantically validated symbolic rules to explicitly guide LLM reasoning, substantially enhancing interpretability and inductive generalization.
- We advocate a structural perspective on KG-LLM integration, emphasizing the importance of high-quality symbolic rules in supporting inductive reasoning over unseen entities and sparse relational contexts.

Extensive experiments on three benchmarks—FB15k-237, WN18RR, and NELL-995—show that SKILL achieves comparable performance to state-of-the-art methods under transductive settings and significantly outperforms them under inductive scenarios. Notably, SKILL attains up to a 5% absolute improvement in Hit@1, demonstrating enhanced generalization capabilities over previously unseen entities. Furthermore, comprehensive ablation studies across multiple configurations confirm the effectiveness and necessity of each component in SKILL.

108 **2 RELATED WORK**

110 **Embedding-based KG Reasoning:** Embedding-based KG reasoning methods represent entities
 111 and relations as continuous vectors learned from observed triples, and score candidate facts using
 112 predefined functions to rank top- k predictions, as in TransE Bordes et al. (2013), ComplEx Trouil-
 113 lon et al. (2016) and Adaprop Zhang et al. (2023). These methods are typically categorized into
 114 translational models Lin et al. (2015); Zhang et al. (2020), tensor decompositional models Balaze-
 115 vic et al. (2019); Zhang et al. (2019), and neural network models Dettmers et al. (2018); Zhang &
 116 Yao (2022). Despite their progress, these methods still lack interpretability and generalize poorly
 117 to inductive scenarios with unseen entities Chen et al. (2020). Moreover, because reasoning occurs
 118 entirely in latent spaces, inferred triples cannot be traced back to human-understandable logic.

119 **Path-based KG Reasoning:** Path-based methods capture logical dependencies between head and
 120 tail entities by exploring multi-hop relational paths in the KG. The Path Ranking Algorithm (PRA)
 121 Lao & Cohen (2010) applies path-constrained random walks to mine relational rules, forming the
 122 basis for later path-based reasoning. Subsequent approaches exploit the compositional semantics
 123 of relation chains to enable more structured and explainable reasoning Yang et al. (2017); Cheng
 124 et al. (2022; 2023). However, many still rely on surface-level co-occurrence or heuristic sampling,
 125 which introduces semantically invalid or noisy paths Liang et al. (2024). This reliance on statistical
 126 correlations rather than logical validity undermines robustness, particularly in sparse or inductive
 127 settings where meaningful paths are scarce.

128 **LLM-based KG Reasoning:** LLM-based methods leverage the strong contextual understanding of
 129 large language models for KGR. A common approach reformulates triples or multi-hop relational
 130 paths into natural language sequences, allowing LLMs to perform reasoning tasks via prompting
 131 Yao et al. (2019); Su et al. (2023; 2024); Wu et al. (2024). Such methods exploit the pre-trained
 132 knowledge of LLMs and reduce reliance on task-specific training, but they lack structured inductive
 133 bias and generalize poorly to unseen entities or relations Pan et al. (2024). To address these limita-
 134 tions, recent efforts have proposed adapter-based integration strategies Zhang et al. (2024b); Jiang
 135 et al. (2024); Zhang et al. (2024a); Guo et al. (2025). These approaches typically encode entity and
 136 relation embeddings separately and inject them into LLMs as additional token embeddings or prefix
 137 prompts, aligning symbolic KG information with contextual representations.

138 In contrast to prior works that either inject static embeddings or rely on heuristic rule induction,
 139 our work takes a structural perspective by treating KGs as sources of relational logic. We introduce
 140 a logic-enhanced reasoning module that enables LLMs to reason over high-quality, semantically
 141 validated relational rules, thereby enhancing inductive reasoning and interpretability.

143 **3 PRELIMINARIES**

145 **Knowledge Graphs** Let $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$ denote a knowledge graph, where \mathcal{E} is the set of entities, \mathcal{R}
 146 is the set of relation types, and $\mathcal{T} \subseteq \mathcal{E} \times \mathcal{R} \times \mathcal{E}$ is the set of factual triples. Each triple $(h, r, t) \in \mathcal{T}$
 147 indicates that the head entity h is connected to the tail entity t via relation r .

148 **Knowledge Graph Reasoning** Knowledge graph reasoning (KGR) aims to infer missing facts from
 149 the existing triples in \mathcal{G} by capturing and generalizing relational patterns among entities. Specifi-
 150 cally, given a query in the form of an incomplete triple $(h, r, ?)$ or $(?, r, t)$, the task is to predict the
 151 most plausible tail or head entity, respectively. In the inductive setting, the entity sets in the training
 152 and test knowledge graphs are disjoint, i.e., $\mathcal{E}_{\text{train}} \cap \mathcal{E}_{\text{test}} = \emptyset$, $\mathcal{R}_{\text{test}} \subseteq \mathcal{R}_{\text{train}}$.

154 Inductive reasoning poses unique challenges, as the model must reason over unseen entities with-
 155 out direct exposure during training. Unlike the transductive setting, where all entities are present
 156 during training and representations can be learned directly, inductive reasoning requires the model
 157 to generalize based on entity attributes, relation semantics, and local graph structure. This becomes
 158 particularly difficult in cases with sparse textual descriptions, limited neighborhood information, or
 159 highly heterogeneous relations.

160 **Symbolic Reasoning Rules** Symbolic reasoning rules are a sequence of relations (r_1, r_2, \dots, r_k)
 161 connecting a head entity h to a tail entity t through a sequence of intermediate entities
 $(e_1, e_2, \dots, e_{k-1})$, forming a path such as $h \xrightarrow{r_1} e_1 \xrightarrow{r_2} \dots \xrightarrow{r_k} t$.

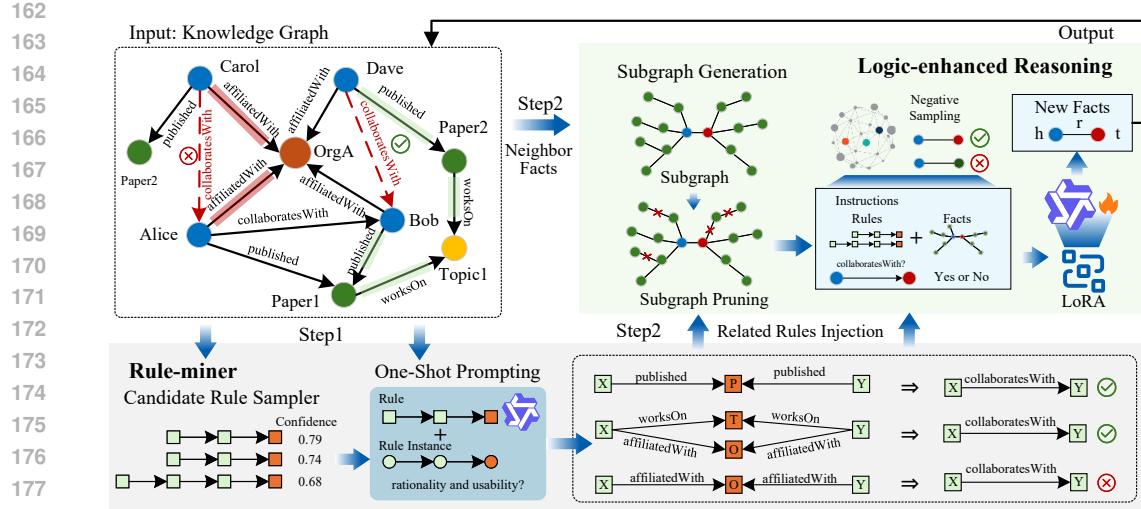


Figure 2: The overview of SKILL framework for inductive knowledge graph reasoning.

Recent approaches attempt to mine such symbolic reasoning rules from multi-hop paths in the graph, aiming to provide interpretable and generalizable reasoning patterns. However, existing methods often rely on shallow co-occurrence statistics or frequent path patterns, which may lead to the extraction of semantically invalid or spurious rules. These unreliable paths degrade both the interpretability and reasoning quality of predicted triples when applied to inductive scenarios. In particular, models struggle to distinguish between meaningful logical dependencies and noisy correlations, especially when applied to previously unseen entities or sparse subgraphs.

4 METHOD

Figure 2 illustrates the overall architecture of SKILL, a framework that transfers structural knowledge of KGs into LLMs via deductive reasoning. The framework consists of two major components: (1) a rule-miner module that automatically discovers, evaluates, and filters symbolic reasoning rules from a given KG; and (2) a logic-enhanced reasoning module that encodes these rules into the LLM via instruction-style fine-tuning, enabling the model to perform generalizable and interpretable reasoning on unseen entities and relational patterns.

4.1 RULE-MINER

Although substantial progress has been made in mining symbolic rules from KGs to enhance interpretability in reasoning tasks, existing approaches often lack semantic grounding. Most rule-mining methods prioritize statistical signals—such as path frequency or confidence scores—while neglecting whether the extracted rules are semantically coherent or aligned with commonsense or domain knowledge. As a result, rules that are syntactically valid may still be semantically implausible, introducing noise in downstream tasks.

For instance, a strong statistical association might exist between a person’s gender and their marital status, yet it is semantically incorrect to infer one from the other—gender does not determine whether someone is married, and vice versa. Such spurious correlations can lead to misleading or biased reasoning if not properly filtered.

To address this issue, the rule-miner module adopts a two-stage validation strategy. In the first stage, it performs reasoning path sampling by enumerating closed paths of a predefined length k . To effectively capture the structural knowledge, we adopt a breadth-first search (BFS) based sampler to systematically generate these closed paths as candidate instances for reasoning rules. These closed paths serve as the symbolic patterns on which the subsequent rule mining and validation processes

216 operate. Given a triple (h, r, t) , define the set of length- k supporting paths from h to t as:

$$217 \quad 218 \quad \mathcal{P}_k(h, t) = \left\{ h \xrightarrow{r_1} e_1 \xrightarrow{r_2} \cdots \xrightarrow{r_k} t : (e_{i-1}, r_i, e_i) \in \mathcal{T} \forall i \right\}. \quad (1)$$

219 A path $\pi \in \mathcal{P}_k(h, t)$ is called *closed w.r.t.* (h, r, t) if $(h, r, t) \in \mathcal{T}$. Then, we can extract a reasoning
220 rule of the form:

$$221 \quad 222 \quad \rho : r_1(x, e_1) \wedge r_2(e_1, e_2) \wedge \cdots \wedge r_k(e_{k-1}, y) \Rightarrow r(x, y), \quad (2)$$

223 where $x = h$, $y = t$, and r is the target relation to be predicted. This rule expresses that if the
224 body (left-hand side) relations hold along the path from x to y , then it is likely that the relation
225 $r(x, y)$ also holds. Such rules encode multi-hop structural dependencies and provide interpretable,
226 compositional reasoning patterns for downstream tasks.

227 To quantify the reliability of a candidate rule ρ , we compute its *support* and *confidence*. Let
228 $\text{Body}_\rho(x, y)$ denote that there exist e_1, \dots, e_{k-1} such that $(x, r_1, e_1), \dots, (e_{k-1}, r_k, y) \in \mathcal{T}$. The
229 **support** of ρ is the number of entity pairs (x, y) for which both the body and the head triple (x, r, y)
230 appear in the KG:

$$231 \quad \text{supp}(\rho) = |\{(x, y) : \text{Body}_\rho(x, y) \wedge (x, r, y) \in \mathcal{T}\}|. \quad (3)$$

232 The **confidence** of ρ is the conditional probability that the head holds given that the body is satisfied:

$$233 \quad 234 \quad \text{conf}(\rho) = \frac{\text{supp}(\rho)}{|\{(x, y) : \text{Body}_\rho(x, y)\}|}, \quad (4)$$

235 with the convention that $\text{conf}(\rho) = 0$ if the denominator is zero.

236 In the second stage, we further assess the semantic validity of rules via LLM-based one-shot prompting.
237 While support and confidence capture empirical regularities, they cannot determine whether a
238 rule is semantically plausible or aligned with commonsense.

239 We leverage LLMs as external semantic priors: a rule-to-text translation maps ρ to a natural-
240 language statement, which is then instantiated with a concrete entity pair (x^*, y^*) satisfying
241 $\text{Body}_\rho(x^*, y^*)$. The LLM receives a one-shot prompt and returns a binary plausibility judgment:

$$242 \quad \text{LLM_valid}(\rho) = \begin{cases} 1, & \text{if the model answers “Yes”,} \\ 243 \quad 244 \quad 0, & \text{if the model answers “No”.} \end{cases} \quad (5)$$

245 We retain only rules with $\text{LLM_valid}(\rho) = 1$, thereby filtering out semantically implausible or
246 spurious patterns.

247 4.2 LOGIC-ENHANCED REASONING

248 After obtaining a set of semantically validated reasoning rules, the logic-enhanced reasoning module
249 aims to transfer this structured knowledge into a large language model (LLM) to enhance its inductive
250 reasoning capabilities. Specifically, we incorporate the filtered rules through instruction-based
251 fine-tuning, enabling the model to learn to reason over unseen entities and sparse relational contexts
252 by leveraging interpretable patterns.

253 4.2.1 REASONING SUBGRAPH GENERATION

254 Given a query triple (h, r, t) , we construct a reasoning subgraph $\mathcal{G}_{(h, r, t)}$ to provide structural context
255 for assessing its plausibility. The subgraph is composed of two components as below.

256 **First-order neighborhood:** For each entity $e \in \{h, t\}$, we retrieve all directly connected triples:

$$257 \quad 258 \quad \mathcal{N}_1(e) = \{(e, r', e') \in \mathcal{T} \} \cup \{(e', r', e) \in \mathcal{T}\}. \quad (6)$$

259 **Closed paths:** We extract all relational paths $\pi = (r_1, r_2, \dots, r_l)$ of length $l \leq k$ that form a
260 connection from h to t via intermediate entities, i.e., $\pi : h \xrightarrow{r_1} e_1 \xrightarrow{r_2} \cdots \xrightarrow{r_l} t$, and include all
261 triples involved in such paths. We define the resulting reasoning subgraph as:

$$262 \quad 263 \quad \mathcal{G}_{(h, r, t)} = \mathcal{N}_1(h) \cup \mathcal{N}_1(t) \cup \bigcup_{\pi \in \mathcal{P}_{h \rightarrow t}} \text{Triples}(\pi), \quad (7)$$

264 where $\mathcal{P}_{h \rightarrow t}$ denotes the set of all closed paths from h to t of length at most k , and $\text{Triples}(\pi)$
265 denotes the triples along each closed path.

270 4.2.2 REASONING SUBGRAPH PRUNING
271

272 The reasoning subgraph $\mathcal{G}_{(h,r,t)}$ may contain numerous closed paths connecting h and t . How-
273 ever, not all paths fully satisfy the body of any validated rule, and strict filtering might discard
274 useful partial evidence. To address this issue, we employ a soft matching strategy combined with
275 confidence-weighted filtering to select relevant rules adaptively.

276 For each closed path π and candidate rule ρ , we define a matching score $\text{match}(\pi, \rho) \in [0, 1]$
277 measuring the fraction of the rule's body premises covered by the path. If the body of ρ contains n
278 relation atoms, $\rho : r_1(x, e_1) \wedge r_2(e_1, e_2) \wedge \dots \wedge r_n(e_{n-1}, y) \Rightarrow r(x, y)$, and π covers $k \leq n$ of these
279 relations in order, then

$$280 \text{match}(\pi, \rho) = \frac{k}{n}. \quad (8)$$

282 Each rule ρ has an associated confidence score $\text{conf}(\rho) \in [0, 1]$ reflecting its reliability. We compute
283 a combined relevance score for each path-rule pair:

$$285 s(\pi, \rho) = \text{match}(\pi, \rho) \cdot \text{conf}(\rho). \quad (9)$$

286 We retain the top- K path-rule pairs with the highest scores:

$$288 \mathcal{S}_{(h,r,t)} = \text{TopK}(\{(\pi, \rho)\}, s(\pi, \rho), K), \quad (10)$$

289 where the candidate pairs (π, ρ) are drawn from the closed path set $\mathcal{P}(h, t)$ and the validated rule
290 set R with head r , subject to the condition $\text{match}(\pi, \rho) > 0$. Then, the pruned reasoning subgraph
291 is defined as

$$292 \tilde{\mathcal{G}}_{(h,r,t)} = \bigcup_{(\pi, \rho) \in \mathcal{S}_{(h,r,t)}} \text{Triples}(\pi), \quad (11)$$

294 containing only triples on the most relevant paths. Correspondingly, the relevant rule set for reasoning
295 is adaptively determined by

$$297 R_{(h,r,t)} = \{\rho \mid \exists \pi \text{ with } (\pi, \rho) \in \mathcal{S}_{(h,r,t)}\}. \quad (12)$$

299 We select neighboring triples that align with candidate rules and exhibit high semantic similarity to
300 the query triple. Specifically, each triple (h, r, t) and its neighbor (h', r', t') are first converted into
301 natural language text $T(h, r, t)$ and $T(h', r', t')$. These textual representations are then encoded into
302 embeddings with a pre-trained encoder $f(\cdot)$ Chen et al. (2024), which provides semantic representations
303 that preserve both structural alignment and contextual coherence. The similarity is computed
304 via cosine similarity:

$$305 \text{sim}(T(h, r, t), T(h', r', t')) = \frac{f(T(h, r, t)) \cdot f(T(h', r', t'))}{\|f(T(h, r, t))\| \|f(T(h', r', t'))\|}. \quad (13)$$

308 The fine-tuning objective minimizes the cross-entropy loss over a dataset of prompts and binary
309 labels. Given a training pair (P, y) , where P is the prompt and $y \in \{0, 1\}$ is the ground truth label,
310 the loss is defined as

$$311 \mathcal{L} = -[y \log p_\theta(\text{yes} \mid P) + (1 - y) \log p_\theta(\text{no} \mid P)], \quad (14)$$

313 where $p_\theta(\cdot \mid P)$ denotes the predicted probability conditioned on prompt P under parameters θ .

315 5 EXPERIMENT
316317 5.1 SETTINGS AND BASELINES
318

319 We evaluate our method on three widely used benchmarks: FB15k-237 Schlichtkrull et al. (2018),
320 WN18RR Miller (1995), and NELL-995 Carlson et al. (2010), each containing both transductive and
321 inductive subsets. Following prior work Zha et al. (2022); Su et al. (2023; 2024); Li et al. (2025),
322 each query triple is paired with one positive and 49 negative candidate entities for evaluation. We
323 report standard evaluation metrics, including Mean Reciprocal Rank (MRR) and Hit@1 (H@1),
which respectively measure the average ranking quality and top-1 prediction accuracy.

324
325
326 Table 1: Transductive and inductive results on WN18RR, FB15k-237, and NELL-995.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Method	Transductive						Inductive					
	WN		FB15k		NELL		WN		FB15k		NELL	
	H@1	MRR										
RuleN	0.646	0.669	0.603	0.674	0.636	0.736	0.745	0.780	0.415	0.462	0.638	0.710
TuckER	0.600	0.646	0.615	0.682	0.729	0.800	-	-	-	-	-	-
NCRL	0.543	0.595	0.562	0.615	0.586	0.631	-	-	-	-	-	-
GRAIL	0.644	0.676	0.494	0.597	0.615	0.727	0.769	0.799	0.390	0.469	0.554	0.675
AdaProp	0.735	0.790	0.534	0.632	0.725	0.807	0.755	0.795	0.483	0.563	0.678	0.791
MINERVA	0.632	0.656	0.534	0.572	0.553	0.592	-	-	-	-	-	-
BERTRL	0.655	0.683	0.620	0.695	0.686	0.781	0.755	0.792	0.541	0.605	0.715	0.808
KRST	0.835	0.899	0.639	0.720	0.694	0.800	0.809	0.890	0.600	0.716	0.649	0.769
APST	0.839	0.902	0.694	0.774	0.698	0.801	0.837	0.908	0.643	0.764	0.663	0.769
CATS	0.962	0.978	0.776	0.843	0.820	0.885	0.965	0.982	0.805	0.882	0.783	0.861
SKILL	0.962	0.979	0.774	0.845	0.789	0.865	0.971	0.984	0.859	0.911	0.839	0.903

To ensure a fair comparison, we adopt Qwen2-7B-Instruct as the backbone LLM, following the same setting as reported in CATS Li et al. (2025); Zheng et al. (2024). We adopt LoRA Hu et al. (2022) for parameter-efficient fine-tuning, configuring it with a rank of 16 and a scaling factor of 32. The model is optimized using AdamW Loshchilov & Hutter (2019) with a learning rate of 1e-4. We set the per-device batch size to 2 and apply gradient accumulation over 4 steps. The fine-tuning process is conducted for a single epoch. The maximum number of rule premises is set to 3. Each query triple is supplemented with up to 6 closed paths and up to 6 neighboring facts ($K = 6$ in Eq. 10). For instruction construction, 12 negative samples are generated for each positive triple in T_{train} .

To evaluate performance, we benchmark against a comprehensive suite of baselines: embedding-based models (RuleN Meilicke et al. (2018), TuckER Balazevic et al. (2019), NCRL Cheng et al. (2023)), graph neural network-based approaches (GraIL Teru et al. (2020), AdaProp Zhang et al. (2023)), and path or context reasoning models (MINERVA Das et al. (2018), BERTRL Zha et al. (2022), KRST Su et al. (2023), APST Su et al. (2024)), and CATS Li et al. (2025) (current SOTA).

354 355 5.2 MAIN RESULTS

356
357 We evaluate the proposed SKILL framework on three benchmark datasets under both *transductive*
358 and *inductive* settings. The results are shown in Table 1. In the transductive setting, where all
359 entities are observed during training, SKILL achieves competitive performance, obtaining com-
360 parable results to state-of-the-art models such as CATS. This demonstrates that even without relying
361 solely on dense KG embeddings, SKILL can effectively leverage structural patterns to make accu-
362 rate predictions. Notably, SKILL achieves this performance using only half the number of prompts
363 compared to CATS (CATS requires 2 queries for each triple), highlighting its efficiency in extracting
364 and utilizing relevant knowledge.

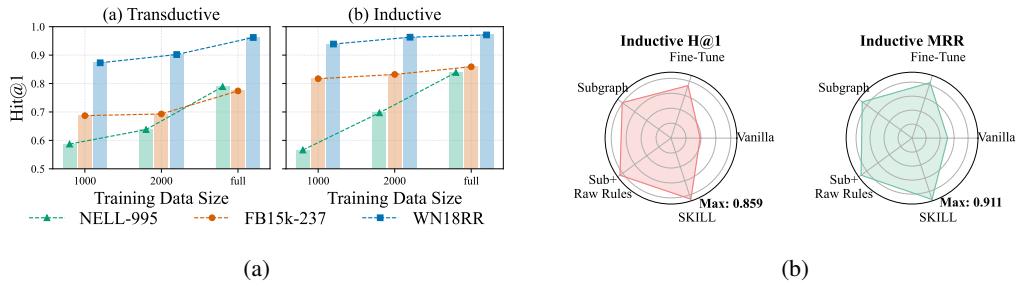
365 In the more challenging inductive setting, SKILL consistently outperforms all baseline methods.
366 Notably, it achieves absolute improvements of **5.4%** on FB15k-237 and **5.6%** on NELL-995 in
367 Hit@1, substantially surpassing prior approaches. Unlike prior methods that rely either on static
368 embeddings or unvalidated rules, SKILL explicitly injects semantically validated symbolic rules
369 into LLMs, enabling robust generalization to unseen entities and sparse relational contexts. These
370 gains highlight not only stronger empirical performance but also the methodological novelty of
371 combining symbolic rule mining with LLM-based reasoning, demonstrating the effectiveness of
372 structurally grounded rule injection as a new paradigm for inductive knowledge graph reasoning.

373 374 5.3 FEW-SHOT RELATION PREDICTIONS

375
376 We adopt subsets containing 1000 and 2000 training triplets for all three datasets provided by Zha
377 et al. (2022) to further evaluate SKILL under few-shot settings. Despite the limited scale of train-
378 ing data and the corresponding sparsity of reasoning rules, SKILL exhibits strong generalization
379 performance in the inductive setting.

378
379
Table 2: Inductive results in few-shot settings.
380
381
382
383
384
385
386
387
388
389

Method	WN-1000		WN-2000		FB15k-1000		FB15k-2000		NELL-1000		NELL-2000	
	H@1	MRR										
RuleN	0.649	0.681	0.737	0.773	0.207	0.236	0.344	0.383	0.282	0.334	0.418	0.495
GRAIL	0.516	0.652	0.769	0.799	0.273	0.380	0.351	0.432	0.295	0.458	0.298	0.462
Adaprop	0.741	0.786	0.749	0.794	0.425	0.527	0.451	0.546	0.580	0.702	0.630	0.739
BERT-RL	0.713	0.765	0.731	0.777	0.441	0.526	0.493	0.565	0.622	0.736	0.628	0.744
KRST	0.811	0.886	0.793	0.878	0.537	0.679	0.524	0.680	0.637	0.745	0.629	0.738
APST	0.822	0.894	0.798	0.879	0.561	0.697	0.627	0.747	0.654	0.765	0.637	0.747
CATS	0.864	0.922	0.923	0.953	0.776	0.862	0.802	0.877	0.713	0.808	0.746	0.829
SKILL	0.939	0.968	0.963	0.981	0.817	0.886	0.832	0.894	0.566	0.715	0.697	0.813

401
402
403
Figure 3: (a) Effect of training data scale on reasoning; (b) impacts of SKILL’s components.

404
405
406
407
408
409
410
411
As shown in Table 2, SKILL achieves up to **7%** absolute improvement over the baselines on two
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208<br

432 Table 4: Results on the UMLS dataset. Table 5: Rule statistics with different confidence thresholds.
433

434 Method	435 Hit@1	436 MRR
437 AMIE	438 0.195	439 0.312
440 Neural-LP	441 0.415	442 0.505
443 RNNLogic	444 0.630	445 0.750
446 NCRL	447 0.576	448 0.728
449 Ruleformer	450 0.555	451 0.691
452 ChatRule	453 0.685	454 0.780
455 SKILL	456 0.809	457 0.886

458 Conf	459 FB15k-237			460 NELL-995		
	461 NCRL	462 Raw	463 Valid	464 NCRL	465 Raw	466 Valid
467 0.1	468 32983	469 1613	470 408	471 21469	472 1774	473 691
474 0.2	475 29637	476 1237	477 301	478 17841	479 1172	480 466
481 0.3	482 27293	483 930	484 205	485 15432	486 818	487 331
488 0.4	489 24518	490 709	491 157	492 13916	493 623	494 250
497 0.5	498 22371	499 578	500 130	501 12579	502 520	503 214

444 confirm that SKILL can consistently enhance LLMs across different backbones, while even small
445 models already deliver superior performance compared to conventional approaches.

446 To provide further clarity on model-level differences, Qwen2-7B achieves the strongest overall
447 results among models of similar scale. We attribute this to its post-training stage, which places
448 particular emphasis on logical reasoning, instruction following, and structured knowledge under-
449 standing—capabilities that align closely with symbolic rule-guided inference in SKILL. In contrast,
450 Qwen2.5-7B and Llama 3.1-8B incorporate broader and more diverse training objectives (e.g., cod-
451 ing, multilingual coverage, and general-purpose instruction following), which may introduce small
452 fluctuations in specialized relational reasoning tasks.

453 To evaluate the generalizability of SKILL beyond open-domain knowledge graphs, we further ex-
454 amine its performance on the biomedical UMLS dataset Kok & Domingos (2007), a widely used
455 domain-specific KG that features specialized relational patterns and medically grounded terminol-
456 ogy. We compare SKILL against representative symbolic and neural rule-learning frameworks,
457 including AMIE Galárraga et al. (2013), Neural-LP Qu et al. (2020), RNNLogic Qu et al. (2020),
458 NCRL Cheng et al. (2023), Ruleformer Xu et al. (2022), and ChatRule Luo et al. (2025).

459 As shown in Table 4, SKILL achieves the best results on UMLS and surpasses both traditional rule-
460 based systems and recent LLM-enhanced rule learners in terms of Hit@1 and MRR. These findings
461 demonstrate that SKILL transfers effectively to domain-specific relational structures, indicating that
462 the injected structural knowledge remains beneficial even in specialized biomedical settings.

464 5.5 ANALYSIS OF RULES

466 Table 5 reports the number of induced rules under different confidence thresholds. Although the raw
467 number of candidate rules is large, only a fraction are validated through LLM-based evaluation. By
468 contrast, rules mined by NCRL are overwhelmingly redundant, often yielding tens of thousands of
469 candidates with limited utility, which makes them unsuitable for direct use in downstream reasoning.

470 More importantly, the validated subset obtained via semantic evaluation preserves rules that are both
471 reliable and useful, thereby reducing redundancy while still covering sufficient reasoning patterns.
472 This filtering effect demonstrates that LLM evaluation not only improves reasoning performance
473 but also prunes spurious or low-quality rules, resulting in a more compact and effective rule base.
474 As illustrated in Figure 3b, despite the substantial reduction in rule count, reasoning accuracy does
475 not decline. Instead, it further improves, underscoring the effectiveness of semantic validation in
476 preserving high-quality rules.

477 To enable interpretable and semantically grounded reasoning, we extract symbolic rules from the
478 FB15k-237 dataset. These rules are induced from observed multi-hop relational paths and validated
479 via LLM-based semantic prompting to ensure logical plausibility. Table 6 shows representative
480 examples that capture frequent structural patterns in the KG. Such rules act as inductive biases,
481 steering the reasoning process toward explainable predictions.

482 For instance,

$$483 \text{speaksLang}(x, y) \leftarrow \text{actedIn}(x, z) \wedge \text{filmLang}(z, y),$$

484 encodes an interpretable dependency: if a person acted in a film of a given language, they are
485 likely to speak that language. Such human-readable rules provide both transparency and structural

486 Table 6: Examples of logical rules from FB15k-237.
487

488	Induced Symbolic Rules
489	hasMajor(x, y) \leftarrow degreeAt(x, z) \wedge institutionMajor(z, y)
490	eventType(x, y) \leftarrow awardEvent(x, z) \wedge categoryOf(z, y)
491	awardEvent(x, y) \leftarrow categoryOf(y, z) \wedge eventType(x, z)
492	speaksLang(x, y) \leftarrow actedIn(x, z) \wedge filmLang(z, y)
493	dubbingLang(x, y) \leftarrow actedIn(x, z) \wedge filmLang(z, y)
494	ethnicGroupLoc(x, y) \leftarrow hasEthn(z, x) \wedge nationality(z, y)
495	nationality(x, y) \leftarrow hasEthn(x, z) \wedge ethnicGroupLoc(z, y)
496	directedFilm(x, y) \leftarrow founded(z, x) \wedge prodCompany(y, z)

497
498 grounding, guiding LLM reasoning toward reliable predictions. Appendix G presents a detailed case
499 study that further highlights the interpretability and reliability of SKILL.
500501

6 CONCLUSION

502503 We presented **SKILL**, a framework for inductive knowledge graph reasoning that integrates sym-
504 bolic knowledge into large language models. By leveraging one-shot prompting to extract and vali-
505 date path-based rules, SKILL filters out noisy patterns and injects high-quality relational knowledge
506 to guide the reasoning process. This design introduces a novel paradigm that combines the inter-
507 pretability of symbolic rule mining with the generalization ability of LLMs. Experiments on three
508 standard benchmarks demonstrate consistent gains over state-of-the-art methods, achieving up to 5
509 absolute improvements in Hit@1. In future work, we plan to extend SKILL to open-world scenar-
510 ios and explore its applicability to broader tasks, such as knowledge-based question answering and
511 graph-based recommendations.
512513

REFERENCES

514

515 Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor factorization for knowl-
516 edge graph completion. In *Proceedings of the Conference on Empirical Methods in Natural
517 Language Processing and the International Joint Conference on Natural Language Processing*,
518 pp. 5184–5193, 2019.

519 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
520 Translating embeddings for modeling multi-relational data. In *Advances in neural information
521 processing systems*, volume 26, 2013.

522 Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M.
523 Mitchell. Toward an architecture for never-ending language learning. In *Proceedings of the AAAI
524 conference on artificial intelligence*, pp. 1306–1313, 2010.

525 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
526 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
527 tillation. *arXiv preprint arXiv:2402.03216*, 2024.

528 Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, and Huajun Chen. Generalizing
529 to unseen elements: A survey on knowledge extrapolation for knowledge graphs. In *Proceedings
530 of the International Joint Conference on Artificial Intelligence*, pp. 6574–6582, 2023.

531 Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning over knowledge
532 graph. *Expert systems with applications*, 141:112948, 2020.

533 Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. Rlogic: Recursive logical rule learning from
534 knowledge graphs. In *Proceedings of the ACM SIGKDD conference on knowledge discovery and
535 data mining*, pp. 179–189, 2022.

536 Kewei Cheng, Nesreen K. Ahmed, and Yizhou Sun. Neural compositional rule learning for knowl-
537 edge graph reasoning. In *International Conference on Learning Representations*, 2023.

540 Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning. In *International Conference on Learning Representations*, 2018.

544

545 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge graph embeddings. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 1811–1818, 2018.

546

548 Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie: association rule mining under incomplete evidence in ontological knowledge bases. In *Proceedings of the international conference on World Wide Web*, pp. 413–422, 2013.

550

551 Lingbing Guo, Yichi Zhang, Zhongpu Bo, Zhuo Chen, Mengshu Sun, Zhiqiang Zhang, Wen Zhang, and Huajun Chen. K-ON: Stacking knowledge on the head layer of large language model. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 11745–11753, 2025.

553

555 Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. A survey on knowledge graph-based recommender systems. *IEEE Transactions on Knowledge and Data Engineering*, 34(8):3549–3568, 2020.

557

558 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.

561

562 Pengcheng Jiang, Lang Cao, Cao (Danica) Xiao, Parminder Bhatia, Jimeng Sun, and Jiawei Han. KG-FIT: knowledge graph fine-tuning upon open-world knowledge. In *Advances in neural information processing systems*, 2024.

564

565 Stanley Kok and Pedro Domingos. Statistical predicate invention. In *Proceedings of the 24th international conference on Machine learning*, pp. 433–440, 2007.

567

568 Ni Lao and William W. Cohen. Relational retrieval using a combination of path-constrained random walks. *Machine learning*, 81(1):53–67, 2010.

570

571 Muzhi Li, Cehao Yang, Chengjin Xu, Zixing Song, Xuhui Jiang, Jian Guo, Ho-fung Leung, and Irwin King. Context-aware inductive knowledge graph completion with latent type constraints and subgraph reasoning. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 12102–12111, 2025.

574

575 Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang Liu, Fuchun Sun, and Kunlun He. A survey of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(12):9456–9478, 2024.

578

579 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation embeddings for knowledge graph completion. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 2181–2187, 2015.

582

583 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.

584

585 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and interpretable large language model reasoning. In *International Conference on Learning Representations*, 2024.

588

589 Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Chatrule: Mining logical rules with large language models for knowledge graph reasoning. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pp. 314–325, 2025.

591

592 Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner Stuckenschmidt. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion. In *International semantic web conference*, pp. 3–20, 2018.

593

594 George A. Miller. Wordnet: A lexical database for english. *Communications of the ACM*, 38(11):
 595 39–41, 1995.

596

597 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
 598 language models and knowledge graphs: A roadmap. *IEEE Transactions on Knowledge and Data
 599 Engineering*, 36(7):3580–3599, 2024.

600 Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic: Learn-
 601 ing logic rules for reasoning on knowledge graphs. In *International Conference on Learning
 602 Representations*, 2020.

603 Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
 604 Welling. Modeling relational data with graph convolutional networks. In *European semantic web
 605 conference*, volume 10843, pp. 593–607, 2018.

606

607 Zhixiang Su, Di Wang, Chunyan Miao, and Lizhen Cui. Multi-aspect explainable inductive re-
 608 lation prediction by sentence transformer. In *Proceedings of the AAAI conference on artificial
 609 intelligence*, pp. 6533–6540, 2023.

610 Zhixiang Su, Di Wang, Chunyan Miao, and Lizhen Cui. Anchoring path for inductive relation
 611 prediction in knowledge graphs. In *Proceedings of the AAAI conference on artificial intelligence*,
 612 pp. 9011–9018, 2024.

613

614 Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by sub-
 615 graph reasoning. In *Proceedings of the International Conference on Machine Learning*, volume
 616 119, pp. 9448–9457, 2020.

617 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
 618 plex embeddings for simple link prediction. In *Proceedings of the International Conference on
 619 Machine Learning*, volume 48, pp. 2071–2080, 2016.

620

621 Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu, and Enhong Chen. Exploring large language
 622 model for graph data understanding in online job recommendations. In *Proceedings of the AAAI
 623 conference on artificial intelligence*, pp. 9178–9186, 2024.

624 Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang, Jianheng Tang, and Liang Lin. End-to-end
 625 knowledge-routed relational dialogue system for automatic diagnosis. In *Proceedings of the AAAI
 626 conference on artificial intelligence*, volume 33, pp. 7346–7353, 2019.

627 Zezhong Xu, Peng Ye, Hui Chen, Meng Zhao, Huajun Chen, and Wen Zhang. Ruleformer: Context-
 628 aware rule mining over knowledge graph. In *Proceedings of the International Conference on
 629 Computational Linguistics*, pp. 2551–2560, 2022.

630

631 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
 632 relations for learning and inference in knowledge bases. In *International Conference on Learning
 633 Representations*, 2015.

634 Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowl-
 635 edge base reasoning. In *Advances in neural information processing systems*, pp. 2319–2328,
 636 2017.

637 Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion. *arXiv
 638 preprint arXiv:1909.03193*, 2019.

639

640 Hanwen Zha, Zhiyu Chen, and Xifeng Yan. Inductive relation prediction by BERT. In *Proceedings
 641 of the AAAI conference on artificial intelligence*, pp. 5923–5931, 2022.

642 Denghui Zhang, Zixuan Yuan, Hao Liu, Xiaodong Lin, and Hui Xiong. Learning to walk with
 643 dual agents for knowledge graph reasoning. In *Proceedings of the AAAI conference on artificial
 644 intelligence*, pp. 5932–5941, 2022.

645

646 Fuxiang Zhang, Xin Wang, Zhao Li, and Jianxin Li. Transrhs: A representation learning method for
 647 knowledge graphs with relation hierarchical structure. In *Proceedings of the International Joint
 Conference on Artificial Intelligence*, pp. 2987–2993, 2020.

648 Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Cheng
 649 Yang, and Chuan Shi. GraphTranslator: Aligning graph model to large language model for open-
 650 ended tasks. In *Proceedings of the ACM on Web Conference*, pp. 1003–1014, 2024a.

651 Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In *Advances*
 652 *in neural information processing systems*, pp. 2731–2741, 2019.

654 Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Wen Zhang, and Huajun Chen. Making large
 655 language models perform better in knowledge graph completion. In *Proceedings of the ACM*
 656 *international conference on multimedia*, pp. 233–242, 2024b.

657 Yongqi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In *Proceed-
 658 ings of the ACM on Web Conference*, pp. 912–924, 2022.

660 Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han. AdaProp: Learning
 661 adaptive propagation for graph neural network based knowledge graph reasoning. In *Proceedings*
 662 *of the ACM SIGKDD conference on knowledge discovery and data mining*, pp. 3446–3457, 2023.

663 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 664 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
 665 *preprint arXiv:2403.13372*, 2024.

667 A ALGORITHMS OF SKILL

669 Algorithm 1 outlines a two-stage framework for mining logical rules from knowledge graphs by
 670 integrating statistical patterns with semantic validation.

672 In the first stage, the algorithm traverses paths between entity pairs using a breadth-first search up
 673 to a specified length k , generating candidate rules from the observed paths. Each rule ρ is evaluated
 674 based on its empirical confidence in the KG, and retained if it exceeds a threshold τ , forming the
 675 raw rule set R_{raw} . This step ensures that the selected rules exhibit statistically meaningful patterns.

676 In the second stage, each rule in R_{raw} is assessed using a large language model to verify its semantic
 677 plausibility. Rules that pass this LLM-based validation are retained in the final set R_{valid} . This
 678 filtering mechanism helps eliminate spurious or logically inconsistent rules that may arise from
 679 purely statistical associations.

680 To distinguish induced rules from the original relation set \mathcal{R} of the knowledge graph $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$,
 681 the output rule set is denoted as R . This hybrid approach ensures that the resulting symbolic rules are
 682 both statistically robust and semantically coherent, providing reliable inductive bias for downstream
 683 reasoning tasks.

685 Algorithm 1 Rule-Miner

686 **Require:** Knowledge graph $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, path length k

687 **Ensure:** Set of valid rules R_{valid}

```

688 1:  $R_{\text{raw}} \leftarrow \emptyset$ 
689 2: for all triples  $(h, r, t) \in \mathcal{T}$  do
690 3:    $\Pi(h, t) \leftarrow \text{BFS}(h, t, k, \mathcal{G})$ 
691 4:   for all path  $\pi \in \Pi(h, t)$  do
692 5:      $\rho \leftarrow \text{ExtractRule}(\pi, r)$ 
693 6:     if  $\text{ComputeConfidence}(\rho, \mathcal{G}) > \tau$  then
694 7:        $R_{\text{raw}} \leftarrow R_{\text{raw}} \cup \{\rho\}$ 
695 8:    $R_{\text{valid}} \leftarrow \emptyset$ 
696 9:   for all  $\rho \in R_{\text{raw}}$  do
697 10:    if  $\text{IsPlausibleLLM}(\rho, \mathcal{G})$  then
698 11:       $R_{\text{valid}} \leftarrow R_{\text{valid}} \cup \{\rho\}$ 
699 12: return  $R_{\text{valid}}$ 

```

700 **Logic-Enhanced Reasoning** aims to improve the inductive reasoning capabilities of LLMs by in-
 701 corporating validated symbolic rules into the learning process. Given a query triple (h, r, t) , SKILL

702 first constructs a reasoning subgraph that integrates both the first-order neighborhoods and multi-hop
 703 relational paths connecting the head and tail entities.
 704

705 To reduce noise and emphasize structurally meaningful evidence, a rule-matching mechanism is
 706 employed to align relational paths in the subgraph with high-confidence symbolic rules. This process
 707 yields a pruned subgraph and a set of relevant rules, both of which are transformed into natural
 708 language prompts that encode rich structural and semantic context. These prompts are then used to
 709 fine-tune the LLM, enabling it to assess the plausibility of candidate triples. By explicitly injecting
 710 relational structure and symbolic knowledge, SKILL facilitates generalization to unseen entities and
 711 sparse subgraphs while maintaining interpretability through rule-grounded reasoning.
 712

Algorithm 2 Reasoning Subgraph Construction

713 **Require:** Knowledge graph $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, query triple (h, r, t) , max path length k
 714 **Ensure:** Reasoning subgraph $\mathcal{G}_{(h,r,t)}$
 715 1: $\mathcal{N}_1(h) \leftarrow \{(h, r', e') \in \mathcal{T}\} \cup \{(e', r', h) \in \mathcal{T}\}$
 716 2: $\mathcal{N}_1(t) \leftarrow \{(t, r', e') \in \mathcal{T}\} \cup \{(e', r', t) \in \mathcal{T}\}$
 717 3: $\mathcal{P}_{h \rightarrow t} \leftarrow \text{BFS}(h, t, k, \mathcal{G})$
 718 4: **return** $\mathcal{G}_{(h,r,t)} = \mathcal{N}_1(h) \cup \mathcal{N}_1(t) \cup \bigcup_{\pi \in \mathcal{P}_{h \rightarrow t}} \text{Triples}(\pi)$
 719

720 As detailed in Algorithm 2, the reasoning subgraph $\mathcal{G}_{(h,r,t)}$ is composed of two components: (i)
 721 the first-order neighborhoods of the head and tail entities, capturing local relational context, and (ii)
 722 closed multi-hop relational paths of bounded length (up to k) between the head and tail entities,
 723 extracted using a breadth-first search. Together, these elements provide a rich and contextually
 724 grounded subgraph that serves as the foundation for logic-informed reasoning.
 725

726 To reduce noise and highlight informative patterns, we prune the reasoning subgraph using a sym-
 727 bolic strategy (Algorithm 3). For each closed path π in $\mathcal{G}_{(h,r,t)}$ and rule $\rho \in R$, we compute a soft
 728 match score based on how well π aligns with the body of ρ . This score is weighted by the rule’s
 729 confidence, yielding a relevance score $s(\pi, \rho)$.
 730

Algorithm 3 Reasoning Subgraph Pruning

731 **Require:** Reasoning subgraph $\mathcal{G}_{(h,r,t)}$, validated rules R with confidence $\text{conf}(\rho)$, top- K size K
 732 **Ensure:** Pruned subgraph $\tilde{\mathcal{G}}_{(h,r,t)}$, relevant rules $R_{(h,r,t)}$
 733 1: Initialize list $S \leftarrow []$
 734 2: **for all** closed paths π in $\mathcal{G}_{(h,r,t)}$ **do**
 735 3: **for all** rules $\rho \in R$ **do**
 736 4: $m(\pi, \rho) \leftarrow$ fraction of rule body matched by π
 737 5: $s(\pi, \rho) \leftarrow m(\pi, \rho) \times \text{conf}(\rho)$
 738 6: **if** $s(\pi, \rho) > 0$ **then**
 739 7: Append $(\pi, \rho, s(\pi, \rho))$ to S
 740 8: $\mathcal{S}_{(h,r,t)} \leftarrow \text{TopK}(S, K)$
 741 9: $\tilde{\mathcal{G}}_{(h,r,t)} \leftarrow \bigcup_{(\pi, \rho, s) \in \mathcal{S}_{(h,r,t)}} \text{Triples}(\pi)$
 742 10: $R_{(h,r,t)} \leftarrow \{\rho \mid \exists \pi : (\pi, \rho, s) \in \mathcal{S}_{(h,r,t)}\}$
 743 11: **return** $\tilde{\mathcal{G}}_{(h,r,t)}, R_{(h,r,t)}$
 744

746 We rank all path-rule pairs by relevance and select the top- K candidates. The resulting pruned
 747 subgraph $\tilde{\mathcal{G}}_{(h,r,t)}$ and associated rule set $R_{(h,r,t)}$ retain the most semantically aligned evidence,
 748 improving both reasoning focus and interpretability. After pruning, the refined reasoning subgraph
 749 $\tilde{\mathcal{G}}_{(h,r,t)}$ and the corresponding rule set $R_{(h,r,t)}$ are converted into a natural language prompt that
 750 encodes both structural context and symbolic guidance for the query triple.
 751

B STATISTICS OF DATASETS

752 We conduct experiments on three widely used benchmark datasets: FB15k-237, WN18RR, and
 753 NELL-995. **FB15k-237** is a subset of Freebase with redundant inverse relations removed, com-

monly used for link prediction. **WN18RR** is derived from WordNet, a lexical knowledge base, and retains only non-trivial relations to avoid test leakage. **NELL-995** originates from the Never-Ending Language Learning system, containing automatically extracted facts with a larger and noisier structure compared to the other two datasets. These datasets collectively cover diverse domains—encyclopedic knowledge, lexical semantics, and open-domain extractions—providing a comprehensive testbed for evaluating inductive reasoning methods. Statistics of FB15k-237, WN18RR, and NELL-995 datasets are summarized in Table 7. The implementation code and datasets are provided in the supplementary material.

Table 7: Statistics of datasets and their splits. $|\mathcal{R}_G|$: #relations, $|\mathcal{E}_G|$: #entities, $|\mathcal{T}_G|$: #triplets.

Split	FB15k-237			WN18RR			NELL-995		
	$ \mathcal{R}_G $	$ \mathcal{E}_G $	$ \mathcal{T}_G $	$ \mathcal{R}_G $	$ \mathcal{E}_G $	$ \mathcal{T}_G $	$ \mathcal{R}_G $	$ \mathcal{E}_G $	$ \mathcal{T}_G $
train	180	1594	5223	9	2746	6670	88	2564	10063
train-2000	180	1280	2008	9	1970	2002	88	1346	2011
train-1000	180	923	1027	9	1362	1001	88	893	1020
test-transductive	102	550	492	7	962	638	60	1936	968
test-inductive	142	1093	2404	8	922	1991	79	2086	6621

C PROMPT TEMPLATE DESIGN

Prompt (Evaluating the plausibility of rules)

You are an expert in knowledge reasoning and rule-based inference. Your task is to evaluate the following reasoning rule and its instance.

Your evaluation should consider two aspects:

1. Reasonableness:

- Does the rule logically follow from known facts or principles?
- Are the premises valid and do they logically support the conclusion?
- Is there sufficient evidence to justify this inference?
- Is the rule premise the same? If so, the rule is not reasonable.

2. Usefulness:

- Can this rule be applied in practical real-world scenarios?
- Can it contribute to meaningful inference or prediction?
- Does it help to reduce uncertainty, assist decision making, or generate new knowledge?

Decision Criteria: If the rule is both reasonable and useful, answer “Yes”. If the rule fails to meet either Reasonableness or Usefulness, answer “No”.

Example Evaluation: *Rule Head:* person gender *Rule Premise:* person spouse s marriage type of union. person spouse s marriage type of union. person gender

Explanation: This rule tries to infer a person’s gender based on having a spouse and knowing the marriage type of union. However, knowing someone is married and the marriage type does not allow inference of gender. Therefore, this rule is not reasonable or useful. *Answer:* No

Evaluation Task: Rule Head: {rule head} Rule Premise: {rule body} Rule Instance: Result triple: {result triple} Premise triple: {premises triples}

Please answer only with “Yes” or “No”. Do not provide any additional explanation or context.

The prompt template used to evaluate the plausibility of rules is shown in Prompt (Evaluating the plausibility of rules). It guides the language model to assess each rule-instance pair based on two criteria: *Reasonableness* and *Usefulness*. The model is instructed to examine whether the rule logically follows from its premises and whether it can contribute to practical inference or decision-

810 making. A binary decision—“Yes” or “No”—is then returned, indicating whether the rule is both
 811 logically sound and pragmatically valuable.
 812

813 The prompt template used to evaluate whether a specific relation can be reliably inferred from the
 814 knowledge graph is shown in Prompt (Inference Verification). It instructs the LLM to consider
 815 a combination of local neighbor triples, inductively derived reasoning rules, and closed relational
 816 paths connecting the head and tail entities. Based on structured context, the model determines
 817 whether the target relation is inferable.

818 **Prompt (Inference Verification)**

819
 820 You are an expert in knowledge reasoning. Your task is to determine whether the relation
 821 in the input can be reliably inferred between the head and tail entities, based on a set of
 822 reasoning paths from the knowledge graph.
 823

824 The head entity is {head_entity}, the tail entity is {tail_entity}.
 825

826 **Neighbor triples from the knowledge graph:**
 827 {neighbor_triples}

828 **Reasoning rules inductively derived from the graph:**
 829 {reasoning_rules}

830 **Closed paths collected of the knowledge graph:**
 831 {reasoning_paths}

832 **The relation to be inferred:**
 833 {test_triple}

834 Please return “Y” if the triplet can be inferred from the knowledge graph based on the rea-
 835 soning paths and rules provided, otherwise return “N”. Do not say anything else except your
 836 determination.

837 **D DETAILED TRAINING IMPLEMENTATION**

838 We provide a comprehensive overview of the training procedure in SKILL, covering offline rule
 839 mining, dynamic prompt construction, and optimization settings.
 840

841 **Offline Rule Mining and Verification** The workflow begins with an offline preprocessing stage that
 842 constructs a repository of semantically validated rules. Candidate rules are first generated using a
 843 breadth-first search (BFS) over the training graph to identify closed-path symbolic patterns. Each
 844 candidate is then evaluated via one-shot prompting with a Large Language Model (LLM). Only rules
 845 deemed “reasonable” and “useful” are retained in the validated rule set \mathcal{R}_{valid} , effectively removing
 846 spurious or noisy patterns before training.

847 **Dynamic Prompt Construction** For each training triple (h, r, t) , we build a structured prompt by
 848 integrating subgraph evidence with the most relevant validated rules. We first retrieve the local rea-
 849 soning subgraph $\mathcal{G}_{(h,r,t)}$, which includes the first-order neighborhood and closed paths connecting
 850 h and t . Each rule in \mathcal{R}_{valid} is then scored according to how well its body matches the extracted
 851 paths (Eq. 8). The Top- K (with $K = 6$) highest-scoring rule–path pairs are selected to form the
 852 final instruction prompt. To enable discriminative learning, we also construct 12 negative instances
 853 for every positive triple by corrupting its head or tail entity.

854 **Hyperparameters and Optimization** We fine-tune the Qwen2-7B-Instruct backbone using
 855 LoRA for parameter-efficient adaptation, with rank $r = 16$ and scaling factor $\alpha = 32$. Optimization
 856 is performed using AdamW with a learning rate of 1×10^{-4} . The effective batch size is controlled by
 857 combining a per-device batch size of 2 with gradient accumulation over 4 steps. To avoid overfitting,
 858 training is carried out for a single epoch.

859 **Inference Workflow** During inference, each test triple undergoes the same prompt construction
 860 procedure as during training. The model receives the retrieved reasoning subgraph and the Top-6
 861 matched rules, and predicts the plausibility of the query by outputting a “Yes” or “No” response.
 862

863 Regarding runtime, we report the measurements of our own implementation. With the closed-path
 constraint, rule mining completes within 20 minutes on all datasets, and LLM-based semantic vali-
 864 dation proceeds at roughly 4 rules per second. These steps are fully offline and do not affect inference

864 latency. At inference time, SKILL processes about 5 queries per second, which is approximately
 865 50% of the throughput reported by CATS.
 866

867 E HUMAN EVALUATION OF LLM-BASED RULE VALIDATION

869 To assess the reliability of the LLM-based rule validation stage, we conduct a human examination of
 870 a representative set of **100 validated rules** sampled from the rule base constructed on FB15k-237.
 871 Each rule is reviewed for semantic coherence and reasonableness within the Freebase schema.
 872

873 Our analysis shows that approximately **87%** of the validated rules are judged semantically coherent
 874 or at least plausible, whereas around **13%** are found to be implausible. This suggests that the LLM-
 875 based semantic validation is reasonably reliable in practice.

876 Most rules capture sensible multi-hop dependencies such as *film*→*distributor*→*genre* or
 877 *degree*→*institution*→*major*. The small portion of
 878 implausible rules is further mitigated by our match-
 879 confidence scoring and Top-*K* pruning during inference.
 880 Overall, this human study shows that LLM-based rule
 881 validation produces a compact and mostly accurate rule
 882 set that effectively supports structural reasoning in our
 883 framework.
 884

885 F RESULTS OF ABLATION STUDIES

888 We evaluate SKILL’s components on FB15k-237 under both transductive and inductive settings, as
 889 shown in Table 8. The **Vanilla** baseline directly prompts the LLM with textualized triples, yielding
 890 the weakest performance due to the lack of adaptation and structural cues. **Fine-Tune** improves
 891 results by training on raw triples, but still lacks explicit relational understanding. **Subgraph** only
 892 introduces semantically filtered subgraphs, leading to notable gains, especially in the inductive setting,
 893 by providing structured contextual information. Adding unfiltered symbolic rules (**Sub + Raw**
 894 **Rules**) further boosts performance, indicating that rule-level guidance is beneficial even without
 895 validation. **SKILL** achieves the best results by combining filtered subgraphs with validated rules,
 896 showing the importance of both semantic filtering and symbolic guidance. Overall, these results
 897 highlight the complementary roles of structure-aware subgraph pruning and high-quality symbolic
 898 rules in enhancing LLM-based knowledge graph reasoning. Although SKILL yields only a moderate
 899 improvement over **Sub + Raw Rules**, it relies on a substantially pruned set of rules that are
 900 fewer in number but higher in quality, ensuring that the performance gains are both more reliable
 901 and more consistent.

901 Table 8: Ablation results on FB15k-237
 902

903 904 905 Conf.	906 Transductive		907 Inductive	
	908 H@1	909 MRR	910 H@1	911 MRR
912 Vanilla	0.461	0.564	0.390	0.508
913 Fine-Tune	0.723	0.813	0.739	0.832
914 Subgraph	0.751	0.839	0.807	0.879
915 Sub + Raw Rules	0.763	0.837	0.844	0.904
916 SKILL	0.774	0.845	0.859	0.911

917 G CASE STUDY

918 To further demonstrate the interpretability and reliability of **SKILL**, we present a case study in
 919 the education domain (see Fig. 5). The target query is to infer whether *Barack Obama*’s major is
 920 *Law*. Unlike conventional embedding-based methods that rely on latent similarity and may traverse
 921 semantically implausible paths, SKILL explicitly grounds inference in symbolic rules validated by

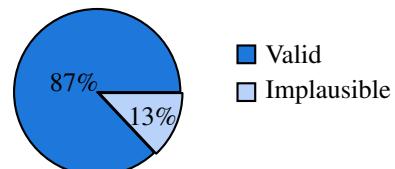


Figure 4: Human judgment distribution over 100 validated rules.

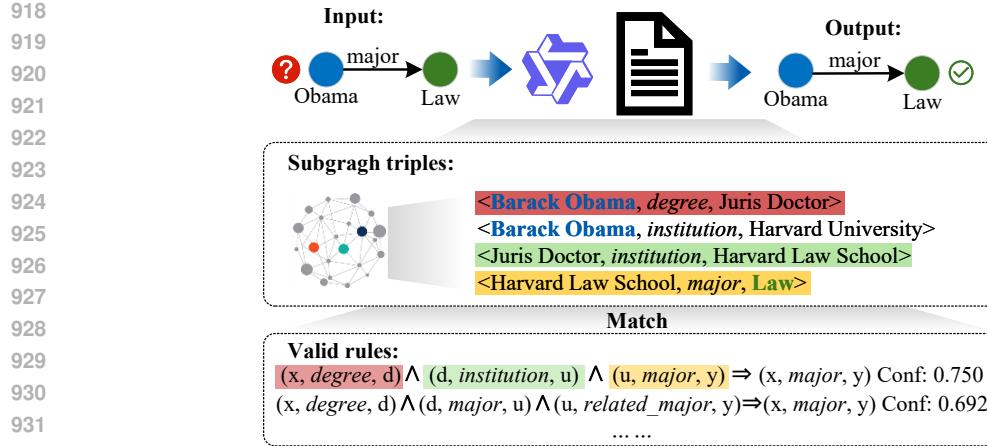


Figure 5: Case study: SKILL infers `<Obama, major, Law>` via explicit symbolic reasoning, providing both correct prediction and transparent interpretability.

LLMs. From the local subgraph, SKILL collects supporting triples `<Obama, degree, Juris Doctor>`, `<Juris Doctor, institution, Harvard Law School>`, and `<Harvard Law School, major, Law>`. Matching these facts with a validated rule,

$$(x, \text{degree}, d) \wedge (d, \text{institution}, u) \wedge (u, \text{major}, y) \Rightarrow (x, \text{major}, y),$$

SKILL infers the missing relation `<Obama, major, Law>`. This explicit, rule-aligned chain provides a transparent explanation for the prediction and illustrates how symbolic guidance improves the semantic consistency of LLM-based reasoning.

H THE USE OF LARGE LANGUAGE MODELS (LLMs)

During the preparation of this paper, LLMs are used exclusively for language polishing and stylistic refinement. Specifically, LLMs improve the clarity, fluency, and readability of the manuscript without altering its substantive content, methodology, or results. All conceptual ideas, experimental designs, data analyses, and conclusions are conceived and executed independently by the authors. The use of LLMs is therefore limited to surface-level improvements, such as correcting grammar, adjusting phrasing for conciseness, and ensuring consistency in academic tone, in order to meet the standards of formal scientific writing.