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Abstract

We consider multi-stage sequential decision making, where the treatment at any stage may
depend on the subject’s entire treatment and covariate history. We introduce a general frame-
work for doubly robust uncertainty quantification for the quantiles of cumulative outcomes
under a sequential treatment rule. While previous studies focused on mean effects, quantile
effects offer unique insights into the distributional properties and are more robust for heavy-
tailed outcomes. It is known that, doubly robust inference is significantly more challenging
and largely unexplored for quantile treatment effects. More importantly, for mean effects,
doubly robust estimation does not ensure doubly robust inference. Our approach first pro-
vides a doubly robust estimator for any quantile of interest based on pre-collected data,
achieving semi-parametric efficiency. We then propose a novel doubly robust estimator for
the asymptotic variance, enabling the construction of a doubly robust confidence interval.
To overcome the challenges in parameter-dependent nuisance functions, we leverage deep
conditional generative learning techniques. We demonstrate advantages of our approach via
both simulation and real data from a short video platform. Additionally, we observe that
our proposed approach leads to another mean effect estimator that outperforms existing
estimators with heavy-tailed outcomes.

1 Introduction

Treatment effect evaluation plays an important role in a large variety of real-world applications. In precision
medicine (see e.g., Murphy, 2003; Kosorok & Laber, 2019; Tsiatis et al., 2019), physicians wish to know the
impact of implementing an individualized treatment strategy. In technological companies, decision makers
conduct A/B testing to evaluate the performance of a newly developed product (see e.g., Bojinov & Shephard,
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2019; Shi et al., 2023; Sun et al., 2024a; Wen et al., 2025). In economics and social science, program evaluation
methods are widely applied to access the effects of certain intervention policies (see Abadie & Cattaneo, 2018,
for an overview). In the aforementioned applications, a new treatment decision rule and/or policy need to be
evaluated offline before online validation. Over the past decade, offline evaluation of a fixed, data-dependent
or optimal policy has been widely studied in statistics (Zhang et al., 2012; Chakraborty et al., 2013; Zhang
et al., 2013; Matsouaka et al., 2014; Luedtke & Van Der Laan, 2016; Luckett et al., 2020; Liao et al., 2021;
2022; Shi et al., 2022; Ramprasad et al., 2023; Wang et al., 2023; Zhou et al., 2023a; Shi et al., 2024b; Bian
et al., 2025) and machine learning (Dudík et al., 2011; Jiang & Li, 2016; Thomas & Brunskill, 2016; Xie
et al., 2019; Cai et al., 2020; Dai et al., 2020; Kallus & Zhou, 2020; Kallus & Uehara, 2020; Namkoong
et al., 2020; Shi et al., 2020; Hao et al., 2021; Shi et al., 2021a; Chen & Qi, 2022; Xu et al., 2023; Bossens &
Thomas, 2024; Yu et al., 2024; Zhou et al., 2025).

Nonetheless, all the previously mentioned works have primarily focused on the mean outcome, which may
not fully capture the distributional effects of a policy, such as its impact on specific quantiles or the entire
outcome distribution, are of primary interest. Take our real-data application as an example. The data is
collected from a world-leading technological company with one of the largest mobile platforms for production,
aggregation and distribution of short-form videos. We aim to assess the impact of specific advertising policies
on user experience, measured by the length of stay on the platform. A particularly important subgroup is
the passive users, who exhibit little responsiveness to any advertising policy and tend to spend minimal
time on the platform. These users are concentrated in the lower tail of the engagement distribution, around
the 25th percentile. Policy-makers are particularly interested in addressing the needs of this subgroup, since
treatments with a greater impact on the lower quartile are more likely to attract potential customers who
were previously less engaged with the platform.

In addition to short video platforms, evaluating the distributional effects of a policy is crucial in many other
applications as well. For instance, in welfare programs, policy-makers may wish to identify interventions
that specifically reduce the cost of living for the lowest 10% individuals, rather than focusing on the average
population (Cui & Han, 2023). When studying gender discrimination, researchers often care about the entire
distribution of wages, social visibility, or media coverage, rather than solely comparing mean differences
between men and women (Firpo, 2007). In microbiome research, sequencing reads (Wang et al., 2025), and
in e-commerce, advertisement clicks or profit (Wei et al., 2023) are typically non-negative and zero-inflated.
In these cases, the mean can be a misleading summary statistic, making it more appropriate and informative
to focus on quantiles.

Even when the mean outcome is of interest, traditional sample average estimators can perform poorly in the
presence of skewed or heavy-tailed outcomes (Rowland et al., 2023; Zhu et al., 2024; Behnamnia et al., 2025).
To illustrate the prevalence of heavy-tailed outcomes in practice, Figure 1 visualizes the distribution of the
outcome variable in our real data example – user watch time – using a Q-Q plot and a log-log frequency plot.
The Q-Q plot reveals a clearly right-skewed distribution, while the log-log plot displays an approximately
linear decay in its probability density function, consistent with a power-law tail distribution – such as the
t-distribution commonly used to model heavy-tailed outcomes – of the form x−α. As we will show later in
Section 5.3, when outcome variables are heavy-tailed, computing quantiles first and then averaging results
in a much improved estimator for the mean. This further motivates us to study quantile treatment effects.

This paper focuses on developing doubly robust and semi-parametrically efficient statistical inference frame-
work for the quantiles of a target treatment’s return using pre-collected datasets from multi-stage studies,
which has been less studied in literature. In causal inference, the estimation of the causal effect often depends
on two nuisance parameters, one for the propensity score and another for the outcome regression model. An
estimator is doubly robust if it is consistent for the causal effect of interest when any one of the two nui-
sance parameters is consistently estimated. While doubly robust estimation has been extensively studied
for mean-based estimators, our work addresses two key difficulties that set it apart from existing studies:
(1) estimating quantiles rather than means, and (2) conducting rigorous statistical inference beyond point
estimation. These additional complexities make our approach both novel and technically demanding.

The challenges of conducting treatment effect inference on quantiles are twofold. Firstly, constructing a
doubly robust confidence interval requires doubly robust asymptotic linearity, which is more stringent than
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Figure 1: Left: Q-Q plot that compares the sample quantiles of user watch time in our real dataset to the
theoretical quantiles of a standard normal distribution. Right: Log-log plot showing the count of data points
at each user watch time value, grouped by percentiles. Both plots highlight the heavy-tailed nature of the
outcome distribution in our dataset.

doubly robust consistency and has been less studied. Benkeser et al. (2017) provided a thorough discussion
of the challenges associated with doubly robust inference for the average treatment effect at a single time
point. In particular, they revealed from a careful theoretical analysis that when flexible, data-adaptive
estimators of the nuisance parameters are used, doubly robust estimation does not readily extend to doubly
robust inference. They showed that some natural alternatives are inappropriate for this purpose and further
proposed a doubly robust inference procedure via targeted minimum loss-based estimation, which, however,
requires additional nuisance parameters. Secondly, the efficient estimating equation for the quantile value is
nonsmooth and involves parameter-dependent conditional mean function estimation which requires learning
the conditional mean function for various values of the target parameter (Kallus et al., 2019). Directly
applying supervised learning algorithms to construct the efficient estimating equation is very computationally
intensive. This problem becomes more challenging when considering multiple-stage scenarios with history-
dependent treatment.

Our contributions can be summarized as follows: (i) We propose a comprehensive doubly-robust uncertainty
quantification procedure for quantile treatment effect in sequential decision making. In particular, we develop
a doubly-robust quantile value estimator and a doubly-robust estimator for its asymptotic variance. Semi-
parametric efficiency is established to guarantee the performance of our quantile estimator. To the best of our
knowledge, this is the first work that rigorously investigates uncertainty quantification for a target policy’s
quantile value in multi-stage studies. (ii) We propose utilizing existing state-of-the-art deep conditional
generative learning methods to handle parameter-dependent nuisance function estimation, which circumvents
the error aggregation commonly encountered in standard iterative estimation methods prevalent in sequential
decision making. (iii) We further develop a tail-robust doubly-robust estimator for the mean outcome by
aggregating the proposed quantile estimator at multiple quantile values. Our simulation study demonstrates
that the mean squared error (MSE) of the proposed estimator is around 15%-50% less than that of the
standard doubly-robust mean effect estimator with heavy-tailed responses.

1.1 Related work

In the literature, several methods have been proposed for evaluating treatment effects beyond the mean. One
line of work focuses on quantile or distribution regression (Machado & Mata, 2005; Chernozhukov et al.,
2013). Another line employs inverse probability weighting, using propensity scores to reweight each outcome
in order to estimate off-policy quantile treatment effects (QTE, Firpo, 2007) or cumulative distribution
functions (Donald & Hsu, 2014). More recently, Kallus et al. (2019) proposed a localized debiased machine
learning approach for QTE estimation, while Muandet et al. (2021) introduced a nonparametric method
based on kernel mean embeddings. Huang et al. (2021) further extended prior analyses from mean outcomes
to distributional metrics in contextual bandit settings. Wu et al. (2023a) proposed a non-crossing neural
network architecture for learning distributional individualized treatment effects. A recent concurrent work

3



Published in Transactions on Machine Learning Research (09/2025)

by Cheng et al. (2024) also investigated the quantile treatment effect under a marginal structural quantile
model. Our work differs from theirs by further establishing a doubly robust estimator for the variance.

A related but different line of work focuses on policy learning rather than treatment effect estimation. For
example, Wang et al. (2018a) and Qi et al. (2019) studied optimal policy learning to maximize distributional
quantities other than the mean outcome. Later, Leqi & Kennedy (2021) considered optimizing the average of
conditional quantiles to promote “across-group fairness”. More recently, Cui & Han (2023) proposed minimax
policy learning that are robust to model uncertainty. Despite these developments, both strands of research –
whether focused on policy evaluation or policy learning – have largely been confined to single-stage decision
making settings, limiting their applicability to real-world problems that require sequential decision making.

Some recent works have explored distributional evaluation and policy optimization in sequential decision
making and reinforcement learning (see e.g., Dabney et al., 2018; Zhou et al., 2020; Huang et al., 2022;
Li et al., 2022; Wu et al., 2023b; Zhang et al., 2023; Li et al., 2024; Sun et al., 2024b; Shen et al., 2025).
However, most of the aforementioned work focuses on point estimation of target quantiles, with limited
attention to inference procedures. Our contribution to this line of research is to provide a doubly robust
inference procedure for quantile-based policy evaluation.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we introduce the doubly-robust estimation and
inference procedure for single-stage decision making. In Section 3, we formally establish the framework
to the multi-stage setting with detailed algorithm and estimation procedures. In Section 4, we study the
asymptotic properties and semi-parametric efficiency of the proposed procedure. Simulation studies and real
data analysis are conducted in Sections 5 and 6, respectively. Finally, we conclude our paper in Section 7.
All the proofs are presented in the appendix.

2 Single-Stage Decision Making

2.1 Preliminaries

We first describe the observed data. Let X ∈ X denote the d-dimensional vector that summarizes the baseline
information (e.g., age, gender) of a given subject before treatment assignment, let A ∈ A = {1, · · · ,m}
denote the treatment assigned to that subject where m denotes the number of treatment options, and let
R ∈ R denote the subject’s outcome (the larger the better by convention). The observed data can thus be
summarized as N i.i.d. covariates-treatment-outcome triplets {Xi, Ai, Ri}Ni=1 where N denotes the number
of subjects.

We next introduce the potential outcomes. For any 1 ≤ a ≤ m, let R∗(a) denote the potential outcome had
the subject received the treatment a. Let b : X × A 7→ [0, 1] denote the behavior policy that generates the
data, i.e., b(a|x) = P(A = a|X = x). Likewise, let π : X × A 7→ [0, 1] denote the target policy we wish to
evaluate. Notice that b is allowed to be unknown, as in observational studies.

Finally, we introduce the following standard assumptions:

(C1) Consistency: R = R∗(A).

(C2) No unmeasured confounders (Rosenbaum & Rubin, 1983): A ⊥ (R∗(1), · · · , R∗(m))|X.

(C3) Positivity: There exists some constant ε > 0, such that P(b(A|X) ≥ ε) = 1.

We remark that (C1)-(C3) are commonly imposed in causal inference and individualized treatment regimes
literature (see e.g., Zhang et al., 2012; Wang et al., 2018a; Nie & Wager, 2021). They allow us to infer
the potential outcome distribution from the observed data. (C2) and (C3) are automatically satisfied in
randomized studies where the behavior policy is usually a strictly positive function independent of x.
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2.2 Quantile Treatment Effect evaluation

Let R∗(π) denote the potential outcome variable following the target policy π. For a given quantile level
0 < τ < 1, our problem of interest is to infer the τth quantile of R∗(π) marginalized over the initial state
distribution X ∈ G, denoted by ητ . Specifically, we have τ = P(R∗(π) ≤ ητ ) = EX∼G [P(R∗(π) ≤ ητ |X)]. For
a given target policy π, the τth quantile of R∗(π) can be decomposed to a mixture of {R∗(a) : 1 ≤ a ≤ m}
with weights specified by π. As such,

P(R∗(π) ≤ r|X) =
m∑
a=1

π(a|X)P(R∗(a) ≤ r|X). (1)

Under (C1)-(C3), the conditional potential outcome distribution PR∗(a)|X is equal to the conditional distri-
bution of observed outcome PR|X,A. This together with Equation 1 allows us to identify the quantile value
from the observed data. In the following, we first introduce the direct method and the inverse probability
weighting method, and then combine the two for efficient and robust estimation of the quantile treatment
effect.

2.2.1 Direct Method (DM)

The first estimator is provided by a direct method, where we integrate quantile regression with Equation 1 to
devise an optimization-based approach for quantile estimation. The methodology is conceptually equivalent
to the g-computation formula used in causal inference (Daniel et al., 2011; Snowden et al., 2011; Chatton
& Rohrer, 2024). Let ρτ (u) = u · (τ − I{u < 0}) denote the quantile loss function. By the law of iterated
expectation, ητ = arg minη E[ρτ (R∗(π)− η)] = arg minη E[E{ρτ (R∗(π)− η)|X}]. Under (C1)-(C3), it follows
that

η̂DM = arg min
η

m∑
a=1

Ê[π(a|X) · Ê{ρτ (R− η)|A = a,X}], (2)

where Ê denotes the empirical expectation calculated from the observed data. DM first estimates the con-
ditional expectation within the square brackets for each η and then plugs in this estimator in the above
optimization problem to learn ητ .

As discussed in the introduction, it remains challenging to compute the conditional mean estimator for each
η. We will later introduce our proposal to address this issue.

2.2.2 Inverse Probability Weighting (IPW) method

An inverse probability weighting estimator, akin to the off-policy mean outcome estimation in classical causal
literature, can be developed by the change of measure theorem based on Equation 2:

η̂IPW = arg min
η

Ê

[
π(A|X)
b̂(A|X)

ρτ (R− η)
]
. (3)

When the behavior policy b is unknown, it can be estimated using any proper supervised learning algorithm
with a mild convergence rate. The precise requirements are provided in Assumption (A1) and Remark 1.

2.2.3 Doubly Robust (DR) Estimator

In causal inference, an estimator is doubly robust if it is consistent for the causal effect of interest when
any one of the two nuisance functions, i.e. propensity score or outcome regression function, is consistently
estimated. As a result, the doubly-robust method combines the DM and IPW procedures and alleviates
the risk of model misspecification by only requiring one of the nuisance functions to be correctly specified.
Based on the classical DR estimator for the mean outcome, a DR quantile estimator can be formulated by
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incorporating the fundamental concept of quantile regression as follows:

η̂DR = arg min
η

1
N

N∑
i=1

Ψ(η;Xi, Ai, Ri, b̂, Ê)

≡ arg min
η

1
N

N∑
i=1

[
π(Ai|Xi)
b̂(Ai|Xi)

ρτ (Ri − η) +
(

1− π(Ai|Xi)
b̂(Ai|Xi)

)
Ê{ρτ (Ri − η)|Xi, Ai ∼ π}

]
,

(4)

In the above formula, b̂ represents the estimated behavior policy. Ê{·|Xi, Ai ∼ π} denotes the conditional
mean functional that needs to be estimated later. Here, the reward Ri in the conditional expectation is a
random variable by executing the target policy π under baseline information Xi.

The first term of the second line in Equation 4 is identical to the IPW estimator. The second part is an
augmentation term which offers additional protection against the model misspecification of the behavior
policy while improving the estimation efficiency. When the conditional mean function is correctly specified,
the expectation of our DR estimator is equivalent to that of the DM estimator. When the behavior policy is
correctly specified, the estimator is unbiased to the IPW estimator and thus is also consistent. This verifies
that η̂DR, as a combination of DM and IPW estimators, indeed satisfies the doubly-robustness property.

Similar to DM, DR requires estimating the conditional mean function for each η. We propose employing
a deep conditional generative learning method to compute Ê{· | ·}. The main idea is utilizing deep neural
networks to learn a conditional sampler that takes the covariate-treatment pair and some random noises as
input and outputs pseudo outcomes whose conditional distribution is similar to that of PR|A,X . By using
the Monte Carlo method, these pseudo outcomes can be further used to approximate the conditional mean
functions for any η. This addresses the challenge of parameter-dependent nuisance function estimation.
As a powerful approach for generating random samples from complex and high-dimensional conditional
distributions, deep conditional generative learning methods have been successfully implemented in a large
variety of applications including computer vision, imaging processing, epidemiology, time series analysis and
machine learning (Yan et al., 2016; Shu et al., 2017; Wang et al., 2018b; Bellot & van der Schaar, 2019; Davis
et al., 2020; Jo et al., 2021; Shi et al., 2021b; Zhou et al., 2023b; Shi et al., 2024a; Zhang et al., 2024; Yang
et al., 2025). We detail our estimation procedure in the next section.

2.3 Estimation and Inference Procedures

Our estimation procedure consists of four steps: 1) sample splitting, 2) nuisance functions estimation, 3)
doubly-robust quantile value and variance estimation, 4) tail-robust mean value estimation. Pseudocode
summarizing the proposed algorithm is given in Algorithm 1.

2.3.1 Step 1: Sample Splitting

Step 1 of the proposed algorithm is to randomly divide samples {1, . . . , N} into S disjoint subgroups of
equal size. We define n = N/S and assume n ∈ Z without the loss of generality. This step incorporates
Equation 4 with cross-fitting in Step 3 to reduce the bias of the nuisance function estimators obtained by
the aforementioned supervised and generative learning methods. For any 1 ≤ s ≤ S, let Is denote the sth
subgroup and Ics denote its complement. Sample splitting allows us to use the data in Ics to compute b̂
and Ê{·}, and those in Is to construct the estimating equation. In addition, we can get full efficiency by
aggregating the estimating equations over different s. Such a technique has been implemented for policy
evaluation in recent literature (Chernozhukov et al., 2018; Shi et al., 2021a; Kallus & Uehara, 2022).

2.3.2 Step 2: Nuisance Functions Estimation

Step 2 of the proposed algorithm is to use each data subset in Ics to estimate the behavior policy b and the
conditional distribution of R given A and X.

Firstly, notice that estimating the behavior policy is essentially a regression problem. As such, we can
apply any supervised learning algorithm designed for categorical response variables to compute b̂. In our
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Algorithm 1 Pseudo Code of Quantile Treatment Effect Evaluation in Single Stage

1: Input: {Xi, Ai, Ri}Ni=1 triplets; quantile levels τ ; number of folds S.
2: Output: doubly robust quantile estimator η̂DR

τ ; tail-robust DR mean estimator µ̂DR.
3: procedure A. Doubly Robust Quantile Estimator
4: Randomly split the data into S folds. For any s ∈ S, denote Is as the sth subgroup.
5: for all s ∈ S do
6: Estimate b̂ by GBDT with the data in Ics ;
7: Estimate R̂|(X,A) by MDN with the data in Ics ;
8: Generate {R̂jxi,a|(X = xi, A = a)}Mj=1 for any a ∈ A and i ∈ Is;
9: end for

10: Solve the optimization problem in formula (4) to obtain η̂DR.
11: end procedure
12: procedure B. Tail-Robust DR Mean Estimator
13: For all of the quantile levels of our interest, calculate η̂τ by Procedure A. Averaging among all quantiles

yields the tail-robust DR mean estimator µ̂DR.
14: end procedure

implementation, we employ a Gradient Boosting Decision Tree (GBDT) algorithm and find that it works
well in our numerical examples.

Secondly, we need to estimate the conditional expectation E[ρτ (R − η)|X = x,A = a]. As discussed earlier,
one approach is to apply supervised learning to approximate the conditional expectation for any η. However,
such a method is computationally intensive when the search space of η is large, since it is unrealistic and
super inefficient to posit a separated model for each possible value of η. To facilitate the computation, we
leverage the state-of-the-art deep conditional generative learning methods to learn the conditional reward
distribution. This type of approach includes but not limited to Generative Adversarial Networks (GAN) and
Mixture Density Network (MDN), which provide promising performance in real applications.

In the subsequent sections, we employ Mixture Density Networks (MDN) as an example for illustrative pur-
poses. It’s worth noting that our framework is adaptable to the implementation of any conditional distribu-
tion approximation methodology, provided that the convergence rate satisfies a readily attainable assumption
(Assumption (A1)), which will be elucidated in Section 4.

For a brief introduction to MDN, it integrates the Gaussian mixture model with deep neural networks by
assuming that the conditional density ofR givenX andA is a mixture of J conditional Gaussian distributions.
That is, the probability density function of R|(X,A) satisfies

f(r|x, a) =
J∑
j=1

αj(x, a) 1√
2πσj(x, a)

exp
{
− (r − µj(x, a))2

2σ2
j (x, a)

}
,

with weights {αj(x, a)}Jj=1 ∈ [0, 1], conditional means {µj(x, a)}Jj=1, and the corresponding variances
{σj(x, a)}Jj=1 parameterized via deep neural networks. The universal approximation property of deep neu-
ral nets allows to approximate any smooth or non-smooth weight, conditional mean and variance functions
(Imaizumi & Fukumizu, 2019). This together with the universal approximation property of Gaussian mixture
models allows f to approximate any smooth conditional density functions (see e.g., Kostantinos, 2000).

Finally, we discuss how to compute Ê[ρτ (R− η)|X = x,A = a]. The idea is to sample i.i.d. pseudo outcomes
{R̂(j)

x,a : 1 ≤ j ≤M} based on the estimated conditional distribution generator for R|(X,A) and approximate
the expectation via Monte Carlo, i.e.,

Ê[ρτ (R− η)|X = x,A = a] ≈ 1
M

M∑
j=1

ρτ (R̂(j)
x,a − η).

The number of Monte Carlo samples M represents a trade-off. Notice that the bias of the estimator is the
same for anyM . A largeM improves the accuracy of the estimator at the cost of increasing the computation
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time. In theory, as shown in Section 4, we require M →∞ to ensure the resulting value estimator achieves
the minimum asymptotic variance. In our numerical implementation, we set M to 50 to achieve a good
balance between estimation accuracy and computation cost.

2.3.3 Step 3: Doubly-Robust Quantile Value and Variance Estimation

Step 3 of the proposed algorithm is to employ cross-fitting to estimate the quantile value and construct the
associated confidence interval. In particular, we develop two doubly-robust estimators, one for the quantile
value itself, and another for the asymptotic variance of the quantile estimator.

First, let b̂s and Ês denote the estimated behavior policy and conditional mean function, respectively. We use
cross-fitting to construct the following estimating equation to compute the doubly-robust quantile estimator,
i.e.

η̂DR
τ = arg min

η

S∑
s=1

∑
i∈Is

Ψ(η;Wi, b̂s, Ês),

where Ψ is defined in Equation 4 and Wi is a shorthand for the triplet (Xi, Ai, Ri).

Second, as shown in Theorem 1 (see Section 4), the asymptotic variance of η̂DR
τ is given by the sandwich

formula J−2
0 Var(∂ηΨ(ητ ;Wi, b,E)) where J0 := fR∗(π)(ητ ) equals the probability density function (pdf) of the

potential outcome R∗(π) evaluated at ητ . While the variance term Var(∂ηΨ(ητ ;Wi, b,E)) can be consistently
estimated via the sampling variance estimator, the pdf is more difficult to learn from the data.

A key observation is that, fR∗(π)(ητ ) is not only the marginal pdf of the reward following π and the baseline
distribution G, but the expectation of a conditional pdf for fR∗(π)|X(ητ |X) as well. This motivates us to
consider the following two estimators for fR∗(π)(ητ ):

(i) IPW estimator for J0: for those subjects following the target policy π, a natural estimator for J0 can
be obtained by applying kernel density estimation (KDE). This idea, combined with the change of measure
theorem, yields the following IPW estimator for J0:

Ĵ IPW
0 = 1

N

S∑
s=1

∑
i∈Is

π(Ai|Xi)
b̂s(Ai|Xi)

1
h
K

(
Ri − η̂DR

h

)
,

where K is some kernel function and h is a pre-specified bandwidth.

(ii) IPW estimator for J0: In Step 2, we have obtained the conditional pdf of R|X,A via some deep
conditional generative model. Let f̂s denote the conditional probability density function obtained from the
data in Ics . This yields the following direct method estimator for fR∗(π)(ητ ),

ĴDM
0 = f̂R∗(π)(ητ ) = 1

N

S∑
s=1

∑
i∈Is

∑
a

π(a|Xi)f̂s(η̂DR|a,Xi) := 1
N

S∑
s=1

∑
i∈Is

f̂R∗(π),s(η̂DR|Xi).

Combining both (i) and (ii) yields a doubly-robust variance estimator, given by

(iii) DR estimator for J0:

ĴDR
0 = 1

N

S∑
s=1

∑
i∈Is

[
π(Ai|Xi)
b̂s(Ai|Xi)

1
h
K
( η̂DR −Ri

h

)
+
(

1− π(Ai|Xi)
b̂s(Ai|Xi)

)
f̂R∗(π)(η̂DR|Xi)

]
. (5)

As such, a Wald-type confidence interval can thus be derived for ητ , which is detailed in Equation 18 of the
theory section as a multi-stage general form.
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2.3.4 Step 4: Tail-Robust Mean Value Estimation

For some studies where the mean outcome is still of interest, Step 4 of the proposed algorithm provides a
tail-robust mean value estimator based on the quantile values we estimated from Step 3. Since the target
policy’s mean value can be represented as an average of the quantile values, i.e.,

∫ 1
0 ητdτ , this motivates us

to consider the following plug-in estimator
∫ 1

0 η̂
DR
τ dτ for the mean value. The integral can be approximated

numerically based on midpoint rule, trapezoidal rule or Simpson’s rule.

Compared to the standard doubly-robust estimator, the proposed estimator is tail robust in that its con-
sistency requires very mild moment conditions. Specifically, it only requires a well-defined mean value, i,e,
E|R| <∞. On the contrary, the standard doubly-robust estimator requires the reward to have at least a finite
second-order moment. In our numerical studies, we find that the proposed tail-robust estimator achieves a
much smaller MSE when reward is heavy-tailed or has a quasi-infinite variance.

3 Sequential Decision Making

3.1 Preliminaries

In this section, we extend our framework to more general sequential decision making problems with K stages.
The data trajectory for a single subject is given by

(X1, A1, R1, X2, A2, R2, . . . , XK , AK , RK), (6)

where (Xk, Ak, Rk) denotes the covariates-treatment-outcome triplet observed at the kth decision stage and
K denotes the horizon (e.g., number of decision stages).

A (history-dependent) policy π = (π1, · · · , πK) maps the observed data history to a probability distribution
over the action space at each time. Specifically, let Hk denote the historical data collected prior to the
assignment of Ak, i.e., Hk = {X1, A1, R1, · · · , Xk}.

Following π, the agent will set Ak according to the probability mass function πk(·|Hk) at each time k. In
addition, we use b = (b1, · · · , bK) to denote the behavior policy that generates the data, which consists of N
i.i.d. realizations of equation 6, denoted by

{(X1,i, A1,i, R1,i, X2,i, A2,i, R2,i, . . . , XK,i, AK,i, RK,i) : 1 ≤ i ≤ N} . (7)

Note that the i.i.d. assumption is imposed across trajectories (i.e., over index i), rather than across time
steps within a trajectory. That is, we do not assume (Xk, Ak, Rk) are i.i.d. over k, which would be unrealistic
in practice.

Usually, the final outcome can be defined as a function of rewards at all stages, i.e. f(R1, . . . , RK). However,
in most cases when we periodically evaluate a specific kind of outcome of interest, it is natural to infer the
cumulative reward

∑K
k=1Rk following the target policy π. Note that in the following sections, although we

focus on the estimation and inference of
∑K
k=1Rk at the τth quantile, the whole framework can be easily

extended to any reward function f(R1, . . . , RK).

Similar to Section 2, we assume versions of (C1′) consistency, (C2′) no unmeasured confounders, which is
better known as the sequential randomization assumption, and (C3′) positive assumptions hold in multiple
stage settings. An explicit version of these assumptions are provided in Appendix A.1. (see e.g., Zhang et al.,
2013, for the detailed definitions of these assumptions).

3.2 Quantile Treatment Effect Evaluation

In multi-stage settings, our objective is to infer the τth quantile of the sum of potential outcomes at all
stages under a fixed target policy π. Let R∗k(āk) denote the potential outcome one would observe under
policy sequence āk = (a1, . . . , ak). Similarly, define R∗k(π) as the potential outcome under policy π, where

9
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R∗(π) =
∑
k R
∗
k(π) is the cumulative outcome of interest. It then follows that

P
( K∑
k=1

R∗k(π) ≤ r
∣∣∣X1

)
=

∑
{ak}Kk=1

E

{
K∏
k=1

πk(ak|Hk) · P
( K∑
k=1

R∗k(āk) ≤ r
∣∣∣X1

)}
, (8)

where the summation over {ak}Kk=1 can take all possible treatment combinations in |A|K , and the expectation
E is taken w.r.t. possible sequences of {Hk, Rk}1≤k≤K . Under (C1′)-(C3′), formula (8) can be represented
using the observed data distribution. For any given quantile τ , we solve the optimization problem

ητ = arg min
η

EX1∼G

[
ρτ

( K∑
k=1

Rk − η
)∣∣∣A ∼ π] , (9)

where EX1∼G[·|A ∼ π] denotes the expectation with respect to the history data (HK , AK , RK), assuming
the initial covariates X1 were generated according to G and all subsequent observations were to follow the
target policy π. In the following sections, we will first introduce the direct method and inverse probability
weighting estimator, and then combine the above two to derive the doubly robust estimator.

3.2.1 The DM estimator

Under (C1′)-(C3′), it follows from (8) that

η̂DM = arg min
η

∑
{a}K

k=1

{
Ê
[ K∏
k=1

πk(ak|Hk) · Ê
{
ρτ

( K∑
k=1

Rk − η
)∣∣∣{Ak}Kk=1 = {ak}Kk=1, X1

}]}
. (10)

Similar to the single-stage setting, we first estimate the conditional probability function for
∑K
k=1Rk given

(HK , AK) and then leverage MC approximation to calculate the conditional expectation in Equation 10.
Details will be provided in Section 3.3.

3.2.2 The IPW estimator

According to the the change of measure theorem,

η̂IPW = arg min
η

Ê

[
K∏
k=1

π(Ak|Hk)
b̂k(Ak|Hk)

· ρτ
( K∑
k=1

Rk − η
)]

.

Notice that when the number of stages increases, the proportion of data we observe that aligns with target
policy will decrease drastically. This may lead to a poor IPW estimator. Akin to the single-stage setting,
one can implement any supervised learning algorithm to learn b̂k that satisfies some mild convergence rate
assumptions specified in Assumption (A1) of Section 4.

3.2.3 The DR estimator

By incorporating the DM and IPW estimators, one can derive a doubly robust estimator for K-stage quantile
treatment effect:

η̂DR = arg min
η

1
N

N∑
i=1

Ψ(η;Wi, b̂, Ê)

≡ arg min
η

1
N

S∑
s=1

∑
i∈Is

[∏K
k′=1 πk′(Ak′,i|Hk′,i)∏K
k′=1 b̂k′(Ak′,i|Hk′,i)

ρτ

( K∑
k=1

Ri,k − η
)

+
K∑
k=1

(
k−1∏
k′=1

πk′(Ak′,i|Hk′,i)
b̂k′(Ak′,i|Hk′,i)

)(
1− πk(Ak,i|Hk,i)

b̂k(Ak,i|Hk,i)

)
L̂k(Hk,i)

]
,

(11)

10
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where Wi is a shorthand for the observed data trajectory

(X1,i, A1,i, R1,i, X2,i, A2,i, R2,i, . . . , XK,i, AK,i, RK,i),

and L̂k(Hk) = Ê
[
ρτ (R1 + · · ·+Rk−1 + R̂k + · · ·+ R̂K − η)|{Ak′}k−1

k′=1, {Ak′}Kk′=k ∼ π,X1

]
. It is worth not-

ing that in Lk(Hk), the expectation is conditioning on Hk, in which R1, . . . , Rk−1 are directly obtained
from the observed data, and R̂k, . . . , R̂K are the rewards estimated from some data generating model under
treatment (πk, . . . , πK).

Equation 11 is the average of the sum of K + 1 terms. The first term serves as an IPW estimator, where

the coefficient
∏K

k′=1
πk′∏K

k′=1
b̂k′

is the probability of a subject’s actions at all K stages being consistent with policy

π. The last K terms, shown in the second line, denote the augmentation terms estimating the quantile loss
originated from the kth level of missing data. The kth augmentation term is the multiplication of two main
components: the product of the two policy ratios in parenthesis, and a direct estimator L̂k(Hk). It aims to
leverage subjects whose observed actions are consistent with π during the first k− 1 stages, but inconsistent
starting from the kth stage. The product of the two policy ratios in this case roughly describes the probability
of this inconsistency occurring. L̂k(Hk) is the expected quantile loss estimated by combining the observed
reward before stage k with the estimated rewards from stage k onwards. Using this DR estimator, one can
maximize the utilization of the observed information related to policy π. The estimation details are described
in Section 3.3.

The proposed estimator η̂DR is doubly robust in the sense that if the propensity score functions
{b̂k(Ak|Hk)}Kk=1 or the outcome regression models {L̂k(Hk)}Kk=1 are consistently estimated at each stage,
then η̂DR is a consistent estimator of ητ . Compared with the DM and IPW estimators, the DR estimator
η̂DR tends to be more robust w.r.t. model misspecification. This also enables us to implement more flexible
machine learning methods and leverage their advantages in estimating propensity score and outcome models.
Later in Section 4, we will also prove the semi-parametric efficiency of η̂DR, which provides further theoretical
guarantee for the performance of our estimator.

3.3 Estimation details

In this subsection, we focus on the estimation procedure under general K-stage settings. Similar to single
stage, our approach contains four steps in sequential decision making process: (1) sample splitting, (2)
nuisance functions estimation, (3) doubly-robust quantile value and (4) variance estimation, tail-robust
mean value estimation. The pseudo code for multi-stage quantile estimation is summarized in Algorithm 2.

Steps 1 and 4 are essentially the same as the single-stage case described in Sections 2.3.1 and 2.3.4, and are
therefore omitted here. Below, we focus on the differences in Steps 2 and 3.

In Step 2, the estimation involves two sets of functions: propensity score functions {bk(Hk)}Kk=1, and the
conditional expectation functions {L̂k(Hk)}Kk=1. The estimation of {L̂k(Hk)}Kk=1 is more involved. First,
the conditional distribution functions for {R̂k|(Hk, Ak)}Kk=1 can be obtained by some conditional generative
modeling process. After getting these reward-generators at each stage, L̂k(Hk) can be estimated through a
Monte Carlo approximation. As long as the number of replicates M is large enough, L̂k(Hk) will converge
to the true value if the model is correctly specified. Specifically,

L̂k(Hk) = Ê
[
ρτ (R1 + · · ·+Rk−1 + R̂k + · · ·+ R̂K − ηπτ )|{Ak′}k−1

k′=1, {Ak′}
K
k′=k ∼ π,X1

]
= 1
M

M∑
j=1

ρτ (R1 + · · ·+Rk−1 + R̂
(j)
k + · · ·+ R̂

(j)
K − η

π
τ ),

where {R̂(j)
k , . . . , R̂

(j)
K }Mj=1 are obtained from the reward generator for {R̂k′ |(Hk′ , Ak′)}Kk′=k estimated from

deep conditional generative learning, and {Ak′}Kk′=k in this case is randomly generated from target policy
π. Note that the whole procedure for estimating L̂k(Hk) only involves the information in the observed Hk.

11
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Algorithm 2 Pseudo Code of Quantile Treatment Effect Evaluation in Multiple Stage

Input Data trajectories {(X1,i, A1,i, R1,i, X2,i, A2,i, R2,i, . . . , XK,i, AK,i, RK,i) : 1 ≤ i ≤ N};
quantile levels τ ; number of folds S; a large integer M .

Output doubly robust quantile estimator η̂DR
τ ; tail-robust DR mean estimator µ̂DR.

1: procedure A. Doubly Robust Quantile Estimator
2: Randomly split the data into S folds. For any s ∈ S, denotes Is as the sth subgroup.
3: for all s ∈ S do
4: Estimate {b̂k}Kk=1 by GBDT with the data in Ics ;
5: Estimate {R̂k|(Hk, Ak)}Kk=1 by MDN with the data in Ics ;
6: Generate {R̂jh,a|(Hk = Hk,i, Ak = a)}Mj=1 for any a ∈ A and i ∈ Is;
7: end for
8: Solve the optimization problem in formula (11) to obtain η̂DR.
9: end procedure

10: procedure B. Tail-Robust DR Mean Estimator
11: For all of the quantile levels of our interest, calculate η̂τ by procedure A. Averaging among all quantiles

yields the tail-robust DR mean Estimator µ̂DR.
12: end procedure

The level of information we utilize in estimating R∗(π) depends on how well the observed actions are in line
with the target policy, which aligns with the core idea of double robustness.

In Step 3, the main difference from the single-stage case lies in the extended form of the estimators for J0 in
the multi-stage. Define fR∗(π),s as the conditional pdf of R∗(π)|H1 obtained by some conditional generative
learning approach from the data in Ics . Then J0 can be estimated by

(i) DM estimator for J0:

ĴDM
0 = f̂R∗(π)(η) = 1

N

S∑
s=1

∑
i∈Is

f̂R∗(π),s(η̂DR|H1,i).

(i) IPW estimator for J0: Following the same logic in Equation 3, we have:

Ĵ IPW
0 = 1

N

S∑
s=1

∑
i∈Is

K∏
k=1

πk(Ak,i|Hk,i)
b̂k(Ak,i|Hk,i)

1
h
K

(∑K
k=1Ri,k − η̂DR

h

)

(i) DR estimator for J0:

ĴDR
0 = 1

N

S∑
s=1

∑
i∈Is

[∏K
k′=1 πk′(Ak′,i|Hk′,i)∏K
k′=1 b̂k′(Ak′,i|Hk′,i)

1
h
K

(∑K
k=1Ri,k − η̂DR

h

)

+
K∑
k=1

(
k−1∏
k′=1

πk′(Ak′,i|Hk′,i)
b̂k′(Ak′,i|Hk′,i)

)(
1− πk(Ak,i|Hk,i)

b̂k(Ak,i|Hk,i)

)
f̂R̄∗

k
(π)(η̂DR|Hk,i)

] (12)

where f̂R̄∗
k
(π)(•|Hk,i) is the estimated conditional pdf of R̄∗k(π) :=

∑K
k′=k R

∗
k′(π) given Hk and Ak ∼ π

obtained by MDN.

A Wald-type confidence interval can thus be constructed based on our DR quantile estimator η̂DR
τ and its

DR variance estimator obtained from formula (12). We will detail this in the corollary of Section 4.

4 Theory

In this section, we provide asymptotic guarantees for the proposed doubly robust quantile estimator η̂DR
τ .

12



Published in Transactions on Machine Learning Research (09/2025)

Define ψ(Wi; η, α̂) ≡ ∂ηΨ(Wi; η, b̂, Ê), which is the derivative of the objective function we are trying to
optimize. Similarly, we define ψ∗(Wi; η) = ∂ηΨ(Wi; η, b,E) where the nuisance functions for b̂ and Ê are
replaced by their population functions1.

Solving the optimization problem in (11) is thus equivalent to obtaining the solution η̂DR
τ to the following

estimating equation:
1
N

S∑
s=1

∑
i∈Is

ψ(Wi; η, α̂s) = 0, (13)

where α̂s is the collection of nuisance parameters in estimating b̂ and Ê using data in Ics .

4.1 The asymptotic properties of η̂DRτ

Before we proceed, let’s introduce the assumptions that will be used in this section.
Assumption 1. We assume the following conditions hold:

(A1)
∥∥∥b̂k(Ak|Hk)− bk(Ak|Hk)

∥∥∥
P,2

∥∥∥δ (F̂R̄∗
k
(π)|H1

, FR̄∗
k
(π)|H1

)∥∥∥
P,2

= o(n−1/2), ∀ k ∈ {1, . . . ,K}.

(A2) fR̄∗
k
(π)|Hk(r|Hk) is uniformly bounded in r and Hk, ∀ k ∈ {1, . . . ,K}.

(A3) ∃ a constant C1 > 0, such that fR∗(π)(η) ≥ C1 holds for all η in a neighbor of ητ .

(A4) ∃ ε > 0, s.t. P(ε ≤ b̂k(Ak|Hk) ≤ 1− ε) = 1, ∀ Hk and k ∈ {1, . . . ,K}.

(A5) ∂rfR∗(π)(r)
∣∣
r=ητ

is bounded.

Remark 1. Assumptions (A1) measures the accuracy in estimating propensity score and outcome at each
stage. Specifically, we require the product of the convergence rates of both the propensity score model and
the outcome regression model to be at least o(n−1/2), implying that each one of them must be o(n−1/4) if
both share the same convergence rate. This assumption is mild and can be achieved by various methods.
For instance, estimators constructed via lookup tables typically attain the standard o(n−1/2) convergence
rate individually, yielding a product rate of o(n−1), which satisfies Assumption (A1). Additionally, several
machine-learning-based approaches, such as the “lassoed” gradient boosted tree algorithm (Schuler et al.,
2022) for estimating the behavior policy, and mixture density networks (MDNs, see Zhou et al., 2022,
Theorem 3) for estimating conditional distribution functions, also meet this requirement. Similar assumptions
are commonly imposed in the literature (see, e.g., Chernozhukov et al., 2018; Farrell et al., 2021; Kallus &
Uehara, 2022). In Assumption (A2), we require the conditional pdfs to be uniformly bounded, which aims
to guarantee the continuity of the cdf of the corresponding reward functions. Assumption (A3) ensures the
identifiability of the quantile ητ of our interest, and Assumption (A4) is an adjunctive condition on the
estimated propensity score, which is commonly assumed in related literature (Chernozhukov et al., 2018).
Assumption (A5) requires the derivative of fR∗(π)(r) to be bounded only at the true value ητ . Since the true
value is unknown to us, we may need a stronger condition that requires uniform boundedness on the support
of η.

We first introduce the two lemmas that guarantees the double robustness of both the quantile estimator and
its variance estimator.

Lemma 1. (Double Robustness of the Quantile Estimator)

Suppose that Assumptions (A3)-(A4) are satisfied. η̂DR
τ is a consistent estimator of ητ , as long as one of the

following two parts of models is consistently estimated:

(1) The propensity score functions at each stage, i.e. {b̂k(Hk)}Kk=1.
1The explicit expressions for ψ(Wi; η, α̂) and ψ∗(Wi; η) are given in Appendix A.
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(2) The conditional expectation functions at each stage, i.e. {L̂k(Hk)}Kk=1,
or equivalently the data generating models for {R̂k|(Hk, Ak)}Kk=1.

Lemma 2. (Double Robustness of the Variance Estimator)

In kernel density estimation, suppose the kernel function K is a real-valued, Borel-measurable function in
L∞(R) which satisfies limx→∞ |xK(x)| = limx→∞ |xK2(x)| = 0. Define the bandwidth as hN , which can be
a function of the sample size. We assume limN→∞ hN = 0, and limN→∞NhN =∞.

We claim that σ̂2
DR is a consistent estimator of σ2, as long as one of the following two parts of models is

consistently estimated:

(1) The propensity score functions at each stage, i.e. {b̂k(Hk)}Kk=1.

(2) The conditional expectation functions at each stage, i.e. {L̂k(Hk)}Kk=1,
or equivalently the data generating models for {R̂k|(Hk, Ak)}Kk=1.

The proofs of Lemma 1 and Lemma 2 along with other auxiliary theoretical results are provided in Appendix
C. Next, we will derive the asymptotic properties of our DR quantile estimator η̂DR

τ .

Define ‖·‖P,q as the Lq(P ) norm which satisfies ‖f(W )‖P,q =
(∫
|f(ω)|qdP (ω)

)1/q. Let δ(F1, F2) de-
note the total variation distance between two probability measures, where F1 and F2 are the CDF of
the two distributions. Define fR̄∗

k
(π)|Hk(r|Hk) and FR̄∗

k
(π)|Hk(r|Hk) as the true conditional pdf and cdf of

R̄∗k(π) =
∑K
k′=k R

∗
k′(π) given the historical data Hk, respectively. Similarly, define f̂R̄∗

k
(π)|Hk(r|Hk) and

F̂R̄∗
k
(π)|Hk(r|Hk) as the conditional pdf and cdf of R̄∗k(π) estimated by conditional distribution generator,

respectively.

Theorem 1. (Asymptotic Normality)

Suppose that Assumptions (A1)-(A5) are satisfied. WhenM →∞, η̂DR
τ is asymptotically normal. Specifically,

σ−1
√
N(η̂DR

τ − ητ ) = −σ−1J−1
0

(
1√
N

N∑
i=1

ψ∗(Wi; ητ )
)

+ op(1) D−→ N (0, 1), (14)

where
σ2 = J−1

0 E[ψ∗2(W ; ητ )](J−1
0 )′, and J0 = ∂η{EW [ψ∗(W ; η)]}|η=ητ . (15)

Furthermore,
J0 = ∂η{EW [ψ∗(W ; η)]}|η=ητ = EH1∼G

[
fR∗(π)|H1(ητ |H1)

]
= fR∗(π)(ητ ). (16)

The results still hold when σ2 is replaced by its doubly robust estimator σ̂2
DR, given by

σ̂2
DR =

(
ĴDR

0

)−1 1
S

S∑
s=1

Ên,s[ψ2(W ; η̂s, α̂s)]
(
ĴDR

0

)−1
, (17)

where En,s denotes the empirical expectation calculated with the data in fold s, and ĴDR
0 is estimated under

the doubly robust framework, as we’ve discussed in formula (5) and (12).

Estimation details are provided in Section 2.3.3 and Section 3.3 for both single-stage and multiple-stage
settings.

Corollary According to Theorem 1, a Wald-type α-level confidence interval of ητ can be constructed by

CI =
[
η̂DR
τ ± 1√

N
Φ−1(1− α/2) · σ̂DR

]
, (18)

where Φ is the cdf of the standard normal distribution. The confidence interval constructed in (18) achieves
an asymptotic coverage rate 1− α.

14
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As illustrated in Lemma 1 and Theorem 1, our quantile estimator η̂DR
τ satisfies the double robustness property

and is semi-parametrically efficient in both single stage and sequential decision making problems. The proof
of Theorem 1 is summarized in Appendix C.4.

Theorem 2 below ensures that our DR quantile estimator is constructed from the efficient influence function
(EIF) and thus enjoys semi-parametric efficiency.
Theorem 2. (Semi-Parametric Efficiency)

Define C(η) = −fR∗(π)(η). Under the same conditions as proposed in Theorem 1, the EIF of ητ is given by

EIFη = C(ητ ) · E
[∏K

k′=1 πk′(Ak′ |Hk′)∏K
k′=1 bk′(Ak′ |Hk′)

(
I
{ K∑
k=1

Rk < η
}
− τ
)

+
K∑
k=1

(
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

)(
1− πk(Ak|Hk)

bk(Ak|Hk)

)
FR∗(π)|Hk,Āk(η)

]
,

(19)

which alignes with the DR estimator we proposed in Equation 11. The efficiency bound for DR variance is
given by Equation 17.

The proof of semi-parametric efficiency is summarized in Appendix C.5.

5 Numerical Results

In this section, we will justify the performance of our DR quantile estimator in both single-stage and multi-
stage settings under different levels of heavy-tailness of the reward distribution. Throughout this paper, we
use student-t distributions with different degrees of freedom to measure the level of heavy tail. All source
code and supplementary experimental results are available on our Github page.

In the following sections, we will first illustrate how close our estimated quantile is to the true reward
distribution, and then report the empirical coverage probability of our estimator. To show the performance
of quantile aggregation in estimating the mean outcome in the heavy-tailed cases, we compare our quantile-
based DR mean estimator Rquantile, with the DR mean estimator Rmean used in common literature2. The
details of the data-generating mechanism and additional numerical results are given in Appendix B.1.1.

Before we proceed, let’s discuss how to choose the number of folds in cross fitting. Although a larger value of
S may yield intuitively better performance in quantile estimation, according to some comparison results in
existing work (Chernozhukov et al., 2018), there is no strong relationship between the number of folds and
estimation accuracy in the context of double machine learning. To balance the computational complexity
and the potential advantage of a large number of S, we set S = 5 throughout the simulation and real data
analysis. For ease of calculation, we first compute the DR quantile estimator under each fold s and average
over all folds to obtain our final estimator.

5.1 Quantile Estimation Performance

Figure 2 shows the estimation accuracy of our DR quantile estimator. As we can see, our DR quantile
estimator performs quite well in evaluating the true reward distributions under the target policy of our
interest.

5.2 Coverage Probability

According to the estimation details elaborated in Section 2.3 and 3.3, we calculate the quantile η̂DR
τ and its

doubly robust variance estimator σ̂2
DR by formula (17). For each quantile level τ , we repeat the estimation

procedure 500 times to calculate the empirical coverage probability, which is shown in Figure 3.
2The expression of the DR mean estimator is summarized in Appendix A.
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Figure 2: Quantile estimation result in single-stage (left) and two-stage (right) settings. The blue curve
denotes the true reward distribution (the CDF under target policy π), and red stars denote the estimated
quantiles at 20 equally spaced quantile levels. Details about the data generating processes are introduced in
Appendix B.1.1.

Notice that when calculating the asymptotic variance, it is required to select a proper bandwidth in the
kernel function. After comparing several commonly used bandwidth selection methods, we finally choose
fixed bandwidth under this heavy-tailed circumstance due to its robustness in preventing the over-smoothing
issue in kernel density estimation.3

Figure 3: Coverage Probability under noise level t(2), t(3), and t(4). The red dots correspond to the empirical
coverage probability estimated from 500 times of replicates, and the blue area denotes the confidence band
at each quantile level. It is clear from the plot that 0.95 falls into almost all of the confidence bands, which
means that our CI achieves nominal coverage in most cases.

5.3 Comparison between Rquantile and Rmean

To compare our quantile-based mean DR estimator Rquantile with the classical DR mean estimator Rmean,
we calculated the MSE for both estimators under different heavy-tailed levels of the reward distributions.
Detailed comparisons are summarized in Table 1 and Table 2. As we can see from both tables, Rquantile al-
ways yields smaller MSE and standard deviation than Rmean. The more heavy-tailed the reward distribution
is, the more powerful our method tends to be.

3See Appendix B.1.3 for details about bandwidth selection.
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Figure 4: Comparison when the noise follows t(1.2) distribution. The blue line denotes the true value of
mean reward, red stars denote the estimated value of Rmean, and green stars denote the estimated value of
Rquantile. For comparisons across all levels of reward heavy-tailedness, please refer to this Github page.

Table 1: Single-stage comparison between Rquantile and Rmean. Each cell reports the MSE (with standard
deviation in parentheses). We use 5-folds cross-fitting with N = 2500. All the results are obtained from 100
times of replicates.
Heavy-tailed level t(1.2) t(1.5) t(1.8) t(2) t(2.5) t(3) t(3.5) t(4)

MSE of Rquantile 0.00600
(0.009771)

0.00169
(0.002250)

0.00090
(0.001190)

0.00099
(0.010338)

0.00055
(0.000724)

0.00043
(0.000557)

0.00031
(0.000355)

0.00037
(0.000547)

MSE of Rmean 0.59478
(32.11465)

0.03105
(2.852596)

0.00203
(0.044305)

0.00186
(0.043518)

0.00062
(0.004603)

0.00045
(0.003373)

0.00032
(0.003202)

0.00038
(0.002741)

Table 2: Two-stage comparison between Rquantile and Rmean. Each cell reports the MSE (with standard
deviation in parentheses). We use 5-folds cross-fitting with N = 2500. All the results are obtained from 100
times of replicates.

Heavy-tailed level t(2) t(4) t(6) t(8) N (0, 1)

MSE of Rquantile 0.006708
(0.007954)

0.002729
(0.003865)

0.002447
(0.003007)

0.002427
(0.002709)

0.001549
(0.001541)

MSE of Rmean 0.027780
(1.648467)

0.003945
(0.027229)

0.003558
(0.024007)

0.003710
(0.023832)

0.002062
(0.002024)

To illustrate the advantage of our estimator more clearly, we visualize the estimation results of 100 times
of replicates for both Rquantile and Rmean when the reward follows t(1.2) distribution, which is shown in
Figure 4.

It is obvious from Figure 4 that under a super heavy-tailed setting, Rquantile outperforms Rmean in estimat-
ing the true reward expectation. There are some “outliers” when estimating Rmean, which performs much
worse than other points. This is because the estimated propensity scores of some subjects are quite close
to 0, leading to extremely unstable estimators for Rmean. On the contrary, our approach divides the mean
estimation procedure into many quantile levels, and solving each estimating equation would not affect as
much as what we may have in obtaining Rmean. This intuition explains the tail robustness of our estimator.
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Since each quantile we estimate also enjoys the double robustness property, it’s reasonable that Rquantile
achieves better results than Rmean.

6 Real Data Analysis

In this section, we use a dataset collected from an advertisement experiment conducted at a world-leading tech
company. The company plans to add an advertising position with three candidate choices. This experiment
serves as an exploration applied to three groups of customers (180,000 users per group) randomly selected
from daily active users. The company conduct causal inference on this data, and come up with four different
personalized intervention policies. The key response of interest is the user watch time (the larger, the better),
which has a heavy-tailed distribution as shown by the histogram, Q-Q plot and log-log plot in Figure 1.

We demonstrate that our method can (i) reliably infer the quantiles of revenues under the four policies,
and (ii) accurately estimate their expected revenues using only a small subset of the full dataset. Toward
that end, we repeat the following procedure 1,000 times: in each iteration, we randomly sample 1% of users
from each group and apply our method to estimate 999 quantiles – from 0.001 to 0.999 – of the outcome
distribution for each policy. Based on these estimators, we construct confidence intervals for the first, second,
and third quartiles, and use the mean of the 999 quantiles as the estimated expected value. The ground-truth
values of the four policies are obtained from online A/B tests. The mixture density network consists of two
hidden layers with eight neurons each, and four mixture components.

Table 3 shows that the coverage probabilities of the 25%, 50% and 75% quantiles of the reward distribution
of the four personalized policies are all close to the 95% nominal level. The bias, standard deviation and
root MSE are presented in Table 4. Our doubly robust quantile-based mean estimator outperforms the
traditional doubly robust mean estimator on this heavy-tailed real dataset. Furthermore, we also compare
the performance among DM, IPW and DR estimators. Details are deferred to Appendix B.2 to save space.

Table 3: Coverage probabilities of the first, second, third quartiles of the proposed confidence intervals under
the four personalized policies.

S1 S2 S3 S4
25% 0.926 0.944 0.933 0.911
50% 0.961 0.958 0.957 0.948
75% 0.949 0.926 0.942 0.915

Table 4: Comparison of biases, standard deviations and root MSEs of the expected revenue estimators
between mean-based and the proposed quantile-based approaches. S1, S2, S3, and S4 denote the four per-
sonalized policies.

Bias STD RMSE
Rmean Rquantile Rmean Rquantile Rmean Rquantile

S1 0.006 -0.013 0.076 0.069 0.076 0.071
S2 -0.008 -0.026 0.060 0.055 0.060 0.061
S3 0.007 -0.014 0.066 0.059 0.067 0.061
S4 0.001 -0.017 0.077 0.068 0.077 0.070

7 Conclusion and Discussions

In this paper, we conducted comprehensive research on the doubly robust off policy evaluation procedure for
the entire reward distribution in sequential decision making problems. We constructed a doubly robust quan-
tile estimator with theoretical guarantees, and provided an algorithm based on deep conditional generative
learning, allowing a broad class of machine-learning-based tools to be utilized in estimating propensity scores
and reward functions at each stage. Furthermore, a doubly robust variance estimator was also proposed to im-

18



Published in Transactions on Machine Learning Research (09/2025)

prove the stability of the estimated confidence interval. Our quantile estimator enjoys asymptotic normality
and semi-pamametric efficiency, which is well-illustrated from both simulation and real data analysis.

Based on our estimated DR quantiles, we proposed a tail-robust doubly-robust mean estimator which signif-
icantly outperforms the classical DR mean estimator used in the earlier literature. Both simulation and real
data analysis illustrate the power of our estimator in decreasing the MSE when the reward is heavy-tailed.

The quantile-based mean estimator has demonstrated significant advantages over classical mean estimators
in various contexts, including single-stage (Wang & Zhou, 2010) and infinite-horizon scenarios such as re-
inforcement learning (RL, Rowland et al., 2023). Given the promising results observed in both simulated
and real-world data, further investigation into the theoretical properties of the proposed tail-robust doubly
robust (DR) mean estimator would be valuable for future research. Additionally, it’s quite interesting to
explore the potential of developing optimal treatment regimes using the doubly robust quantile estimator
introduced in this study. Another direction is to extend the binary actions to a discrete or continous action
space, which would allow the entire framework to be applied to a wider range of real-life scenarios.
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Appendix

A Assumptions and Notations

In this section, we aim to elaborate more on the explicit expressions of some assumptions and formulas
mentioned in the main paper.

A.1 Assumption (C1′)-(C3′)

In multi-stage setting, we also accept the potential outcome framework in causal inference.

(C1′) Consistency (or SUTVA) (Rubin, 1990): For any k ∈ {1, . . . ,K},

Rk = R∗k(Āk) =
∑
āk∈Āk

R∗(āk)I{Āk = āk};

When k ≥ 2,
Xk = X∗k(Āk−1) =

∑
āk−1∈Āk−1

X∗k(āk−1)I{Āk−1 = āk−1}.

(C2′) Sequential Randomization Assumption (SRA) (Rosenbaum & Rubin, 1983): Given any treatment
sequence b̄K , we have

Ak ⊥ {Rk(b̄k), Xk+1(b̄k), Rk+1(b̄k+1), . . . , RK(b̄K)}|Hk, ∀k ∈ {1, . . . ,K}.

(C3′) Positivity Assumption: For any k ∈ {1, . . . ,K}, there exists a constant ε > 0, s.t. P(ε ≤ bk(Ak|Hk) ≤
1− ε) = 1 for any Ak ∈ {0, 1}.

Note that (C1′)-(C3′) are just natural extensions of (C1)-(C3) in multi-stage setting, which is also widely
assumed in causal inference literature.

A.2 ψ(Wi; η, α̂) and ψ∗(Wi; η)

The estimating equation of our interest is defined as

ψ(Wi; η, α̂) ≡∂ηΨ(Wi; η, b̂, Ê)

= 1
N

S∑
s=1

∑
i∈Is

[∏K
k′=1 πk′(Ak′,i|Hk′,i)∏K
k′=1 b̂k′(Ak′,i|Hk′,i)

(
I
{ K∑
k=1

Ri,k < η
}
− τ
)

+
K∑
k=1

(
k−1∏
k′=1

πk′(Ak′,i|Hk′,i)
b̂k′(Ak′,i|Hk′,i)

)(
1− πk(Ak,i|Hk,i)

b̂k(Ak,i|Hk,i)

)
l̂k(Hk,i)

]
,

(20)

where l̂k(Hk) = Ê
[
I{R1 + · · ·+Rk−1 + R̂k + · · ·+ R̂K < η} − τ |{Ak′}k−1

k′=1, {Ak′}Kk′=k ∼ π,X1

]
, in which

R̂k, . . . , R̂K are the estimated rewards obtained by the data generating models following treatment
(πk, . . . , πK) starting from stage k.

When the nuisance functions are replaced by the true models, we have

ψ∗(Wi; η) = 1
N

S∑
s=1

∑
i∈Is

[∏K
k′=1 πk′(Ak′,i|Hk′,i)∏K
k′=1 bk′(Ak′,i|Hk′,i)

(
I
{ K∑
k=1

Ri,k < η
}
− τ
)

+
K∑
k=1

(
k−1∏
k′=1

πk′(Ak′,i|Hk′,i)
bk′(Ak′,i|Hk′,i)

)(
1− πk(Ak,i|Hk,i)

bk(Ak,i|Hk,i)

)
lk(Hk,i)

]
.

(21)
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In the rest of this appendix, we will focus on the case K = 2. Therefore, the expressions become

ψ(Wi; η, α̂) ≡ ∂ηΨ(Wi; η, b̂, Ê)

=
[

π1(A1,i|H1,i)π2(A2,i|H2,i)
b̂1(A1,i|H1,i, α̂)̂b2(A2,i|H2,i, α̂)

(I{R1,i +R2,i < η} − τ)

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[(I{R̂1 + R̂2 < η} − τ)|X1,i, (A1,i, A2,i) ∼ π]

+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)
Ê[(I{R1,i + R̂2 < η} − τ)|H2,i, A2,i ∼ π]

]
,

(22)

and
ψ∗(Wi; η) =

[
π1(A1,i|H1,i)π2(A2,i|H2,i)
b1(A1,i|H1,i)b2(A2,i|H2,i)

(I{R1,i +R2,i < η} − τ) + a∗1Ê[(I{R1 +R2 < η}

−τ)|X1,i, (A1,i, A2,i) ∼ π] + a∗2Ê[(I{R1,i +R2 < η} − τ)|H2,i, A2,i ∼ π]
]
,

(23)

where we define a∗1 and a∗2 as

a∗1 =
(

1− π1(A1,i|H1,i)
b1(A1,i|H1,i)

)
, a∗2 =

(
π1(A1,i|H1,i)
b1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b2(A2,i|H2,i)

)
. (24)

A.3 Rmean

In simulation studies, we compare our quantile-based DR mean estimator with the traditional DR mean
estimator used in common literature, named as Rmean. In single-stage setting, Rmean is estimated from

Rmean = 1
n

n∑
i=1

[
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

R1,i +
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[R̂1|X1 = X1,i, A1 ∼ π]

]
. (25)

In two-stage settings,

Rmean = 1
n

n∑
i=1

[
π1(A1,i|H1,i)π2(A2,i|H2,i)
b̂1(A1,i|H1,i)̂b2(A2,i|H2,i)

(R1,i +R2,i)

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[(R̂1 + R̂2)|H1 = H1,i, (A1, A2) ∼ π]

+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)
Ê[(R1,i + R̂2)|H2 = H2,i, A2 ∼ π]

]
.

(26)

B More on Simulation and Real Data Analysis

B.1 Simulation

B.1.1 Data Generating Process

We first introduce the data generating processes in both single stage and multiple stage settings.

In single stage quantile estimation problem, we generate the data as follows:

X ∼ G = N (0, 1);

A = b(X), where b(X) = I{X + 1
4ε > 0};

R = (1−X + 2AX)(1 + 1
4ε
′),

(27)
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where ε and ε′ are noise terms with different levels of heavy tail. The more heavy-tailed ε and ε′ are, the
harder it would be to estimate the reward distribution. As mentioned in the main paper, we use the student-
t distribution with different degrees of freedom to generate heavy-tailed distributions. To illustrate the
performance of our estimator under different levels of heavy tail, we let ε and ε′ follow t distribution t(1.5),
t(1.8), t(2), t(2.5), t(3), t(3.5), and t(4) respectively. The target policy here is defined as π(A|X) = I{X > 0}.

Let’s take t(3) as an example. Figure 5 shows the PDF of reward R∗(π) when ε and ε′ follows t distribution
with df = 3. From the probability plot shown in Figure 6, the rewards generated in this setting, shown by
the blue dots, aligns very well with the baseline distribution t(3) which is shown by the red line. Therefore,
the heavy tail level of ε and ε′ indeed represents the heavy tail level of the reward distribution.

Figure 5: PDF of R∗(π) when ε ∼ t(3) Figure 6: Probability plot of R∗(π) compared with
baseline distribution t(3), shown by the red line. The
reward distribution is indeed heavy-tailed.

In multiple stage settings, we will only consider the case when K = 2 for illustration purpose. The observa-
tional covariates-action-reward triplet (X1, A1, R1, X2, A2, R2) is generated as follows:

X1 ∼ G = N (0, 1);

A1|X1 = b1(X1), where b1(X1) = I{X1 + 1
4ε1 > 0};

R1|(X1, A1) = (1−X1 + 2A1X1)(1 + 1
4ε2);

X2|(X1, A1) ∼ 1
2X1 + 1

2ε3;

A2|(X1, A1, X2) = b2(H2), where b2(H2) = I{X2 + 1
4ε4 > 0};

R2|(X1, A1, X2, A2) = (1 + 0.5X1 +A1X1 −X2 + 3A2X2)(1 + 1
4ε5),

(28)

where we define ε = (ε1, ε2, ε3, ε4, ε5) as the noise terms which denote student-t distributions with different
degrees of freedom to control the heavy tail level of the cumulative reward distribution. The target policy
sequence at each stage is defined as

π1(A1|X1) = I{X1 > 0},
π2(A2|X1, A1, X2) = I{X2 > 0}.

(29)

Consider the cases when ε follows t(2), t(4), t(6), t(8) and N (0, 1). Unlike the single-stage setting, here we
use relatively larger degrees of freedom in t distribution since the estimation is harder when the number of
decision stages increases.

The PDF of R∗(π) = R∗1(π) +R∗2(π) is shown in Figure 7, and the probability plot of R∗(π) comparing with
t(2) distribution is shown in Figure 8. The true reward distribution R∗(π) is indeed quite heavy-tailed.

27



Published in Transactions on Machine Learning Research (09/2025)

5 0 5 10 15 20
R1 + R2

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pr

ob
ab

ilit
y

Histogram of R * = R1 + R2

Figure 7: PDF of R∗(π) when ε ∼ t(2) Figure 8: Probability plot of R∗(π) compared with
baseline distribution t(2), shown by the red line.

B.1.2 Quantile Estimation Bias and Variance

Figure 9: Quantile estimation bias and variance at different quantile levels. The estimation bias and variance
are quite close to 0 at most of the quantile levels in the middle, and the performance tends to become
unstable when τ approaches 0 or 1. The poor performance at extreme quantile levels is reasonable because
of the lack of data points, which makes the statistical inference even harder to handle.

B.1.3 Bandwidth Selection

Since the estimation of ĴDR
0 involves KDE, the choice of bandwidth h is also an important problem to

deal with. In Figure 10, we tried three commonly used methods: cross-validation, Scott’s method, and fixed
bandwidths where h = 0.10, 0.15 and 0.20, to compare their performances in estimating the standard error
of η̂DR

τ . Surprisingly, both cross-validation and Scott’s method encountered some over-smoothing issues,
which is potentially caused by the heavy tail of the reward distribution. On the contrary, a reasonable fixed
bandwidth tends to stabilize the estimation of ĴDR

0 , yielding a smaller MSE of the standard error estimated
at all quantile levels. Since the performances under different fixed bandwidths are all pretty well, we will fix
h = 0.15 in simulation studies.

B.1.4 Comparison between DM, IPW and DR

As we can see from the comparisons in Figure 11, the performance of DM is clearly worse than IPW and
DR. The performance of IPW estimator was not badly influenced due to the similarity of behavior policy
and target policy under this specific simulation setting. As is expected to us, our DR estimator always yields
the best result.
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Figure 10: The comparison between the MSE of the standard error at each quantile level τ with noise
distribution t(2), t(3), and t(4).

Figure 11: The comparison between DM, IPW, and DR estimators with heavy tail level t(4). Logarithm
transformation was taken to better distinguish the performance of the three methods.

B.2 Real Data Analysis

In this section, we add the comparison between DM, IPW and DR in our real dataset.

As show in Figure 12, our doubly robust approach performs the best in terms of bias, standard deviation
and root mean squared errors, for all the four policies we considered.

C More on Theory Section

In this section, we provide several lemmas and proofs that are omitted in the main paper.

C.1 Lemma 3: Some Basic Results

Lemma 3. Suppose W = {(Xk, Ak, Rk)}Kk=1 is the full data with baseline information X1 ∼ G, and ητ is
the τ th quantile of the potential cumulative reward function R∗(π). Then we have

EW [ψ∗(W ; ητ )] = 0. (30)

Proof. For the brevity of content, we’ll only show the proof when K = 2. The results in K stage settings
can be derived using the same logic.

To prove Lemma 3, we first separate ψ∗(W ; ητ ) into three parts. Let ψ(W ∗; ητ ) = a+ b+ c, where

a = π1(A1|H1)π2(A2|H2)
b1(A1|H1)b2(A2|H2) (I{R1 +R2 < ητ} − τ),

b = a∗1 · Ê[(I{R1 +R2 < ητ} − τ)|X1, (A1, A2) ∼ π],

c = a∗2 · Ê[(I{R1 + R̂2 < ητ} − τ)|H2, A2 ∼ π],

(31)
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Figure 12: Bias, standard deviation, and root mean squared error of quantiles over 100 replicates. The four
columns correspond to four target policies, and each plot shows the comparison of three methods: DM-direct
method, IPW-inverse probability weighting method and DR-doubly robust method.

where a∗1 and a∗2 are defined in Formula (24). Now it suffices to show E[a] = E[b] = E[c] = 0.

1. E[a] = 0.

By change of measure theorem,

E[a] = E
[
π1(A1|H1)π2(A2|H2)
b1(A1|H1)b2(A2|H2) (I{R1 +R2 < ητ} − τ)

]
= E [I{R∗1(π) +R∗2(π) < ητ}]− τ = τ − τ = 0.

2. E[b] = 0.

E[b] = E
[(

1− π1(A1|H1)
b1(A1|H1)

)
Ê[(I{R1 +R2 < ητ} − τ)|X1, (A1, A2) ∼ π]

]
= E

[
E
[(

1− π1(A1|H1)
b1(A1|H1)

) ∣∣∣H1

]
· E [(I{R∗1(π1) +R∗2(π) < ητ} − τ)]

]
= E [0 · E [(I{R∗1(π1) +R∗2(π) < ητ} − τ)]] = 0.

(32)

3. E[c] = 0.

Similarly, since

E[a∗2|H2] = E
[(

π1(A1|H1)
b1(A1|H1)

)
·
(

1− π2(A2|H2)
b2(A2|H2)

) ∣∣∣H2

]
= E

[(
π1(A1|H1)
b1(A1|H1)

)
· E
[(

1− π2(A2|H2)
b2(A2|H2)

) ∣∣∣H2

]]
= E

[(
π1(A1|H1)
b1(A1|H1)

)
· 0
]

= 0,
(33)
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then we have
E[c] = E

[
a∗2 · Ê[(I{R1 + R̂2 < η} − τ)|H2, A2 ∼ π]

]
= E

[
E [a∗2|H2] · Ê[(I{R∗1(π1) +R∗2(π) < η} − τ)|H2, A2 ∼ π]

]
= E[0 · Ê[(I{R∗1(π1) +R∗2(π) < η} − τ)|H2, A2 ∼ π]] = 0.

(34)

The proof is thus complete.

C.2 Proof of Lemma 1: Double Robustness of our quantile Estimator

For illustration purpose, we will focus on the case where K = 2 for simplicity.

Proof. Suppose without the loss of generality that the sample size According to our estimating procedure,
the quantile estimator η̂DR

τ is the solution to the following estimating equation:

1
S

S∑
s=1

En,s [ψ(Ws, η, α̂s)] = 0, (35)

where Ws denotes the data in Is, and En,s is the empirical expectation over sth subgroup.

Suppose that ∆n is a sequence of positive numbers that converge to 0. We define N∆n
(ητ ) = {η : ‖η − ητ‖ ≤

∆n} as a shrinking neighborhood of ητ . According to Uniform Law of Large Numbers (ULLN), it suffices to
show the following three conditions hold:

1. supη∈N∆n (ητ )

∣∣∣ 1
S

∑S
s=1 En,s [ψ(W ; η, α̂)]− E [ψ∗(W ; η)]

∣∣∣ = op(1);

2. ∀ε > 0, inf{|E [ψ∗(W ; η)] | : ‖η − ητ‖ ≥ ε} > 0 = E [ψ∗(W ; ητ )];

3. 1
S

∑S
s=1 En,s

[
ψ(W ; η̂DR

τ , α̂)
]

= op(1).

Condition 2 can be easily proved by the identifiability of ητ . According to Assumption (A3), there exists a
positive constant C1, such that

∂η{EW [ψ∗(W ; η)]} = fR∗(π)(η) ≥ C1 (36)

for all η ∈ N∆n
(ητ ). According to Lemma 1, ητ is the solution to EW [ψ∗(W ; η)] = 0. Therefore, the claim of

condition 2 follows.

Condition 3 guarantees the estimated η̂DR
τ to be close to the solution to the empirical estimating equation,

which naturally holds under a valid estimating procedure. To complete the consistency proof, it remains to
establish Condition 1.

Define the empirical process Gn,s [ψ(Ws; η, α̂s)] as a linear operator on measurable functions ψ via

Gn,s [ψ(Ws; η, α̂s)] =
√
n

[
1
n

∑
i∈Is

ψ(Wi; η, α̂s)− E [ψ(W ; η, α̂s)]
]
.

Since

sup
η∈N∆n (ητ )

∣∣∣∣∣ 1S
S∑
s=1

En,s [ψ(W ; η, α̂)]− E [ψ∗(W ; η)]

∣∣∣∣∣
≤ 1
S

S∑
s=1

{
1√
n
· sup
η∈N∆n (ητ )

|Gn,s [ψ(W ; η, α̂s)]|+ sup
η∈N∆n (ητ )

|E [ψ(W ; η, α̂s)]− E [ψ∗(W ; η)]|
}
,
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it suffices to show that for any s ∈ {1, . . . , S}, the two terms on the RHS of the above inequality are op(1).
For the brevity of content, we omit the subscript s in Gn,s and α̂s in the following proof to illustrate the
general results that hold for any s.

Step 1: Prove that supη∈N∆n (ητ ) |Gn [ψ(W ; η, α̂)]| = op(
√
n).

Define F = {ψ(W ; η, α̂) : η̂DR
τ ∈ N∆n

(ητ )}. F is a VC Class. By Conditioning on (Wi)i∈Ic , α̂ can be regarded
as a fixed value. Therefore, according to the Maximal Inequality in VC type classes (Chernozhukov et al.,
2014; 2018), there exist a sufficiently large constant C, such that with probability 1− o(1),

sup
f∈F
|Gn(f)| ≤ C ·

(
rn log1/2(1/rn) + n−1/2+1/q logn

)
, (37)

where rn = supη∈N∆n (ητ ) ‖ψ(W ; η, α̂)‖P,2, and q ≥ 2 is an integer that can be arbitrarily large. To be more
specific,

rn =supη∈N∆n (ητ ) ‖ψ(W ; η, α̂)‖P,2

=supη∈N∆n (ητ )

∥∥∥∥∥ π1(A1,i|H1,i)π2(A2,i|H2,i)
b̂1(A1,i|H1,i, α̂)̂b2(A2,i|H2,i, α̂)

(I{R1,i +R2,i < η} − τ)

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[(I{R̂1 + R̂2 < η} − τ)|X1,i, (A1,i, A2,i) ∼ π]

+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)
Ê[(I{R1,i + R̂2 < η} − τ)|H2,i, A2,i ∼ π]

∥∥∥∥∥
P,2

≤supη∈N∆n (ητ )

∥∥∥∥∥ π1(A1,i|H1,i)π2(A2,i|H2,i)
b̂1(A1,i|H1,i, α̂)̂b2(A2,i|H2,i, α̂)

∥∥∥∥∥
P,2

· ‖I{R1,i +R2,i < η} − τ‖P,2

+

∥∥∥∥∥1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

∥∥∥∥∥
P,2

·
∥∥∥Ê[(I{R̂1 + R̂2 < η} − τ)|X1,i, (A1,i, A2,i) ∼ π]

∥∥∥
P,2

+

∥∥∥∥∥
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)∥∥∥∥∥
P,2

·
∥∥∥Ê[(I{R1,i + R̂2 < η} − τ)|H2,i, A2,i ∼ π]

∥∥∥
P,2

≤ 1
ε2
· 2 + 1

ε
· 2 + 1

ε2
· 2 ≤ 6

ε2
,

where the second last inequality is obtained from the Positivity Assumption (C3) and Assumption (A4).
Therefore, rn = O(1), and we have supf∈F |Gn(f)| ≤ Op(1) = o(

√
n).

Step 2: Prove that supη∈N∆n (ητ ) |E [ψ(W ; η, α̂)]− E [ψ∗(W ; η)]| = op(1).

In the following proof, we use Ê to denote the error aggregated by Monte Carlo Method, and use R̂k to denote
the estimated reward obtained by MDN. Likewise, R̂∗k(π) is to denote the estimated potential outcome under
policy π at the kth stage. When M →∞, no error comes from the Monte Carlo method, and thus Ê = E.

Let’s first start with E [ψ(W ; η, α̂)].

E [ψ(W ; η, α̂)]

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

)
· (I{R1,i +R2,i < η} − τ)

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
· Ê
[
I{R̂1 + R̂2 < η} − τ

∣∣X1,i, (A1,i, A2,i) ∼ π
]

+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)
· Ê
[
I{R1,i + R̂2 < η} − τ

∣∣H2,i, A2,i ∼ π
]]
,
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which is equivalent to

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

)
·
(
E[I{R1,i +R∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i + R̂∗2(π) < η}
∣∣H2,i]

)
+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R1,i + R̂∗2(π) < η} − τ

∣∣H2,i]

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R̂∗1(π) + R̂∗2(π) < η} − τ

∣∣H1,i]
]

:= L1 + L2 + L3,

(38)

where we define the last three lines in (38) as L1, L2 and L3. Then

L2 =E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
· Ê[I{R1,i + R̂∗2(π) < η} − τ

∣∣H2,i]
]

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
· Ê[I{R1,i + R̂∗2(π) < η} − τ

∣∣H2,i]
]

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
·
(
Ê[I{R1,i + R̂∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i +R∗2(π) < η}
∣∣H2,i]

)

+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R1,i +R∗2(π) < η} − τ

∣∣H2,i]
]
,

where we add and subtract a term in the last equality to maintain the equivalence of the formula.

Plug in L2 to Formula (38), we have

E [ψ(W ; η, α̂)]

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

)
·
(
E[I{R1,i +R∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i + R̂∗2(π) < η}
∣∣H2,i]

)
+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
·
(
Ê[I{R1,i + R̂∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i +R∗2(π) < η}
∣∣H2,i]

)
+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R1,i +R∗2(π) < η} − τ

∣∣H2,i]

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R̂∗1(π) + R̂∗2(π) < η} − τ

∣∣H1,i]
]

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

− π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
·
(
E[I{R1,i +R∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i + R̂∗2(π) < η}
∣∣H2,i]

)
+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R1,i +R∗2(π) < η} − τ

∣∣H2,i] +
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R̂∗1(π) + R̂∗2(π) < η} − τ

∣∣H1,i]
]

Also, similar to the logic in Lemma 1, it’s easy to show that the augmentation terms in ψ∗(W ; η) are 0.
Therefore,

E [ψ∗(W ; η)] = E
[
π1(A1,i|H1,i)π2(A2,i|H2,i)
b1(A1,i|H1,i)b2(A2,i|H2,i)

·
(
I{(R1,i +R2,i < η} − τ

)]
= E [I{(R∗1(π) +R∗2(π) < η} − τ ] .
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Then we have

E [ψ(W ; η, α̂)]− E [ψ∗(W ; η)] = E [ψ(W ; η, α̂)]− E [I{(R∗1(π) +R∗2(π) < η} − τ ]

=E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

− π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
·
(
E[I{R1,i +R∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i + R̂∗2(π) < η}
∣∣H2,i]

)
+
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R1,i +R∗2(π) < η} − τ

∣∣H2,i]

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R̂∗1(π) + R̂∗2(π) < η} − τ

∣∣H1,i]− E [I{(R∗1(π) +R∗2(π) < η} − τ |H1,i]
]
.

(39)

Let’s then consider the last two lines in formula (39).

E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R1,i +R∗2(π) < η} − τ

∣∣H2,i]

+
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[I{R̂∗1(π) + R̂∗2(π) < η} − τ

∣∣H1,i]− E [I{(R∗1(π) +R∗2(π) < η} − τ |H1,i]
]

= E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
Ê[I{(R∗1(π) +R∗2(π) < η}

∣∣H1,i]− Ê[I{R̂∗1(π) + R̂∗2(π) < η}
∣∣H1,i]

)
+Ê[I{R̂∗1(π) + R̂∗2(π) < η}

∣∣H1,i]− Ê[I{R∗1(π) +R∗2(π) < η}
∣∣H1,i]

]
(40)

= E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
Ê[I{R∗1(π) +R∗2(π) < η}

∣∣H1,i]− Ê[I{R̂∗1(π) + R̂∗2(π) < η}
∣∣H1,i]

)
−
(
π1(A1,i|H1,i)
b1(A1,i|H1,i)

)(
Ê[I{R∗1(π) +R∗2(π) < η}

∣∣H1,i]− Ê[I{R̂∗1(π) + R̂∗2(π) < η}
∣∣H1,i]

)]
= E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

− π1(A1,i|H1,i)
b1(A1,i|H1,i)

)(
Ê[I{R∗1(π) +R∗2(π) < η}

∣∣H1,i]− Ê[I{R̂∗1(π) + R̂∗2(π) < η}
∣∣H1,i]

)]
.

Combining the result of Formula (39) and Formula (40), we have

|E [ψ(W ; η, α̂)]− E [ψ∗(W ; η)]|

=

∣∣∣∣∣E
[(

π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

− π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
·
(
E[I{R1,i +R∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i + R̂∗2(π) < η}
∣∣H2,i]

)]
+ E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

− π1(A1,i|H1,i)
b1(A1,i|H1,i)

)
·
(
Ê[I{R∗1(π) +R∗2(π) < η}

∣∣H1,i]− Ê[I{R̂∗1(π) + R̂∗2(π) < η}
∣∣H1,i]

)]∣∣∣∣∣
≤ 1
ε3
·
∥∥∥b̂2(A2,i|H2,i)− b2(A2,i|H2,i)

∥∥∥
P,2
·
∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

+ 1
ε2
·
∥∥∥b̂1(A1,i|H1,i)− b1(A1,i|H1,i)

∥∥∥
P,2
·
∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

(41)
where the last inequality holds by condition (C3′) and Assumption (A4).
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Therefore, as long as the propensity score models are consistently estimated, or the outcome regression
models for R̂1 and R̂2 obtained by MDN are consistently estimated, we have

|E [ψ(W ; η, α̂)]− E [ψ∗(W ; η)]| = o(1),

according to formula (41).

To be more specific, we only need one of the following conditions to be satisfied:

1.
∥∥∥b̂1(A1|H1)− b1(A1|H1)

∥∥∥
P,2

= o(1), and
∥∥∥b̂2(A2|H2)− b2(A2|H2)

∥∥∥
P,2

= o(1);

2.
∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

= o(1), and
∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

= o(1).

The proof of Lemma 2 is thus complete.

Notice that Assumption (A1) is not necessary to prove the double robustness. This assumption is imposed
to further prove the asymptotic normality of our quantile estimator in Appendix C.4.

C.3 Proof of Lemma 2: Double Robustness of our Variance Estimator

Proof. Firstly, we show that when limN→∞ hN = 0, and limN→∞NhN = ∞, the kernel density estimator
for f(r) := fR∗(π)(r) attains weak consistency.

Let’s first define fN (r) as the KDE of f(r). By Chebyshev’s Inequality, at each point of continuity r of f
and for any ε > 0,

P(|fN (r)− f(r)| > ε) ≤ E[(fN (r)− f(r))2]
ε2

= Var[fN (r)] + Bias2[fN (r)]
ε2

.

According to the result in Parzen (1962), limN→∞Bias2[fN (r)] = 0 when limN→∞ hN = 0. That is, fN (r)
is asymptotically unbiased when limN→∞ hN = 0.

According to the mild assumptions onK stated in Lemma 2, the asymptotic variance of the density estimator
is given by

limN→∞NhNVar[fN (r)] = f(r)
∫ ∞
−∞

K2(u)dy <∞.

Therefore, both the asymptotic bias and variance go to 0 as N → ∞. This illustrates the asymptotic
consistency of the kernel density estimator in σ̂2

DR.

The rest of the proof is trivial. One can follow the idea in Lemma 2 to similarly prove the double robustness
of our variance estimator. For the brevity of content, we omit the details for this part.

C.4 Proof of Theorem 1: Asymptotic Normality of our quantile estimator

Proof. same as the proof in Lemma 1-3, we will only illustrate the case when K = 2 for the brevity of
content. We will give a brief sketch in Step 1, and leave the rest of the details in Step 2-5 accordingly.

Based on our estimating procedure in theory section, we have

S∑
s=1

En,s[ψ(Ws; η̂DR
τ , α̂s)] = 1

n

S∑
s=1

∑
i∈Is

ψ(Wi,s; η̂DR
τ , α̂s) = 0;

E[ψ∗(Ws; ητ )] = E[a+ b+ c] = 0 for any s ∈ {1, . . . , S}.

(42)

Step 1:
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First, we apply Taylor series expansion on E[ψ∗(W ; η)] around ητ .

E[ψ∗(W ; η)] = E[ψ∗(W ; ητ )] + J0(η − ητ ) + 1
2H0(η − ητ )2 + o(‖η − ητ‖2)

= J0(η − ητ ) + 1
2H0(η − ητ )2 + o(‖η − ητ‖2),

(43)

where J0 = ∂η{EW [ψ∗(W ; η)]}|η=ητ and H0 = ∂2
η{EW [ψ∗(W ; η)]}|η=ητ .

Suppose that E[
∑S
s=1 ψ(Ws; η̂DR

τ , α̂s)] = E[
∑S
s=1 ψ

∗(Ws; η̂DR
τ )] + o(n−1/2) (We will prove it in Step 4). Since

E[ψ∗(Ws; ητ )] = 0, by plugging in the definition of empirical operator, we got

√
n

S∑
s=1

En,s[ψ(Ws; η̂DR
τ , α̂s)− ψ∗(Ws; ητ )]

=
S∑
s=1

Gn,s[ψ(Ws; η̂DR
τ , α̂s)− ψ∗(Ws; ητ )] +

√
n

S∑
s=1

E[ψ(Ws; η̂DR
τ , α̂s)]

=
S∑
s=1

Gn,s[ψ(Ws; η̂DR
τ , α̂s)− ψ∗(Ws; ητ )] +

√
n

S∑
s=1

E[ψ∗(Ws; η̂DR
τ )] + op(1).

(44)

Let η = η̂DR
τ in formula (43) and combine it with formula (44). Then

√
n

S∑
s=1

J0(η̂DR
τ − ητ ) +

√
n

S∑
s=1

En,s[ψ∗(Ws; ητ )] = −
S∑
s=1

Gn,s[ψ(Ws; η̂DR
τ , α̂s)− ψ∗(Ws; ητ )]

− 1
2
√
n

S∑
s=1

H0(η̂DR
τ − ητ )2 −

√
n · o(

∥∥η̂DR
τ − ητ

∥∥2) + op(1).

(45)

Therefore,

√
S ·
√
N

∥∥∥∥∥J0(η̂DR
τ − ητ ) + 1

S

S∑
s=1

En,s[ψ∗(Ws; ητ )]

∥∥∥∥∥
=
√
n

∥∥∥∥∥
S∑
s=1

J0(η̂DR
τ − ητ ) +

S∑
s=1

En,s[ψ∗(Ws; ητ )]

∥∥∥∥∥ ≤
∥∥∥∥∥
S∑
s=1

Gn,s[ψ(Ws; η̂DR
τ , α̂s)− ψ∗(Ws; ητ )]

∥∥∥∥∥
+1

2
√
n

S∑
s=1

H0(η̂DR
τ − ητ )2 +

√
n · o(

∥∥η̂DR
τ − ητ

∥∥2) + op(1).

To finish the proof of this theorem, it suffices to show that

√
N

∥∥∥∥∥J0(η̂DR
τ − ητ ) + 1

S

S∑
s=1

En,s[ψ∗(Ws; ητ )]

∥∥∥∥∥ = op(1), (46)

which is satisfied if we can prove that all terms on the RHS of the inequality in formula (46) are op(1). That
is, we only need to show

1.
∥∥∥∑S

s=1 Gn,s[ψ(Ws; η̂DR
τ , α̂s)− ψ∗(Ws; ητ )]

∥∥∥ = op(1), which follows directly from triangle inequality
if we can prove for any s ∈ {1, . . . , S},∥∥Gn,s[ψ(Ws; η̂DR

τ , α̂s)− ψ∗(Ws; ητ )]
∥∥ = op(1).

2.
∥∥η̂DR
τ − ητ

∥∥ = Op(n−1/2).
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3. E[
∑S
s=1 ψ(Ws; η̂DR

τ , α̂s)] = E[
∑S
s=1 ψ

∗(Ws; η̂DR
τ )] + o(n−1/2), which follows naturally if we can prove

for any s ∈ {1, . . . , S},

E[ψ(Ws; η̂DR
τ , α̂s)] = E[ψ∗(Ws; η̂DR

τ )] + o(n−1/2).

4. H0 is bounded.

Detailed proofs of these four conditions are provided in Step 2-5. Assuming condition 1-4 hold, we have

√
N

∥∥∥∥∥J0(η̂DR
τ − ητ ) + 1

S

S∑
s=1

En,s[ψ∗(Ws; ητ )]

∥∥∥∥∥ = op(1), (47)

then
√
N(η̂DR

τ − ητ ) = −J−1
0

1
S

S∑
s=1

En,s[ψ∗(Ws; ητ )] + op(1) = −J−1
0

1√
N

N∑
i=1

ψ∗(Wi; ητ ) + op(1).

The claim of this theorem thus follows.

Next, we will prove that all of these four conditions are satisfied in Step 2, Step 3, Step 4 and Step 5
respectively.

In the following proof, when the result holds for any fold s ∈ {1, . . . , S}, the subscript s in Ws, α̂s, Gn,s and
En,s will be omitted to avoid the redundancy of notations.

Step 2: Prove that
∥∥Gn[ψ(W ; η̂DR

τ , α̂)− ψ∗(W ; ητ )]
∥∥ = op(1).

Define Nτn(ητ ) = {η : ‖η − ητ‖ ≤ τn} as a neighborhood of ητ with size τn, and define F = {ψ(W ; η, α̂) −
ψ(W ; ητ , α̂) : η ∈ Nτn(ητ )}, where τn is a sequence of positive constants converging to zero. (According to
Step 3, τn can be any sequence with order τn ≥ O(n−1/2)).

Since ∥∥Gn[ψ(W ; η̂DR
τ , α̂)− ψ∗(W ; ητ )]

∥∥ ≤ sup
η∈Nτn (ητ )

‖Gn[ψ(W ; η, α̂)− ψ(W ; ητ , α̂)]‖

+ ‖Gn[ψ(W ; ητ , α̂)− ψ∗(W ; ητ )]‖ ,
(48)

It suffices to show both terms on the RHS of Formula (48) is op(1).

Step 2.1: Prove that supη∈Nτn (ητ ) ‖Gn[ψ(W ; η, α̂)− ψ(W ; ητ , α̂)]‖ = op(1).

First, it can be shown that F α̂0 = {ψ(W ; η, α̂) : η ∈ Nτn(ητ )} is a VC Class with VC-index V (F α̂0 ). Also, for
some q > 2, the entropy is bounded by some constant C2, i.e.

∥∥F α̂0 ∥∥P,q ≤ C2. According to Lemma 2.6.18
in Van Der Vaart et al. (1996), F is also a VC Class. By Conditioning on (Wi)i∈Ic , α̂ can be regarded as a
fixed value. By applying the Maximal Inequality specialized to VC type classes (Chernozhukov et al., 2014),
there exists a sufficiently large constant C, such that with probability 1− o(1),

sup
f∈F
|Gn(f)| ≤ C ·

(
rN log1/2(1/rN ) + n−1/2+1/q logn

)
, (49)

where
rN = sup

‖η−ητ‖≤τN
‖ψ(W ; η, α̂)− ψ(W ; ητ , α̂)‖P,2 . (50)

If we can show that rN = o(1), then supf∈F |Gn(f)| = o(1), and the claim of Step 2.1 follows.

To prove this, we split ψ into three parts and show that each part is indeed o(1). Let ψ(W ; η, α̂) = a(η, α̂) +
b(η, α̂) + c(η, α̂), where

a(η, α̂) = π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

(I{R1 +R2 < η} − τ),

b(η, α̂) = a1(α̂) · Ê[(I{R̂1 + R̂2 < η} − τ)|X1, (A1, A2) ∼ π],

c(η, α̂) = a2(α̂) · Ê[(I{R1 + R̂2 < η} − τ)|H2, A2 ∼ π],

(51)
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and a1(α̂), a2(α̂) are defined as

a1(α̂) =
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
, a2(α̂) =

(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)
. (52)

Specifically, when the estimating equation is ψ∗(W ; η), we let ψ∗(W ; η) := a∗(η) + b∗(η) + c∗(η).

Step 2.1.a: Prove that supη∈Nτn (ητ ) ‖a(η, α̂)− a(ητ , α̂)‖P,2 = o(1).

sup
η∈Nτn (ητ )

‖a(η, α̂)− a(ητ , α̂)‖P,2

= sup
η∈Nτn (ητ )

∥∥∥∥∥π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

(
I{R1 +R2 < η} − I{R1 +R2 < ητ}

)∥∥∥∥∥
P,2

= sup
η∈Nτn (ητ )

∥∥∥∥∥π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

I
{
R1 +R2 ∈ [min(ητ , η),max(ητ , η))

}∥∥∥∥∥
P,2

≤

∥∥∥∥∥π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

∥∥∥∥∥
P,2

· sup
η∈Nτn (ητ )

(
E
∣∣I{R∗(π) ∈ [min(ητ , η),max(ητ , η)]

}∣∣2) 1
2

=

∥∥∥∥∥π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

∥∥∥∥∥
P,2

· sup
η∈Nτn (ητ )

(
E
[
I
{
R∗(π) ∈ [min(ητ , η),max(ητ , η)]

}]) 1
2

≤ 1
ε2
· sup
η∈Nτn (ητ )

∣∣FR∗(π)(η)− FR∗(π)(ητ )
∣∣ 1

2

= 1
ε2
· sup
η∈Nτn (ητ )

∣∣EH1∼G
[
FR∗(π)|H1(η|H1)− FR∗(π)|H1(ητ |H1)

]∣∣ 1
2 ,

(53)

where FR∗(π)(η) is the marginal cumulative density function of random variable R∗(π) = R∗1(π) + R∗2(π).
Notice that the first inequality in (53) holds because of Cauchy-Schwarz inequality, and the second inequality
holds by Assumption (A4).

According to Assumption (A2), there exists a constant C3, such that for all r ∈ R andH1,
∣∣fR∗(π)|H1(r|H1)

∣∣ ≤
C3. Thus,

∣∣FR∗(π)|H1(η|H1)− FR∗(π)|H1(ητ |H1)
∣∣ ≤ C3 · ‖η − ητ‖ . (54)

Then we have

sup
η∈Nτn (ητ )

‖a(η, α̂)− a(ητ , α̂)‖P,2

≤ 1
ε2
· sup
η∈Nτn (ητ )

∣∣EH1∼G
[
FR∗(π)|H1(η|H1)− FR∗(π)|H1(ητ |H1)

]∣∣ 1
2

≤ 1
ε2
· sup
η∈Nτn (ητ )

(C3 · ‖η − ητ‖)
1
2 = 1

ε2
· o(1) = o(1),

(55)

which finishes the proof of this Step 2.1.a.
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Step 2.1.b: Prove that supη∈Nτn (ητ ) ‖b(η, α̂)− b(ητ , α̂)‖P,2 = o(1).

sup
η∈Nτn (ητ )

‖b(η, α̂)− b(ητ , α̂)‖P,2

= sup
η∈Nτn (ητ )

∥∥∥∥∥
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
Ê[(I{R̂∗1(π) + R̂∗2(π) < η} − I{R̂∗1(π) + R̂∗2(π) < ητ})

∣∣H1]

∥∥∥∥∥
P,2

= sup
η∈Nτn (ητ )

∥∥∥∥∥
(

1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)
·
(
F̂R∗(π)|H1(η; α̂|H1)− F̂R∗(π)|H1(ητ ; α̂|H1)

)∥∥∥∥∥
P,2

≤

∥∥∥∥∥1− π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

∥∥∥∥∥
P,2

· sup
η∈Nτn (ητ )

∥∥∥F̂R∗(π)|H1(η; α̂|H1)− F̂R∗(π)|H1(ητ ; α̂|H1)
∥∥∥
P,2

≤ 2
ε
· sup
η∈Nτn (ητ )

∥∥∥F̂R∗(π)|H1(η; α̂|H1)− F̂R∗(π)|H1(ητ ; α̂|H1)
∥∥∥
P,2

,

(56)

where F̂R∗(π)(r; α̂|H1) is the estimated cdf of (R̂1 + R̂2) given baseline information H1 and policy π. Also,
we have∥∥∥F̂R∗(π)|H1(η; α̂|H1)− F̂R∗(π)|H1(ητ ; α̂|H1)

∥∥∥
P,2
≤
∥∥∥F̂R∗(π)|H1(η; α̂|H1)− FR∗(π)|H1(η|H1)

∥∥∥
P,2

+
∥∥∥F̂R∗(π)|H1(ητ ; α̂|H1)− FR∗(π)|H1(ητ |H1)

∥∥∥
P,2

+
∥∥FR∗(π)|H1(η|H1)− FR∗(π)|H1(ητ |H1)

∥∥
P,2 .

(57)

Now let’s analyze the three terms on the RHS of formula (57).

On the one hand, according to Assumption (A1), for any η,∥∥∥F̂R∗(π)|H1(η; α̂|H1)− FR∗(π)|H1(η|H1)
∥∥∥
P,2
≤
∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

= o(1). (58)

The first and second terms in (57) can thus be bounded.

On the other hand, by assuming (A2) and utilizing the same proof as in formula (54),

sup
η∈Nτn (ητ )

∥∥FR∗(π)|H1(η|H1)− FR∗(π)|H1(ητ |H1)
∥∥
P,2 = o(1). (59)

Combining the result of (58), (59) with formula (57), we have

sup
η∈Nτn (ητ )

‖b(η, α̂)− b(ητ , α̂)‖P,2

≤ 2
ε
· sup
η∈Nτn (ητ )

∥∥∥F̂R∗(π)|H1(η; α̂|H1)− F̂R∗(π)|H1(ητ ; α̂|H1)
∥∥∥
P,2

= 2
ε
· o(1) = o(1).

The proof of Step 2.1.b is thus complete.

Step 2.1.c: Prove that supη∈Nτn (ητ ) ‖c(η, α̂)− c(ητ , α̂)‖P,2 = o(1).

Similar to Step 2.1.b, it follows from Condition (C3′) that

sup
η∈Nτn (ητ )

‖c(η, α̂)− c(ητ , α̂)‖P,2

= sup
η∈Nτn (ητ )

∥∥∥a2(α̂) · Ê[(I{R1 + R̂∗2(π) < η} − I{R1 + R̂∗2(π) < ητ})
∣∣H2,i]

∥∥∥
P,2

= sup
η∈Nτn (ητ )

∥∥∥a2(α̂) · Ê
[
I
{
R1 + R̂∗2(π) ∈ [min(ητ , η),max(ητ , η)]

}∣∣H2,i

]∥∥∥
P,2

≤ ‖a2(α̂)‖P,2 · sup
η∈Nτn (ητ )

∥∥∥F̂R∗2(π)|H2(η −R1; α̂|H2,i)− F̂R∗2(π)|H2(ητ −R1; α̂|H2,i)
∥∥∥
P,2

,

(60)
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where F̂R∗2(π)|H2(r; α̂|H2,i) is the estimated cdf of R̂2 given historical data H2 and policy π. We know that

‖a2(α̂)‖P,2 =

∥∥∥∥∥
(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
1− π2(A2,i|H2,i)

b̂2(A2,i|H2,i)

)∥∥∥∥∥
P,2

≤ 2
ε2
. (61)

Also, ∥∥∥F̂R∗2(π)|H2(η −R1; α̂|H2,i)− F̂R∗2(π)|H2(ητ −R1; α̂|H2,i)
∥∥∥
P,2

≤
∥∥∥F̂R∗2(π)|H2(η −R1; α̂|H2,i)− FR∗2(π)|H2(η −R1|H2,i)

∥∥∥
P,2

+
∥∥∥F̂R∗2(π)|H2(ητ −R1; α̂|H2,i)− FR∗2(π)|H2(ητ −R1|H2,i)

∥∥∥
P,2

+
∥∥FR∗2(π)|H2(η −R1|H2,i)− FR∗2(π)|H2(ητ −R1|H2,i)

∥∥
P,2 ,

(62)

where according to Assumption (A1), it holds for any η that∥∥∥F̂R∗2(π)|H2(η −R1; α̂|H2,i)− FR∗2(π)|H2(η −R1|H2,i)
∥∥∥
P,2
≤
∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

= op(1), (63)

and by using Assumption (A2) and the proof in formula (54),

sup
η∈Nτn (ητ )

∥∥FR∗2(π)|H2(η −R1|H2,i)− FR∗2(π)|H2(ητ −R1|H2,i)
∥∥
P,2 = o(1). (64)

By summarizing the result of formula (63) and (64), the LHS of formula (62) is thus op(1). Therefore, we
have

sup
η∈Nτn (ητ )

‖c(η, α̂)− c(ητ , α̂)‖P,2

≤ ‖a2(α̂)‖P,2 · sup
η∈Nτn (ητ )

∥∥∥F̂R∗2(π)|H2(η −R1; α̂|H2,i)− F̂R∗2(π)|H2(ητ −R1; α̂|H2,i)
∥∥∥
P,2

≤ 2
ε2
· o(1) = o(1).

(65)

Combining the results in Step 2.1.a-2.1.c, we have

sup
η∈Nτn (ητ )

‖Gn[ψ(W ; η, α̂)− ψ(W ; ητ , α̂)]‖ = op(1).

The claim of step 2.1 thus follows.

Step 2.2: Prove that ‖Gn[ψ(W ; ητ , α̂)− ψ∗(W ; ητ )]‖ = op(1).

Notice that under each Fold s, α̂ is independent with W . By Chebyshev’s Inequality, it suffices to show that

Var[Gn[ψ(W ; ητ , α̂)− ψ∗(W ; ητ )]] = Var[ψ(W ; ητ , α̂)− ψ∗(W ; ητ )] = o(1). (66)

According to our definition in formula (51), it follows from triangular inequality that

(Var[ψ(W ; ητ , α̂)− ψ∗(W ; ητ )])1/2 ≤ (Var[a(ητ , α̂)− a∗(ητ )])1/2

+ (Var[b(ητ , α̂)− b∗(ητ )])1/2 + (Var[c(ητ , α̂)− c∗(ητ )])1/2,
(67)
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in order to show the LHS is op(1), we only need to prove that the three parts on the RHS are all op(1).

(Var[a(ητ , α̂)− a∗(ητ )])1/2 ≤ ‖a(ητ , α̂)− a∗(ητ )‖P,2

=

∥∥∥∥∥
(
π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

− π1(A1|H1)π2(A2|H2)
b1(A1|H1)b2(A2|H2)

)
(I{R1 +R2 < ητ} − τ)

∥∥∥∥∥
P,2

≤ 1
ε4

∥∥∥b̂1(A1|H1)̂b2(A2|H2)− b1(A1|H1)b2(A2|H2)
∥∥∥
P,2
· ‖I{R1 +R2 < ητ} − τ‖P,2

≤ 2
ε4

∥∥∥b̂1(A1|H1)̂b2(A2|H2)− b1(A1|H1)b2(A2|H2)
∥∥∥
P,2

≤ 2
ε4

[∥∥∥b̂1(A1|H1)
{
b̂2(A2|H2)− b2(A2|H2)

}∥∥∥
P,2

+
∥∥∥b2(A2|H2)

{
b̂1(A1|H1)− b1(A1|H1)

}∥∥∥
P,2

]
≤ 2
ε5

[∥∥∥b̂1(A1|H1)− b1(A1|H1)
∥∥∥
P,2

+
∥∥∥b̂2(A2|H2)− b2(A2|H2)

∥∥∥
P,2

]
= o(1),

(68)

where we used Condition (C3′), Assumption (A4), triangle inequality, and last equality holds by Assumption
(A1).

Likewise,

(Var[b(ητ , α̂)− b∗(ητ )])1/2 ≤ ‖b(ητ , α̂)− b∗(ητ )‖P,2
=
∥∥∥a1(α̂) · Ê[(I{R̂∗1(π) + R̂∗2(π) < ητ} − τ)|H1]− a∗1 · Ê[(I{R∗1(π) +R∗2(π) < ητ} − τ)|H1]

∥∥∥
P,2

≤
∥∥∥a1(α̂) ·

{
Ê[I{R̂∗1(π) + R̂∗2(π) < ητ} − I{R∗1(π) +R∗2(π) < ητ}|H1]

}∥∥∥
P,2

+
∥∥∥{a1(α̂)− a∗1

}
· Ê[(I{R∗1(π) +R∗2(π) < ητ} − τ)|H1]

∥∥∥
P,2

≤

∥∥∥∥∥π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

∥∥∥∥∥
P,2

·
∥∥∥Ê[I{R̂∗1(π) + R̂∗2(π) < ητ} − I{R∗1(π) +R∗2(π) < ητ}|H1]

∥∥∥2

P,2

+

∥∥∥∥∥π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

− π1(A1,i|H1,i)
b1(A1,i|H1,i)

∥∥∥∥∥
P,2

·
∥∥∥Ê[(I{R∗1(π) +R∗2(π) < ητ} − τ)|H1]

∥∥∥
P,2

≤ 2
ε
·
∥∥∥F̂R∗(π)|H1(ητ ; α̂|H1)− FR∗(π)|H1(ητ |H1)

∥∥∥
P,2

+ 2
ε2

∥∥∥b̂1(A1,i|H1,i)− b1(A1,i|H1,i)
∥∥∥
P,2

= o(1).

(69)

Under Assumption (A1) and (A4), the last equality in Formula (69) holds because∥∥∥F̂R∗(π)|H1(ητ ; α̂|H1)− FR∗(π)|H1(ητ |H1)
∥∥∥
P,2
≤
∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

= o(1).

Similarly,

(Var[c(ητ , α̂)− c∗(ητ )])1/2 ≤ ‖c(ητ , α̂)− c∗(ητ )‖P,2
=
∥∥∥a2(α̂) · Ê[(I{R1 + R̂∗2(π) < ητ} − τ)|H2]− a∗2 · Ê[(I{R1 +R∗2(π) < ητ} − τ)|H2]

∥∥∥
P,2

≤
∥∥∥a2(α̂) ·

{
Ê[I{R1 + R̂∗2(π) < ητ} − I{R1 +R∗2(π) < ητ}|H2]

}∥∥∥
P,2

+
∥∥∥{a2(α̂)− a∗2

}
· Ê[(I{R1 +R∗2(π) < ητ} − τ)|H2]

∥∥∥
P,2

≤ 2
ε2
·
∥∥∥Ê[I{R1 + R̂∗2(π) < ητ} − I{R1 +R∗2(π) < ητ}|H2]

∥∥∥
P,2

+ 4
ε3
·
{∥∥∥b̂1(A1|H1)− b1(A1|H1)

∥∥∥
P,2

+
∥∥∥b̂2(A2|H2)− b2(A2|H2)

∥∥∥
P,2

}
≤ 2
ε2
·
∥∥∥F̂R∗2(π)|H2(ητ −R1; α̂|H2)− FR∗2(π)|H2(ητ −R1|H2)

∥∥∥
P,2

+ 4
ε3
· o(1),
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which is thus bounded by
2
ε2
·
∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

+ o(1) = o(1),

where we used Assumption (A1), (A4) and Positivity assumption (C3′).

The proof of Step 2.2 is thus complete.

Step 3: Prove that
∥∥η̂DR
τ − ητ

∥∥ = Op(n−1/2).

Similar to ψ(Wi; η, α), we split the original optimization problem Ψ(Wi; η, α) into three parts.

Ψ(Wi; η, α̂) := A(η, α̂) +B(η, α̂) + C(η, α̂), (70)

where
A(η, α̂) = π1(A1|H1)π2(A2|H2)

b̂1(A1|H1)̂b2(A2|H2)
ρτ (R1 +R2 − η),

B(η, α̂) = a1(α̂) · Ê[ρτ (R̂1 + R̂2 − η)|X1, (A1, A2) ∼ π],

C(η, α̂) = a2(α̂) · Ê[ρτ (R1 + R̂2 − η)|H2, A2 ∼ π],

(71)

and a1(α̂), a2(α̂) are defined in formula (52). Specifically, when the nuisance parameters α̂ is replaced by the
true values, we let Ψ∗(Wi; η) := A∗(η) +B∗(η) + C∗(η) in the same manner.

Furthermore, we denote Mn(η, α̂) = En[Ψ(W ; η, α̂)] as the empirical average of our optimization function,
and M(η, α̂) = E[Ψ(W ; η, α̂)]. When the models with nuisance parameters are correctly specified, we define
M∗n(η) = En[Ψ∗(W ; η)] and M∗(η) = E[Ψ∗(W ; η)].

According to Theorem 3.2.5 of Van Der Vaart et al. (1996), to finish the proof of this step, it suffices to show
that for every n and a sufficiently small δ, the following two conditions hold:

1. E
[
sup‖η−ητ‖<δ |Mn(η, α̂)−M∗(η)−Mn(ητ , α̂) +M∗(ητ )|

]
≤ δ√

n
;

2. There exists a constant C4, such that M∗(η)−M∗(ητ ) ≥ C4 · ‖η − ητ‖2.

*Note: This is an extension to the original proof of Theorem 3.2.5. The result of Theorem 3.2.5 does not
change after involving nuisance parameter α̂ in this case. Moreover, notice that the two conditions listed
above hold for any s ∈ {1, . . . , S}, and we omitted the subscript s to avoid redundancy.

Step 3.1: Prove E
[
sup‖η−ητ‖<δ |Mn(η, α̂)−M∗(η)−Mn(ητ , α̂) +M∗(ητ )|

]
≤ δ√

n
.

Since

E

[
sup

‖η−ητ‖<δ
|Mn(η, α̂)−M∗(η)−Mn(ητ , α̂) +M∗(ητ )|

]

≤ E

[
sup

‖η−ητ‖<δ
|Mn(η, α̂)−M(η, α̂)−Mn(ητ , α̂) +M(ητ , α̂)|

]
+ sup
‖η−ητ‖<δ

|(M(η, α̂)−M(ητ , α̂))− (M∗(η)−M∗(ητ ))| ,

(72)

to finish the proof of this step, it suffices to show that the first term on the RHS of Formula (72) is less than
or equal to δ√

n
, and the second term is actually o(n− 1

2 ‖η − ητ‖). We will prove them in Step 3.1.a and Step
3.1.b accordingly.

Step 3.1.a: Prove that E
[
sup‖η−ητ‖<δ |Mn(η, α̂)−M(η, α̂)−Mn(ητ , α̂) +M(ητ , α̂)|

]
≤ δ√

n
.

Thus, it is equivalent to proving that

E
[
sup
η
|Mn(η, α̂)−M(η, α̂)−Mn(ητ , α̂) +M(ητ , α̂)|

]
≤ O(n−1/2 ∥∥η̂DR

τ − ητ
∥∥). (73)
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Let Fδ = {Ψ(W ; η, α̂)−Ψ(W ; ητ , α̂) : ‖η − ητ‖ ≤ δ},and Fη = {Ψ(W ; η, α̂) : ‖η − ητ‖ ≤ δ}.

We claim that for any η1 and η2 satisfying ‖η − ητ‖ ≤ δ, there exist a square-integrable function M(W ; α̂),
such that

|Ψ(W ; η1, α̂)−Ψ(W ; η2, α̂)| ≤M(W ; α̂) ‖η1 − η2‖ . (74)

To prove this claim, we split formula (74) into three parts:

|Ψ(W ; η1, α̂)−Ψ(W ; η2, α̂)| ≤ |A(W ; η1, α̂)−A(W ; η2, α̂)|
+ |B(W ; η1, α̂)−B(W ; η2, α̂)|+ |C(W ; η1, α̂)− C(W ; η2, α̂)| .

(75)

Without the loss of generality, we assume that η1 < η2. Recall that R∗(π) is the conditional cumulative
reward given H1. Since

(R∗(π)− η2)I{R∗(π) < η2} − (R∗(π)− η1)I{R∗(π) < η1} =

 η1 − η2, R∗(π) < η1
R∗(π)− η2, η1 < R∗(π) < η2

0, R∗(π) > η2

(76)

we have |(R∗(π)− η2)I{R∗(π) < η2} − (R∗(π)− η1)I{R∗(π) < η1}| ≤ ‖η2 − η1‖.

Thus,
|A(W ; η1, α̂)−A(W ; η2, α̂)|

=

∣∣∣∣∣π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

(ρτ (R1 +R2 − η1)− ρτ (R1 +R2 − η2))

∣∣∣∣∣
≤ 1
ε2
· |ρτ (R∗(π)− η1)− ρτ (R∗(π)− η2)|

≤ 1
ε2
·
{
|(R∗(π)− η2)I{R∗(π) < η2} − (R∗(π)− η1)I{R∗(π) < η1}|+ τ ‖η2 − η1‖

}
≤ τ + 1

ε2
· ‖η2 − η1‖ .

(77)

Similarly,
|B(W ; η1, α̂)−B(W ; η2, α̂)|

=
∣∣∣a1(α̂)Ê

[
ρτ (R̂1 + R̂2 − η1)− ρτ (R̂1 + R̂2 − η2)

∣∣H1

]∣∣∣
≤ 2
ε
· Ê
[∣∣∣ρτ (R̂1 + R̂2 − η1)− ρτ (R̂1 + R̂2 − η2)

∣∣∣ ∣∣H1

]
≤ 2(τ + 1)

ε
· ‖η2 − η1‖ .

(78)

and
|C(W ; η1, α̂)− C(W ; η2, α̂)|

=
∣∣∣a2(α̂) · Ê

[
ρτ (R1,i + R̂2 − η1)− ρτ (R1 + R̂2 − η2)

∣∣H2

]∣∣∣
≤ 2
ε2
· Ê
[∣∣∣ρτ (R1 + R̂2 − η1)− ρτ (R1 + R̂2 − η2)

∣∣∣ ∣∣H2

]
≤ 2(τ + 1)

ε2
· ‖η2 − η1‖ .

(79)

Combining the result of formula (77), (78) and (79), we can simply set M(W ; α̂) = 5(τ + 1)/ε2, so that
the condition in Formula (74) is satisfied. More specifically, Ψ(W ; η, α̂) is Lipschitz continuous of order 1.
Therefore, Fδ has envelope function F := δ ·M(W ; α̂). Based on Theorem 2.7.11 and Lemma 2.7.8 of Van
Der Vaart et al. (1996), its bracketing number satisfies

N[ ](2ε ‖F‖ ,Fδ, ‖·‖) ≤ N(ε, {η : ‖η − ητ‖ ≤ δ}, ‖·‖) ≤
Cδ

ε
. (80)

Hence, according to the maximal inequality with bracketing numbers, we have

E
[∥∥√n(Mn(η, α̂)−M(η, α̂))

∥∥
Fδ

]
�
∫ ‖F‖

0

√
logN[ ](ε,Fδ, ‖·‖) dε � δ. (81)
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Plugging in the definition of ‖ · ‖Fδ , it shows that

E

[
sup

‖η−ητ‖<δ
|Mn(η, α̂)−M(η, α̂)−Mn(ητ , α̂) +M(ητ , α̂)|

]
≤ O(n−1/2 ∥∥η̂DR

τ − ητ
∥∥) ≤ δ√

n
.

Thus, the claim of Step 3.1.a follows.

Step 3.1.b: Prove sup‖η−ητ‖<δ |(M(η, α̂)−M(ητ , α̂))− (M∗(η)−M∗(ητ ))| = o(n− 1
2 ‖η − ητ‖).

By using exactly the same strategy as deriving formula (41) in Lemma 2, we can obtain similar results for
Ψ(W ; η, α̂):

M(η, α̂)−M∗(η) = E[Ψ(W ; η, α̂)]− E[Ψ∗(W ; η)]

=E

[(
π1(A1|H1)
b̂1(A1|H1)

)(
π2(A2|H2)
b̂2(A2|H2)

− π2(A2|H2)
b2(A2|H2)

)
·
(
Ê[ρτ (R1 +R∗2(π)− η)

∣∣H2]− Ê[ρτ (R1 + R̂∗2(π)− η)
∣∣H2]

)]

+E

[(
π1(A1|H1)
b̂1(A1|H1)

− π1(A1|H1)
b1(A1|H1)

)
·
(
Ê[ρτ (R∗1(π) +R∗2(π)− η)

∣∣H1]− Ê[ρτ (R̂∗1(π) + R̂∗2(π)− η)
∣∣H1]

)]
.

(82)

Similarly, we can get the expression for M(ητ , α̂)−M∗(ητ ) by substituting ητ for η in Formula (82).

Therefore,

|M(η, α̂)−M∗(η)− (M(ητ , α̂)−M∗(ητ ))|

≤

∣∣∣∣∣E
[(

π1(A1|H1)
b̂1(A1|H1)

)(
π2(A2|H2)
b̂2(A2|H2)

− π2(A2|H2)
b2(A2|H2)

)
· Ê[ρτ (R1 +R∗2(π)− η)

−ρτ (R1 + R̂∗2(π)− η)− ρτ (R1 +R∗2(π)− ητ ) + ρτ (R1 + R̂∗2(π)− ητ )
∣∣H2]

]∣∣∣
+

∣∣∣∣∣E
[(

π1(A1|H1)
b̂1(A1|H1)

− π1(A1|H1)
b1(A1|H1)

)
· Ê[ρτ (R∗1(π) +R∗2(π)− η)

−ρτ (R̂∗1(π) + R̂∗2(π)− η)− ρτ (R∗1(π) +R∗2(π)− ητ ) + ρτ (R̂∗1(π) + R̂∗2(π)− ητ )
∣∣H1]

]∣∣∣ .

(83)

Let’s first focus on bounding the last term in formula (83).∣∣∣Ê [ρτ (R∗1(π) +R∗2(π)− η)− ρτ (R̂∗1(π) + R̂∗2(π)− η)

−ρτ (R∗1(π) +R∗2(π)− ητ ) + ρτ (R̂∗1(π) + R̂∗2(π)− ητ )
∣∣H1

]∣∣∣
=
∣∣∣∣∫
r∈R

(ρτ (r − ητ )− ρτ (r − η)) ·
(
f̂R∗(π)|H1(r|H1)− fR∗(π)|H1(r|H1)

)
dr

∣∣∣∣
≤
∫
r∈R
|ρτ (r − ητ )− ρτ (r − η)| ·

∣∣∣f̂R∗(π)|H1(r|H1)− fR∗(π)|H1(r|H1)
∣∣∣ dr.

(84)

By mean value theorem, for any fixed r, there exists a constant
ηr ∈ (min{η, ητ},max{η, ητ}), such that

ρτ (r − ητ )− ρτ (r − η) = (τ − I{r < ηr}) · (η − ητ ). (85)

Therefore, for any r, it holds that

|ρτ (r − ητ )− ρτ (r − η)| = |(τ − I{r < ηr})| · ‖η − ητ‖ ≤ ‖η − ητ‖ . (86)
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Under mild conditions and Assumption (A1),∣∣∣Ê [ρτ (R∗1(π) +R∗2(π)− η)− ρτ (R̂∗1(π) + R̂∗2(π)− η)

−ρτ (R∗1(π) +R∗2(π)− ητ ) + ρτ (R̂∗1(π) + R̂∗2(π)− ητ )
∣∣H1

]∣∣∣
≤
∫
r∈R
|ρτ (r − ητ )− ρτ (r − η)| ·

∣∣∣f̂R∗(π)|H1(r|H1)− fR∗(π)|H1(r|H1)
∣∣∣ dr,

≤ ‖η − ητ‖ ·
∫
r∈R

∣∣∣f̂R∗(π)|H1(r|H1)− fR∗(π)|H1(r|H1)
∣∣∣ dr

= ‖η − ητ‖ · 2δ
(
F̂R∗(π)|H1 − FR∗(π)|H1

)
.

(87)

Similarly, we can prove by Assumption (A1) that∣∣∣Ê[ρτ (R1 +R∗2(π)− η)− ρτ (R1 + R̂∗2(π)− η)− ρτ (R1 +R∗2(π)− ητ ) + ρτ (R1 + R̂∗2(π)− ητ )
∣∣H2]

∣∣∣
≤
∫
r∈R
|ρτ (R1 + r − ητ )− ρτ (R1 + r − η)| ·

∣∣∣f̂R∗2(π)|H2(r|H2)− fR∗2(π)|H2(r|H2)
∣∣∣ dr

≤ ‖η − ητ‖ ·
∫
r∈R

∣∣∣f̂R∗2(π)|H2(r|H2)− fR∗2(π)|H2(r|H2)
∣∣∣ dr

= ‖η − ητ‖ · 2δ
(
F̂R∗2(π)|H2 − FR∗2(π)|H2

)
.

(88)

By summarizing the result of Formula (83), (87) and (88), we have

|M(η, α̂)−M∗(η)− (M(ητ , α̂)−M∗(ητ ))|

≤

∥∥∥∥∥
(
π1(A1|H1)
b̂1(A1|H1)

)(
π2(A2|H2)
b̂2(A2|H2)

− π2(A2|H2)
b2(A2|H2)

)∥∥∥∥∥
P,2

· 2 ‖η − ητ‖ ·
∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

+

∥∥∥∥∥π1(A1|H1)
b̂1(A1|H1)

− π1(A1|H1)
b1(A1|H1)

∥∥∥∥∥
P,2

· 2 ‖η − ητ‖ ·
∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

≤ 1
ε3

∥∥∥b̂2(A2|H2)− b2(A2|H2)
∥∥∥
P,2
· 2 ‖η − ητ‖ ·

∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

+ 1
ε2

∥∥∥b̂1(A1|H1)− b1(A1|H1)
∥∥∥
P,2
· 2 ‖η − ητ‖ ·

∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

= o(n− 1
2 ‖η − ητ‖),

(89)

where the last inequality holds according to Assumption (A1).

Step 3.2: Prove that M∗(η)−M∗(ητ ) ≥ C4 · ‖η − ητ‖2.

According to Taylor series expansion, we have

M∗(η) = M∗(ητ ) + E[ψ∗(W ; ητ )](η − ητ ) + 1
2∂ηE[ψ∗(W ; ητ )](η − ητ )2 + o(‖η − ητ‖2), (90)

in which E[ψ∗(W ; ητ )] = 0, and

∂ηE[ψ∗(Wi; η)] = ∂ηE

[
π1(A1|H1)π2(A2|H2)
b̂1(A1|H1)̂b2(A2|H2)

(I{R1 +R2 < η} − τ)
]

+ ∂ηE
[
E [a∗1|H1] · Ê[(I{R∗1(π) +R∗2(π) < η} − τ)|H1]

]
+ ∂ηE

[
E [a∗2|H2] · Ê[(I{R1 +R∗2(π) < η} − τ)|H2]

]
= EH1∼G

[
fR∗(π)|H1(η|H1)

]
+ 0 + 0 = fR∗(π)(η) ≥ 0

(91)
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where fR∗(π)|H1(η|H1) is the pdf of random variable R∗1(π1) + R∗2(π) given baseline information H1, and
fR∗(π)(η) is the marginal pdf of R∗1(π1) +R∗2(π) given baseline distribution H1 ∼ G.

Therefore, by Assumption (A3),

M∗(η)−M∗(ητ ) = 1
2 · fR

∗(π)(η)(η − ητ )2 + o(‖η − ητ‖2) ≥ C4 · ‖η − ητ‖2 , (92)

where C4 can be defined as C1/2− δ with a small enough δ such that C4 > 0.

Therefore, the proof of Step 3 is complete.

Step 4: Prove that sup‖η−ητ‖≤δ |E[ψ(W ; η, α̂)− ψ∗(W ; η)]| = o(n−1/2).

According to the derivation we did in formula (41),

sup
‖η−ητ‖≤δ

· |E[ψ(W ; η, α̂)− ψ∗(W ; η)]|

= sup
‖η−ητ‖≤δ

·

∣∣∣∣∣E
[(

π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

)(
π2(A2,i|H2,i)
b̂2(A2,i|H2,i)

− π2(A2,i|H2,i)
b2(A2,i|H2,i)

)
·
(
E[I{R1,i +R∗2(π) < η}

∣∣H2,i]− Ê[I{R1,i + R̂∗2(π) < η}
∣∣H2,i]

)]
+ E

[(
π1(A1,i|H1,i)
b̂1(A1,i|H1,i)

− π1(A1,i|H1,i)
b1(A1,i|H1,i)

)
·
(
Ê[I{R∗1(π) +R∗2(π) < η}

∣∣H1,i]− Ê[I{R̂∗1(π) + R̂∗2(π) < η}
∣∣H1,i]

)]∣∣∣
≤ 1
ε3
·
∥∥∥b̂2(A2|H2)− b2(A2|H2)

∥∥∥
P,2
·
∥∥∥δ (F̂R∗2(π)|H2 , FR∗2(π)|H2

)∥∥∥
P,2

+ 1
ε2
·
∥∥∥b̂1(A1|H1)− b1(A1|H1)

∥∥∥
P,2
·
∥∥∥δ (F̂R∗(π)|H1 , FR∗(π)|H1

)∥∥∥
P,2

= o(n−1/2),

(93)

where the order in the last equality comes from Assumption (A1).

Step 5: Prove that H0 is bounded.

In Formula (91), we obtained that ∂ηE[ψ∗(Wi; η)] = EH1∼G
[
fR∗(π)(η|H1)

]
= fR∗(π)(η). Therefore,

H0 = ∂2
ηE[ψ∗(Wi; η)]

∣∣∣
η=ητ

= ∂ηfR∗(π)(η)
∣∣∣
η=ητ

. (94)

This condition holds naturally according to Assumption (A5).

By combining the results in Step 2-5, one can follow the structure in Step 1 and the whole proof of Theorem
1 is thus complete.

C.5 Proof of Semi-Parametric Efficiency for ητ

In this subsection, we proof the semi-parametric efficiency of the DR estimator η̂DR
τ proposed in Equation

11. There are several ways of finding the efficient influence function (EIF) (see e.g., Kennedy, 2022; Hines
et al., 2022; Levy, 2019). In our proof, we focus on deriving the explicit expression of the Gateaux derivative,
and the EIF is thus the unique mean zero function whose inner product with the score function equals the
pathwise derivative of ητ (α).
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Recall that W = {(Xk, Ak, Rk)}Kk=1 is the full data with baseline information X1 ∼ G. For the brevity of
notation, we define a function U(η, α) as U(η, α) = EW [ψ(W, η, α)], i.e.

U(η, α) = FR∗(π)(η)− τ =
∑
{ak}Kk=1

∫
{rk},{hk}

(
I
{ K∑
k=1

rk < η
}
− τ
)
·
K∏
k=1

{
πk(ak|hk)×

fRk|Āk,Hk(rk|āk, hk;α) · fHk|Āk−1,Hk−1
(hk|āk−1, hk−1;α)

}
d{rk}d{hk}.

(95)

Notice that when k = 1, we manually set {Āk−1, Hk−1} = φ, yielding fH1|Ā0,H0
= f(X1) ∼ G. Therefore, by

definition, U(ητ , α∗) = EW [ψ(W, ητ , α∗)] = 0. The efficient influence function (EIF) of ητ should satisfy

∂

∂α
ητ (α)

∣∣∣
α=α∗

= E
[
V (W ; ητ , α∗) · s(W )

]
, (96)

where s(W ) is the score function of the entire data sequence W , given by

s(W ) = ∂

∂α
l(W ) = ∂

∂α

[
K∑
k=1

{
log(fRk|Āk,Hk;α) + log(b(Ak|Hk;α)) + log(fHk|Āk−1,Hk−1;α

)
}]

.

Our objective is to derive the explicit expression for V (W ; ητ , α∗), which is the EIF of ητ .

To do so, we start from the LHS of Equation 96. For simplicity, we will omit the subscript τ in ητ when
necessary, and denote η∗ as the true quantile value under the given target policy π. Since U(η∗, α∗) = 0, we
have

∂

∂α
ητ (α)

∣∣∣
α=α∗

= −
[
∂

∂η
U(η, α∗)

∣∣∣
η=η∗

]−1 [
∂

∂α
U(η∗, α)

∣∣∣
α=α∗

]
. (97)

On the RHS of Equation 97, the first term ∂
∂ηU(η, α∗)

∣∣∣
η=η∗

can be easily simplified as

∂

∂η
U(η, α∗)

∣∣∣
η=η∗

= ∂

∂η

{
FR∗(π)(η)− τ

}∣∣∣
η=η∗

= fR∗(π)(η∗),

which is a positive constant for any given quantile η∗ (Notice that the positiveness is guaranteed by As-
sumption (A3)). Next, we focus on deriving the second term of Equation 97, i.e. ∂

∂αU(η∗, α)
∣∣∣
α=α∗

. Taking

the derivative with respect to α, we can decompose ∂
∂αU(η∗, α)

∣∣∣
α=α∗

into two components:

∂

∂α
U(η∗, α)

∣∣∣
α=α∗

=
K∑
k=1

T
(k)
1 +

K∑
k=1

T
(k)
2 , (98)

where

T
(k)
1 =

∑
{ak′}Kk′=1

∫
{rk′},{hk′}

K∏
k′=1

πk(ak′ |hk′) ·
(
I
{ K∑
k′=1

rk′ < η
}
− τ
)
· ∂
∂α

fRk|Āk,Hk(rk|āk, hk;α)×

K∏
k′=1
k′ 6=k

{
fRk′ |Āk′ ,Hk′ (rk′ |āk′ , hk′ ;α)

}
·
K∏
k′=1

{
fHk′ |Āk′−1,Hk′−1

(hk′ |āk′−1, hk′−1;α)
}
d{rk′}d{hk′};

T
(k)
2 =

∑
{ak′}Kk′=1

∫
{rk′},{hk′}

K∏
k′=1

πk(ak′ |hk′) ·
(
I
{ K∑
k′=1

rk′ < η
}
− τ
)
· ∂
∂α

fHk|Āk−1,Hk−1
(hk|āk−1, hk−1;α)×

K∏
k′=1

{
fRk′ |Āk′ ,Hk′ (rk′ |āk′ , hk′ ;α)

}
·
K∏
k′=1
k′ 6=k

{
fHk′ |Āk′−1,Hk′−1

(hk′ |āk′−1, hk′−1;α)
}
d{rk′}d{hk′}.
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Step 1: For T (k)
1 , we can further derive

T
(k)
1 = EHk,Āk,R̄k−1

[ k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

∑
{ak′}Kk′=k

∫ k′≥k

{rk′},{hk′}

K∏
k′=k

πk(ak′ |hk′) ·
∂

∂α
fRk|Āk,Hk×

(
I
{ K∑
k′=1

rk′ < η
}
− τ
)
·

K∏
k′=k+1

{
fRk′ |Āk′ ,Hk′

}
·
K∏
k′=k

{
fHk′ |Āk′−1,Hk′−1

}
d{rk′}d{hk′}

]
.

Since

∂

∂α
fRk|Āk,Hk = ∂

∂α

(
log fRk|Āk,Hk

)
· fRk|Āk,Hk

=
{
E[s(W )|Hk, Āk, R̄k]− E[s(W )|Hk, Āk, R̄k−1]

}
· fRk|Āk,Hk ,

we can plug in the result above to the expression of T (k)
1 , which yields

T
(k)
1 = E

[
k∏

k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

∑
{ak′}Kk′=k+1

∫ k′≥k+1

{rk′},{hk′}

K∏
k′=k+1

πk(ak′ |hk′) ·
(
I
{ K∑
k′=1

rk′ < η
}
− τ
)
·

K∏
k′=k+1

{

fRk′ |Āk′ ,Hk′ · fHk′ |Āk′−1,Hk′−1

}{
E[s(W )|Hk, Āk, R̄k]− E[s(W )|Hk, Āk, R̄k−1]

}
d{rk′}d{hk′}

]

= E

[
k∏

k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

EAk′∼π,Hk′ ,Rk′ ,k′≥k+1

{(
I
{ K∑
k′=1

Rk′ < η
}
− τ
)
· E[s(W )|Hk, Āk, R̄k]

}

−
k∏

k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

EAk′∼π,Hk′ ,Rk′ ,k′≥k+1

{(
I
{ K∑
k′=1

Rk′ < η
}
− τ
)
· E[s(W )|Hk, Āk, R̄k−1]

}]

= E

[
k∏

k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

E
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)∣∣∣Hk, Āk, R̄k

}
s(W ) −

k∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

E
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)∣∣∣Hk, Āk, R̄k−1

}
s(W )

]

= E

[
k∏

k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{
FR∗(π)|Hk,Āk,R̄k(η)− FR∗(π)|Hk,Āk,R̄k−1

(η)
}
· s(W )

]
,

where the first expectation after all the equality signs above is taken over (Hk, Āk, R̄k−1).

The derivation above works for all k ∈ {1, . . . ,K − 1}. When k = K, as a special case,

T
(K)
1 = E

[
K∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

(
I
{ K∑
k′=1

Rk′ < η
}
− τ
)
s(W )

−
K∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

E
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)∣∣∣Hk, Āk, R̄k−1

}
s(W )

]

= E

[
K∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)
− FR∗(π)|Hk,Āk,R̄k−1

(η)
}
· s(W )

]
.

(99)

Note that in the first line of Equation 99, the expectation outside of the indicator function vanishes because
all observational data (Hk, Āk, R̄k) were given when k = K.
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Step 2: Similarly, for T (k)
2 , we have

T
(k)
2 = EHk−1,Āk−1,R̄k−1

[ k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

∑
{ak′}Kk′=k

∫ k′≥k

{rk′},{hk′}

K∏
k′=k

πk(ak′ |hk′) ·
∂

∂α
fHk|Āk−1,Hk−1

×

(
I
{ K∑
k′=1

rk′ < η
}
− τ
)
·
K∏
k′=k

{
fRk′ |Āk′ ,Hk′

}
·

K∏
k′=k+1

{
fHk′ |Āk′−1,Hk′−1

}
d{rk′}d{hk′}

]

Since

∂

∂α
fHk|Āk−1,Hk−1

= ∂

∂α

(
log fHk|Āk−1,Hk−1

)
· fHk|Āk−1,Hk−1

=
{
E[s(W )|Hk, Āk−1, R̄k−1]− E[s(W )|Hk−1, Āk−1, R̄k−1]

}
· fHk|Āk−1,Hk−1

,

we can plug in the result above to the expression of T (k)
2 , which yields

T
(k)
2 = E

[
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

∑
{ak′}Kk′=k

∫ k′≥k

{rk′},{hk′}

K∏
k′=k

πk(ak′ |hk′) ·
(
I
{ K∑
k′=1

rk′ < η
}
− τ
)
·
K∏
k′=k

{

fRk′ |Āk′ ,Hk′ · fHk′ |Āk′−1,Hk′−1

}{
E[s(W )|Hk, Āk−1, R̄k−1]− E[s(W )|Hk−1, Āk−1, R̄k−1]

}
d{rk′}d{hk′}

]

= E

[
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

EAk′∼π,Hk′ ,Rk′ ,k′≥k
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)
· E[s(W )|Hk, Āk−1, R̄k−1]

}

−
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

EAk′∼π,Hk′ ,Rk′ ,k′≥k
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)
· E[s(W )|Hk−1, Āk−1, R̄k−1]

}]

= E

[
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

E
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)∣∣∣Hk, Āk−1, R̄k−1

}
s(W )

−
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

E
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)∣∣∣Hk−1, Āk−1, R̄k−1

}
s(W )

]

= E

[
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{
FR∗(π)|Hk,Āk−1,R̄k−1

(η)− FR∗(π)|Hk−1,Āk−1,R̄k−1
(η)
}
· s(W )

]
,

where the first expectation after all the equality signs above is taken over (Hk−1, Āk−1, R̄k−1).

Similar to T (k)
1 , there is a slight exception when k = 1. This happens when the target policy is inconsistent

with the behavior policy from the initial stage, which corresponds to the DM estimator component in the
final expression of the EIF:

T
(1)
2 = E

[
E
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)∣∣∣H1

}
s(W )

]
= E

[{
FR∗(π)|H1(η)− τ

}
· s(W )

]
.
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Step 3: By combining the expression for T (k)
1 and T (k)

2 derived in the previous two steps with Equation 98,
we have

∂

∂α
U(η∗, α)

∣∣∣
α=α∗

=
K∑
k=1

T
(k)
1 +

K∑
k=1

T
(k)
2 = T

(K)
1 +

K−1∑
k=1

{
T

(k)
1 + T

(k+2)
2

}
+ T

(1)
2

= E

[
s(W ) ·

K∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)
− FR∗(π)|Hk,Āk,R̄k−1

(η)
}

+
K−1∑
k=1

k∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{
FR∗(π)|Hk,Āk,R̄k(η)− FR∗(π)|Hk,Āk,R̄k−1

+

FR∗(π)|Hk,Āk−1,R̄k−1
(η)− FR∗(π)|Hk−1,Āk−1,R̄k−1

(η)
}

+
{
FR∗(π)|H1(η)− τ

}]

= E

[
s(W ) ·

K∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{(

I
{ K∑
k′=1

Rk′ < η
}
− τ
)
− FR∗(π)|Hk,Āk,R̄k−1

(η)
}

+
K−1∑
k=1

k∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
{
FR∗(π)|Hk,Āk,R̄k(η)− FR∗(π)|Hk−1,Āk−1,R̄k−1

(η)
}

+
{
FR∗(π)|H1(η)− τ

}]
where the last equation holds since FR∗(π)|Hk,Āk,R̄k−1

= FR∗(π)|Hk,Āk−1,R̄k−1
(η), given that πk is known.

Define C(η∗) = −fR∗(π)(η∗) as a constant independent of η. According to Equation 97, the EIF of η is given
by

EIFη = C(η∗) ·
K∏
k=1

πk(Ak|Hk)
bk(Ak|Hk) ·

(
I
{ K∑
k=1

Rk < η
}
− FR∗(π)|HK−1,ĀK−1

(η)
)

+
K−1∑
k=2

k∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

·
(
FR∗(π)|Hk,Āk(η)− FR∗(π)|Hk−1,Āk−1

(η)
)

+ π1(A1|H1)
b1(A1|H1) ·

(
FR∗(π)|H1,Ā1

(η)− τ
)
.

(100)

By breaking the bracket and re-arranging terms via propensity scores, this further gives us

EIFη = C(η∗) · E
[∏K

k′=1 πk′(Ak′ |Hk′)∏K
k′=1 bk′(Ak′ |Hk′)

(
I
{ K∑
k=1

Rk < η
}
− τ
)

+
K∑
k=1

(
k−1∏
k′=1

πk′(Ak′ |Hk′)
bk′(Ak′ |Hk′)

)(
1− πk(Ak|Hk)

bk(Ak|Hk)

)
FR∗(π)|Hk,Āk(η)

]
.

(101)

The expression above aligns perfectly with the quantile DR estimator we proposed in Equation 11 after
taking the derivative with a constant-wise difference. As the optimization result remains the same after
multiplying a constant, the EIF we derived above demonstrates the semi-parametric efficiency of our DR
estimator.
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