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Abstract
We explore the notion of uncertainty in the001
context of modern abstractive summariza-002
tion models, using the tools of Bayesian003
Deep Learning. Our approach approximates004
Bayesian inference by first extending state-005
of-the-art summarization models with Monte006
Carlo dropout and then using them to perform007
multiple stochastic forward passes. Based on008
Bayesian inference we are able to effectively009
quantify uncertainty at prediction time. Hav-010
ing a reliable uncertainty measure, we can im-011
prove the experience of the end user by fil-012
tering out generated summaries of high un-013
certainty. Furthermore, uncertainty estimation014
could be used as a criterion for selecting sam-015
ples for annotation, and can be paired nicely016
with active learning and human-in-the-loop ap-017
proaches. Finally, Bayesian inference enables018
us to find a Bayesian summary which performs019
better than a deterministic one and is more020
robust to uncertainty. In practice, we show021
that our Variational Bayesian equivalents of022
BART and PEGASUS can outperform their023
deterministic counterparts on multiple bench-024
mark datasets.025

1 Introduction026

State-of-the-art text summarization methods have027

achieved remarkable performance in various bench-028

marks (Song et al., 2019; Dong et al., 2019; Lewis029

et al., 2019; Zhang et al., 2020). The majority of030

these methods use very large Transformer models031

pre-trained on language generation tasks.032

Although such methods can generate high qual-033

ity summaries for texts similar to their training set,034

they suffer from a couple of issues when the inputs035

lie far from the training data distribution. They are036

prone to generating particularly bad outputs (Xu037

et al., 2020; Kryściński et al., 2020) and are usually038

fairly confident about them (Gal and Ghahramani,039

2016; Xiao et al., 2020). These shortcomings are040

bound to cause problems once a summarization041

model is deployed to solve a practical problem.042

Since the output of automatic summarization 043

models is usually expected to be consumed by hu- 044

mans, it is very important to know when such an 045

output is of good enough quality to be served to 046

users. In most cases, it is very much preferable to 047

not serve an output at all, instead of serving a bad 048

output. This will in turn increase users’ trust to 049

automated summarization systems. 050

Model uncertainty is one way of detecting when 051

a model’s output is likely to be poor on the grounds 052

of predicting far away from it’s training distribu- 053

tion. Recent summarization methods have focused 054

heavily on improving the overall performance, but 055

model uncertainty has been explored very little (Xu 056

et al., 2020). 057

In addition to improving user experience, the 058

development of uncertainty measures for summa- 059

rization can pave the way for active learning ap- 060

proaches (Gal et al., 2017; Houlsby et al., 2011; Liu 061

et al., 2020; Lyu et al., 2020). The value of active 062

learning stems from the fact that obtaining labeled 063

samples for training is hard, but it is relatively easy 064

to obtain large amounts of unlabeled samples. Sum- 065

marization is no different in this perspective, since 066

creating good quality target summaries for training 067

can be very costly. 068

This work explores uncertainty estimation for 069

state-of-the-art text summarization models, from 070

a Bayesian perspective. We extend the BART 071

(Lewis et al., 2019) and PEGASUS (Zhang et al., 072

2020) summarization models with Monte Carlo 073

dropout (Gal and Ghahramani, 2016), in order to 074

create corresponding Variational Bayesian PEGA- 075

SUS (VarPEGASUS) and BART (VarBART) mod- 076

els. Sampling multiple summaries from those mod- 077

els allows us to approximate Bayesian inference 078

in a practical way, which in turn enables us to es- 079

timate summarization uncertainty. To the best of 080

our knowledge this is the first attempt to apply 081

Bayesian summary generation with large Trans- 082

former models. 083
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Based on Bayesian approximation, we adapt the084

Monte Carlo BLEU variance metric (Xiao et al.,085

2020) to the summarization task, and investigate its086

efficacy as a measure of summarization uncertainty.087

Our findings suggest that this uncertainty metric088

correlates well with the quality of the generated089

summaries and can be effective at identifying cases090

of questionable quality.091

Finally, we take the summarization uncertainty092

study one step further, and select the summary093

with the lowest disagreement out of multiple sum-094

maries sampled from our Variational models. Ex-095

periments across multiple benchmark datasets show096

that this method consistently improves summariza-097

tion performance (see Table 4), and by using it098

our VarPEGASUS and VarBART models achieve099

better ROUGE F-scores compared to their original100

deterministic counterparts.101

The rest of this paper is structured as follows.102

Section 2 discusses related work on Bayesian deep103

learning and uncertainty estimation methods. Sec-104

tion 3 presents our approach. Section 4 describes105

our experimental setup, while Section 5 presents106

and discusses the results. Finally, Section 6 con-107

cludes our work and considers its broader impact.108

2 Related work109

Uncertainty estimation in deep learning is a topic110

that has been studied extensively. Bayesian deep111

learning includes a family of methods that attempt112

to capture the notion of uncertainty in deep neural113

networks. Such methods have gained increased114

popularity in the deep learning literature and there115

exist multiple applications in subfields such as116

Computer Vision (Kendall and Gal, 2017; Litjens117

et al., 2017; Gal et al., 2017) and Natural Language118

Processing (NLP) (Siddhant and Lipton, 2020; Liu119

et al., 2020; Lyu et al., 2020; Xiao et al., 2020).120

Despite their obvious advantage of modeling un-121

certainty, the main problem with Bayesian deep122

learning methods is the computational cost of full123

Bayesian inference. To tackle this problem, Gal124

and Ghahramani (2016) propose using standard125

dropout (Srivastava et al., 2014) as a practical ap-126

proximation of Bayesian inference in deep neural127

networks and call this method Monte Carlo dropout.128

Gal et al. (2017) use a convolutional neural network129

with Monte Carlo dropout in order to obtain an un-130

certainty estimate for active learning in the task of131

image classification. Houlsby et al. (2011) sam-132

ple many networks with Monte Carlo simulation133

and propose an objective function that takes into 134

account the disagreement and confidence of the 135

predictions coming from these networks. 136

Similar methods have also been applied to NLP. 137

In machine translation, Xiao et al. (2020) extend 138

the Transformer architecture with MC dropout to 139

get a Variational Transformer, and use it to sample 140

multiple translations from the approximate poste- 141

rior distribution. They also introduce BLEUVar, 142

an uncertainty metric based on the BLEU score 143

(Papineni et al., 2002) between pairs of the gen- 144

erated translations. Lyu et al. (2020) extend the 145

work of Xiao et al. (2020) to question answering 146

and propose an active learning approach based on 147

a modified BLEUVar version. Similarly, Liu et al. 148

(2020) use a conditional random field to obtain un- 149

certainty estimates for active learning and apply 150

their method to named entity recognition. 151

Although summarization is a prominent NLP 152

task, summarization uncertainty has not been 153

widely studied. Xu et al. (2020) is the only work 154

that focuses on uncertainty for summarization, but 155

their work does not make use of Bayesian methods. 156

They define a generated summary’s uncertainty 157

based on the entropy of each token generated by the 158

model during the decoding phase. Their study in- 159

cludes experiments on CNN/DM and XSum using 160

the PEGASUS and BART summarization models. 161

Their main focus is on understanding different prop- 162

erties of uncertainty during the decoding phase, and 163

their work is not directly comparable to ours. 164

3 Methods 165

We first introduce Bayesian inference, in the con- 166

text of deep neural networks and show how it can 167

be used to measure uncertainty. Subsequently, we 168

show how Bayesian inference can be applied to 169

summarization in order to estimate the uncertainty 170

of a summary generated for a given input. Finally, 171

we show how Bayesian inference can be employed 172

for producing better summaries. 173

3.1 Monte Carlo dropout 174

Contrary to standard neural networks, Bayesian 175

probabilistic models capture the uncertainty notion 176

explicitly. The goal of such models is to derive the 177

entire posterior distribution of model parameters θ 178

given training data X and Y (Equation 1). 179

P (θ|X,Y ) =
P (Y |X, θ)P (θ)

P (Y |X)
(1) 180
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At test time, given some input x, a prediction ŷ181

can be made by integrating over all possible θ val-182

ues (Equation 2). The predictive distribution’s vari-183

ance can then be used as a measure of the model’s184

uncertainty.185

P (ŷ|x,X, Y ) =

∫
P (ŷ|x, θ)P (θ|X,Y )dθ (2)186

In practice, integrating over all possible parame-187

ter values for a deep neural network is intractable,188

and therefore Variational methods are used to ap-189

proximate Bayesian inference. A neural network190

trained with dropout can be interpreted as a Varia-191

tional Bayesian neural network (Gal and Ghahra-192

mani, 2016), and as a result making stochastic for-193

ward passes with dropout turned on at test time194

is equivalent to drawing from the model’s predic-195

tive distribution. This Monte Carlo (MC) dropout196

method can be easily applied to any neural network197

that has been trained with dropout.198

3.2 Summary uncertainty199

MC dropout is a simple yet effective method that200

requires no adjustment to the underlying model. It201

is possible to convert any state-of-the-art summa-202

rization model to a Variational Bayesian model,203

with the use of MC dropout. For Transformer204

based models in particular, the Transformer blocks205

that make up the encoder and decoder are usually206

trained with dropout, and therefore the conversion207

is trivial by simply turning dropout on at test time.208

In Variational models, the variance of the predic-209

tive distribution can be used to measure the model’s210

uncertainty. For a text summarization model, we211

can approximate the variance of this distribution,212

by measuring the dissimilarity ofN stochastic sum-213

maries y1, y2 . . . yN , generated with MC dropout.214

The BLEU metric (Papineni et al., 2002) is com-215

monly used for measuring the similarity between216

a pair of texts. As in Xiao et al. (2020), we ap-217

proximate the model’s predictive variance with218

the BLEU Variance (BLEUVar) metric over the N219

summaries generated with MC dropout as shown220

in Equation 3. BLEUVar is computed by summing221

the squared complement of BLEU among all pairs222

of summaries (twice as BLEU is asymmetric) gen-223

erated for the same input with different dropout224

masks.225

BLEUVar =
N∑
i=1

N∑
j 6=i

(1− BLEU(yi, yj))
2 (3)226

Because we sum over all pairs of N samples 227

twice, scores that are computed with different N 228

values are not directly comparable. To alleviate 229

this issue we propose a normalized version of the 230

metric, BLEUVarN, where we divide BLEUVar by 231

N(N − 1) (Equation 4). This allows for compar- 232

isons between scores computed with different N 233

values. 234

BLEUVarN =

∑N
i=1

∑N
j 6=i(1− BLEU(yi, yj))

2

N(N − 1)
(4) 235

By running multiple stochastic forward passes 236

for the same input, we essentially create an ensem- 237

ble of models with different parameters. Making 238

predictions with this ensemble has the following 239

effects. For inputs close to the learned distribu- 240

tion the summaries generated by all models in the 241

ensemble will be similar to one another, and as a re- 242

sult BLEUVarN will be low. On the other hand, for 243

inputs lying away from the learned distribution, the 244

generated summaries will differ wildly and BLEU- 245

VarN will be high, indicating high uncertainty. 246

3.3 Bayesian summary generation 247

Inspired by the fact that making multiple predic- 248

tions with MC dropout is equivalent to ensembling 249

multiple stochastic models, we propose a novel 250

Bayesian approach to summary generation. Instead 251

of generating a single deterministic summary with- 252

out dropout, as is commonly the case with modern 253

summarization approaches, we consider using the 254

predictive mean of multiple predictions made with 255

MC dropout. Because the predictions in our case 256

are summaries their predictive mean is not well 257

defined, so instead we opt for selecting one of the 258

N summaries. 259

We assume that the predictive mean of the N 260

summaries generated with MC dropout should be 261

the one having the lowest disagreement with the 262

rest of the N − 1 summaries. Since the pairwise 263

complement of BLEU between all pairs of the sam- 264

pled summaries has already been computed when 265

estimating BLEUVarN uncertainty, it can be fur- 266

ther used to help us find the lowest disagreement 267

summary. In practice, we select the summary µ̂ 268

that maximizes the sum of symmetric BLEU simi- 269

larity with the rest of the summaries (Equation 5) 270

(Xiao et al., 2020). This summary could be seen 271

as the median of all the summaries generated with 272

MC dropout, although this is not a mathematically 273
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correct expression.274

µ̂ = argmax
yi

N∑
j 6=i

[BLEU(yi, yj) + BLEU(yj , yi)] (5)275

The intuition behind this approach is based on276

the following assumption. We expect the median277

summary to integrate the key concepts that all in-278

dividual summaries agree on. Consequently, for279

inputs close to the model’s learned distribution, the280

individual summaries will be similar to one another281

and as a result the median summary will be the best282

choice. On the other hand, for out-of-distribution283

inputs, the median out of a number of very different284

summaries will result in a more robust and overall285

better final summary. In practice, even for well286

trained models, we expect to have a fairly large287

number of inputs that are not close to the mod-288

els’ learned distribution, and therefore we expect289

to benefit from the positive effects of ensembling290

multiple outputs.291

4 Experimental Setup292

We first present the three datasets that are involved293

in our experiments, their main statistics and the294

reasons for including them in our empirical study.295

Then we present the two summarization models296

that we employed, along with their parameters and297

details on stochastic summary generation.298

4.1 Datasets299

In order to verify the effectiveness of our Bayesian300

abstractive summarization approach, we conducted301

a series of experiments on three well-known sum-302

marization benchmarks:303

• XSum (Narayan et al., 2018) is a dataset of304

227k BBC articles on a wide variety of top-305

ics. Each article is accompanied by a human306

written, single-sentence summary.307

• CNN/DailyMail (Hermann et al., 2015) is a308

dataset containing a total of 93k articles from309

the CNN, and 220k articles from the Daily310

Mail newspapers. All articles are paired with311

bullet point summaries. The version used is312

the non-anonymized variant similar to (See313

et al., 2017).314

• AESLC (Zhang and Tetreault, 2020) is a315

dataset of 18k emails from the Enron corpus316

(Klimt and Yang, 2004). The body of each317

Table 1: Basic statistics for each one the datasets used
in our experiments. The document and summary length
are measured in words.

Size Length
Dataset Val. Test Doc. Sum.
XSum 11,332 11,334 431 23
CNN/DM 13,368 11,490 760 46
AESLC 1,960 1,906 75 4

email is used as source text and the subject as 318

summary. 319

The main criteria for selecting these datasets 320

are the availability of recent, open source models 321

trained on them and their relatively short texts that 322

would allow us to run a number of different experi- 323

ments quickly. Since our methods do not involve 324

training, we will only focus on the validation and 325

test set of each dataset. All datasets are obtained 326

from the Hugging Face datasets repository1. Table 327

1 presents some basic statistics for these datasets. 328

4.2 Models 329

BART (Lewis et al., 2019) and PEGASUS (Zhang 330

et al., 2020) are Transformer based sequence-to- 331

sequence models, pre-trained on massive corpora 332

of unsupervised data (Web and news articles). 333

Since our experiments do not involve training, we 334

utilize open-source models fine-tuned on the train- 335

ing set of each dataset. These models can be found 336

in the Hugging Face models repository2. 337

Our BART models follow the BARTLARGE archi- 338

tecture with 12 Transformer blocks for the encoder 339

and the decoder. BART is pre-trained as a denois- 340

ing autoencoder, where the text is corrupted and the 341

model learns to reconstruct the original text. Open- 342

source fine-tuned BART models are only available 343

for XSum and CNN/DM. Our PEGASUS models 344

follow the PEGASUSLARGE architecture and have 345

16 Transformer blocks for the encoder and the de- 346

coder. PEGASUS is pre-trained on the C4 and 347

HugeNews datasets, on a sentence infilling task. 348

Open-source fine-tuned PEGASUS models exist 349

for all three datasets considered in our experiments. 350

In order to convert BART and PEGASUS to 351

Variational models, we enable dropout for all Trans- 352

former blocks of the encoder and decoder. For each 353

sample, we generate N summaries using beam 354

1https://huggingface.co/datasets
2https://huggingface.co/models
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search decoding with 8 beams. We experimented355

with N equal to 10 (MC-10) and 20 (MC-20). The356

rest of the hyper-parameters used were identical to357

the original papers.358

5 Results359

Our main experiment evaluates BLEUVarN’s effec-360

tiveness in quantifying uncertainty for summariza-361

tion models. A second experiment investigates the362

potential of the Bayesian summarization method363

proposed in Section 3.3 as a way of improving364

summarization performance at test time.365

5.1 Evaluating Bayesian uncertainty366

We here evaluate the effectiveness of BLEUVarN367

in measuring the model’s uncertainty. The per-368

formance versus data retention curve (Filos et al.,369

2019) measures how well a model would perform370

if we completely removed the k% most uncertain371

outputs from the test set. In the x-axis we have the372

fraction of data from the test set that are removed,373

while in the y-axis we have the performance met-374

rics. An effective uncertainty measure should show375

a consistent improvement in performance as we376

discard more samples based on high uncertainty.377

In this experiment, we arrange samples by decreas-378

ing BLEUVarN score and gradually remove the379

samples with the highest score.380

Figure 1 shows, for each dataset, the perfor-381

mance of our Variational models in terms of382

ROUGE-1 F-score versus the fraction of data383

discarded based on BLEUVarN. ROUGE-2 and384

ROUGE-L F-scores follow similar patterns and can385

be found in the Appendix A. For reference, we are386

also plotting the performance of the deterministic387

models using all data as straight lines.388

All ROUGE F-scores improve as we gradually389

discard samples with high BLEUVarN, an obser-390

vation that is consistent across all test datasets and391

models. More specifically, we notice that the in-392

crease is linear for the first 80% of the data, but393

then becomes almost exponential. From these ob-394

servations we can draw two conclusions. First,395

models indeed perform significantly worse on sam-396

ples with high uncertainty. Second, BLEUVarN397

is effective at quantifying uncertainty and can be398

used to identify high uncertainty samples.399

To further illustrate how BLEUVarN behaves400

across different parts of the data, Figure 2 shows401

the decrease in the average BLEUVarN of all Varia-402

tional models as we gradually discard samples with403

low ROUGE-1 scores from each dataset. We ob- 404

serve that for the samples with the highest ROUGE 405

performance BLEUVarN becomes almost zero. 406

This observation further supports our argument 407

that model uncertainty has a significant impact on 408

model performance. 409

5.1.1 MC-10 vs MC-20 410

From Figure 1 we can see that MC dropout with 20 411

samples performs better than 10 samples, resulting 412

in higher performance. In more detail, for highly 413

uncertain data, both MC-10 and MC-20 converge 414

to similar BLEUVarN values (Figure 2) as well 415

as ROUGE scores (Figure 1). On the other side 416

of the spectrum, for low uncertainty data, using 417

20 samples leads to bigger performance increase 418

along with a little higher BLEUVarN scores. 419

Based on these observations, we conclude that 420

MC dropout with 20 samples is generally better 421

in terms of performance. This comes at the cost 422

of increased computational overhead because it re- 423

quires running twice as many stochastic passes with 424

MC dropout. However, this computation is embar- 425

rassingly parallelizable in modern hardware, and 426

can be easily optimized by batching MC dropout 427

generations with different dropout masks for each 428

sample within the batch. 429

5.1.2 VarBART vs VarPEGASUS 430

Out of the two models, VarPEGASUS is consis- 431

tently showing the biggest increase in performance 432

as more uncertain samples are dropped from the 433

dataset. It should be noted here, that the decline in 434

performance as data uncertainty increases, is much 435

steeper for VarBART than it is for VarPEGASUS 436

on both the XSum and the CNN/DM dataset. This 437

coincides with the fact that VarPEGASUS also has 438

much higher BLEUVarN uncertainty as shown in 439

Figure 2, which hints us that the PEGASUS model 440

is in general less confident about the outputs it 441

generates. Anecdotally, we can say here that PE- 442

GASUS is more aware of the things it does not 443

know, and as a result it seems to benefit more from 444

the uncertainty estimates. 445

5.2 Bayesian vs deterministic summarization 446

The next experiment focuses on the Bayesian sum- 447

marization method proposed in Section 3.3. We 448

compare the performance of Bayesian summariza- 449

tion using the VarBART and VarPEGASUS mod- 450

els against the standard summarization paradigm 451

using the deterministic BART and PEGASUS mod- 452

5



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of data discarded

45

50

55

60

65

70

75

ro
ug

e1
xsum

VarPEGASUS-10
VarPEGASUS-20
VarBART-10
VarBART-20
PEGASUS
BART

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of data discarded

40

50

60

70

80

ro
ug

e1

cnn_dailymail
VarPEGASUS-10
VarPEGASUS-20
VarBART-10
VarBART-20
PEGASUS
BART

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of data discarded

40

50

60

70

80

90

ro
ug

e1

aeslc
VarPEGASUS-10
VarPEGASUS-20
PEGASUS

Figure 1: ROUGE-1 scores vs fraction of data discarded due to high BLEUVarN. The straight dashed lines indicate
the performance level of the deterministic PEGASUS and BART models.
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Figure 2: BLEUVarN curves as a function of data discarded due to low ROUGE-1 scores.

els. Our goal is to verify the efficacy of Bayesian453

summarization as a post-hoc way of improving454

summarization performance.455

Table 2 reports the ROUGE-1, ROUGE-2 and456

ROUGE-L F-scores of our VarBART and VarPE-457

GASUS models along with the deterministic BART458

and PEGASUS models on all benchmark datasets,459

re-evaluated for consistency. The results show that460

Bayesian summarization is effective, with both Var-461

BART and VarPEGASUS outperforming their de-462

terministic counterparts on all datasets. Further-463

more, increasing the number, N , of samples gener-464

ated during the Bayesian inference, improves per-465

formance for all datasets except for AESLC, at466

the cost of increased computational complexity as467

discussed in Section 5.1.468

Note that our goal in this work was not to com-469

pete with other state-of-the-art models. What we470

want to show is that relying on the agreement be- 471

tween multiple Bayesian summaries for the same 472

input, is an effective way to boost the summariza- 473

tion performance of deterministic models. Also, 474

this is a post-hoc method and does not involve train- 475

ing new models, which makes it easily applicable 476

to many different scenarios. 477

Figure 3 plots the difference in ROUGE-1 of 478

each Variational model with its deterministic coun- 479

terpart versus the fraction of the data discarded 480

due to high uncertainty. Similar plots for ROUGE- 481

2 and ROUGE-L can be found in Appendix A. 482

Positive values indicate that the Variational model 483

achieves a higher score than the deterministic one. 484

These plots give us a better view of how the Vari- 485

ational models fare against the deterministic ones 486

for different levels of uncertainty. As far as we 487

know, this is the first study to directly compare 488
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Table 2: A comparison of our VarBART and VarPEGASUS models against the deterministic BART and PEGA-
SUS.

XSum CNN/DM AESLC
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
BART 42.69 20.66 35.29 42.32 20.28 36.21 - - -

VarBART-10 42.97 20.86 35.56 42.65 20.64 36.56 - - -
VarBART-20 43.07 20.97 35.68 42.76 20.76 36.69 - - -

PEGASUS 44.90 23.33 37.74 41.68 20.24 36.17 35.97 20.28 35.09
VarPEGASUS-10 44.93 23.54 38.01 42.04 20.75 36.76 36.36 21.40 35.58
VarPEGASUS-20 45.32 23.87 38.29 42.25 20.98 36.94 36.41 21.00 35.53
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Figure 3: Difference in ROUGE-1 between Variational models and their deterministic counterparts versus the
fraction of data discarded. Positive values indicate that deterministic ROUGE-1 is lower than Variational.

Variational and deterministic models on data with489

varying levels of uncertainty.490

Looking at the curves, we clearly see that the dif-491

ferences are positive for most uncertainty levels but492

start decreasing as more data with high uncertainty493

are discarded. For the top 10% − 20% most cer-494

tain samples we start seeing a fluctuation between495

positive and negative values. This pattern is in line496

with the observations made in Figure 1, and leads497

us to believe that there is a significant gap between498

the deterministic model’s performance on the 20%499

most certain samples and the rest of the data.500

These observations lead us to the following con-501

clusions. For samples of very low uncertainty, we502

can expect both Variational and deterministic mod-503

els to converge to equally good outputs. In contrast,504

as uncertainty becomes higher, we observe a clear505

advantage of the Variational summaries over the de-506

terministic ones. This pattern is consistent across507

all models and datasets, and underpins our case508

that Bayesian summarization is beneficial for the509

majority of inputs.510

5.3 Qualitative analysis 511

In order to better illustrate our findings in this 512

work, we present a couple of real examples from 513

VarPEGASUS-10 on XSum. For each example, we 514

show the 10 sample summaries generated with MC 515

dropout for the same input, as well as the corre- 516

sponding BLEUVarN score. We have highlighted 517

the median summary in bold typeface and for the 518

sake of comparison we also show the summary 519

generated by the deterministic PEGASUS model. 520

The first example (Table 3) is a case of high 521

uncertainty from the XSum dataset. We can see 522

that all 10 samples are considerably different from 523

one another, which leads to a high BLEUVarN 524

score. In contrast, the second example (Table 4) 525

has much lower uncertainty. In this case all 10 526

samples seem to mostly agree on the main points 527

and as a result BLEUVarN is fairly low. Here, the 528

median summary is the one that represents better 529

this agreement. We can also see that the median 530

Bayesian summary is close but slightly better than 531
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Table 3: High uncertainty example from the XSum
dataset. Sample summary (1), in bold typeface, is the
median summary according to our approach.

Bayesian samples:

1. When John Choe launched his first hotel in Singa-
pore, he had no idea what he was getting himself
into.

2. When Singapore’s Frasers Centre hired him as its first
managing director, he was told it would take him five
years to get off the ground.

3. In his early 20s, when he was working as a waiter in a
luxury hotel in Hong Kong, David Choe always dreamed
of running his own business.

4. "When I was a teenager, I used to say to myself ’I want
to start my own company’."

5. When John Choe was appointed chief executive of a
Singapore-based property firm in the early 1990s, he
said he wanted to "make a difference to people’s lives".

6. When David Choe was asked if he would ever run a
hotel company, he thought it would be a good idea.

7. "I always wanted to be a hotelier," says Fraser Choe.

8. As a young entrepreneur with no experience in hospi-
tality, John Choe had no idea what he was about to
achieve.

9. ).

10. "When I started the company, I said ’let’s see what we
can do, let’s see what we can achieve, let’s see what we
can achieve’."

Deterministic summary: When Choe Swee Swee was ap-
pointed chief executive of one of Singaporeś biggest property
firms, he told the BBC he wanted to "make the world a better
place".
Target summary: On the first day in his new job, Choe Peng
Sum was given a fairly simple brief: "Just go make us a lot of
money."
BLEU variance: 0.96

the deterministic summary in terms of ROUGE.532

6 Conclusion533

This work explored Bayesian methods in the con-534

text of text summarization. We extended state-of-535

the-art summarization models with MC dropout to536

approximate Bayesian inference, and demonstrated537

how BLEUVarN can be used to quantify model un-538

certainty. This allows us to effectively identify high539

uncertainty summaries at prediction time, which540

can be a significant advantage.541

Furthermore, we show that ensembling multi-542

ple stochastic summaries generated by Variational543

Bayesian models can lead to improved performance544

compared to similar deterministic models. This545

Table 4: Low uncertainty example from XSum. Sam-
ple summary (7), in bold typeface, is the median sum-
mary selected according to our approach. In the paren-
theses we show the ROUGE-1 score for the median
Bayesian summary and the deterministic summary.

Bayesian samples:

1. Torquay United have signed Torquay United have signed
Myles Keating.

2. Torquay United have signed defenders Myles Anderson
and Ruairi Keating.

3. National League side Torquay United have signed de-
fender Lewis Anderson and striker Ruairi Keating.

4. Torquay United have signed defender Liam Anderson
on a deal until the end of the season, while winger Ruairi
Keating has joined until the end of the season.

5. Torquay United have signed defender Matt Anderson
on a two-and-a-half-year deal and brought in Republic
of Ireland striker Myles Keating on a short-term deal.

6. Torquay United have signed defender James Anderson
and striker Myles Keating.

7. Torquay United have signed defender Myles Ander-
son and striker Ruairi Keating. (R1: 62.5)

8. Torquay United have signed defender Lewis Anderson
and striker Ruairi Keating.

9. Torquay United have loaned defender Myles Anderson.

10. National League strugglers Torquay United have signed
defender Lewis Anderson on a two-and-a-half-year deal
and Irish striker Ruairi Keating until the end of the
season.

Deterministic summary: Torquay United have signed de-
fender Myles Anderson and striker Ruairi Keating until the
end of the season. (R1: 52.63)
Target summary: Torquay United have signed Barrow de-
fender Myles Anderson on a permanent deal, and Irish forward
Ruairi Keating on non-contract terms.
BLEU variance: 0.38

finding is verified by experiments for two different 546

models and across 3 benchmark datasets. 547

Our work can have a broader impact in several 548

ways. To the research community, being the first 549

work to study Bayesian uncertainty for abstrac- 550

tive summarization and paving the way for other 551

similar methods. To the industry, because it im- 552

proves automatic summarization systems and can 553

be paired nicely with active learning and human- 554

in-the-loop approaches. Finally, to the end users, 555

improving their experience and building up confi- 556

dence towards automatic summarization systems. 557
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A Appendix688

Figures 4 and 5 show the performance versus data689

retention curves of our Variational models in terms690

of ROUGE-2 and ROUGE-L F-score respectively.691

The observations here are similar to Figure 1.692

Table 5 quantifies the percentage increase in693

ROUGE F-scores as we discard different fractions694

of the full test datasets based on BLEUVarN.695

Figures 6 and 7 show the differences in ROUGE-696

2 and ROUGE-L performance of the Variational697

models versus the deterministic ones. What we see698

here is in aggreement with Figure 3.699

Table 5: Percentage increase in ROUGE F-scores
when discarding 25%, 50% and 75% of the data based
on the highest BLEUVarN.

25% 50% 75%
Model R-1/R-2/R-L R-1/R-2/R-L R-1/R-2/R-L

XSum
VarBART-10 6.4/13.8/8.3 12.2/25.2/15.4 22.1/41.9/26.1
VarBART-20 6.5/14.1/8.3 13.2/26.7/16.5 22.5/42.6/27.2

VarPEGASUS-10 7.5/15.8/9.6 14.9/29.4/18.6 25.2/4.9/29.9
VarPEGASUS-20 8.0/16.8/10.3 15.8/31.2/19.6 26.3/48.1/31.2

CNN/DM
VarBART-10 2.9/7.2/4.8 5.4/13.1/8.5 8.8/20.4/13.3
VarBART-20 3.2/7.8/5.1 5.3/12.8/8.5 8.3/19.4/12.6

VarPEGASUS-10 4.1/9.9/6.1 7.8/17.4/10.9 12.6/26.1/16.8
VarPEGASUS-20 4.6/10.7/6.8 8.5/19.0/11.9 14.7/29.6/18.7

AESLC
VarPEGASUS-10 17.5/33.5/17.7 30.6/51.9/31.1 54.4/75.0/54.7
VarPEGASUS-20 18.7/36.3/18.9 36.0/59.7/36.6 58.4/78.0/58.8
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Figure 4: ROUGE-2 scores vs fraction of data discarded due to high BLEUVarN. The straight dashed lines indicate
the performance level of the deterministic PEGASUS and BART models.
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Figure 5: ROUGE-L scores vs fraction of data discarded due to high BLEUVarN. The straight dashed lines indicate
the performance level of the deterministic PEGASUS and BART models.
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Figure 6: Difference in ROUGE-2 between Variational models and their deterministic counterparts versus the
fraction of data discarded. Positive values indicate that deterministic ROUGE-2 is lower than Variational.
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Figure 7: Difference in ROUGE-L between Variational models and their deterministic counterparts versus the
fraction of data discarded. Positive values indicate that deterministic ROUGE-L is lower than Variational.
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