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ABSTRACT

Reward models have been increasingly critical for improving the reasoning capa-
bility of LLMs. Existing research has shown that a well-trained reward model can
substantially improve model performances at inference time via search or best-of-
N votes. However, the potential of reward models during RL training time still
remains largely under-explored. It is currently unclear whether these reward mod-
els can provide additional training signals to RL training that uses sparse success
rewards, which verify the correctness of solutions. In this work, we evaluate pop-
ular reward models for RL training, including the Outcome-supervised Reward
Model (ORM) and the Process-supervised Reward Model (PRM), and train a col-
lection of LLMs for math problems using RL by combining these learned rewards
with success rewards. Surprisingly, even though these learned reward models have
strong inference-time performances, they may only bring marginal improvements
or even hurt RL training, producing worse performances than LLMs trained with
the success reward only. We find that training collapse easily occurs in RL train-
ing when PRM simply serves as reward shaping in addition to the success rewards.
Our further analysis reveals two issues that may lead to the sub-optimal perfor-
mance. Therefore, we introduce two novel reward refinement techniques, includ-
ing the Clip and the Delta mechanisms, to tackle the identified issues. We evaluate
our techniques with multiple reward models over a set of 1.5B and 7B LLMs on
MATH and GSM8K benchmarks, where both Clip and Delta consistently enhance
RL training. Finally, we also demonstrate that with a carefully designed reward
function, pure RL training without any additional supervised tuning can further
improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-
Math-7B-Instruct on MATH and GSM8K benchmarks.

1 INTRODUCTION

There is a recent trend to improve the reasoning ability of LLMs with learned reward models (Light-
man et al., 2024; Wang et al., 2024b; Yu et al., 2024a; Zhang et al., 2024; Lee et al., 2024; Yang et al.,
2024b; Luo et al., 2024; Chen et al., 2024c; Havrilla et al., 2024; Shao et al., 2024; Uesato et al.,
2022). Recent research has been focusing on guiding search processes during inference (Lightman
et al., 2024; Snell et al., 2024; Wang et al., 2024b), with two main categories of reward models:
Outcome-supervised Reward Model (ORM) (Cobbe et al., 2021b; Yu et al., 2024a) and Process-
supervised Reward Model (PRM) (Lightman et al., 2024; Wang et al., 2024b; Luo et al., 2024).
ORM generates outcome rewards that estimate the success rewards, which evaluate the correctness
of generated answers, enabling the selection of the most reliable answer from a pool of generated
candidates. By contrast, PRM is trained to distinguish correct reasoning steps from incorrect ones
and can provide step-level process rewards for search algorithms like Monte-Carlo Tree Search
(Chen et al., 2024a) and beam search (Snell et al., 2024).

However, the potential of reward models in RL training for LLM reasoning is not yet fully explored.
The most straightforward method for RL training in reasoning tasks is to optimize the success re-
wards. Some prior works further try the integration of a reward model into RL training (Havrilla
et al., 2024; Wang et al., 2024b; Shao et al., 2024). Havrilla et al. (2024) finds that PPO training
with a reward model only results in performance degeneration. In addition, some powerful LLMs
that exhibit strong reasoning abilities such as the Qwen2.5-Math family (Yang et al., 2024b) and
DeepseekMath-7B-RL (Shao et al., 2024) adopt RL training with reward models as a part of their
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overall training process for mathematical reasoning. However, due to a lack of detailed analysis on
the reward models, it remains unclear whether the reward models can provide additional training
signals beyond what the success rewards offer for LLM reasoning.

In this work, we evaluate popular reward models, including ORM and PRM, as RL rewards
on the challenging mathematical reasoning benchmark MATH (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021a) by using PPO as the RL algorithm (Schulman et al., 2017). Sur-
prisingly, we find that these reward models may only bring marginal benefits to RL training or even
lead to performance degradation, yielding even worse results than LLMs trained with a sparse suc-
cess reward only. We observe that outcome rewards consistently achieve similar training results as
success rewards. We hypothesize that outcome rewards may not provide additional training signals
since a more accurate success reward is accessible at training time. For PRM, we perform an in-
depth analysis of the RL training process and observe that RL training easily collapses when simply
using the PRM as reward shaping in addition to the success rewards. Through further case studies,
we identify two possible causes, including the intrinsic biases of the PRM and a reward misspecifi-
cation issue, which can be largely exploited by the training LLM to generate sub-optimal behavior
patterns.

To tackle these challenges, we propose two novel techniques, i.e., Clip and Delta, which refine the
process rewards for effective RL training. In particular, the Clip mechanism mitigates the intrin-
sic biases of PRM. The Delta mechanism tackles the reward misspecification issue by optimizing
single-step PRM rewards. Evaluation of these two techniques on synthetic reasoning trajectories
demonstrates that they can effectively mitigate the tendency of training to favor the observed sub-
optimal patterns. Finally, we conduct full RL training on a set of advanced 1.5B and 7B LLMs
from the Qwen2 and Qwen2.5 families (Yang et al., 2024a;b) with different reward models. Our
experiment results show that our proposed techniques effectively enhance RL training. Moreover,
with a carefully crafted reward, RL training can improve all the evaluated LLMs, including the state-
of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on the challenging MATH and GSM8K (Hendrycks
et al., 2021; Cobbe et al., 2021a) benchmarks.

2 RELATED WORK

Reinforcement Learning for LLMs. In RLHF, Reinforcement learning algorithms can effectively
fine-tune LLMs to align with the preference of humans (Dong et al., 2023; Rafailov et al., 2024;
Ouyang et al., 2022; Xu et al., 2024; Schulman et al., 2017), to improve the reasoning ability (Shao
et al., 2024; Yang et al., 2024b) and coding skills (Wang et al., 2024a; Guo et al., 2024). PPO is the
most widely used among the popular RL algorithms due to its robust performance across various do-
mains (Ouyang et al., 2022; Xu et al., 2024). Xu et al. (2024) investigates the implementation details
of PPO for dialogue tasks and coding tasks, revealing batch size as a critical factor for improving
PPO performance in reinforcement learning from human feedback (RLHF). Our work addresses the
challenge of designing RL rewards for LLM reasoning.

Reward Learning for LLMs. Learned reward models are widely adopted in RLHF to align LLMs
with human preferences (Dong et al., 2023; Rafailov et al., 2024; Ouyang et al., 2022). In RLHF,
reward models are trained on binary preference datasets collected from human annotators, following
the Bradley-Terry model (Bradley & Terry, 1952). In reasoning tasks involving reliable solution
checkers, two main approaches are the Outcome-supervised Reward Model (ORM) (Cobbe et al.,
2021b; Yu et al., 2024a) and the Process-supervised Reward Model (PRM) (Lightman et al., 2024;
Wang et al., 2024b; Luo et al., 2024). An ORM predicts the correctness of the final answer. A
PRM estimates whether the steps so far are correct. Despite the successful applications of reward
models, reward hacking is a broadly observed issue in learned reward models (Skalse et al., 2022;
Singhal et al., 2023; Casper et al., 2023). Through RL training, the LLM may learn to generate
high-reward outputs that could not fulfill the intended objectives. Several approaches have been
proposed to tackle the reward hacking issue, including disentangling the length aspect of reward
modeling (Chen et al., 2024b; Shen et al., 2023), reward ensemble (Eisenstein et al., 2024; Rame
et al., 2024), length penalty (Singhal et al., 2023), length normalization (Meng et al., 2024), and
various PPO implementation tricks (Singhal et al., 2023; Zheng et al., 2023). In this work, we
investigate how to effectively use PRM/ORM as rewards in RL training for LLM reasoning, and
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our proposed techniques are related to reward shaping methods in standard RL. (Ng et al., 1999;
Harutyunyan et al., 2019; Arjona-Medina et al., 2019; Patil et al., 2020; Widrich et al., 2021) .

Improving Reasoning Ability of LLMs. To improve the reasoning ability of LLMs, prior works
have focused on several different aspects, including pre-training (Yang et al., 2024b; Achiam et al.,
2023; Anil et al., 2023), prompting (Han et al., 2024; Yuan et al., 2024; Wu et al., 2024), search
during inference-time (Lightman et al., 2024; Wang et al., 2024b; Yu et al., 2024a; Zhang et al.,
2024; Yang et al., 2024b; Luo et al., 2024; Chen et al., 2024c), and fine-tuning (Wang et al., 2024b;
Shao et al., 2024; Yang et al., 2024b; Shah et al., 2024; Tang et al., 2024; Yu et al., 2024b). Pre-
training methods focus on enriching the data distribution to cover a large amount of rationals and
pre-training the LLM over the dataset. The prompting methods elicit the reasoning ability of LLMs
through dedicated prompting strategies and automatic agent frameworks. Inference-time search
utilizes learned reward models to guide the selection of promising solutions. PRM and ORM could
be combined with different search strategies such as Best-of-N, Monte-Carlo Tree Search (Chen
et al., 2024a), and Beam Search (Snell et al., 2024). Finally, fine-tuning methods include training
the LLM on high-quality question-answer data (Yu et al., 2024b; Shah et al., 2024; Yue et al., 2024)
and optimizing the reasoning ability with reinforcement learning (Yang et al., 2024b; Shao et al.,
2024; Wang et al., 2024b). In this work, we study how to effectively combine dense and sparse
rewards in RL training for reasoning tasks.

3 PRELIMINARY

Language Model. An LLM is represented as a policy πθ(s|q) parameterized by θ. In reasoning
tasks, πθ generates a solution s given a question q. In addition to the question, q usually also
contains a prompt to elicit chain-of-thought reasoning. The solution s is structured with a list of
reasoning steps and thus can be viewed from two perspectives, including tokens and steps. From the
perspective of tokens, s consists of T tokens, s = (s1, s2, · · · , sT ). From the perspective of steps,
s consists of K reasoning steps, s = (s(1), s(2), · · · , s(K)) where s(k) denotes the k-th reasoning
step. For convenience, we use p(k) = (s(1), s(2), · · · , s(k)) to denote the solution prefix up to the k-
th step. In practice, reasoning steps can be parsed with rule-based detectors, enforcing strict output
formats, or special tokens (Chen et al., 2024a; Wang et al., 2024b; Lightman et al., 2024).

Reward Modeling. In RLHF, the reward models are usually trained with binary prefer-
ences (Bradley & Terry, 1952). In reasoning tasks where the correctness of solutions is accessible,
reward models can be trained under the supervision of such ground-truth correctness. In reasoning
tasks, two primary methods for reward modeling are the Process-supervised Reward Model (PRM)
and the Outcome-supervised Reward Model(ORM).

Given a question q and a prefix s1:t, an ORM estimates the likelihood the prefix would lead to a
correct answer. A standard approach to train an ORM is by first sampling solutions for questions
from a dataset with an LLM and then labeling the correctness of each solution. The ORM routcome is
then trained with the following objective,

LORM = Eq,s∼D

[
T∑

t=1

Loss(Correct(q, s), routcome(q, s1:t))

]

where Correct(q, s) is a binary value indicating the correctness of solution s, t enumerates each
token of the solution s, and Loss denotes the loss function. In practice, the loss function could be
binary cross-entropy loss or square-error loss, and we can choose to train ORM on the full sequence
or only the last token.

In contrast, Process-supervised Reward Model (PRM) estimates the correctness of individual rea-
soning steps. PRM is trained with the following objective,

LPRM = Eq,p(k),yk∼D

[
Loss(yk, rprocess(q, p

(k)))
]

where yk is the label for the partial solution p(k) and Loss is the loss function. In practice, binary
cross entropy loss is usually adopted. Prior works have investigated several ways to annotate the
process labels, including human annotators (Lightman et al., 2024) and automatic annotation with
LLMs (Wang et al., 2024b; Luo et al., 2024).
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Reinforcement Learning for LLM Reasoning. We assume access to the correctness of a solution
during training. We use Correct(q, s) to indicate the correctness of solution s to question q, which
is also referred to as the success reward for RL training. An LLM can be fine-tuned to optimize the
success reward by using Reinforcement Learning with Kullback-Leibler divergence,

Jr(πθ) = Eq∼D,s∼πθ

[
Correct(q, s)− β log

πθ(s|q)
πref (s|q)

]
(1)

where πref is the reference model for regularizing πθ. Optimizing the success reward only provides
a sparse training signal because the reward is provided at the end of the sequence. Alternatively,
we can also combine dense rewards with the success reward. The RL objective with dense rewards
becomes,

Jr(πθ) = Eq∼D,s∼πθ

α ·
|s|∑
t=1

r(q, s1:t) + Correct(q, s)− β log
πθ(s|q)
πref (s|q)

 (2)

where r denotes the dense reward and α is a coefficient for the dense reward. For example, a
PRM rprocess can provide dense feedback at the end of reasoning steps, formally represented as
r(q, p(k)) = rprocess(q, p

(k)) for any partial solution p(k). In the subsequent sections, we would refer
to the rewards generated by ORM as outcome rewards, and the rewards generated by PRM as PRM
rewards to avoid ambiguity between process rewards and dense rewards.

4 RL REWARD FOR LLM REASONING

In this section, we conduct a systematic study on reward design to aid LLM in learning better
reasoning skills through RL training. We follow the RL objective with dense rewards in Eq. (2) and
specifically focus on the effective design of dense rewards. As discussed in Sec. 3, the ground-truth
correctness, Correct(p, s), serves to provide the sparse rewards, and the dense rewards could be
provided by a reward model.

4.1 EVALUATING RL TRAINING WITH LEARNED REWARD MODELS

We first consider two straightforward approaches to apply ORM and PRM to provide rewards in
addition to success rewards for RL training. Formally, we consider the following rewards,

• Solution-Level Outcome Reward (OR): In the RL training process of Yang et al. (2024b),
an ORM provides an estimation of correctness as reward shaping. Note that this is not the
case for dense rewards since ORM only produces rewards at the end of the sequence. For
a question q and a solution s,

r(q, s) = routcome(q, s) (3)

• Step-Level Process Reward (PR): A PRM can provide step-level feedback for RL train-
ing. For any solution prefix p(k), dense rewards are the rewards outputted by a PRM,

r(q, p(k)) = rprocess(q, p
(k)) (4)

Experiment Setup. We carry out our study on the challenging mathematical reasoning bench-
mark, MATH (Hendrycks et al., 2021). We use PPO as the RL algorithm and Qwen2-1.5B-
Instruct (Yang et al., 2024a) as the base model. For ORM, we sample solutions with the base model
and train ORM with binary cross-entropy loss. For PRM, we follow Wang et al. (2024b) to generate
process labels with automatic annotation1. The ORM and PRM both use Qwen2-1.5B-Instruct as
the base model.

1Implementation details can be found in Sec. 5
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(a) Greedy Accuracy (b) Avg. Number of Tokens (c) Avg. Number of Steps

Figure 1: (a) Test greedy accuracy during RL training with a combination of success reward and
OR/PR on Qwen2-1.5B-Instruct. SR denotes the success reward. α denotes the reward shaping
coefficient. None of OR/PR can surpass training with success rewards. (b) Generation length during
RL training. (c) Step count during RL training.

Figure 2: Case study of PR. PRM provides re-
wards at the end of each step. For PR with a
large α, the LLM learns to generate many reason-
ing steps that do not contribute to problem-solving
to achieve a high return through RL training.

Results. Surprisingly, we find these reward
functions may not benefit RL training, yield-
ing even worse inference-time performances
than LLMs trained with a sparse success re-
ward only, as shown in Fig. 1(a). To further
investigate the cause of performance degrada-
tion, Fig. 1(b) reports the change in the gener-
ation length and the number of reasoning steps
during training. Although introducing OR im-
proves the sample efficiency, SR+OR shows a
similar evaluation accuracy to adopting a sparse
success reward only (SR). We hypothesize this
is because an outcome reward may not be able
to provide additional information beyond the
success reward during training time. On the
other hand, when using PRM for RL training,
training easily collapses when α is large and we
observe a significant increment in the genera-
tion length and the number of reasoning steps
during RL training. When α is small, SR+PR
only achieves sub-optimal performance com-
pared with SR.

Case Study for PR. For PR with a large α (α ≥ 0.05), a case study of the generated samples
reveals that the LLM learns to obtain high rewards with some specific patterns without faithfully
optimizing the ground-truth correctness through RL training. In the generated solutions of PR, there
are many short reasoning steps, but these steps only contain unnecessary or meaningless information
that does not contribute to problem-solving. As the generation length increases, the model outputs
only a single word or even emoji.

Analysis for PR. The rewards of unnecessary reasoning steps are positive and could even be large,
as shown in the case study (Fig. 2). The LLM learns to exploit this phenomenon by generating more
reasoning steps, resulting in a higher return. We further confirm the behavior through some synthetic
reasoning trajectories (Fig. 4(a) and Fig. 4(b)), where PR demonstrates extremely larger returns. We
identify two key observations through further case studies,

Observation 1: PRM has intrinsic biases to output positive and even high rewards to sub-
optimal reasoning steps. In the left part of Fig. 3, we illustrate a case study of biases of PRM.
The PRM could assign high values to steps with simple patterns, such as unnecessary and repetitive
steps, even achieving higher rewards than the optimal correct steps. On the other hand, incorrect
and nonsense steps could also receive small positive rewards. Consequently RL training would
encourage the LLM to generate more sub-optimal steps.
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Figure 3: Left: A case study of the intrinsic biases of PRM & the effect of the Clip mechanism.
PRM may assign high values to steps with simple patterns, such as unnecessary steps and repetitive
ones, even higher than the correct steps. For incorrect and nonsense steps, PRM may assign small
positive values. The Clip mechanism can mitigate the intrinsic biases of PRM, preventing the LLM
from obtaining high rewards through these undesired patterns and penalizing steps that have low
PRM rewards. Right: A reward misspecification case of PR showing that RL training promotes
an incorrect step & the effect of the Delta mechanism. In this case, the left solution starts with
two correct steps but has an incorrect answer. The right solution starts with an incorrect step and also
has an incorrect answer. Although the first correct step in the left solution has a higher PRM reward
than the first incorrect step in the right solution, RL training with PR would prefer the incorrect
step. This is because the incorrect step receives a higher return than the correct step since the right
solution accumulates PRM rewards of much more steps. The Delta mechanism ensures the steps
promoted by RL training are aligned with the PRM, which promotes the correct step in this case.

Observation 2: RL training may mistakenly prefer an incorrect step with a low PRM reward,
as shown by the case study in the right part of Fig. 3. Although the PRM successfully assigns
a low PRM reward to the incorrect reasoning step, RL training would mistakenly encourage the
incorrect step. We refer to this issue as the reward misspecification (Pan et al., 2022) issue since the
RL objective of PR does not align with the desired target, i.e. better reasoning skills, even when the
PRM can accurately assign higher rewards to better reasoning steps. Furthermore, We find such an
issue also exists in PRMs that are trained with human-labeled data. (See Appendix F)

Here are two key takeaways regarding applying ORM and PRM in RL training,

Takeway for ORM. For ORM, it only marginally improves the sample efficiency of RL training
compared with the sparse success reward. We hypothesize this is because, when a success reward is
available during training time, ORM does not provide additional supervision signal and should not
be a preferred choice at RL training time. We also remark that ORM does not suffer from training
collapse since OR only uses ORM to generate sparse rewards, and the ORM outputs a 0-1 value,
naturally ensuring an upper-bounded objective.

Takeway for PRM. Simply adopting PRM rewards as dense rewards would easily lead to training
collapse during RL training. Although PRM provides useful training signals for intermediate steps,
issues including the intrinsic biases of the learned PRM and the reward misspecification issue could
cause the LLM to generate sub-optimal behavior patterns through RL training.

4.2 CONSTRUCTING EFFECTIVE RL REWARDS WITH PRM

Since ORM does not provide dense feedback for RL training and may lack additional information
beyond the success reward during training, PRM can be a more suitable source for dense rewards.

6
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However, as analyzed in Sec. 4.1, the intrinsic biases of PRM and the issue of reward misspecifica-
tion pose challenges for adopting PRM to promote better reasoning skills in RL training. To effec-
tively unleash the potential of PRM in RL training, we introduce two novel techniques designed to
utilize PRM in RL training effectively,

The Clip mechanism. We propose the Clip mechanism to mitigate the intrinsic biases of PRM. To
prevent the LLM from exploiting the reward model to achieve high rewards with undesired patterns
such as repetition and unnecessary reasoning, a straightforward idea is to upper-bound high rewards
by a selected threshold η. For steps with low PRM rewards, we penalize such steps with a negative
reward rprocess(q, p

(k))− η. Formally, with a threshold η,

r(q, p(k)) = min(rprocess(q, p
(k))− η, 0) (5)

If a suitable η is chosen, the majority of the reasoning steps would receive a reward of 0, and only
steps with low rprocess would have a negative reward. In practice, for each question in a training
batch, by default we set η to be the average PRM rewards of all reasoning steps.

The Delta mechanism. We also introduce the Delta mechanism to tackle reward misspecification
issue. The Delta mechanism subtracts the rewards between adjacent steps. Specially, the reward for
the last reasoning step is dropped since the success reward would be sufficient to provide guidance
for the last reasoning step. Formally, for a solution prefix p(k),

r(q, p(k)) =


rprocess(q, p

(k))− rprocess(q, p
(k+1)) if k < K − 1

rprocess(q, p
(k)) if k = K − 1

0 if k = K

(6)

A nice property of the Delta mechanism is that it ensures the return starting from any intermediate
solution step p(k) is α · rprocess(q, p

(k)) + Correct(q, s), which is unaffected by the PRM rewards of
future steps. Following (Sutton, 2018), the policy gradient of combining the PRM rewards processed
with the Delta mechanism and sparse success rewards is (informally) given by,

∇θJr(πθ) = Eq∼D,s∼πθ(·|q)[∇θ log πθ(s|q) · Correct(q, s) (7)

+ α ·
K−1∑
k=1

∇θ log πθ(s
(k)|q, p(k−1)) · rprocess(q, p(k))︸ ︷︷ ︸

Effect of the Delta mechanism

] + KL term

(8)

Consequently, RL training would focus on optimizing single-step PRM rewards. The theoretical
analysis can be found in Appendix. E.

These mechanisms can be used individually or in combination. In practice, we consider three ap-
proaches incorporating these mechanisms: (1) PR-Clip, which applies the Clip mechanism on the
PRM rewards, (2) PR-Delta, which applies the Delta mechanism, and (3) PR-Clip-Delta, which first
applies the Clip mechanism and then the Delta mechanism.

We further perform evaluation on synthetic solutions that exhibit repetitive patterns in different
ways. As shown in Fig. 4(b) and Fig. 4(a), the Clip mechanism and the Delta mechanism can both
successfully limit the upper bound of the returns on these synthetic solutions. Additionally, the Clip
mechanism imposes increasingly smaller returns as the length of the repetitive pattern grows.

Other Practices. We also compare with some adopted practices to avoid reward hacking in prior
works (Singhal et al., 2023), including length normalization and length penalty. More details can
be found in Appendix C. Length normalization normalizes the rewards for each solution. Length
penalty imposes a constant penalty for each step. As illustrated in Fig. 4, imposing length penalty
and length normalization could still favor the undesired repetition modes over correct solutions. We
also investigate standard normalization for PRM as employed by Shao et al. (2024), which we find
would lead to training instability. More details can be found in Sec. 5.2.
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(a) Repeat nonsense steps (b) Repeat intermediate steps (c) Repeat last sentences

Figure 4: Difference between the returns of synthetic solutions and the ground-truth solution. The
synthetic solutions are constructed from the ground-truth solution by (a) repeatedly adding nonsense
steps to the end of the sequence, (b) repeating an intermediate step, and (c) repeating the last sentence
in the solution. A positive return difference indicates the repetitive patterns are favored over the
ground-truth solution. Both PR and length penalty can gain significantly high returns in (a) and (b).
In (c), when sufficient repetitions are inserted, length normalization and length penalty would assign
a higher return to the synthetic solution than to the ground-truth solution.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Training Dataset. We conduct RL training on the MathInstruct (Yue et al., 2024) dataset. In par-
ticular, we only use the questions and the golden answers in the dataset while the provided solutions
are not used for training. We use Qwen2-7B-Instruct to sample 16 answers for each question in the
training dataset and keep those questions that have both correct and wrong answers. To train an
ORM, binary cross entropy loss is adopted. For PRM training, we follow Wang et al. (2024b) to
generate automatic process annotations by using Qwen2-7B-Instruct as the completer. Specifically,
for each step in the generated samples, we sample 8 solutions starting from the solution prefix. This
step is labeled as correct if any of these 8 solutions is correct.

Benchmarks & Metrics. We carry out our evaluation on the GSM8K (Cobbe et al., 2021a) and
MATH (Hendrycks et al., 2021) datasets. For evaluation metrics, we report the Greedy and Sam-
pling scores, which correspond to adopting greedy decoding and sampling with temperature of 1 as
generation strategies, respectively.

Base Models. Our experiments are taken over a series of large language models from the
Qwen2 (Yang et al., 2024a) family and the state-of-the-art LLMs for mathematical reasoning,
Qwen2.5 (Yang et al., 2024b) family. Specifically, we use various 1.5B and 7B LLMs, including gen-
eral and math-specific models. For general models, we consider Qwen2-1.5B-Instruct and Qwen2-
7B-Instruct. For math-specific models, we consider Qwen2-Math-1.5B-Instruct, Qwen2.5-Math-
1.5B-Instruct, Qwen2-Math-7B-Instruct and Qwen2.5-Math-7B-Instruct. Note that these LLMs al-
ready equip sufficient instruction following ability and we do not perform any further supervised
fine-tuning. Lastly, the PRM is trained with the same base model as the actor model.

RL Training We adopt the Proximal Policy Optimization (PPO) implementation of ReaLHF (Mei
et al., 2024), which supports LLM fine-tuning with dense rewards. The detailed hyperparameters
and training setup are listed in Appendix. D.

5.2 ABLATION STUDY

The Clip & Delta Mechanisms Our ablation study of the Clip and Delta mechanisms is presented
in Table 1. We also consider a standard normalization variant of PR (Shao et al., 2024), denoted as
PR-Normed. PPO training with OR can not surpass training with a sparse success reward. PR
only achieves sub-optimal performance. Similarly, the performance of PR-Normed also decreases
in the latter epochs. Consequently, none of OR, PR, and PR-Normed can achieve higher greedy
decoding accuracy than training with a success reward. On the other hand, the Delta mechanism
successfully stabilizes RL training, surpassing training with a success reward. Finally, by combining
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Method Greedy Sampling

Qwen2-1.5B-Instruct 24.90 16.79

Success Reward 30.58 27.05
SR + OR 30.57 27.12

SR + PR (E4) 30.22 27.46
SR + PR-Normed (E2) 29.66 27.14
SR + PR-Normed (E5) 12.36 12.84

SR + PR-Clip 30.30 28.40
SR + PR-Delta 30.68 27.96

SR + PR-Clip-Delta 31.44 28.20

Table 1: Ablation study of various reward functions with Qwen2-1.5B-Instruct. E2 denotes the
results of the 2-nd epoch. Unless otherwise specified, we report the accuracy of final checkpoint.

(a) ∆ Greedy (b) ∆ Sampling (c) ∆ Pass@16

Figure 5: Performance improvement of PPO training over the base LLMs using success rewards and
further using PR-Clip-Delta as dense rewards. All LLMs are the instruction following model, and
the ”-Instruct” suffices are omitted for improved clarity. Adding PR-Clip-Delta as dense rewards
consistently improves RL training with sparse success rewards only.

the Clip mechanism and the Delta mechanism, PR-Clip-Delta demonstrates the best greedy decoding
accuracy. Training curves of all approaches are provided in Appendix. A.2

Effect of PR-Clip-Delta We compare the performance improvements of PPO training over the
base LLMs when using a success reward and additionally using PR-Clip-Delta as dense rewards in
Fig. 5. In addition to Greedy and Sampling scores, we also consider the Pass@16 score, which we
believe can roughly estimate the upper bound of the model’s capacity. Using PR-Clip-Delta as dense
rewards can consistently improve RL training, across all LLMs and all evaluation metrics, except
the greedy decoding accuracy on Qwen2-Math-7B-Instruct. This suggests that applying the Clip
mechanism and the Delta mechanism can effectively utilize the PRM to guide the LLM in learning
better reasoning skills during RL training. We report the detailed numbers in Appendix A.

5.3 MAIN RESULTS

Main Results Our main results are summarized in Table. 2. RL training consistently improves
the performance of the base model across all the models we test, even on the state-of-the-art 1.5B
model, Qwen2.5-Math-1.5B-Instruct, and 7B model, Qwen2.5-Math-7B-Instruct. For 1.5B models,
Qwen2-1.5B-Instruct obtains the most significant performance improvement. Through RL training
with PR-Clip-Deta as reward function, the best 1.5B model, Qwen2.5-Math-1.5B-Instruct achieves
87.34% and 76.78% greedy decoding accuracy on GSM8K and MATH benchmark respectively,
indicating 2.20% and 0.78% improvement of accuracy over the base model. For 7B models, building
on the strongest 7B LLM, Qwen2.5-Math-7B-Instruct, RL training with dense reward further boosts
the performance and achieves 95.6% and 83.38% greedy decoding accuracy on GSM8K and MATH
benchmarks, respectively, surpassing several baselines. It is noteworthy that Qwen2.5-Math-7B-
Instruct is already trained using RL, highlighting the effectiveness of PR-Clip-Delta.

Performance Improvement The performance improvement of RL training varies across models
with different amounts of parameters and different strengths. In general, weaker models gain higher
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Model GSM8K MATH
Greedy Sampling Greedy Sampling

GPT-4o-2024-08-06 92.9 - 81.1 -

DeepSeekMath-7B-RL 88.2 - 52.4 -
Internlm2-math-plus-7B 84.0 - 54.4 -

Mathstral-7B-v0.1 84.9 - 56.6 -
NuminaMath-7B-CoT 75.4 - 55.2 -
Llama-3.1-8B-Instruct 76.6 - 47.2 -

1.5B Models

Qwen2-1.5B-Instruct 50.19 44.58 24.90 16.79
+ PPO w. SR 67.70↑17.51 65.50↑20.92 30.58↑4.68 27.05↑10.26

+ PPO w. (SR + PR-Clip-Delta) 68.76↑18.57 66.19↑21.61 31.44↑6.54 28.20↑11.41

Qwen2-Math-1.5B-Instruct 83.62 81.50 69.98 64.51
+ PPO w. SR 84.61↑0.99 83.93↑2.43 70.26↑0.28 66.29↑1.78

+ PPO w. (SR + PR-Clip-Delta) 85.67↑2.05 84.76↑3.26 70.94↑0.96 68.13↑3.62

Qwen2.5-Math-1.5B-Instruct 85.14 82.11 76.00 72.05
+ PPO w. SR 86.73↑1.59 85.82↑3.71 76.34↑0.34 74.22↑2.17

+ PPO w. (SR + PR-Clip-Delta) 87.34↑2.20 85.97↑3.86 76.78↑0.78 74.63↑2.58

7B Models

Qwen2-7B-Instruct 86.88 80.44 57.54 48.27
+ PPO w. SR 87.72↑0.84 86.81↑6.37 60.14↑2.60 56.39↑8.12

+ PPO w. (SR + PR-Clip-Delta) 87.64↑0.76 87.34↑6.90 60.54↑3.00 58.17↑9.90

Qwen2-Math-7B-Instruct 89.61 89.23 75.30 72.09
+ PPO w. SR 89.46↓0.15 90.07↑0.84 76.42↑1.12 73.12↑1.03

+ PPO w. (SR + PR-Clip-Delta) 90.90↑1.29 90.14↑0.91 76.00↑0.70 74.09↑2.00

Qwen2.5-Math-7B-Instruct 95.60 80.74 83.30 52.76 2

+ PPO w. SR 95.45↓0.15 95.07↑14.33 83.16↓0.14 79.95↑27.19

+ PPO w. (SR + PR-Clip-Delta) 95.600.00 95.07 ↑14.33 83.38↑0.08 81.22↑28.46

Table 2: Greedy and Sampling scores on GSM8K and MATH benchmarks. PPO training us-
ing sparse success rewards and PR-Clip-Delta as dense rewards consistently improve all evaluated
LLMs, including the state-of-the-art 7B LLMs, Qwen2.5-Math-7B-Instruct. For sampling decoding,
we adopt the temperature of 1.0.

performance improvements than stronger models. Comparing the improvements of Greedy and
Sampling scores, the improvements of Sampling score are larger than those of Greedy score across
all LLMs, resulting in a smaller gap between Sampling and Greedy scores.

6 CONCLUSION

In this work, we investigate designing dense rewards with a process-supervised reward model in
RL training to improve the reasoning ability of LLMs. We examine some popular reward models
and identify the issue of reward hacking, which manifests as the generation of nonsensical texts
or unnecessary reasoning steps. The reward hacking issue can be mitigated with our proposed
techniques, using the Clip mechanism to prevent the LLM from exploiting the reward model and the
Delta mechanism to ensure a bounded RL objective. We show that the proposed techniques can be
utilized to apply Process-supervised Reward Models for improved RL training.

Limitations. Limited by computation resources, our experiments are conducted over 1.5B&7B
LLMs, while evaluations on larger LLMs could further help verify our proposed techniques. Also, it
is an interesting direction to perform various inference-time search strategies with the LLMs trained
with PPO, which could help further understand whether RL training can improve search perfor-
mance. Furthermore, we believe that with the support of more powerful reward models, RL training
can bring greater benefits to LLM reasoning.

2For sampling accuracy, we find that Qwen-2.5-math-Instruct is likely to generate strange characters, lead-
ing to poor sampling accuracy.
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Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Tong Wang,
Samuel Marks, Charbel-Raphael Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen,
Mehul Damani, Stewart Slocum, Usman Anwar, Anand Siththaranjan, Max Nadeau, Eric J
Michaud, Jacob Pfau, Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem
Biyik, Anca Dragan, David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open problems
and fundamental limitations of reinforcement learning from human feedback. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=bx24KpJ4Eb. Survey Certification.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553, 2024a.

Lichang Chen, Chen Zhu, Jiuhai Chen, Davit Soselia, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. ODIN: Disentangled reward mitigates hacking in
RLHF. In Forty-first International Conference on Machine Learning, 2024b. URL https:
//openreview.net/forum?id=zcIV8OQFVF.

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Junchen Wan, Fuzheng Zhang, Di Zhang, and Ji-Rong
Wen. Improving large language models via fine-grained reinforcement learning with minimum
editing constraint. arXiv preprint arXiv:2401.06081, 2024c.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?id=m7p5O7zblY.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alexander Nicholas D’Amour,
Krishnamurthy Dj Dvijotham, Adam Fisch, Katherine A Heller, Stephen Robert Pfohl, Deepak
Ramachandran, Peter Shaw, and Jonathan Berant. Helping or herding? reward model ensembles
mitigate but do not eliminate reward hacking. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=5u1GpUkKtG.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

11

https://openreview.net/forum?id=bx24KpJ4Eb
https://openreview.net/forum?id=bx24KpJ4Eb
https://openreview.net/forum?id=zcIV8OQFVF
https://openreview.net/forum?id=zcIV8OQFVF
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=5u1GpUkKtG


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vernon Toh Yan Han, Ratish Puduppully, and Nancy F. Chen. Veritymath: Advancing mathematical
reasoning by self-verification through unit consistency. In AI for Math Workshop @ ICML 2024,
2024. URL https://openreview.net/forum?id=S9utaRXaZt.

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot, Nico-
las Heess, Hado P van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, et al. Hindsight
credit assignment. Advances in neural information processing systems, 32, 2019.

Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-
Yu, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models
to reason with reinforcement learning. In AI for Math Workshop @ ICML 2024, 2024. URL
https://openreview.net/forum?id=mjqoceuMnI.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jung Hyun Lee, June Yong Yang, Byeongho Heo, Dongyoon Han, and Kang Min Yoo. Token-
supervised value models for enhancing mathematical reasoning capabilities of large language
models. arXiv preprint arXiv:2407.12863, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Zhiyu Mei, Wei Fu, Kaiwei Li, Guangju Wang, Huanchen Zhang, and Yi Wu. Realhf: Opti-
mized rlhf training for large language models through parameter reallocation. arXiv preprint
arXiv:2406.14088, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. arXiv preprint arXiv:2201.03544, 2022.

Vihang P Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias Dorfer, Patrick M Blies,
Johannes Brandstetter, Jose A Arjona-Medina, and Sepp Hochreiter. Align-rudder: Learning
from few demonstrations by reward redistribution. arXiv preprint arXiv:2009.14108, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Alexandre Rame, Nino Vieillard, Leonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. WARM: On the benefits of weight averaged reward models. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=s7RDnNUJy6.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://openreview.net/forum?id=S9utaRXaZt
https://openreview.net/forum?id=mjqoceuMnI
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=s7RDnNUJy6
https://openreview.net/forum?id=s7RDnNUJy6


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Mozer, Yoshua
Bengio, Sanjeev Arora, and Anirudh Goyal. Ai-assisted generation of difficult math questions.
arXiv preprint arXiv:2407.21009, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loose lips sink ships: Mitigating length bias in reinforcement learning from human
feedback. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=qq6ctdUwCX.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint arXiv:2310.03716, 2023.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=Kjww7ZN47M.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in LLMs for
enhanced mathematical reasoning. In The Twelfth International Conference on Learning Repre-
sentations, 2024a. URL https://openreview.net/forum?id=z8TW0ttBPp.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024b.

Michael Widrich, Markus Hofmarcher, Vihang Prakash Patil, Angela Bitto-Nemling, and Sepp
Hochreiter. Modern hopfield networks for return decomposition for delayed rewards. In Deep
RL Workshop NeurIPS 2021, 2021.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
language models can self-correct with minimal effort. In AI for Math Workshop @ ICML 2024,
2024. URL https://openreview.net/forum?id=mmZLMs4l3d.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is DPO superior to PPO for LLM alignment? a comprehensive study. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=6XH8R7YrSk.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

13

https://openreview.net/forum?id=qq6ctdUwCX
https://openreview.net/forum?id=Kjww7ZN47M
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=mmZLMs4l3d
https://openreview.net/forum?id=6XH8R7YrSk
https://openreview.net/forum?id=6XH8R7YrSk


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. In Findings of the Association for Computational Linguistics: NAACL
2024, pp. 858–875, 2024a.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=N8N0hgNDRt.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
Maosong Sun. Advancing LLM reasoning generalists with preference trees. In AI for Math Work-
shop @ ICML 2024, 2024. URL https://openreview.net/forum?id=2Y1iiCqM5y.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=yLClGs770I.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

14

https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=2Y1iiCqM5y
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS

A.1 MAIN RESULTS

In Tab. 3 and Tab. 4, we report the results of RL training on different base models, including those
with success rewards and after applying PR-Clip-Delta.

Model Method Math

Greedy Sample Pass@16

Qwen2-1.5B-Instruct
Basemodel 24.90 16.79 55.68

Success Reward 30.58↑4.68 27.05↑10.26 61.70↑6.02

+ PR-Clip-Delta 31.44↑6.54 28.20↑11.41 61.70↑6.02

Qwen2-Math-1.5B-Instruct
Basemodel 69.98 64.51 88.02

Success Reward 70.26↑0.28 66.29↑1.78 88.46↑0.44

+ PR-Clip-Delta 70.94↑0.96 68.13↑3.62 88.58↑0.56

Qwen2.5-Math-1.5B-Instruct
Basemodel 76.00 72.05 90.50

Success Reward 76.34↑0.34 74.22↑2.17 90.54↑0.04

+ PR-Clip-Delta 76.78↑0.78 74.63↑2.58 90.76↑0.26

Qwen2-7B-Instruct
Basemodel 57.54 48.27 80.04

Success Reward 60.14↑2.60 56.39↑8.12 83.40↑3.36

+ PR-Clip-Delta 60.54↑3.00 58.17↑9.90 83.22↑3.18

Qwen2-Math-7B-Instruct
Basemodel 75.30 72.09 91.24

Success Reward 76.42↑1.12 73.12↑1.03 91.08↓0.16

+ PR-Clip-Delta 76.00↑0.70 74.09↑2.00 91.52↑0.28

Qwen2.5-Math-7B-Instruct
Basemodel 83.3 52.76 86.6

Success Reward 83.16↓0.14 79.95↑27.19 92.46↑5.86

+ PR-Clip-Delta 83.38↑0.08 81.22↑28.46 92.60↑6.00

Table 3: Results on MATH test set

In Fig. 6, we report the greedy accuracy on MATH test set of different training epochs, where
epoch-0 means the base model (i.e., Qwen2-1.5B-Instruct). The introduction of PR-norm caused
the model’s accuracy to drop significantly starting from the third epoch.

Figure 6: Greedy accuracy on MATH test set during the training process.
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Model Method GSM8K

Greedy Sample

Qwen2-1.5B-Instruct
Basemodel 50.19 44.58

Success Reward 67.70↑17.51 65.50↑20.92

+ PR-Clip-Delta 68.76↑18.57 66.19↑21.61

Qwen2-Math-1.5B-Instruct
Basemodel 83.62 81.50

Success Reward 84.61↑0.99 83.93↑2.43

+ PR-Clip-Delta 85.67↑2.05 84.76↑3.26

Qwen2.5-Math-1.5B-Instruct
Basemodel 85.14 82.11

Success Reward 86.73↑1.59 85.82↑3.71

+ PR-Clip-Delta 87.34↑2.20 85.97↑3.86

Qwen2-7B-Instruct
Basemodel 86.88 80.44

Success Reward 87.72↑0.84 86.81↑6.37

+ PR-Clip-Delta 87.64↑0.76 87.34↑6.90

Qwen2-Math-7B-Instruct
Basemodel 89.61 89.23

Success Reward 89.46↓0.15 90.07↑0.84

+ PR-Clip-Delta 90.90↑1.29 90.14↑0.91

Qwen2.5-Math-7B-Instruct
Basemodel 95.60 80.74

Success Reward 95.45↓0.15 95.07↑14.33

+ PR-Clip-Delta 95.60↑0.00 95.07↑14.33

Table 4: Results on GSM8K test set

A.2 TRAINING CURVES

We list training curves of all methods on Qwen2-1.5B-Instruct here.
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Figure 7: Training accuracy of all baselines
and the proposed methods on Qwen2-1.5B-
Instruct

Figure 8: Training accuracy of SR, SR+OR,
and SR+PR on Qwen2-1.5B-Instruct

Figure 9: Training accuracy of SR and
SR+PR-Normed on Qwen2-1.5B-Instruct

Figure 10: Test accuracy of all meth-
ods across training epochs on Qwen2-1.5B-
Instruct

Figure 11: Test accuracy of all base-
lines across training epochs on Qwen2-1.5B-
Instruct

Figure 12: Clip ratio of PR-Clip during RL
training. PR-Clip indeed provides dense re-
wards for RL training.

A.3 ABLATION STUDIES

We perform ablation study for the reward shaping coefficient α in Tab. 5. The ablation study for
threshold η in PR-Clip is provided in Fig. 13.
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Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

SR 29.26 29.72 29.86 30.16 30.58

SR+PR (α = 0.02) 29.25 30.00 29.88 30.22 30.08
SR+PR (α = 0.05) 21.90 18.92 / / /
SR+PR (α = 0.1) 14.10 / / / /
SR+PR (α = 0.2) 11.16 / / / /

Table 5: Test accuracy of SR vs. SR+PR with different reward shaping coefficient α across training
epochs

Figure 13: Ablation study of the threshold η of PR-Clip on Qwen2-1.5B-Instruct. Greedy accuracy
is reported. ’η =mean’ means that we set η to be the average PRM rewards of all reasoning steps
related to a question in a training batch. A constant η offers more stable improvement.

B SYNTHETIC EXAMPLE

In Fig. 4, we insert nonsense steps or repeat the last sentences in the following manner.

Prompt:

Tom found a box of 220 baseball cards. Being a thoughtful older brother, he wanted to save
at least 50 percent of the cards for himself and split the remaining cards evenly among his 5
younger brothers. What is the lowest possible number of cards that Tom can save for himself
that will also allow each of his 5 younger brothers to get an equal number of cards? Please
reason step by step, and put your final answer within \boxed{}.

Answer by Qwen2-1.5B-instruct:

Step 1: 50% of 220 cards
50%× 220 = 0.50× 220 = 110

Therefore, Tom would save 110 of the cards for himself.

Step 2: Remaining cards that Tom would like to distribute evenly among his 5 younger brothers

220− 110 = 110

Tom would have 110 cards left to distribute evenly among his 5 younger brothers.

Step 3: Forming sets of cards and evenly distributing

If the 110 remaining cards are to be divided into 5 sets of equal cards, each set must contain:
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110

5
= 22

Therefore, each of Tom’s 5 younger brothers would get 22 cards, but since each set also must
have 22 cards, the lowest possible number of cards for Tom to save so that each brother gets an
equal number of cards means Tom would save:

5× 22 = 110

The lowest possible number of cards that Tom can save for himself that will allow each of his
5 younger brothers to get an equal number of cards is 110. This way, Tom will save enough
cards to permit a remainder that will also allow one card to be shared by each of his brothers
out of the total of 110 cards.

The answer is: 110 .

Repeat Nonsense

Step 1: 50% of 220 cards
50%× 220 = 0.50× 220 = 110

...

Step 3: Forming sets of cards and evenly distributing ...

Step done.

Step done.

Step end.

Step end.

Step show.

...

Repeat Mid Step

Step 1: 50% of 220 cards
50%× 220 = 0.50× 220 = 110

...

Step 2: Remaining cards that Tom would like to distribute evenly among his 5 younger...

Step 2: Remaining cards that Tom would like to distribute evenly among his 5 younger...

Step 2: Remaining cards that Tom would like to distribute evenly among his 5 younger...

...

Step 3: Forming sets of cards and evenly distributing ...

The answer is: 110 .

Repeat Last Sentence

Step 1: 50% of 220 cards
50%× 220 = 0.50× 220 = 110

...

Step 3: Forming sets of cards and evenly distributing ...
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The answer is: 110 .

The answer is: 110 .

The answer is: 110 .

The answer is: 110 .

...

C BASELINES

Length Normalization. Length normalization normalizes the rewards for each solution. Formally,

r(q, p(k)) =
1

K
rprocess(q, p

(k))

Length Penalty. Length penalty imposes a constant penalty for each step.

r(q, p(k)) = rprocess(q, p
(k))− k ∗ cpenalty

D HYPER-PARAMETERS AND TRAINING SETUP

PPO Hyperparameters and Training Setup. Following prior practices (Shao et al., 2024; Xu
et al., 2024), we adopt a large batch size and sample multiple solutions for each question within a
batch. We find a large batch size and multiple sampling critical to the overall performance of RL
training. For 1.5B models, there are 1024 questions, and 8 solutions are sampled for each question
in a batch, leading to a batch size of 1024 × 8. For 7B models, the batch size is 4096 × 8. Each
training batch is split into 4 minibatches. We apply a KL penalty coefficient of 0.1, a coefficient
of 1 for dense rewards, and a coefficient of 5 for successful rewards. For the reward threshold η in
the Clip mechanism, by default the average value of PRM rewards of all reasoning steps related to
one question in a training batch. The learning rates of 1B and 7B actor models are 1e-6 and 1e-5,
respectively, while all critic models use a learning rate of 5e-6. We use Adam optimizer weight
decay of 0.05. The 1.5B models are trained on a cluster of 4 machines, each with 8 Nvidia H100
GPUs, for approximately 8 hours. The 7B models are trained on a cluster of 8 machines, each with
8 Nvidia H100 GPUs, for approximately 20 hours.

Implementation of Clip and Delta. Both the Clip and the Delta mechanisms are straightforward to
integrate into existing workflows. For the Clip mechanism, its implementation involves computing
the mean of the reward as a threshold after reward calculation, followed by applying the formula
specified in Eq. 5. This additional step is computationally lightweight and seamlessly fits within
the existing reward processing pipeline. The Delta mechanism requires computing the difference
between rewards from two adjacent steps, a process that is both conceptually simple and computa-
tionally efficient. As such, neither method introduces significant overhead, ensuring their ease of
adoption.

E THEORETICAL ANALYSIS

E.1 RL TRAINING WITH SR+PR-DELTA

Lemma 1 (Policy gradient of RL training with SR+PR-Delta) Following (Sutton, 2018), the
policy gradient of the RL objective combining the PRM rewards processed with the Delta mech-
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anism and the sparse success reward (SR+PR-Delta) is given by,

∇θJr(πθ) = Eq∼D,s∼πθ(·|q)[

K∑
k=1

∇θ log πθ(s
(k)|q, p(k−1)) · (α · rprocess(q, p(k)) · I[k < K] (9)

+ Correct(q, s)− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)] (10)

Proof 1 Following (Sutton, 2018), the vanilla policy gradient is given by,

∇θJr(πθ) = Eq∼D,s∼πθ(·|q)[

K∑
k=1

∇θ log πθ(s
(k)|q, p(k−1))Gk] (11)

where Gk is the return from the k-th reasoning step.
By the formula of the Delta mechanism (Eq. 6), we have,

Gk = Correct(q, s) + α ·
K∑

k′=k

r(q, p(k
′))− β ·

K∑
k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)

= Correct(q, s) + α ·
K−1∑
k′=k

(rprocess(q, p
(k′))− rprocess(q, p

(k′+1) · I[k + 1 < K])

− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)

= Correct(q, s) + α ·

(
K−1∑
k′=k

(rprocess(q, p
(k′))−

K−1∑
k′=k+1

(rprocess(q, p
(k′))

)

− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)

= Correct(q, s) + α · rprocess(q, p(k)) · I[k < K]− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)

Therefore,

∇θJr(πθ) = Eq∼D,s∼πθ(·|q)[

K∑
k=1

∇θ log πθ(s
(k)|q, p(k−1)) · (α · rprocess(q, p(k)) · I[k < K] (12)

+ Correct(q, s)− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)] (13)

Lemma 2 (Policy gradient of RL training with SR) Following (Sutton, 2018), the vanilla policy
gradient of using the sparse success reward only is given by,

∇θJr(πθ) = Eq∼D,s∼πθ(·|q)[

K∑
k=1

∇θ log πθ(s
(k)|q, p(k−1)) · (Correct(q, s) (14)

− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)] (15)

Proof 2 Omitted.
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E.2 PRM AS VALUE

In this section, we are going to show the connection between PRM training and Q learning. We will
show that PRMs can be interpreted as Q functions or value functions.

Notation. To train a PRM, the following elements are required,

• A PRM rprocess(q, p) where q is the question and p is a partial solution prefix.

• A prompt dataset of pairs of questions and partial solution prefices Dprompt =
{(qi, pi)}i∈[N ].

• A completer πc that is a policy used for generating the full solution s given a question q
and a partial solution prefix p. The generated full solution s contains p as the prefix and
contain necessary rationales that lead to the final answer. The completer is not necessary
an LLM policy and can also be a perfect oracle policy, or an LLM-based search policy.

• A labeled dataset constructed by using the completer πc to find solution for the prompt
dataset Dprompt, i.e. Dlabel = {(qi, pi, si, yi)|si ∼ πc(·|qi, pi), yi = Correct(qi, si)}
where si is a full solution generated by the completer πc and yi denotes the correctness
label. The labels thus depend on the strength of the completer πc.

• A loss function L for PRM training. By default, we use the logistic loss

L(rprocess,Dlabel) =Eqi,pi,si,yi∼Dlabel
[−yi log rprocess(qi, pi) (16)

− (1− yi) log(1− rprocess(qi, pi))] (17)

We first list some possible options for the completer,

• A perfect oracle completer πorcale. We assume the existence of a perfect oracle completer
πoracle that is perfectly rational in the sense that, given a question q and a partial solution
prefix p, πorcale would make optimal reasoning towards the correct answer while also not
driving any conclusions conflicting to the partial solution prefix when completing the rest
reasoning trajectory. Therefore, if the solution prefix p contains any erroneous reasoning
steps that conflict with the correct answer, πoracle can not identify the correct answer and
thus the label y for this pair (q, p) would be zero.

• A base LLM completer πbase. πbase is essentially an LLM that samples the rest of the
solution given a question q and a partial solution prefix p. We assume a temperature of 1.0
and do not consider any sampling techniques such as top-p and top-k sampling. Therefore
the label y is 1 with the probability of πbase sampling a correct solution.

• A LLM-based search completer πsearch. We specially consider the search approach for
automatic process label generation in Wang et al. (2024b), which tries to find a correct
solution out of the sampled M solutions from a base LLM πbase. Clearly the search com-
pleter πsearch is an augmented policy of πbase. The probability of πsearch generating a
correct solution is higher than the probability of πbase generating a correct solution.

Definition 1 (Value of a completer) Given a question q and a solution prefix p, the value of a com-
pleter πc is defined as

Vπc(q, p) = Es∼π(·|q,p)[Correct(q, s)] (18)

Lemma 3 (PRM is learning a value function) An optimal PRM that achieves the lowest PRM
training loss in Eq. 16 is equivalent to the value function of the completer.
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Proof 3 The optimal PRM r∗process(qi, pi) of PRM training loss in Eq. 16 is,

r∗process(qi, pi) = Pr[yi = 1|si ∼ πc(qi, pi), yi = Correct(qi, si)]

= Pr[Correct(qi, si)|si ∼ πc(qi, pi)]

= Esi∼πc(·|qi,pi)[Correct(qi, si)]

= Vπc
(qi, pi)

which is the same as the value of the completer πc in Eq. 18.

Therefore PRM is actually learning the value of the completer π. In that sense, RL training that
combines PR-Delta as dense rewards and the success reward is actually training the LLM to find
correct solutions under the guidance of a stronger policy, i.e. the completer used to label the training
data of the PRM.

Corollary 1 (PR-Delta guides LLM reasoning with a stronger policy) Combining Lemma. 1
and Lemma. 3, PR-Delta actually guides the LLM to learn reasoning skills under the guidance of
the stronger completer policy πc, as shown in the policy gradient,

∇θJr(πθ) = Eq∼D,s∼πθ(·|q)[

K∑
k=1

∇θ log πθ(s
(k)|q, p(k−1)) · (α · Vπc

(q, p(k)) · I[k < K] (19)

+ Correct(q, s)− β ·
K∑

k′=k

log
πθ(s

(k′)|q, p(k′−1))

πref (s(k
′)|q, p(k′−1))

)] (20)

F ADDITIONAL CASE STUDIES OF PRM

We evaluate the score of a open-sourced PRM ’ScalableMath/llemma-7b-prm-prm800k-level-1to3-
hf’3 on the following solution:

Question

What is the range of all the roots of |x2 − 6| = x?

Solution

Step 1: Establish the equation by squaring both sides. We get (x2 − 6)2 = x.

PRM reward: 0.4874

Step 2: Expand the squared term. We get (x2 − 6)2 = x4 − 12x2 + 36.

PRM reward: 0.1667

Step 3: Set the expanded equation equal to x. We get x4 − 12x2 + 36 = x.

PRM reward: 0.4116

Step 4: Move all terms to one side to set the equation to zero. We get x4 − 12x2 −x+36 = 0.

PRM reward: 0.7827

Step 5: Factor the polynomial. We can factor it as (x2 − 6)(x2 + 1) = x.

PRM reward: 0.0558

Step 6: Solve each factor for x. For x2 − 6 = x:

x2 − x− 6 = 0

(x− 3)(x+ 2) = 0

3https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
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So, the solutions are x = 3 and x = −2. For x2 + 1 = x:

x2 − x+ 1 = 0

This quadratic equation has no real roots because its discriminant is negative:

∆ = (−1)2 − 4 · 1 · 1 = 1− 4 = −3

PRM reward: 0.4244

Step 7: Determine the range of the roots. The roots we found are x = 3 and x = −2.

PRM reward: 0.6234

Step 8: Identify the minimum and maximum values of the roots. The minimum value is −2
and the maximum value is 3. Therefore, the range of all the roots of |x2 − 6| = x is from −2

to 3. The answer is [−2, 3] .

PRM reward: 0.4244
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