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Abstract

Bayesian optimization (BO) is increasingly used in molecular optimization and to
guide self-driving laboratories for automated materials discovery. A crucial aspect
of BO is how molecules and materials are represented as feature vectors, where
both the completeness and compactness of these representations can influence
the efficiency of the optimization process. Traditionally, a fixed representation is
chosen by expert chemists or applying data-driven feature selection methods on
available labeled datasets. However, when dealing with novel optimization tasks,
prior knowledge or large datasets are often unavailable, and relying on these even
can introduce bias into the search process. In this work, we demonstrate a Feature
Adaptive Bayesian Optimization (FABO) framework, which integrates feature
selection in Bayesian optimization process to dynamically adapt material represen-
tations throughout the optimization cycles. We demonstrate the effectiveness of
this adaptive approach across several molecular optimization tasks, including the
discovery of high-performing metal-organic frameworks (MOFs) in three distinct
tasks, each involving unique property distributions and requiring a distinct repre-
sentation. Our results show that the adaptive nature of the representation leads to
outperforming random search baseline.

1 Introduction

Recent advancements in machine learning (ML) and artificial intelligence (AI) are revolutionizing
molecular and materials discovery by enabling self-driving labs (SDLs) that integrate ML with lab au-
tomation and robotics [1]. At the core of SDLs lies Bayesian optimization (BO), which autonomously
balances exploration and exploitation to guide experimental workflows [2]. Effective material rep-
resentation is essential for BO, as high-dimensional representations can hinder performance due to
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the curse of dimensionality [3, 4]. While methods like kernel tuning and generative embeddings
show promise, they often face challenges in compressing material data for advanced systems [5, 6] .
Metal-organic frameworks (MOFs), with highly tunable chemistry and vast diversity, illustrate the
need for adaptable representations to accelerate discovery for diverse applications [7, 8].

2 Feature Adaptive Bayesian Optimization

The Feature Adaptive Bayesian Optimization (FABO) workflow aims to efficiently identify optimal
materials from large databases while minimizing expensive experiments or simulations. Each
closed-loop optimization cycle includes data labeling, updating material representations, refining
the surrogate model, and selecting the next experiment using an acquisition function, as can be seen
in Figure 1. FABO, similar to any other principled Bayesian optimization, relies on a surrogate
model for uncertainty-aware objective function predictions and an acquisition function to balance
exploitation and exploration. This study uses a Gaussian Process Regressor (GPR) for its robust
uncertainty quantification and combines Expected Improvement (EI) and Upper Confidence Bound
(UCB) acquisition functions.

FABO dynamically updates material representations at each cycle, refining features to enhance opti-
mization efficiency without requiring extensive labeled data upfront. Two feature selection methods,
Minimum Redundancy Maximum Relevance (mRMR) and Spearman ranking, are incorporated in
FABO. mRMR balances feature relevance to the target variable and redundancy among features using
mutual information metrics [9], while Spearman ranking evaluates features based on their monotonic
relationship with the target using rank correlation coefficients [10]. Both methods are computationally
efficient and suitable for iterative optimization compared to embedded techniques like LASSO or
tree-based methods, which require hyperparameter tuning [11]. FABO selects between 5 and 20
features during each BO run, enabling adaptable and efficient exploration of the material search
space.
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Figure 1: Feature Adaptive Bayesian Optimization (FABO) framework. FABO operates in an
iterative feedback loop: (1) label the candidate material (mn) computationally or experimentally
(F (mn)) and add it to the labeled dataset, (2) perform feature selection based on labeled data to
determine the most informative representation, (3) update the surrogate model using the selected
feature set (Dselected), and (4) apply the acquisition function to select the next experiment (mn+1) for
data labeling

3 Case study

This study applies FABO to discover MOFs with target properties from large databases, leveraging
their complex chemistry-geometry relationships. Two datasets are used: QMOF, with 8,437 MOFs
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in which band gap is the target property and acquired from high-throughput DFT, and CoRE-2019,
with 9,525 MOFs in which CO2 adsorptions at low and high pressures are properties of interest.
Initial feature pools include chemical descriptors like Revised Autocorrelation Calculations (RACs)
[12, 13, 14] and stoichiometric sets (Stoichiometric-45 [15] and Stoichiometric-120 [16]), alongside
geometric features like pore sizes calculated using Zeo++ [17]. FABO is benchmarked against BO
campaign in which features are selected randomly. The experimental budget in each single BO
campaign is 250 and to mitigate the influence of initial data points on optimization outcomes, 20 BO
campaigns are conducted, each with 10 randomly selected initial datasets.

We use three metrics to evaluate the quality of the acquired MOFs during the BO campaign: the
best rank, the best value of the objective function, and the number of acquired materials among
the top 100 materials in the dataset [18]. The search efficiency curves in Figure 2 demonstrate the
high performance of FABO across all three metrics and three objectives compared to the baseline.
The results in Figure 2 shows the baseline often falls short in fully capturing the complexity of
structure-property relationship. In specific, for the more complex properties, like CO2 uptake at low
pressure and band gap, which involve complex chemistry, random feature selection could not identify
the best set.

a)

b)

c)

Figure 2: Search efficiency curves for FABO, illustrating performance against BO campaigns
with random feature selection. (a) CO2 uptake at low pressure, (b) CO2 uptake at high pressure,
and (c) band gap. The quality of the acquired set of MOFs is shown in three panels: (left) the highest
rank relative to the entire dataset; (middle) the optimum value of the objective function; and (right)
the number of top 100 MOFs (based on the property of interest) included in acquired MOF set.
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4 Conclusion

In this work, we introduced the Feature Adaptive Bayesian Optimization (FABO) framework, which
integrates feature selection into Bayesian optimization to dynamically refine material representations
throughout the optimization process. Our open-source implementation of FABO is available for
researchers to easily apply to their own domain-specific optimization problems. By starting from a
complete feature set, FABO’s integrated feature selection within BO ensures that the most relevant
features are dynamically chosen to optimize the search space efficiently.
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